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INTRODUCTION

A significant driver of recent growth in the use of mathematics in the
professions has been the support brought by new technologies. Not only has
this facilitated the application of established methods of mathematical and
statistical analysis but it has stimulated the development of innovative
approaches. These changes have produced a marked evolution in the
professional practice of mathematics, an evolution which has not yet
provoked a corresponding adaptation in mathematical education, particularly
at school level. In particular, although calculators -- first arithmetic and
scientific, then graphic, now symbolic -- have been found well suited in
many respects to the working conditions of pupils and teachers, and have
even achieved a degree of official recognition, the integration of new
technologies into the mathematical practice of schools remains marginal. It
is this situation which has motivated the research and development work to
be reported in this volume.

The appearance of ever more powerful and portable computational tools
has certainly given rise to continuing research and development activity at
all levels of mathematical education. Amongst pioneers, such innovation has
often been seen as an opportunity to renew the teaching and learning of
mathematics. Equally, however, the institutionalization of computational
tools within educational practice has proceeded at a strikingly slow pace
over many years. At first glance this slow pace is surprising, given the
official encouragement for the uptake of new technologies by educational
institutions, and the corresponding material and practical support provided
by government and quasi-governmental agencies in most developed
countries. Very commonly, however, the complexity of technology
integration and its wider ramifications have been overlooked,
underestimated or denied.

As this book will illustrate, the introduction of new computational tools
calls into question established consensus concerning the mathematical
knowledge to be taught in school. While some long valued components
remain indispensable, others become obsolete. Technology integration also
poses a significant challenge to the often sharp demarcation within schools
between the domain of mathematics and that of computing or informatics. In
these circumstances, systemic approaches to innovation have often displayed
a high degree of caution and conservatism when it comes to technology
integration. In most educational systems, for example, there has been no
substantial reworking of the mathematics curriculum in more technology-
aware terms. Often, indeed, the use of computational tools is barred or
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restricted in public examinations, creating a powerful backwash inhibiting
and discouraging their uptake.

Fortunately, there are some important exceptions to this pattern. The
Australian and Dutch and French teams whose work is reported in this book
have all benefited from unusually favorable policies in their educational
systems which have permitted -- even encouraged -- a strong integration of
technology within mathematics teaching. In the French educational system,
for example (Trouche, Chapter 1), the use of calculators has long been
permitted (though widely contested by parents and teachers) and has
increasingly been encouraged and supported by the regulations governing
the baccalaureate, the public examination which marks students’ completion
of secondary education. Even in France, however, while tools for calculation
and graphing are frequently used by students, few teachers treat them
seriously as instruments for mathematical work. And these studies also
demonstrate that even where educational policies are supportive the
didactical complexity of integration remains a considerable barrier.
Accordingly, they point to insights and mechanisms needed to assure a
wider and more systematic development and diffusion of innovative
approaches.

This book, then, seeks to report and synthesize a set of recent
investigations with similar concerns and approaches. The projects under
investigation all brought together researchers and teachers in long-term
collaborations. They aimed to progressively develop teaching which exploits
technology, illuminated by successive analyses of the experiments
conducted. This is a realistic approach, not distancing itself from the current
conditions and constraints of teaching, although it does take a view which is
broader and longer than the everyday one. Consequently, the didactical
designs proposed here are more an internal adaptation of current teaching
than a transposition of new practices from external sources. The analyses
which they offer seek to unveil the traps and obstacles produced by this
incorporation of technology into teaching, so as to better understand the
conditions supporting a productive integration.

Although their common focus is on the specific topic of the integration
of symbolic calculators into mathematical education at upper secondary
level, this topic is analyzed with the help of theoretical tools which appear to
be more generally applicable without particular regard to technology type or
educational level. These theoretical tools assist the researchers to take
account of the delicate ecology of adaptation in a system which includes the
functioning of a machine, appropriated by a user, shaped by a teaching
approach, regulated by a school curriculum, framed by a wider culture.
Analyzing the action and interaction of the elements of this system calls for
a combination of ideas from anthropology and psychology, ergonomics and
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didactics, mathematics and informatics. However, the principal perspective
guiding this work is that of instrumental analysis, as developed by the
French research teams which provide the majority of contributions to this
volume. The essentials of this perspective -- set out by Trouche (Chapter
6) -- are that, beyond the material constraints imposed by its functioning, the
use of a tool depends on schemes which establish links between concrete
gestures and mathematical thinking. In instrumental genesis, such schemes
are progressively elaborated through the dual processes of the
instrumentalization of the tool and the corresponding instrumentation of
activity.

This perspective emphasizes the interaction of the instrumentalization of
a tool with a broader instrumentation of mathematical activity, and the effect
of these processes on the wider development of mathematical concepts. In
particular, Lagrange (Chapter 5) signals the importance of instrumented
activity in establishing a sense of mathematical objects -- as well as
effecting mathematical processes -- and hence the importance of the
epistemic -- as well as the pragmatic -- function of technique. From this
point of view (as Drijvers and Gravemeijer, Chapter 7, illustrate),
development of a calculator-instrumented technique may sometimes help to
sensitize pupils to aspects of a mathematical concept which remain implicit
in the conventional instrumentation through paper-and-pencil. In effect, the
decalage between calculator and paper-and-pencil techniques may serve to
stimulate an adaptation of pupils’ schemes, and above all the construction of
a more global scheme integrating the two techniques.

These global schemes are central to the management of conflicts between
the functioning of symbolic calculators and current mathematical norms. In
particular, these schemes underpin the vigilance and flexibility necessary in
the face of results which can be unexpected, misleading, or even incorrect.
Elbaz-Vincent (Chapter 2) reminds us that a computer algebra system does
no more than treat sequences of symbols according to formal rules. Even at
the syntactic level, the form and succession of the symbolic transformations
carried out by the machine remain invisible to the user, which can give rise
to misleading reconstructions by pupils (Lagrange, Chapter 3). Equally, the
graphing algorithms of the machine produce images which need to be read
more as plots than sketches of mathematical graphs (Trouche, Chapter 6).
Moreover, users must take charge of the semantic aspect -- which appeals to
the sense of symbols and relates them to their referents -- and the pragmatic
aspect -- which takes account of wider situation and ulterior intentions.

The analyses presented in this work are sensitive to these complexities
and seek to understand not only the evolution of schemes on the part of
users but the variation in schemes between users. Trouche shows that,
amongst calculator-using pupils, this instrumental variation extends from
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conceptions of particular operations (Chapter 6) to general orientations
towards use of the machine in classroom mathematical work (Chapter 8).
Equally, Kendal, Stacey and Pierce show a similar variation in usages
amongst teachers (Chapter 4) combining pedagogical and mathematical
aspects. Accordingly, the didactical designs proposed by the French teams
seek not only to specify a series of didactical situations aimed at evoking a
system of schemes on the part of the pupil, but to articulate strategies
through which the collective development of these systems can be
orchestrated and socialized to institutional norms (Trouche, Chapter 8;
Artigue, Chapter 9).

To now move on from taking an overview of the book as a whole, to
introducing each chapter in turn:

In Chapter 1, Luc Trouche offers a glimpse of the current -- primarily
French -- situation as regards integration of symbolic calculators within
mathematics teaching. The school as an institution faces a generation of
students who wish to make use of new tools which have gained wider
professional and social legitimacy; indeed they often bring such tools to the
classroom. While students expect such tools to be normal instruments for
mathematical work, a not inconsiderable proportion of teachers are reluctant
to accept their integration. Such an integration supposes a more
experimental conception of mathematics than that underpinning current
classroom practice. The debate even extends to learned societies obliged to
redefine the place of mathematics in today’s world. The evolution of school
programs and textbooks reflects an openness to technology integration, but
evaluation of early attempts has led to a degree of institutional recognition
of the difficulties of such integration.

Chapter 2, by Philippe Elbaz-Vincent, presents the general characteristics
of computer algebra systems (CAS) offering the user both pre-programmed
commands and a programming language which makes possible the
definition of more elaborate procedures. The topic of formal differentiation
is used to illustrate the types of representation provided and of manipulation
made possible by such a system. A review of some classic mathematical
problems serves to bring out key weaknesses of these systems, even in
elementary aspects: examples are presented of results which are erroneous
or difficult to interpret. In both cases, the machine response contains
relevant information, but to recognize and exploit this information requires
mathematical knowledge which may be at quite a high level; some examples
are presented regarding the calculation of primitives in terms of standard
functions. In the circumstances, what trust can the mathematician give to a
proof obtained with the assistance of a CAS? More generally, the use of a
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CAS calls for a critical attitude on the part of the user. Hence, to introduce
such a system in teaching without thinking its use through in advance is
inevitably problematic.

In Chapter 3, Jean-Baptiste Lagrange addresses in a more general way
the problem of transposition of the professional practices of mathematicians
into the teaching situation. The new tools for formal calculation make
experimental approaches more visible and current in mathematical activity.
To what extent do these new approaches provoke a broader evolution in
teaching? Answering this question calls for the aims of mathematical
education to be taken into account. In these changed circumstances, is it
appropriate to develop in pupils something of an algorithmic spirit? Does
using tools within an experimental approach to mathematics necessarily
develop in pupils a deeper understanding of mathematical concepts?
Analysis of concrete situations reveals that tools for formal calculation do
not automatically support experimental work which is speedy and
productive from the point of view of learning mathematics. Discussion of
the conditions under which such situations are productive brings out the
necessity of a strong didactic intervention in conceiving them.

Margaret Kendal, Kaye Stacey and Robyn Pierce, in Chapter 4, describe
the different approaches of three Australian teachers seeking to integrate a
CAS into their teaching. They underline the profound changes which this
integration requires and the diversity of choices with which teachers are
faced, whether these be in organization of the class, teaching of issues
specifically related to use of the tool, exploiting the constraints and
affordances of the tool, and managing the distribution of time involving
technology and mathematics. A comparison of these teachers’ approaches to
integrating graphic, then symbolic, calculators makes it possible to pick out
issues which are more specifically related to symbolic manipulation. It
seems that styles of teaching depend strongly on the conceptions which
teachers have of mathematics and on the corresponding role which they
accord the calculator, and that differences in styles are accentuated in using
computer algebra systems. Equally, the experience of these teachers
encourages greater appreciation of the extent of the work necessary on the
part of teachers to integrate use of CAS into their classes in a significant
way. Additionally, the authors bring out the institutional problems which
such innovations pose as regards curriculum and assessment.

In Chapter 5, Jean-Baptiste Lagrange takes up for consideration the new
techniques which emerge when students appropriate tools for computer
algebra. Drawing on didactical theorizations, he recalls the fundamental role
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which techniques play in mathematical conceptualization. Through
examples taken from situations conceived by a range of research teams, he
discusses the place of instrumented techniques and their interaction with
more customary techniques. Instrumented techniques are not given by the
tool itself, but must be thought out and put in place through situations
adapted for this purpose. Consequently, important didactical choices arise in
conceiving techniques and the pragmatic and epistemic functions which they
will accomplish, and in determining their interaction with customary
techniques. Other instrumented techniques are motivated by the need for an
efficient and reasoned use of tools by students. These are clearly more
difficult to make legitimate within the current institutional framework of
school mathematics. This examination of the place of techniques illuminates
the complexity of the teacher’s role, explaining some of the diversity in
approach observed in the preceding chapter.

In Chapter 6, Luc Trouche studies the processes of learning associated
with the use of symbolic calculators by students. He draws attention to
didactical phenomena which have been highlighted by research into the
integration of graphic calculators and the software DERIVE; phenomena
linked to processes of knowledge transposition or to processes of adaptation
on the part of students. Then, drawing from research in cognitive
ergonomics, he proposes a theoretical approach which aims to provide a
better means of analyzing the distinctive process through which a technical
tool is transformed into an instrument of mathematical work; an approach
which makes it possible to take account of the phenomena noted earlier. A
typology of constraints is set out with the help of examples relating to two
different models of symbolic calculator, and these bring out the way in
which particular constraints privilege certain types of action, illustrating a
general method for studying an artifact. Analysis of specific examples of
instrumented techniques related to the topic of function limits illustrates the
gap between the technique taught to a class and the techniques actually
practiced by students. These examples also serve to illustrate how
underlying operational invariants can be inferred from techniques, and to
demonstrate the fundamental role that these operational invariants play in
students’ conceptualizations.

In Chapter 7, Paul Drijvers and Koeno Gravemeijer draw on teaching
experiments concerned with the use of symbolic calculators as tools for
solving particular classes of algebraic problems, and the corresponding
instrumentation of algebraic activity and correlation of new techniques with
a wider algebraic discourse. The study reported in the chapter provides
detailed analyses of the instrumented action schemes which students
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developed for solving parameterized equations and substituting expressions.
It demonstrates how what might be taken simply as ‘technical’ difficulties
often have a wider ‘conceptual’ aspect, so bringing out the complexity of the
process of instrumental genesis. In particular, the chapter illustrates how
obstacles which students encounter during the instrumentation process offer
opportunities for learning, if carefully managed by the teacher, through
reflection on their conceptual aspects and their relation to the corresponding
paper-and-pencil technique.

In Chapter 8, taking the case of one class, Luc Trouche analyzes the
diversity of processes through which a symbolic calculator becomes an
instrument for mathematical work. To differentiate these processes, he
establishes a typology of extreme patterns of student behavior; this typology
makes it possible on the one hand to situate a particular student at a given
moment in relation to the different types defined; on the other hand, to
identify the development of such processes over time for a particular
student. Naturally, such development depends on the situations and working
arrangements put in place by the teacher. Management of the diversity of
processes observed calls for the teacher to carefully plan the organization of
a particular class at a given time. The theoretical approach of
instrumentation is developed to describe the place of didactic intervention in
the form of particular instrumental orchestrations defined by their
objectives, architecture, and modes of operation. The didactic objective is to
establish at a given moment, for each pupil and for the class as a whole, a
coherent system of instruments. Different mechanisms are presented
alongside one another to reinforce the social dimension of instrumented
action and to manage the impact of the introduction of a new artifact on top
of the systems of instruments which have already been established.

Chapter 9, written by Michèle Artigue, synthesizes the main
contributions of the research presented in the preceding chapters. These
contributions are theoretical in character: they provide a frame to
problematize questions of learning and teaching in an environment of
symbolic computation and to make this problematization operational.
Equally, they are of an experimental character; they provide detailed
information on the instrumented contexts constructed. Analysis of two
pieces of didactical engineering aims to identify regularities in the choices
made and the effects observed, and equally to explore the conditions for
their viability. Analysis of the difficulties encountered in privileged
situations is a preliminary stage in identifying the types of condition
necessary for wider use. In each piece of engineering, pre-analysis of
mathematical and instrumental potential precedes the detailing of the
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engineering intervention. Post-analysis makes it possible to measure the
distance between the potentials envisaged and what actually happened in
class. These descriptions and analyses show that it is possible, at least in
these experimental circumstances, to construct an approach to integration,
where instrumentation and mathematical knowledge are articulated with the
paper-and-pencil environment, even if it does not come about by itself.
These studies raise questions about the status of instrumented techniques in
these experimental classes: they show the necessity of according some form
of institutional recognition to a coherent set of instrumented techniques and
to a theoretical discourse accompanying them.

All these insights contribute to the identification of conditions which are
necessary to make viable the integration of symbolic calculators into the
teaching of mathematics. They open up some lines of research which can
help progress towards an effective integration which must necessarily
involve institutional negotiation about mathematical needs.
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area has dealt with the modeling of knowledge acquisition processes in
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Chapter 1

CALCULATORS IN MATHEMATICS
EDUCATION: A RAPID EVOLUTION OF
TOOLS‚ WITH DIFFERENTIAL EFFECTS

Luc Trouche
LIRDEF‚ LIRMM & IREM
Université Montpellier II‚ France
trouche@math.univ-montp2.fr

Abstract: The appearance of more and more complex tools in mathematics classes is
not a response to an institutional need of school. It is‚ rather‚ the expression
within this institution of a huge social phenomenon (the increase in the
number of screens and machines) arising from the utilization of computerized
tools by certain branches of mathematics and science.

Alongside other computation tools‚ calculators have been taken into
account in very different ways within the educational institution:

students rapidly appropriate them‚ regarding them as of potential assistance
to their mathematical work;

teachers hesitate to integrate them in their professional practice;
the French mathematics curriculum attempts to promote the utilization of

these tools.
However‚ the spread of calculators raises various questions (about

assessment‚ for example) and provokes lively discussion within professional
associations.

Key words: Assessment‚ Computation tools‚ Curriculum‚ Mathematics evolution.
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1. A SIGNIFICANT TECHNOLOGICAL
EVOLUTION

1.1 Evolution of tools in Mathematics Education

For a long time‚ mathematics could be distinguished from other scientific
disciplines by the economy and stability of the tools used in its teaching
system: pencil‚ ruler‚ set square‚ protractor and compasses for geometry‚ and
only pencil for computations (in western countries anyway); in Asia‚ other
artifacts like the abacus were (and sometimes remain) widely utilized. Most
probably‚ this apparent stability masks significant ruptures: the nature itself
of the ‘pencil’ used for written computation may have significant effects on
learning processes. Lavoie (1994) pointed out the revolution provoked by
the introduction of the ‘iron quill’ and the pencil in Canadian schools around
1830:

One of the reasons why the learning of writing was traditionally placed late is precisely

the use of goose quills. Indeed‚ these tools required such dexterity to cut and use that it

was normal to delay their use (...). Consequently‚ iron quills induced a real revolution‚ the

learning of writing and thus of arithmetic in primary schools.

In the twentieth century‚ tables of numerical values and slide rules were
added to these traditional tools for the scientific classes of secondary
schools. Effectively‚ from 1925 to 1975‚ these tools‚ strongly recommended
by the educational institution‚ were introduced by teachers and used by
students for computation:

since 1975‚ this situation has evolved radically. Software permitting
numerical or formal computation and geometry has become accessible. The
spread of small individual computing tools‚ calculators‚ has rapidly and
profoundly modified students’ equipment in mathematics classes. In 1975
‘desk calculators’ appeared‚ scientific and programmable calculators in
1980‚ graphic calculators in 1985‚ and symbolic calculators (provided with
CAS and sometimes also with geometrical software) in 1995. When they
appeared‚ graphic calculators cost ten times more than mathematics
textbooks. Twenty years later‚ the cost of these two objects is similar. Tools
are more and more complex‚ their ergonomics and performance are clearly
improved‚ at lesser and lesser cost;

the spread of new tools is more and more rapid. To equip all students
with scientific calculators took fifteen years (from 1975 to 1990)‚ whereas‚
for graphic calculators‚ ten years was enough (from 1990 to 2000). If this
evolution carries on1‚ one can anticipate most students in scientific
secondary classes soon being equipped with symbolic calculators2;
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the ‘communicative’ dimension of these tools is becoming more and
more important. Screens have become larger and larger‚ devices have been
designed for linking calculators together‚ or to a computer‚ or to an overhead
projected calculator. Other devices have been designed for updating‚ via the
Internet‚ the contents of calculator memory (flash technology)‚ for linking a
calculator with a data-logging device (Chapter 4) allowing various physical
measures to be captured3. The affordances of these new materials do not
necessarily induce utilization of these artifacts which takes a socialized
form. One can notice‚ in fact‚ two convergent evolutions: computers are
smaller and smaller (handheld‚ autonomous) and calculators are more and
more integrable with communication devices.

After a long period of stability‚ this rapid evolution of the computing
tools at students’ disposal probably makes more complex the constitution of
a new equilibrium in mathematics classes.

1.2 Evolution of mathematicians’ tools

Software for numerical or formal computation was first introduced to
meet mathematicians’ needs. Mathematical practice has been deeply
modified by these new artifacts. Merle (2000) identifies three main changes
linked to the development of computer science in mathematics:

the computer has permitted, through its power of computation, the treatment of certain

objects in a new light (...);

computerized processing raises new questions and allows certain domains to be re-

examined (.. .);
[the computer induces] the expansion of discrete mathematics, applied logic and

algorithmics.

More generally, the possibility of rapidly testing hypotheses facilitates
the emergence of conjectures; the possibility of rapidly making a lot of
computations even modifies the construction of some proofs.

One example, among many others, was suggested by Rauzy (1992). In
1770, Waring put forward the following conjecture: every integer is a sum
of less than 4 squares, 9 cubes, 19 quartic powers, etc. (For example, 79 is
the sum of the squares of 1, 2, 5 and 7, sum of the cubes of 1, 2, 2, 2, 3, 3,
sum of the quartic powers of 1 (15 times) and of 2 (4 times)). This
conjecture was proved with the assistance of a computer in the following
way: Dress and Deshouillers proved that every number greater than
was a sum of 19 quartic powers. A computer could not make all the
remaining computations for smaller numbers in a reasonable time. New
theoretical developments were required: it was proved that the conjecture
was true if enough numbers, representable as a sum of 5 quartic powers, are
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in a zone close to The verification required about a hundred billion
operations, which could be performed by a computer in a few days... The
conjecture was becoming a theorem.

Mathematical research has always included an experimental dimension
and a conception of mathematics based on conjectures, proofs and
refutations is not new (Lakatos 1976). However, due to improvement in
informatics, this experimental dimension has tended to leave the private
sphere of mathematicians’ work and to become officially recognized
(Chapter 3). Conjectures produced with the assistance of computer
programs, data related to these conjectures, methods for obtaining
conjectures can be explained and discussed as valid mathematical work.

Beyond this production of conjectures, there are also procedures for the
investigation and definition of structures which are sufficiently general to
support this production: Borwein & al (1996) show that a new scientific
field is developing within the mathematical domain, whose legitimacy, still
problematic, is gaining.

1.3 Evolution of computation tools in society

The evolution of computation tools in the practice and teaching of
mathematics is also related to a profound evolution of computation tools in
society. Outside the field of professional mathematicians‚ the professional
practices of computation have‚ in effect‚ been overturned:

in the commercial world‚ the appearance of computing tools induced a
complete elimination of paper-and-pencil computation (it is notable that in
societies where computation tools were available -- for example‚ the
abacus -- these tools still coexist with calculators). Moreover‚ due to the
emergence of bar codes and optical character recognition‚ cashiers no longer
enter numbers by hand into keyboards; the only counting which remains is
related to coins and banknotes so as to give change;

the situation is quite similar for all professions involving manipulation of
numbers: auditors‚ tax collectors and managers have at their disposal
specific software for calculations linked to their professional practice;

in the same way‚ social practices of computation have also been
modified. The appearance of calculators devoted to specific tasks
(conversion of national currencies into euros‚ cumulatively calculating the
bill while shopping in supermarkets etc.)‚ the emergence of services or
software carrying standard calculations out automatically (tax amounts) may
give the impression that some of the computation techniques learnt in school
are now obsolete.

On the other hand‚ the emergence of new tools modifies not only
computation techniques‚ but also the relationship with numbers itself. On the
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one hand‚ the taking-over of computation by a machine increases the
distance of the user from numbers; on the other hand‚ the carrying out of
marginal tasks (for instance‚ giving change) is connected to computation
practices which involve counting concrete objects. Technological evolution
dramatically changes social relationships to mathematical objects.

Chevallard (1992) brings out the differential penetration of computer
objects:

The spectacular penetration‚ still increasing‚ of computers in daily life and in most

professional sectors hides a reality which has to be taken into account to be able to judge

the stagnation in the educational domain. The degree of penetration is less a function of

the way members of the institution think (modern or archaic) than of the implemented

type of use.

Outside mathematics education‚ then‚ there is a social legitimacy to new
computing tools‚ based on a clearly identified type of use‚ the assistance to
computation.

1.4 More general evolution of tools in society

This evolution is the translation into the mathematical domain of wider
evolutions. Debray (1992) points to the age of videosphere following the
appearance of color television:

It is the era of keyboards and screens taking the place of pencil and paper. Direct contact

with things is replaced by indirect contact through the mediation of a specific machine.

All that matters is what can be seen (or heard); thus the risk of confusion between an

object and its representation4 ‚ between map and territory‚ becomes great. In this context‚

the more complex and widespread use of calculators can be seen as one aspect of a wider

phenomenon‚ marked by an increase in prostheses‚ the spread of screens and the

miniaturization of supports.

The educational institution is thus confronted with this phenomenon both
internally (owing to the introduction of calculators into classes by students)
and externally (owing to the social legitimacy of these tools). This social
necessity of mastering new technologies may appear then as a new
legitimatization of mathematics within curricula (Schwartz 1999).
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2. IN THE EDUCATIONAL INSTITUTION: THE
POINT OF VIEW OF DIFFERENT
PROTAGONISTS

Before examining the responses of the educational institution itself‚ it is
probably of use to us to consider the points of view of potential actors as
regards the integration of new computing tools‚ that is to say of their users
(Baron & Bruillard 1996)‚ students‚ teachers and their associations.

2.1 Students

Faure & Goarin (2001) have analyzed the results of a survey of the
relationship that students have established with their calculator. This survey
covered 527 students from grade scientific classes. Some features
emerge from these responses:

most students (84%) own a graphic calculator (8% a calculator which is
only scientific‚ 8% a symbolic calculator);

the process of learning about calculators mainly takes place outside the
class;

first and foremost‚ the process of appropriating this tool is based on
individual exploration-discovery; afterwards there is a social dimension
(with friends). Generally‚ the teacher is not very involved in the process of
calculator appropriation. A comparison with the results of a previous
survey shows very little change over ten years (Figure 1-1).

Figure 1-1. How did you learn to use your calculator?
Comparison of two surveys in 1992 and 2000 (Faure & Goarin 2001)

From further data‚ it appears that students hope for the teacher to be
involved in the process of learning about calculators (Figure 1-2). This
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might be considered as an indication of institutional recognition of the tool.
The actual situation‚ however‚ is the opposite of the one hoped for.

Figure 1-2. If you had to do it again‚ how would you prefer to learn to use your calculator?
(Faure & Goarin 2001)

The authors also note (Figure 1-3) that the calculator is mainly used by
students during the reinvestigation of knowledge through assessment and
exercises‚ very moderately during more open processes of investigation and
exploration‚ and very little when the teacher is presenting and establishing
fresh knowledge.

Figure 1-3. Why do you use a calculator in class or at home?
(Faure & Goarin 2001)

This situation is probably linked to the weak integration of this tool into
classwork.

Finally‚ the survey reveals that students use calculators essentially in
order to graph a function‚ then to calculate or to study the variation of a
function‚ and only a little to study limits or to solve equations (Figure 1-4)‚
which reveals a quite reduced exploitation of their functionalities as tools.
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Figure 1-4. In your opinion‚ are calculators useful to: do computations‚ study variation of
functions‚ study limits‚ draw graphs‚ solve equations‚ find function domains?

(Faure & Goarin 2001)

In a review of new research into the integration of graphic calculators‚
Penglase & Arnold (1996) identify five main benefits of the use of graphic
calculators which are mentioned by students‚ and these seem to be more
important than those mentioned by Faure & Goarin:

The ease of sketching and obtaining information from graphs; being able to check

quickly the correctness of derivatives‚ integrals and solutions; being able to understand

and interpret graphs and derivatives‚ integrals and solutions; the ease of computing and

checking procedures regarding difficult formulae; and the increase in confidence and

enthusiasm associated with the use of the tool.

However‚ we will see in the next chapters that the type of student work
with a calculator depends on various factors:

it depends on the teacher’s role (Chapter 4). In classes where teachers do
integrate the tool‚ most studies point to a substantial involvement of students
in problem solving (Trouche 1998)‚ with better participation in class
discussions (Waits & al 1999);

it depends on the availability of the tool (Burrill & al 2002). In this way‚
Chacon & Soto-Johnson (1998) point out that results are not the same when
students work in computer rooms with their teacher: in this context‚ the
authors report irritation in the face of certain tool blockages‚ frustration
arising from the only occasional utilization of the tool. These phenomena
appear rather marginally in calculator environments (i.e. when calculators
are tools recognized by teachers and continuously at students’ disposal);

work varies according to the students: detailed studies‚ carried out in
experimental contexts with specific observation devices (interviews‚
questionnaires‚ analysis of students’ work)‚ reveal the complexity of related
processes in this type of environment and the possible variation in students’
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behavior‚ according to gender (Penglase & Arnold 1996) or work method
(Chapter 8).

2.2 Teachers

Available sources concerning teachers’ opinions are more extensive than
those concerning students (trade-union or professional sources‚ research
results). The main feature of teachers’ points of view is a reluctance to use
new technologies in their teaching‚ at elementary school level as well as at
middle school (Bruillard 1995) or secondary school level (Abboud
Blanchard 1994). We can find an illustration of this situation in the survey
of Faure & Goarin (ibid.)‚ which notes that students regret not having the
possibility of learning to use their calculator with their mathematics teacher.

Guin‚ Joab & Trouche (2003) analyzed the results of another
questionnaire for teachers taking part in training courses on themes related
to ICT5. It was not a representative selection of the community of teachers
because these teachers had intentionally committed themselves to
professional development (and so represent a minority). They were more
disposed to question their professional practice than other teachers.

The degrees of familiarity of these teachers with calculators and
computers (Figure 1-5) seem to be linked (this study is essentially related to
graphical calculators‚ because few of the teachers know about CAS
systems). But this degree of familiarity claimed by teachers is not
necessarily linked to the frequency of utilization: Guin‚ Joab & Trouche
highlight that‚ among 32 teachers indicating familiarity with their calculator‚
only 11 frequently use it. Moreover these similarities could mask differential
patterns of response by teachers according to their calculator or computer
orientation.

Figure 1-5. What is your degree of familiarity with...
(Guin‚ Joab & Trouche 2003)

In this survey‚ the results of questions related to the type of calculator use
which teachers employ with students are also interesting (Figure 1-6). It is
only for quite elementary tasks (numerical work)‚ that users are more
numerous (calculators seem to be integrated there as an ordinary tool). For
other tasks (combining never-seldom to one side and sometimes-often to the
other)‚ users and non users are equally numerous‚ except for quite complex
tasks -- programming -- where non-users are considerably more numerous.
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Moreover‚ it seems that very few teachers use overhead projected devices to
support the integration of calculators into classes.

Figure 1-6. Type of utilization of calculators with students
(Guin‚ Joab & Trouche 2003)

These results indicate an integration of calculators which is still weak for
elementary tasks not requiring use of specific devices. Remember that these
teachers were special in having chosen to take part in a training process
about ICT. One may reasonably conjecture that results would not be better
among the wider community of mathematics teachers. A report from the
Ministry of Education about the implementation of new curricula in
secondary classes (§3.1) also expresses these difficulties:

(...) In spite of recurrent calls (for nearly twenty years) to take up this new tool

(calculator or computer)‚ many teachers do not feel comfortable about integrating it into

their teaching6.

The annual General Inspection report for France7 notes‚ regarding
utilization of new technologies‚ “a division between a minority of motivated
teachers‚ frequently users‚ achieving high-quality results‚ and a majority still
not involved”.

This situation is not specific to France: Monaghan (1999) described a
similar situation in England‚ estimating that “only 5% of teachers tend
naturally to use new technologies in mathematics courses”. However‚ one
has to distinguish teachers’ opinions about ICT in general‚ from those
relative to their integration into classes. Bernard & al (1996) mentioned that
a positive opinion about ICT is a necessary condition‚ but not sufficient to
have a positive opinion about ICT integration.

In order to justify their reluctance‚ teachers often appeal to a risk of
social inequality (calculators are expensive)‚ and to pedagogical difficulties
linked to the diversity of calculators used by students. However‚ in contexts
where the same model of calculator is freely provided to all students‚
Bruillard (1995) pointed out that teachers remain reluctant. Consequently‚
we have to try to understand reasons for this mental block.
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In fact‚ the remarks of resistant teachers express a mistrust of new tools
which may have several origins:

these tools are too crude: results‚ for graphic calculators‚ are only given
approximately; this may lead to certain errors (Bernard & al 1996);

these tools prevent some elementary learning processes; for instance‚
Bruillard (1995) mentions the teachers’ fear that calculator use prevents the
learning of the ‘four operations’ in middle school. One finds also a similar
fear in Fromentin (1997): calculators at middle school are essential tools‚ but
they may be dangerous;

these tools do not fit the conception of mathematics which teachers have.
One teacher explains it in this way: “calculators deny the mathematical
reflex” (Bernard & al 1996). Reducing mathematics to an experimental
practice restricts the place of formal proof.

Other reasons may explain this reluctance‚ not mentioned by teachers but
emerging from several studies:

the institutional discourse concerning the importance of integrating ICT
has often underplayed difficulties of managing calculator environments
(Guin 2001). Consequently‚ this discourse does not appear credible;

indeed‚ the integration of complex tools into the classroom requires
teachers to undertake deep questioning about their course‚ the exercises they
have already prepared‚ and their professional methods. De facto‚ they
commit themselves to a complex process of ‘action research’ (Raymond &
Leinenbach 2000): “We conjecture that teachers who engage in action
research are generally teachers who are at a critical juncture in their teaching
practice and who are in a state of mind where they are open to change”.

The investigation of reasons which may explain the reluctance of many
teachers to integrate calculator use into their teaching establishes (in
opposition) the profile of teachers favorable to this integration. Thompson
(1992) and Bernard & al (1996) point out that teachers’ use of ICT in
mathematics classes is greater to the extent that they have an ‘experimental’
conception of mathematical practice (i.e. towards conjectures‚ refutations
and proof processes). Penglase & Arnold (1996) wrote as follows:

The data suggested that certain teaching styles are more compatible with graphic

calculator use than others (...) teachers who tended to employ interactive or inquiry-

oriented methodologies used the calculators during instruction more than teachers who

used other teaching approaches.

The necessity of this personal conception may explain why teachers who
integrate ICT into their class often remain isolated in their school (Watson
1993). It does not lead to homogeneity in teachers’ practices concerning
calculator use. Penglase & Arnold (1996) also noticed:
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Teachers who perceived the graphic calculator as a computational tool tended to stress

content-oriented goals and viewed learning as listening. Teachers who saw it as an

instructional tool had student-centered goals and discipline goals‚ interactive-driven

teaching styles and student-centered views on learning.

We shall closely analyze this heterogeneity amongst teachers (Chapter
4). Beyond that‚ it is clear that most teachers express reluctance to
integrating calculators into their classes. This reluctance rests on a network
of reasons. To overcome them supposes‚ then‚ a set of conditions which we
shall examine in the following section.

2.3 Learned associations and societies

In 1996‚ through the impetus given by the SMF8 ‚ the GRIAM9 set about
combining the main French associations of mathematics practitioners. In
1998‚ this group defined what form calculator use might take in secondary
classes:

The great difficulty‚ at all teaching levels‚ is to arrange things so that thought lies on the

student side in the student-calculator pair (...). Practically‚ it seems useful to explore two

ways:

1. To carry out part of the work (exercises and assessment) without a calculator. To find‚

for example‚ the order of magnitude of solutions by mental computation (...).

2. To check calculator results systematically‚ to verify that they solve the problem and

that no solution is missing (...).

These new tools are an opportunity‚ and not a threat. However‚ the various capacities of

calculators pose serious problems of equity in examinations (GRIAM 1998).

It is interesting to notice that‚ even if calculators are considered as an
opportunity‚ the two directions given describe what could be done before
and after their use‚ but not with these tools. This text is indicative of a
conception which considers only‚ in the ‘student-calculator’ pair‚ that part of
student work carried out without a calculator.

One year later‚ the debate on calculators was relaunched in France‚ in a
spectacular way‚ by the statement of the Minister of Education‚ Claude
Allègre: “Mathematics is being devalued‚ in an almost inescapable way.
From now on‚ there are machines for computation. Likewise for drawing
graphs...” (France-Soir‚ November 1999). The significance of this
statement was such as to provoke‚ in 2000‚ a reaction from trade-union‚
corporate and learned associations‚ particularly the mathematics teacher
associations‚ thus giving a set of opinions on the question of integration of
calculation tools into mathematics:

the Académie des Sciences10:
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Have printing‚ typewriter‚ word-processing software or spell-checker devalued literature?

More than 50 years ago‚ penetrating minds compared the role of informatics‚ just newly

born‚ with the role of printing to valorise and develop mathematical concepts. Functions‚

equations‚ exact or approximate solutions‚ these notions have always depended on

writing and computing tools. However‚ these notions have not been devalued. Today‚

informatics and its universal use in modeling are indissolubly linked to mathematics‚

which conditions their progress.

A petition from the SNES11 union‚ signed by a lot of scientists:

Developments in informatics question mathematics as much at the level of practices and

tools as at the level of research domains. Mathematics education is essential in order to

understand and to exploit models‚ to appreciate where their limits lie and what is at stake.

But the place of this teaching is not determined only by the satisfaction of these needs; it

is also an essential component of intellectual training in developing capacities of abstract

reasoning from the moment of first contact with numbers‚ figures‚ diagrams and symbolic

expressions.

The CREM (Commission de Réflexion sur l’Enseignement des
Mathématiques‚ Kahane 2002):

The future of the world is linked to the development of all sciences‚ and sciences interact

today much more than yesterday. In particular‚ one finds concepts of mathematics and

informatics in all fields of knowledge and action. Bringing mathematics and informatics

into conflict is opposed not only to the history of these disciplines -- one old‚ the other

new -- but‚ more seriously‚ it is to ignore their natural mutuality at the levels of research

and use. The more powerful the means used‚ the more essential the mathematics.

Informatics provides motivation‚ and a new field‚ for mathematics education. It leads to

the revisiting of old ideas‚ to the introduction of new points of view and provides new

food for the thought of teachers and students.

This controversy is interesting: the more recent position stressing the
mutuality of mathematics and informatics reveals something of an evolution
from the GRIAM text in 1998. Following this controversy‚ fears about the
future of the discipline remain; these fears are attested to by the claim of the
French Mathematical Society (SMF):

At the moment‚ there is a deep restlessness about the future of our discipline‚ while we

note a weakening of mathematical training in secondary school‚ in content as in time

allocation‚ and that students seem to be turning away from scientific studies.

This feeling of a discipline in peril‚ of a profession in danger‚ probably
makes teachers resistant to change in general and to the integration of ICT in
particular. Bottino & Furinghetti (1996) indicate that the introduction of
informatics to mathematics education works only if it is perceived as a
response to a need expressed by teachers.
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As things stand‚ the opinions of students and teachers appear to be in
overall conflict: students are quite favorable to the use of tools which they
consider to be a help for learning‚ teachers are often opposed to the
importation into the classroom of tools which they consider as calling into
question their teaching.

3. INSTITUTIONAL EVOLUTIONS

Institutional evolutions may be identified directly from (formal)
curriculum evolution but also from the evolution of textbooks‚ from the
form and content of assessment and of the experiments carried out‚ or
favored‚ by academic authorities. On these different points‚ we will attempt
to set out the French situation and provide some illumination from outside.

3.1 French curriculum

The French curriculum in mathematics has evolved significantly
following the ‘modern mathematics’ reform of the sixties and seventies
which privileged the theoretical study of structures. The counter-reform of
the eighties and nineties sought to favor observation‚ ‘activities’‚ ‘problem-
situations’. This counter-reform takes account of calculators. Prescriptions
concerning calculation tools are displayed alongside questions relating to
numerical computations and graphic representations (Box 1-1).

This box deserves several comments.
i) Since 1971‚ while numerical problems have played a part in most
curriculum programs‚ those conceptual tools permitting rigorous monitoring
of work with numbers have become blurred. Ideas of tolerance and error and
the distinction between different number sets have disappeared. Calculator
representations of number seem to exempt students from reflection on
definition of objects and monitoring of results. Birebent (2001) expresses
this situation as an “inability of current calculus education to resonate with
numerical approximations”. Since 1998‚ it is possible to make out something
of an evolution: numerical topics have been reintroduced (only for the
specialist mathematical option)‚ in terms of the presentation of decimal‚
rational and real numbers. This does not settle the question of numerical
approximations‚ but it allows the questioning of relationships between
informatics and mathematics.
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Box 1-1.

Evolution of curriculum grade, scientific class)

Prescriptions for tools

Use of numerical tables of
standard functions and

slide rule.

Use of numerical tables,

slide rule and computing

machines.

Calculators will be widely
used.

Calculators will be
systematically used (a
basic model is sufficient).

Calculators with statistical
functions are
recommended.

One the other hand,
graphical screens are not

required.

Graphic calculators are
prescribed.

Prescriptions for numerical
computation

Notably a specific chapter on
numerical computation.

Numerical calculations are

included in the chapter.

Real numbers, numerical

computation, complex

numbers.

No chapter specific to
numerical computation: it is
integrated into other
chapters.

Numerical problems and
methods play an essential role
in the understanding of
mathematical notions.

Idem.

Numerical topics are

introduced as an additional
specialist option in
mathematics.

Prescriptions for graphic
representations

No reference to representative
curve except for exponential and
logarithm functions.

The expression graphic

representation appears in

connection with general study of

functions.

Usual use of graphic representation
will be promoted, because it plays a
significant role in the behavior of
functions.

Graphic representations must hold a
very important place in the
curriculum.

Idem.

Favoring argumentation
supported by graphs.
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ii) The modification of tools is accompanied by significant modifications of
the ‘corresponding’ mathematical field:

the introduction of scientific calculators leads to the curriculum taking
account of numerical questions: “systematic use of calculators reinforces
the study of numerical questions‚ as much to make calculations‚ as to
check results or to support research work” (curriculum program‚ 1986);

the introduction of graphic calculators leads to graphical
representations being taken more and more into account: “A geometrical
vision of problems will be developed in calculus‚ because geometry
supports intuition with its language and its representation procedures”
(curriculum program‚ 1994). Consequently‚ we should notice that the
graphic frame is privileged in the calculus part of curriculum‚ as for
example in the following comment12: “Deeper work is suggested on the
limit of sequences‚ easier to tackle than the function limit at a point: the
objective is ambitious‚ so it is advisable to remain reasonable in
implementing it and to favor arguments supported by graphs” (DESCO
2001). One may conjecture that the type of tool favored has an influence
on the frame of work: with scientific calculators‚ the numerical frame is
favored‚ whereas it is the graphical one with a graphic calculator;

a readjustment between numerical and algebraic may be pointed out in
the curriculum of the grade scientific class (2002): “An approach as
much numerical (with calculation tools: calculator or computer) as
graphical or algebraic will be adopted”.

iii) Prescriptions relating to calculators are more and more precise: they
speak of use‚ then wide use‚ then systematic use (Box 1-1). One may also
distinguish three stages in the relationship between development of tools and
curriculum prescriptions:

The power of
investigation of computer

tools and the existence of
high-performance
calculators‚ frequently at
students’ disposal‚

represent welcome

progress and their impact

on mathematical
education is significant.

This evolution has to be
supported by using these
tools‚ particularly in the
phases of discovery and

observation by students.

Numerical topics form a
domain with which
informatics strongly interacts;
use of various means of

computation will be
balanced: by hand‚ with the
help of a spreadsheet or a

calculator.
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first period (1971-1982): the choice is made to introduce tools having a
social legitimacy (calculating machines) into school‚ but this decision has
no practical consequence (educational establishments do not tool up‚
teachers do not respect prescriptions);

second period (1982-2000): the choice is made to integrate tools so as
to be at students’ disposal‚ following‚ but lagging behind‚ the actual
availability of equipment (in this way‚ graphic calculators were
prescribed in 2000‚ whereas for five years all students had already had
one (§1.1));

third period (since 2001)‚ the choice is made to anticipate the
equipment available to students and establishments and to prescribe the
use of tools which significantly modify mathematical work (dynamic
geometry software‚ spreadsheets‚ CAS). It seems that this behavior aims
to overcome teachers’ reluctance (§ 2.2). In 2001‚ for the first time in the
curriculum of grade scientific classes‚ specific devices integrating
computer tools are mentioned: “The curriculum does not fix any
distribution between different modes which should all be present: student
activities with computer or programmable graphic calculators‚ work with
the whole class (or in small groups) using a computer with an overhead
projected device” (DESCO 2001).

iv) Finally‚ an evolution can be noted in the type of integration sought by
curriculum designers: in 1971‚ tools were considered as an assistance for
computation; since 1982‚ they have been used to favor behaviors of
observation‚ conjecture and checking; since 2001‚ tools have become
essential elements of mathematical work at all levels (conjecture and
checking‚ but also in forming a spirit of rigor): “the student must learn to
place and integrate use of computer tools into a purely mathematical
process” (curriculum program of grade scientific class‚ 2001).

This evolution illustrates the difficulty of the institutional choices
necessary in order to integrate new tools into the class: to lag or lead the
state of students’ individual equipment (with financial repercussions:
complex tools are expensive)‚ following or anticipating changes in teachers’
practices‚ stressing more the ‘direct’ use of tool or its mathematical control‚
favoring one application (graphic‚ numerical or symbolic) or the articulation
between different applications‚ introducing programming or using
calculation programs already implemented‚ etc.

3.2 Curriculum in the USA

These problems of integrating calculators into mathematics education are
posed in all educational systems‚ with a great variety of responses (Drijvers
1999). In the USA‚ Waits et al (1999) remind us that the NCTM (National
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Council of Teachers of Mathematics) Curriculum and Evaluation Standards
(published in 1989) emphasize how accessible graphic calculators can be to
students because they are handheld computers which may be carried around
in a bag or pocket.

It is interesting to notice that‚ in 2000‚ the NCTM confirmed this
technological choice:

Calculators and computers are reshaping the mathematical landscape‚ and school

mathematics should reflect those changes. Students can learn more mathematics more

deeply with the appropriate and responsible use of technology. They can make and test

conjectures. They can work at higher levels of generalization or abstraction.

... But the NCTM emphasizes, nevertheless, the necessary control by
teachers of the integration process:

Technology cannot replace the mathematics teacher‚ nor can it be used as a replacement

for basic understandings and intuitions. The teacher must make prudent decisions about

when and how to use technology and should ensure that the technology is enhancing

students’ mathematical thinking.

A similar evolution may be noticed in France:
when graphic calculators appeared‚ the illusion was conveyed that

students would easily appropriate these ‘handheld computers’ as an
instrument for their mathematical work;

at a later point‚ the responsibility of teachers for the integration of tools
into classes is emerging. The report of IGEN (2000)‚ previously quoted‚
notes: “Far from withdrawing in favor of face-to-face contact between
student and machine‚ teachers are required to play a significant role‚
certainly a modified one‚ but still a determining one. They are mediators of
the access to knowledge and training”.

3.3 Evolution of textbooks

The study of textbooks is interesting because it allows the gap to be
estimated between official curriculum prescriptions and their application by
teams of teachers writing textbooks. For twofold reasons‚ textbooks are
situated in an intermediate position between what was formerly taught and
what is now to be taught:

old programs have put their mark on writers who have often already
written textbooks for them;

publishers prefer that teachers not be confronted with anything too
daring; even in the case of significant change in the curriculum program‚
they want to achieve elements of continuity.

A study of textbooks in different countries reveals a broad spectrum
concerning the use of calculators. It is interesting to pick out extremes:
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in Japan‚ calculator use is extremely limited. Accordingly‚ Eizo (1998)‚
analyzing results from the Third International Mathematics (and Science)
Study (TIMSS)‚ notes:

When Japanese mathematics textbook is compared with the international standard‚ it is

characterized as follow: there is a little consideration of individual ability‚ topics already

learned are rarely repeated‚ and there are a few situations in which calculators are used.

And it is pointed out that algebra and proof in geometry are emphasized in the second

grade of lower secondary school.

In the USA‚ a textbook (Demana & al 1997) integrating graphic
calculators provides a reference point. In contrast to Japanese mathematics
textbooks‚ this one calls widely for student activities‚ observation and
conjectures. On the other hand‚ this textbook requires very little process of
theoretical validation (we should note that the publication of this book
closely followed the appearance of graphic calculators‚ and so is situated
before the evolutions indicated in § 3.1);

in France‚ new textbooks (2002‚ for the grade class) give a much
more significant place to graphic calculators and geometry software (screen
images inserted in the text‚ hints made for use‚ specific activities suggested).
From now on‚ textbooks will be accompanied by CD-ROMs providing
animations. In 2001‚ for the first time‚ textbooks refer to symbolic
calculators (Box 1-2).

3.4 The issue of assessment

The issue of assessment is complex; it can be tackled from different
points of view:

how the educational institution chooses to assess the use of tools it
prescribes;

which choices are made by different educational systems;
what types of exercise are considered basic in order to assess the mastery

of a given tool.
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Box 1-2.

Extract of a textbook
grade‚ Bontemps 2001‚ p.65)

On a TI-82‚ the command nDeriv directly gives an approximate value of f ' (a): one types the
function‚ the variable and the value of a. One may also indicate‚ or not‚ a particular value for
h.

b) Graphically
One considers the (cartesian) graph of f in the neighborhood of 2 (one may try successive
zooms). The slope may be estimated or calculated by referring back and adjusting the

window. See below an estimate of the slope of the tangent equal to

Calculators allow checking of the computation of f ' (a) for a particular value of a in different
ways:

a) Numerically, computing the rate of change for ‘small’ h. This gives an

approximate value for f ' (a). Using the command nDeriv directly gives an approximate value
of f ' (a).
b) Graphically, considering the graph of fat the neighborhood of a: the slope of the tangent at
a is equal to f ' (a).
c) Formally, using a CAS (available on some calculators). Such software gives the exact
value of f ' (a).

Example: Let the function f be defined on ]0 ; by Calculate f' (2) ‘by

hand’, then check the result with a calculator.

1) Computing ‘by hand’

Then

2) With a calculator
a) Numerically
One calculates the rate of change between 2 and 2 + h, for a ‘small’ value of h (below,
h = 0.01). An approximate value of f' (2) is – 0.11.
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c) Formally
Only a symbolic calculator (see below‚ a TI-92) gives the exact value of f ' (2).

3.4.1 About institutional assessment

Institutional assessment is interesting from two points of view:
it indicates what an institution considers it necessary for students to

know‚ allowing the ‘hard core’ of the curriculum and related official
prescriptions to be determined;

it allows eventual uncertainties (corresponding‚ for example‚ to what an
institution requires to be taught‚ but not to be assessed) to be identified.

In France‚ we focus on the level of the baccalauréat‚ a secondary school
examination conferring a university entrance qualification. All types of
calculators (scientific‚ graphic or symbolic) are allowed in this examination.
The corresponding ministerial circular stipulates‚ in 1995:

Mastery of calculator use represents a significant objective in the training of students

because it constitutes an efficient tool within the context of their studies and their

professional‚ economic and social life. Therefore‚ the utilization of calculators is provided

for in numerous educational programs and they must be widely used in examinations.

The equipment allowed comprises all pocket calculators including programming‚

alphanumeric or graphic calculators‚ provided that their running is autonomous and that

no printer is used.

This circular replaces an older one (1986) which restricted only the
surface area of calculators:

All pocket calculators‚ programming‚ alphanumeric calculators included‚ are allowed

provided that their running is autonomous and that no printer is used. In order to limit

machines to a reasonable format‚ their base surface must not exceed 21 cm x 15 cm.
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With different wording‚ successive circulars have thus authorized all
types of calculators for the baccalauréat in France. This stability should not
be allowed to mask some institutional difficulties:

whereas‚ in this examination‚ all types of calculators are allowed‚ most
French universities prohibit them in examinations;

the institution still does not know how to integrate calculator use during
the examination. For example‚ whereas in 1998 (§ 3.1) programs prescribed
for the first time the utilization of graphic calculators in grade‚ a
ministerial circular‚ issued just after the start of the new school year‚
explained that the baccalauréat would not include any question requiring the
use of these tools.

This revision attests to the hesitancy of the institution confronted with
criticism from the media‚ and with the significant resistance of some
teachers13. We should note that the examination in June 2000 did not include
any question explicitly requiring graphic calculator use.

The baccalauréat is the keystone of secondary school education in
France; consequently these controversies were sharp ones within the
institution. In this context‚ one can thus understand that changes are more
difficult to institute.

3.4.1.1 Comparison between different institutional choices
Drijvers (1999) carried out a comparative study in several countries

(Germany‚ England‚ Denmark‚ France‚ the Netherlands). The author drew
up a typology of different choices of assessment:

technology partially prohibited (Denmark was preparing such a strategy
for its final national examination). This examination is divided into two
tests: for the first one‚ calculators are prohibited; for the second one‚
calculators (and all type of documents‚ books‚ exercise books) are allowed;

technology allowed‚ but benefits avoided (for example‚ in England‚
during the final examination‚ graphic calculators are allowed). In this
context‚ the curve is given in the examination paper‚ and then graphic
calculators do not provide any direct benefit;

technology recommended and useful‚ but no added marks (Drijvers
places the baccalauréat in this category). Symbolic calculators are permitted‚
and they allow‚ for example‚ required limits of functions to be determined.
However‚ if candidates do not justify the given result by a theorem or
adequate reasoning‚ their response will not be given any marks;

technology obligatory and rewarded (for example‚ in the Netherlands‚ a
final examination in experimental classes). Students who determine an
approximate value of the maximum of a function‚ thanks to their graphic
calculator‚ obtain part of the marks attached to this question‚ because they
could translate the question into the calculator language and knew how to
select the relevant commands.
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Thus‚ in all the countries mentioned (outside the context of experimental
classes)‚ the objective of assessment seems to be to bypass the calculator’s
existence.

3.4.1.2 What assessment can be imagined for calculators?
Aldon (1997) distinguishes four types of possible exercises for

assessment in a symbolic calculator environment:
exercises aiming to test the ability to interpret an answer or a non-

answer from a machine;
exercises aiming to test the ability to put forward a conjecture‚ to explore

a domain;
exercises aiming to evaluate the ability to decide on the usefulness of the

machine in a given situation;
exercises aiming to test a student’s ability to use different frames in

order to conjecture or validate an answer.
We can see‚ in institutional thinking‚ the same interweaving between

calculator use and the implementation of ‘experimental’ behavior: in 1996‚ a
committee specific to the baccalauréat was set up in France by the Ministry
of Education. Several periods can be identified:

in 1996-97‚ this committee focused on writing new examination
questions and on the implementation of specific devices allowing work to be
evaluated with and without a calculator. A twofold test was experimented
with: a first part with the calculator‚ a second part without the calculator (the
committee also had two other ideas: all calculators prohibited‚ or the
definition of an approved calculator to be used in the baccalauréat);

during 1997-98‚ following a request from associations of
mathematicians‚ the committee extended its work to find more ‘open’
questions‚ allowing real research during examinations (Guin & Trouche
2002‚ p. 109);

since 1998‚ whereas the ministry seems to have given up the previous
experiment‚ considering it was not very convincing‚ the committee has
focused its work on developing examination questions allowing students to
take initiatives.

These evolutions seem significant from two points of view:
the integration of ICT into mathematical work necessarily requires the

implementation of a more experimental behavior (§ 1.2 and Chapter 3);
it is difficult to integrate a given tool into assessment before having

integrated it into the corresponding teaching.
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3.5 Experiments

In spite of the reluctance of most teachers‚ numerous ways and local
experiments have been developed for integrating calculators into
mathematics classes.

3.5.1 Experiments piloted by the educational institution

In France‚ since 1991‚ the Ministry of Education has piloted experiments
aiming to integrate CAS (Hirlimann 1998)‚ then symbolic calculators (after
1996): all students of experimental classes were provided with the same
calculator (TI-92). These experiments were carried out by university
research teams (DIDIREM at Paris‚ ERES at Montpellier‚ IUFM at Rennes).
Results (Guin & Delgoulet 1997‚ Trouche 1997‚ Artigue & al 1998) point
out potentialities and constraints of this type of environment. The fact that
the educational institution has piloted these experiments reveals the
importance attached to this environment. But‚ until now‚ the results of these
experiments have been only marginally exploited‚ particularly in the IREMs
(Box 1-3)‚ teacher training or other academic sites. New experiments are
going on‚ using new possibilities of connection with new equipment:

Box 1-3.

The network of IREMs
Instituts de Recherche sur l’Enseignement des Mathématiques

(Research Institutes on the Teaching of Mathematics)

IREM were created within universities in France‚ at the beginning of the seventies. At the
time‚ their official assignment was to assist teachers with the ‘modern mathematics’
reforms. From year to year‚ this assignment has evolved. At present‚ the IREMs constitute
active educational research centers‚ based on teamwork in which academics join with
primary and secondary teachers‚ combining experiments in classes with more theoretical
researches.
The IREMs’ contribution was particularly significant in promoting reflection on the
integration of calculating tools into mathematics education:

many experiments mentioned in this book (Chapters 5‚ 6‚ 8 and 9) were carried out within
these institutes;

numerous resources (documents for classes‚ in-service and pre-service teacher training)
have been developed in the IREMs.
Resources produced by these institutes can be found at: (http://www.univ-irem.fr).

in the academy of Bordeaux where a device networking symbolic
calculators‚ linked to a computer‚ connected to the Internet and to a video-
projector‚ has been tested in two classes;
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in the academy of Montpellier (Conclusion Chapter) where a distance
training and assistance device was developed for mathematics teachers. This
specific device has been ongoing since September 2000 with several themes
including integration of symbolic calculators (Guin‚ Joab & Trouche
2003).In other countries‚ other experiments toward the integration of
symbolic calculators are in process‚ particularly in Austria (Schneider 1999)‚
in Australia (Kendal & Stacey 2001) and in the USA (Waits & al 1999).

In Luxembourg‚ since November 2003‚ all students of scientific classes
have been provided by the academic authorities with a symbolic calculator.
For the first time‚ a whole country has decided to modify mathematical
learning environments. The Luxembourg Ministry was conscious of the
difficulties of this enterprise and decided to carry out this experiment in the
light of the previous experiments in France and in the Netherlands. An
European project is in progress including reflection about efficient
assistance to this national experiment.

3.5.2 Experiments encouraged by manufacturers

Calculator manufacturers (particularly Casio and Texas Instruments)
maintain a continuous presence to mathematics teachers: regular delivery of
periodicals to all secondary teachers‚ organization of meeting days for
presenting new equipment‚ proposing activities on dedicated websites‚
presence at all pedagogical meetings‚ financial support for specific
conferences‚ recruiting in-service mathematics teachers to present new
equipment.

It is interesting to notice the evolution of the discourse employed by
manufacturers:

when graphic calculators first appeared‚ the approach was enthusiastic
and naïve. In a discourse aimed at students‚ the idea was that the tool‚ which
is easy to pick up‚ allows computation to be facilitated and learning
difficulties to be solved; on the other hand‚ a discourse aimed at teachers
emphasized the potentialities of the tool to capture students’ attention‚ to
represent curves‚ to make the class lively and efficient. Calculators were
presented as natural instruments of mathematical work;

when symbolic calculators appeared‚ due to the increasing complexity of
tools‚ and perhaps seeing teachers’ reluctance to take up graphic calculators
(§ 2.2)‚ manufacturers adopted a discourse which emphasizes more the
support necessary for integration of tools (suggestion of activities and
training meetings). Integration of calculators is presented as a strategy in
renewing mathematics teaching‚ requiring mobilization of teachers. Texas
Instruments (TI) provides the most illuminating example with its
organization (Teachers Teaching with Technology) which has developed a
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program of research and teacher training (for TI technology) in different
countries14. However‚ the emphasis remains on the potentialities as a tool‚
even if difficulties or constraints are also mentioned15.

This concern to come closer to teachers may even lead to experiments
being proposed involving the integration of calculators into classes. In this
way‚ in 1998‚ TI equipped about thirty French classes with symbolic
calculators (TI-89). Teachers of these classes were TI trainers; thus‚ they
knew the TI-89 well and were entirely favorable towards their use in class.
However‚ one year later‚ the results were very mixed:

for some teachers‚ the experiment was interesting: Benzérara &
Guillemot comment (2001): “It’s a very enriching experiment in which we
have learnt many things”;

most teachers were amazed at the extent of the work necessary‚ and the
numerous practical difficulties which had to be overcome to integrate
calculators in their class (Noguès & Trouche 2000). Even the presence of an
expert teacher (in mathematics and in new technologies)‚ favorable to these
new technologies‚ and with an experimental conception of mathematics
(§ 1.2)‚ does not guarantee the success of such an experiment. Explaining
the potentialities of new tools and actually integrating them into a class are
not similar tasks.

4. CONCLUSION

Various experiments show that the integration of tools into schooling
requires specific strategies and deep reflection. This awareness emerges also
in the writings of authorities reflecting on the long-term evolution of the
educational system. In France‚ the trends of new curricula are defined at a
national level. Artigue‚ responsible for the computation theme‚ brings out
the crucial issue of instruments:

This question of instruments in mathematical activity is without doubt a crucial question

today and it arises from the start of elementary school up to the university. The domain of

calculation is particularly perceptible because a narrow vision of it may lead people to

think that it is no longer necessary to learn‚ because instruments can today take charge of

a part of technical work which was previously devolved to us. We have to prove that‚

even if new balances must emerge and mathematical needs are evolving‚ an instrumented

intelligent‚ efficient and controlled mathematical practice requires significant

mathematical knowledge (Kahane 2002).

This evolution is not peculiar to France. A review of recent research at
international level (Lagrange & al 2003) points out a similar evolution in
most countries where questions of ICT integration have been posed. After a
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period of enthusiasm‚ then another of hesitation‚ a time seems to come of
awareness of the difficulties of integrating new computing tools‚ in
educational institutions and at the research level. These difficulties are at the
heart of the problems that confront the institution (problems of social
equality‚ of the number of students in classes‚ of teacher training‚ of the
development of mathematics‚ of curriculum change‚ of the status of
experimental mathematics‚ of individual assistance‚ of student research
work). On all these points‚ the integration of calculators opens new
possibilities and raises new problems.
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NOTES

1.

2.

3.

4.

5.
6.

7.
8.
9.

This fact depends on the one hand‚ on the permission‚ or not‚ of these tools in
examinations; on the other hand‚ it depends on the reactions teachers will have about tools
which deeply question their professional practice.
Each year‚ according to the manufacturers‚ about 600‚000 graphic calculators are sold in
France‚ and each year this number grows by 5% (compared with the number of students in

grade classes: 500‚000). 20‚000 symbolic calculators were sold in 1997‚ 40‚000 in
1998‚ 60‚000 in 1999 (compared with the number of students in scientific classes
following a mathematical option: 60‚000).
For example‚ the CBL (Calculator-Based Laboratory) of Texas Instruments‚ allowing
(according to TI) real world data to be collected‚ thus the world of math and science to be
explored by students.
One can understand the success of graphic calculators: when they first appeared‚ these
machines were named programmable graphic calculators. Very quickly they were named
only as graphic calculators‚ because the main functionality for users was to represent
curves.
ICT: Information and Communication Technologies.
June 2000‚ Bilan de la mise en æuvre anticipée durant l‘année scolaire 1999-2000 du
programme de mathématiques de la classe de seconde‚ Ministère de l’Education
Nationale.
2000‚ official survey‚ Ministère de l’Education Nationale.
French Mathematical Society.
Literally‚ the Group for Reflection between Associations in Mathematics.

10.
11.

12.
13.

14.

15.

Academy of Sciences.
Syndicat National des Enseignements du Second degré (National Union of Secondary
School Teachers).

grade scientific class‚ 2001.
Moreover in 1999‚ a petition by electronic mail was set up by mathematics teachers‚ in
order to ask for the prohibition of calculators in the baccalauréat.
A description of the organization in the USA can be found at
(www.ti.com/calc/docs/t3info.htm), for France at (www.ti.com/calc/france).
In a Texas Instruments publication introducing CAS‚ (Fortin 1998) mentioned: “The use
of any tool‚ even a purely numerical one‚ may cause errors linked to the method of
manipulating data. Only a minimal knowledge of some particularities of the working of
calculators is needed to correctly interpret them”. This idea will be developed in Chapter
2.
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Chapter 2

A CAS AS AN ASSISTANT TO REASONED
INSTRUMENTATION

Philippe Elbaz-Vincent
UMR CNRS & Département de Mathématiques
Université Montpellier II‚ France
pev@math.univ-montp2.fr

Abstract: We propose to illustrate an approach to reasoned instrumentation with a
Computer Algebra System (CAS). We give an overview of how a CAS works
(in our case MAPLE)‚ and also some explanations of the mathematical
theories involved in the algorithms described. We point out the failures of
some methods‚ and how we can anticipate and prevent them. We conclude by
giving some personal insights on how we can use a CAS in an educational
framework.

Key words: Computation of l imi ts ‚ Computer Algebra System‚ Reasoned
instrumentation‚ Symbolic integration.
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1. PRELIMINARIES

1.1 Foreword

Despite the fact that numerous CAS exist‚ we will work mainly in the
present paper with MAPLE (version 5) and DERIVE. Our main interest is in
symbolic computation. In such a framework‚ the software becomes a kind of
‘personal assistant’ for computations and experimentations‚ for the
researcher‚ as well as the teacher. One of the main problem with a CAS is
how to interpret the results‚ in particular when the computations seem to
have gone wrong. In this chapter‚ we will explore several situations1 which
will illustrate what we call reasoned instrumentation‚ in particular in a
classroom context.

We will only suppose from the reader some basic knowledge of MAPLE
or a similar CAS (e.g.‚ MATHEMATICA‚ MuPAD or MAXIMA).

1.2 Technical preliminaries

It is useful to have a better understanding of how MAPLE (or
equivalently your personal CAS) works. In our specific case‚ we can say that
Maple is written in... Maple. Indeed‚ only ‘basic’ functions are built in
another programming language (C in our case). This set of functions is
called the kernel of MAPLE. All the other functions and procedures are
written using functions from the kernel. This is a great advantage for
learning. It is possible to see how most of the functions are written‚ thus
giving us the possibility of modifying them. In order to do this‚ we use the
command interface (verboseproc=2); described in Kofler (1997‚
Chapter 28). Then‚ it is enough to print the given procedure in order to see
the code. In the following we give three examples:
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The functions abs and goto2 are part of the kernel, which is indicated by
the option builtin. On the other hand, the function sin is a program of 60
lines and uses other functions. Another possibility in order to understand
how a procedure works and what the procedure is doing is to trace it. In
other words, we can trace all the different steps of the computation
(assuming this functionality was allowed in the procedure). We have access
to this functionality via the command infolevel. For instance, infolevel
[all] :=5; will print the maximum of detail during the running of the
procedure and this is a valuable tool for the teacher. For further information,
see Kofler (1997: Chapters 28 to 30).

1.3 Representation of an object in a CAS

As aforementioned‚ we will illustrate this topic with MAPLE‚ but
basically most CAS use similar features. In order to compare two
expressions‚ we will need some normalization procedures‚ particularly in the
difficult case where we want to know if a given expression is zero or not.
Usually‚ a CAS like MAPLE does few evaluations of the expressions. But
some systems‚ like DERIVE‚ perform more evaluations. We can illustrate
that on a simple example; we have:

Suppose that we define the variable t‚ in MAPLE‚ as the expression:
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This last expression will return non-evaluated by the system and will not
be replaced by 0. Nevertheless, the test is(t=0) will return true. In
comparison, with DERIVE, we will have an immediate evaluation of the
expression, with the expected result. In fact, with MAPLE, the variable t is
stored as a symbolic expression (i.e., a syntactic expression). Thus3, the
quantity is nothing else than a sequence of symbols attached to
the variable t. In this case, we have three components op(0,t) = +,

and Each one of these components could be split into
other sub-components, in order to get, formally speaking, a tree structure.
An example of normalization, under MAPLE, is given by the command
radnormal (for radical normal form). If we apply this command to t, we
get:

This procedure is quite efficient and could simplify (in an algorithmic
way) any complex radical expressions. Some examples are given in the
following:

In the last command‚ we have added the option rationalized in order to
normalize the denominators as well. The above operations are consistent
with the following equalities:

In the same way‚ there is a normal form for polynomial and rational
expressions. The uniqueness of such normal forms allows the system to
compare such kinds of expression‚ and the efficiency of the internal
representation of the expressions permits such comparison in reasonable
time. In this type of algebraic treatment‚ CAS are very efficient and reliable.
For more details related to radical expressions‚ we suggest reading Jeffrey &
Rich (1999). In the following‚ we will give some insights on how the
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internal representation of the expressions is done‚ mainly by use of
examples. Consider the expression below:

From a user point of view‚ the expression could be seen as a tree with‚ as
root‚ the dyadic operator +. Using the commands op and nops‚ we can
explore the apparent tree structure of the expression. In our example‚ we
have:

Thus using a sequence of op(op(op(...))), we can get a conceptual
representation of the expression as below:

Nevertheless, this is not the true internal representation (i.e., in MAPLE)
of the expression, which is in fact a little more complex but also more
efficient. Technically speaking, the model for the internal representation is
what is called a DA G4, which allows the elimination of any common sub-
expression (i.e., we only represent, and compute, once any given sub-
expression which appears several times inside the main expression). It is
difficult to see directly this representation in MAPLE. However, using the
command dismantle (which we need to load with readlib(dismantle)),
we can get a glimpse of the DAG structure. For instance, using our previous
example, we get:
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The option dec allows us to identify the memory address (inside
MAPLE) of the objects. For instance, an expression of the type
SUM(135549672,5) means that we have a sum and its result will be put at
the (memory) address 135549672. As we can see, the quantity 1 + x is put at
this address and thus is computed only once. And so is ln(1 + x) (at the
address 136040888). If another procedure uses this quantity, then it will
point to this address. In order to understand this notion, we will digress
slightly, and use a simple example:

No surprise there; the variable B ‘points’ to the expression ln(1 + x)
previously defined in E. If we set x : = 3‚ since it is an integer we should
have an immediate evaluation and B should be equal to but doing so‚
B will point to a new address. Here is the session:
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We have used implicitly the command addressof in order to get the
(memory) address of a MAPLE object (which we can see in the printing of
dismantle). As we can see, the structure of the expression is left unchanged
(B is still a sub-expression of E, and the DAGs are unchanged too), but the
addresses have changed. As a matter of fact, MAPLE (as other CAS) uses an
internal table for its objects, which maps each object to an address. When
the value of an object changes, the table of addresses is updated, but losing
the expressions already present in the memory. In our example, the address
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which corresponds to the expression ln(1 + x) is still there. Indeed‚ if we
revert x to being a formal variable‚ we get our initial values:

This illustrates the value of the DAG representation and its efficiency. Its
downside is the memory consumption. The reader will find further
discussions of this topic in Giusti & al (2000) and at the end of Chapter 2 of
Gomez & al (1995) and in Nizard (1997).

As a final point‚ we will show5 how the DAG structure is suitable for
computing formal derivation of an expression. Suppose we want to
differentiate (formally) the symbolic expression:

Its DAG representation is given by:

Then‚ we get the derivative of g by a formal derivation of each node of
the DAG‚ resulting in a new DAG which is the associate to the derivative of
g (say‚ with respect to x). If we denote by this formal derivation‚ then
using the basic rules‚ we have:
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We should notice the technical simplicity of this approach, which is
independent of the choice of DAG structure.

Despite the fact that our data structure is efficient, it does not mean that
we can always show that something which should be zero is really zero. In
the same way, we cannot put all the ‘special identities’ in the CAS. For
instance, in MAPLE, the expression is  not  ‘equal’  to l,
even if x is assumed to be a real number. On the other hand, simplify
‘knows’ the identity:

But other (in fact most) well known identities cannot be reduced (even
with simplify).

But‚ we can use MAPLE to investigate this identity.
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As a general fact‚ the procedures of normalization or simplification are
rather limited. On one side‚ we cannot put all the ‘special identities’ in a
computer‚ and on the other we often have multiple choices for the
simplification (technically‚ speaking it is a rewriting problem). From a
theoretical point of view‚ we have a kind of decidability limitation. Indeed‚
Richardson (1968) has shown that for the class defined as the closure of
rational functions of under the action of sine‚ exponential and
absolute value maps‚ the predicate E = 0 is ‘recursively indecidable’ for

Here the notion of decidability is relative to the theory of formal
languages and grammars. A variation of this result to symbolic integration is
given in Davenport & al (1987‚ p. 168).

In practice‚ this is far less limiting than we might imagine. First‚ a lot of
functions belong to a class for which decidability is established‚ and
furthermore‚ there exist probabilistic methods which can be used efficiently
in such settings. Nevertheless‚ this shows that a ‘perfect’ CAS‚ able to
simplify ‘ideally’ any expression is a pure dream.

2. BASIC COMPUTATIONS AND LIMITS

While the main target users of a tool such as DERIVE are at high school
level‚ this is quite different for MAPLE and other general CAS‚ which are
designed for the engineer‚ the scientist and the researcher. Thus‚ such
software is designed with generality in mind‚ and this can have some
undesirable side effects for the student. We give a concrete example below:

In general, and as seen in the classroom by the author, the student
expects to get f(–1) = –1. But, the explanation is quite simple; it is enough to
think complex! Indeed, if we search for a solution of the form we

reasonably get and it is this solution that the CAS gives. Most of the

system operates, by default, on the complex numbers, as is also the case for
advanced pocket calculators. Thus, we should show some caution when we
use these tools, in particular in the classroom. Most of the time, problems
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can be solved by giving some help to the system. Here is a simple example:
let a be a positive real number‚ and p an arbitrary real number. Set:

Taking account of the hypothesized characteristics of a and p, we should
have But the expression is not simplified into this form by
MAPLE, mainly due to the fact that, for the system, a and p are complex
numbers. We need then to make our further assumptions clear to the system:

2.1 Computation of Limits

Taking limits of functions or of sequences is one of the most important
notions of analysis. Hence‚ the behavior of CAS in this particular area is of
prime interest. Several approaches have been developed to perform this kind
of computation‚ and they are detailed in the works of Gruntz (1996‚ 1999).
The first approach is what we can call the ‘heuristic method’. In short‚ we
use as main tool the Bernouilli de l’Hôpital rule6 (which we will denote by
BdH in the remainder of the text). The heuristic involves deciding how
many iterations of the rule will be applied. Unfortunately‚ this method has
several gaps. First of all‚ there are many types of expression which remain
difficult to compute after applying the BdH rule‚ and furthermore‚ applying
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BdH could increase the complexity of the expressions and thus the
computations.

The second approach consists of using power series expansions (mainly
Taylor expansions). This method is quite systematic, but it fails when:

a zero expression is not detected by the system as being zero;
there are an infinity (or at least a ‘huge number’) of zero terms in the

power expansion. Such a situation appears when we compute the sum of
functions, which could result in infinite cancellations;

there are one or several parameters in the expression.

The first point, as already discussed, is very difficult in practice (Gruntz
1996, § 7.2; 7.3). A possible solution, depending of the type of expression, is
to redefine the zero test used by the CAS. For instance, with MAPLE, it is
done via the command Testzero, which by default uses the standard
normalization procedures. An example is given later. Another possibility is
to use some probabilistic method to perform the test.

The second point is well known to undergraduate students and is mainly
related to the order of the power expansion; several methods exist to deal
with this problem. The last point is more difficult in practice, and will
mostly require use of heuristics.

To the best of our knowledge, DERIVE (and so the TI-92) uses a
heuristic approach for the computation of limits, while MAPLE uses power
series expansion methods. As we will test out below (and as we can see in
the examples given in Wester 1999, p. 166 and 168), CAS are quite fragile
on limit computations. It is likely that the teacher (and the user) will need to
take a lot of precautions, and in particular will need to know what to expect
from the system. This is a typical situation where reasoned instrumentation
is important.

We will now give several examples from a MAPLE session (in
command line), that we will explain in detail at the end, and we will
conclude by a discussion of the numerical approach to limit computations.
Most of the following examples are extracted from or inspired by Wester
(1999) and Gruntz (1996).
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Comments
Example 1 illustrates the classic problem of ‘guessing’ in which order we

need to perform the power series expansion in order to remove the
indeterminate form. We should notice that computing the power series
expansion at the start with a systematically large order is costly in terms of
running time, and we also need to take this into account.
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Example 2 is a ‘test to zero’ problem. The limit computed by MAPLE is
incorrect. In order to understand what is going on, we do a power series
expansion, and we notice that the method fails because the classical relation:

is not know by the system (cf. previous section). In theory, the power series
expansion should look like:

and we should conclude that the limit is 1 (correct answer). Both examples
are correctly computed by DERIVE (TI-92), and as an exercise for the
reader, we can check (with MAPLE for instance) that both limits can be
performed with the BdH rule.

Example 3 is of a different type. Indeed, it is straightforward to show that
the limit is equal to 1. Surprisingly enough, DERIVE gives the correct
answer. But MAPLE fails due to the asymptotic expansion of the expression
(it is the sine which is the culprit here). Transforming the expression does
not help, despite the fact that MAPLE can compute easily that:

This is in fact a simple problem of operations on the limits. Since the
limits of the numerator and denominator exist and are equal to 1, it should
be possible to conclude that the limit of the expression is 1. Again, DERIVE
computes this limit correctly, most likely by performing some basic
operations on the limit.

Example 4 is of the same type as Example 2. The classical relation
is not known by the system and generates a singularity in

the power series expansion. Here, the proposed solution is a modification of
the “test to zero”, by reprogramming the procedure Testzero with a more
suitable normalization. Then, the computation can be done correctly. We
should notice that we can get the limit directly via BdH, and thus DERIVE
gets the correct answer immediately.

However, if in the expression C we replace x by 1/x and z by exp(–x),
with then MAPLE gives a correct answer, namely –2, while
DERIVE is unable to evaluate the expression.

Example 5 is straightforward for MAPLE, but is unsolved by DERIVE
which remains in “Busy” position. It is in fact a typical example of a limit
which is cumbersome for the heuristic approach. We can check that most of
the limits (Wester 1999, p. 166 and 168) are difficult for DERIVE.
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2.2 Numerical limit vs. Symbolic limit

We might think that the computation of limits should be easily done via
numerical evaluation of the function in the neighborhood of the point, which
could be given by a numerical sequence of points in this neighborhood. This
possibility is indeed implemented in MAPLE, and can be called by the
command evalf(Limit()). For examples 2 and 1, we get:

As we can see, while we get a correct answer for Example 2, Example 1
is still problematic. In the same way, it is difficult to get a numerical
estimate of the limit at infinity of a general function.

Furthermore, new problems could arise, as shown with the example
below (Gruntz 1996, p.4-7).
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A plot of the function would confirm the ‘numerical evidence’, but the
result given by the symbolic procedure is in fact correct (Exercise left to the
reader). Even increasing the number of digits will not change the numerical
evaluation. Indeed, for 1/x large (e.g., the iteration of ln diminishes
tremendously the effect of 1/x and thus the expression C behaves almost as

with ‘ small’, which gives evidence for the ‘limit 0’. But, in order to

suppress the effect of the iteration of ln, we need to take or say x
smaller than ...(sic!)

3. SYMBOLIC INTEGRATION

This is one area where the CAS is a genuinely valuable tool. Due to the
ubiquity of integration, both in mathematics and the sciences in general, we
often have to perform antiderivation (i.e., symbolic integration) in order to
solve the problem. For several years, physicists and engineers had to use
huge tables of antiderivatives, also well known to contain several errors. But
CAS are particularly efficient in this task, due to the fact that we have
reasonably efficient algorithms, which are consequences of mathematical
results often deep and unknown to most mathematicians. The goal of this
section is to describe the methods, and give some examples of reasoned
instrumentation. We heartily suggest that the reader look at Davenport & al
(1987, Chapter 5) for further investigations.

Usually, the hand computation of antiderivatives is strongly based on
heuristics (inherited from personal knowledge) such as: use of tables, change
of variables, integrating by parts, use of multidimensional integrals, and so
on. As pointed out in Gomez & al (1995, Chapter 9, p.227): “These methods
often allow us to find an antiderivative quite quickly, but if they fail you
cannot conclude”. The methods used by the CAS are both heuristic and
algorithmic. The result depends strongly on the type of function that we are
integrating. In particular, for a given class of functions, a failure of the
procedure is in fact a proof that the antiderivative cannot be expressed in
terms of ‘elementary’ functions. We will begin by giving definitions and
explain the practical difficulties. We will mainly follow the approach of
Davenport (1987, Chapter 5, § 5.1.3).
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the function is algebraic over K (i.e., satisfies a polynomial
equation with coefficients in K);
the function is exponential over K (i.e., for a k-derivation D of K,
there exists K such that
the function is logarithmic over K (i.e., for a k-derivation D of K,

there exists K such that

Remark 3.2
Despite the fact that we can take a ‘k-derivation’ in a general sense (i.e.,

an element of in practice                         and for a certain i,

where the are indeterminate. In order to get an elementary generator which
is not algebraic over K, we add formally the element exp(u) with the rules of
derivation of the exponential (idem for the log).

Now we can introduce the following notion.

Definition 3.3
Let K be a field of functions over the field k. A field

containing K is called a field of elementary functions over K if each
i = 1,...,n, is an elementary generator over K. A function is said to be
elementary over K if it is an element of a field of elementary functions over
K.

A result of Liouville, often called ‘Liouville’s principle’, gives the
general form of the primitive of an element of a function field K if the
function is elementary over K. The crucial result which is used and its
algorithm implemented in most CAS is the theorem of Risch (Davenport &
al 1987, p. 185).

Theorem 3.4 (Risch 1969)
Let be a field of functions over k. We suppose that

each is either a logarithm, or the exponential of an element of
and is transcendental over this field. Then there exists an algorithm

which, given an element f of K, either gives an elementary function on K
which has f as derivative, or proves that f does not admit an elementary
antiderivative on K.

This result illustrates the fact that a ‘failure’ gives non-trivial information
about the problem. The proof of the theorem of Risch is understandable at
the undergraduate level. To the best knowledge of the author, the algorithm

Definition 3.1
Let K be a field of functions over a field k (not necessarily a prime field).

The function is said to be an elementary generator on K if one of the
following conditions holds:

1.

2.

3.
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of Risch implemented in MAPLE is only complete for the class of
elementary functions which are purely transcendental (no algebraic
dependency involved; for instance arcsin is not purely transcendental). Thus
we can apply the theorem of Risch only to this class of functions. For further
reading we suggest (Davenport 1987, § 5.1.8) and (Bronstein 1990, 1997).

In practice, particularly in the classroom, the main difficulty will be to
understand that a simple modification of the expression to be integrated will
result, most of the time, in an antiderivative quite different in appearance.
We will give some examples below:
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In the above example, we can see the practical difficulty of antiderivative
computations. We can check that the results are the same up to a constant

(which is exactly In a classroom situation, without the help of the

teacher, it is likely7 that the students will claim failure of the software and
will stop there. Here, the theorem of Risch says that we should anticipate a
correct result. Nevertheless, we can try to do some manipulations, in order to
see if we can avoid such difficulties:
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As we can see, using simplify gives the original form of the expression.
Furthermore, the normalization with the option expanded, results in an even
simpler expression for the antiderivative. It could be wise to develop such an
approach, by using normal for instance, in order to get a ‘good’ expression
before integration.

Here are other illustrations of the theorem of Risch:

This shows, assuming no errors in the software or the hardware, that

has no elementary antiderivative, as this function is purely

transcendental. But the situation is less simple, with non purely
transcendental elementary functions. Here is an example from Gomez (1995,
p.235-236):

But this is a classic antiderivative. We need to help the system. For this
purpose, we can do an integration by parts using the package student.
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Hence, by interacting with the CAS, we get a correct answer. This
indicates the right way to use a CAS, and it is what the student will have to
learn.

3.1 Difference between antiderivative and indefinite
integral

Another aspect, often neglected, is the study of the result of the
computation of an antiderivation. Indeed, in the usual settings, we want to
compute a definite integral of a function which in most cases will be
continuous on the interval of integration. Thus, we expect the antiderivative
of the function integrated to also be continuous (and even more).
Unfortunately, in many cases, it is not. As we have seen in the previous
section, the computation of the antiderivative is a purely algebraic process.
We just ask to find an element g of a differential field such that D(g) = f for
the derivation D of the field. On the other hand, in a classical course on
integration, we introduce the notion of indefinite integral of a function (real
or complex variable), which is often confused with the notion of
antiderivative. To be more precise, we will give a definition of this notion:

Definition 3.5 (Jeffrey 1994, p.35)
An indefinite integral of a function f, Lebesgue-integrable on an interval

I of      is any function G defined on I and a real number c, such that:

One of the main results of undergraduate courses in calculus (Riemann
rather than Lebesgue) is that the indefinite integral is an antiderivative of f.
But if f is continuous on I, so is G. However, an antiderivative is not
necessarily an indefinite integral, and the CAS gives us several examples:

Here the result is an antiderivative on but fails to be continuous. As a
consequence, we cannot use this antiderivative ‘out of the box’, in order to
compute the definite integral of the function on for instance. The
result would be nonsense (but apparently most students are not afraid of
that). Nowadays, new heuristics and algorithms try to produce better results,
closer to an indefinite integral; Jeffrey (1994) for more details.
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4. CONCLUSION

The main point that we have tried to establish, through several examples,
is that we cannot reasonably use a CAS as a black box, in particular in the
classroom. Teachers should have sufficient knowledge of the behavior of the
CAS in order to understand the result for themselves, and also for their
students. Working with a computer always involves a risk. But, while
students will accept a system or hardware failure, they will be less inclined
to accept failure from the teacher, which will undoubtedly undermine the
often fragile trust between them. We should also take into account that a
student will often use ‘the’ worst possible strategy in order to solve a
problem; in general, this will require the teacher to improvise in order to
explain either the failure or the success of the strategy. This provides further
evidence that teachers need a sufficient knowledge of the CAS if they want
to ‘feel in control’ in the computer classroom.

Furthermore, many teachers have generally accepted ideas about the
CAS (and using CAS in the classroom) which could work against them. One
of the most prominent ideas is the belief that working with a CAS means
teaching (and training) the students how to compute (as in the classical first
undergraduate courses on calculus and algebra). Unfortunately, as already
seen in the examples discussed in this paper, this is not true. Indeed, students
need to acquire enough practical experience to develop insight on the
methods learned. For instance, this will help them to estimate the order
needed to compute a limit using power series expansions of composed
functions, or the transformations to perform in order to compute an
antiderivative. On the other hand, computing the power series expansions of
functions up to a high order as the climax of a calculus course is pointless.

This is why we believe that a reasoned instrumentation should be
preferred when we have to use CAS in the classroom. The ‘intelligent usage’
of a CAS in mathematical science courses (or in other sciences) is not an
easy task, and in particular is not given. This implies the necessity of
developing specific classroom activities and specific exercise sheets, well
adapted to the task, showing clearly the value of the CAS either as a
platform for experimentation or as an assistant, and well integrated into the
main course.

Philippe ELBAZ-VINCENT (pev@math.univ-montp2.fr) is an assistant
professor at the Université Montpellier II (France). His research area is
algebra and number theory, in which he develops computational methods.
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NOTES

1.

2.
3.

4.
5.

6.

7.

The examples given have been produced with the version V release 5.1 of MAPLE under
GNU/LINUX-2.4 (architecture i686) and SOLARIS 5.8 (architecture Ultrasparc II) and
with the DERIVE version implemented on the TI-92 pocket calculator (Texas
Instruments).
This last function is undocumented...
We can access the components of this expression via the command op, and nops to get
the number of components (as coded by MAPLE).
Directed Acyclic Graph.
Based on an example from Ole Stauning for the software FADBAD of automatic formal
derivation.
The famous rule of the Marquis de l’Hôpital (1661-1704) is in fact due to Johan Bernoulli,
1667-1748, cf.
(http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Bernoulli_Johann.html).
As experienced several times by the author.
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Chapter 3

TRANSPOSING COMPUTER TOOLS FROM THE
MATHEMATICAL SCIENCES INTO TEACHING
Some possible obstacles

Jean-Baptiste Lagrange
IUFM de Reims & DIDIREM, Université Paris VII, France
jb.lagrange@reims.iufm.fr

Abstract: Thanks to the work of mathematicians, software designers and mathematics
educators, computer algebra is now available on calculators that students can
afford for classroom use. These new artifacts certainly open up stimulating
prospects, but we should not look on them just as a miraculous solution to
difficulties of teaching. We ought to initiate an in-depth reflection on their
educational use in relation to the wider evolution of mathematics.

In this chapter, we will discuss how the new tools offered to students fit
into the evolution of mathematics itself, and of mathematics teaching and
learning. We will also consider difficulties in adapting teaching which often
make integrating these new tools something of an adventure.

Key words: Algorithms, Experimentation, Mathematical Sciences, Transposition.
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1. THE FUTURE OF MATHEMATICS TEACHING

In recent years there has been much discussion in France about the future
of mathematics teaching (Chapter 1). An official committee, the CREM
(Chapter 1, § 2.3; 4) was created to think about what this future should be.
According to this committee, a dramatic change has occurred over the past
50 years; mathematics is now produced and used by a great variety of
people. One consequence is that we have to change our conception of
mathematics to consider the mathematical sciences which are not just the
concern of mathematicians.

The impact of ICT on mathematics teaching was a central issue in the
discussion. The CREM committee devoted a report to this topic. According
to this report, as ICT pervades all of society, mathematics is to be found
everywhere in modern life, but people have no means to perceive this. Thus
mathematics teaching should aim to make people aware of this hidden
mathematics. ICT has also changed mathematics itself as the mathematical
sciences now include an experimental dimension helped by the wide use of
mathematical software.

According to the CREM, the use of mathematical software could help
mathematics education to adapt to this new situation. A drawback is the
sophistication of the mathematical software proposed for students’ use,
contrasting with the conceptual simplicity and clarity of traditional
mathematics teaching. According to the CREM, the possibility of achieving
a similar simplicity and clarity should be secured by teaching basic ideas of
data processing.

Box 3-1.

Extract from the CREM report

(Kahane 2002)

In the recent evolution of mathematics, many new sources and outputs have appeared, as well
as considerable work on existing mathematics. Other sciences and practices have provided
mathematics with new problems, methods and concepts. New concepts and theories have
been created and have sometimes proved useful in unexpected applications. Simulations
based on mathematical models are present in every scientific activity and the development of
mathematics benefits from both internal and external interaction. Thus mathematics is far
from being just a matter for mathematicians. Contemporary mathematics can be described as
a pumping, distilling and irrigating process involving physicists, computer scientists,
engineers, biologists and economists together with mathematicians in the strict sense of the
word.

As the CREM noted, curricula have recognized a need for such teaching
but never really implemented it because of a lack of curricular contents and
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classroom activities. According to the CREM new prospects are opened up
by the use of mathematical software, provided that teaching can clarify for
students how mathematical data is represented and processed. Thus, basic
notions about data representation and processing should be studied, together
with numerical and symbolic experimental processes, number representation
and processing, induction, graphs, convexity, continued fractions... This
could provide the framework for a new algorithmic way of thinking in the
common culture.

2. INTEGRATING NEW TOOLS: A PROBLEM OF
TRANSPOSITION

The goal of this book -- conceptualizing the integration of symbolic
calculators -- is consistent with the above concern. The numerical, graphic,
symbolic and programming capabilities of the new calculators to be found at
school level are a transposition of computerized tools used in mathematical
sciences. Thus they can play a major role in the future of mathematics
teaching, not just as pedagogical aids but as a vehicle for new approaches.
However, their use could conceal the mathematical basis of these
approaches if teaching does not adapt its goals, contents and methods.

In this chapter, we will take advantage of didactical theorization and
classroom observation to better understand these new approaches, and to
look into the way in which teaching could be adapted. First we will focus on
the global question of the impact of the mathematical sciences on teaching,
taking into account that the purposes of professional mathematicians and
researchers differ from the aims of teaching. We will use the notion of
didactical transposition. When he introduced this notion Chevallard (1985,
p. 14) stressed that “what happens inside a didactical system cannot be
understood without considering what happens outside1”. He proposed to
consider “genesis, filiations, gaps and reorganizations” interrelating
mathematics teaching and professional mathematics. In this approach,
mathematics in research and in school can be seen as a set of knowledge and
practices in transposition between two institutions, the first one aiming at the
production of knowledge and the other at its study (Chapter 5, § 1). French
curricula clearly consider this prospect when they stress the role of the
calculator in helping experimental approaches and the use of spreadsheets or
calculators in carrying out algorithms (Box 1-1, Box 3-2). Filiations clearly
appear but there must be hidden obstacles because this prospect was never
really implemented in classrooms.

We see a cause of these obstacles in the different aims of the two
institutions. Professional mathematics favors new approaches and
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reorganizations on the basis of productivity and mathematical correctness. In
official research fields, data and methods to obtain conjectures using
mathematical software are now being published and discussed. Some
mathematicians specialize in the production and publication of experimental
outcomes, while other mathematicians use these conjectures to work on
proofs.

Experimental mathematics is that branch of mathematics that concerns itself ultimately

with codification and transmission of insights within the mathematical community

through the use of experimental exploration of conjectures and more informal beliefs and

a careful analysis of the data acquired in this pursuit (Borwein & al 1996).

In addition, computer science techniques in research motivate
fundamental mathematical work about algorithms. Effectiveness -- existence
of an algorithm to solve a given problem --, complexity -- the algorithm’s
properties in relation to processing time and data size -- and efficiency -- the
practical conditions for the use of the algorithm on a given technology -- are
important notions in this work (Rouiller & Roy 2001, p.35).

In contrast, teaching, especially in the general (rather than vocational)
stream, is not primarily interested in improving mathematical productivity
by way of new tools but rather in the transmission of a mathematical culture
(Chapter 9, § 1). The kernel of this culture lies in the social expectations of
parents, students and teachers, and generally does not change easily. In order
to survive in contemporary societies where ICT has a major role, this kernel
should now integrate the potential of new tools and mathematical activity
inspired by the mathematical sciences. Because the kernel was built when
only traditional tools existed, this integration has a cost -- a not-obvious in-
depth reorganization -- and resistance can be expected. To look at this
reorganization, we will distinguish two dimensions, one about algorithms
and the other about experimental approaches. These dimensions are
certainly closely interrelated in the mathematical sciences, but, as we shall
see, obstacles to their integration into teaching and learning are dissimilar.

3. ALGORITHMS IN MATHEMATICS TEACHING

Curricula have recommended the use of programmable calculators for
fifteen years. A study of textbooks and practices shows that only graphic and
numerical capabilities have actually been used in classrooms. More recently,
the Euclidean algorithm for the greatest common divisor appeared at the
grade and prime number search algorithms were introduced in the grade.
To look into the difficulties of transposition we will consider the grade
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curriculum, analyzing how an algorithmic idea was transposed from
advanced mathematics and how it was (mis)understood in textbooks.

The curriculum (Box 3-2) introduces the Euclidean algorithm in terms of
two dimensions. The first one is theoretical: a fundamental property of
divisors helps to build the algorithm. The second dimension is practical:
offering the algorithm as a means to recognize and obtain irreducible
fractions. In addition, this dimension helps to insert the algorithmic
approach inside the ‘usual’ mathematics. From the study of these two
dimensions, mathematical and algorithmic meaning can be expected.

Box 3-2.

Algorithmic approach in the French grade 9 curriculum
“The goal is to develop an overview of numbers and to emphasize algorithmic treatments”

Content

4- Integer and

rational numbers.

Common divisors.

Irreducible

fractions.

Intended proficiency

Being able to find whether

two given numbers have a

common divisor greater

than one.

Being able to simplify a

given fraction into an

irreducible fraction.

Comments

...The sum and the difference of two

multiples of an integer are themselves

multiples of this integer. It is then possible

to build an algorithm (Euclid’s or

another). This algorithm wil l give the

GCD of two integers and answer the

question [of knowing whether a fraction is

irreducible]. . . Teaching w i l l take

advantage of spreadsheets and CAS for
this topic.

This introduction is consistent with the approach to algorithms current in
advanced mathematics. For instance, the extracts from a computer science
classic (Box 3-3) show that, at this level, the Euclidean algorithm helps to
understand the notion of data processing, and to introduce a method for the
formulation of algorithms. On one hand, the idea of transposing this
approach into secondary teaching is stimulating because the algorithm
appears to derive logically from properties of the GCD and from
mathematically expressed constraints of execution (decrease of x + y).
Emphasizing the links between an algorithm and the underlying
mathematical properties is certainly something interesting to transpose into
secondary education. On the other hand, the method deals with difficult
logical concepts like weakest precondition and weakest condition such that
the execution is guaranteed to decrease a function.

···

···
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Box 3-3.

Euclid’s algorithm in a computer science classic
(Dijkstra 1976)

Chapter 0: Executional abstraction

Let us consider a mechanism. On a cardboard with grid points, the only numbers written are

the values 1 through 500 along both axes. The ‘answer line’ with the equation x = y is drawn.

When we wish to find the greatest common divisor of two values X and Y, we place a pebble

on the grid point with the coordinates x = X and y = Y. As long as the pebble is not lying on

the ‘answer line’, we consider the smallest equilateral rectangular triangle with its right angle

coinciding with the pebble and one sharp angle on one of the axes. The pebble is then moved

to the grid point coinciding with the other sharp angle of the triangle. The above move is

repeated as long as the pebble has not yet arrived on the answer line.

Chapter 7: Euclid’s algorithm revisited

... I shall now devote yet another chapter to Euclid’s algorithm. I expect that in the meantime

some of my readers will already have coded it in the form

(x,y):=(X,Y);

do

print(x)

Let us now try to forget the cardboard game and let us try to invent Euclid’s algorithm afresh

(...). Collecting our knowledge we can write down:

GCD(X,Y)=GCD(Y,X)

GCD(X,Y)=GCD(X,X+Y)=GCD(X,X-Y)

GCD(X,Y)=abs(X) if X=Y

...This is strongly suggestive of an algorithm that establishes the truth of

P=(GCD(X,Y)=GCD(x,y) and x>0 and y>0)... whereafter we ‘massage’ (x,y) in such way

that the relation P is kept invariant. If we can manage this massaging process so as to reach a

stage satisfying x = y, then we have found our answer by taking the absolute value of x (...).

For the assignment x:=x-y we find the weakest condition such that the execution is

guaranteed to decrease x+y is y>0, a condition that is implied by P.

Full of hope, we investigate the weakest precondition in order that P is valid after the

assignment x:=x–y. (We find) GCD(X,Y)=GCD(x-y,y) and x–y>0 and y>0. The outmost

terms can be dropped as they are implied by P and we are left with the middle one.

Thus we find and
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Box 3-4.

Euclid’s algorithm in a grade textbook
(Chapiron & al 1999)

A method using iterated subtractions helps to find the Greatest Common Divisor of two
numbers. This method is very old and known as Euclid’s algorithm. The flow chart [below]

explains how it works. Calculations are easy but repetitive and sometimes long. A

spreadsheet helps to calculate more quickly.

It appears that the curriculum considered the interest of the method but
not the difficulties of its existence as an isolated object. Proof of this can be
found in the way in which textbooks (mis)interpret the curriculum. In
contrast with the curriculum and Dijkstra’s book, a typical textbook (Box 3-
4) presents neither practical nor theoretical dimensions of Euclid’s
algorithm. It offers just a flow chart and a ‘push button’ translation into a
spreadsheet. Other textbooks also adopt this approach. The reason why
textbooks did not follow the curriculum when it offered the algorithm for
practical simplification of fractions is that they judged that this use is not
realistic. The logical difficulties of constructing the algorithm from
properties of the GCD and the constraints of execution certainly explain why
textbooks offer no theoretical dimension. Obviously, the curriculum tried to
introduce Euclid’s algorithm without much change in the more general
background. Under these conditions the algorithm is an isolated object
without a real mathematical existence, and textbooks are not able to make
something interesting of this object.
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Introducing a real algorithmic dimension by using calculators in
mathematics teaching and learning would imply greater change. But, then
another difficulty would be that there is very little didactical research able to
offer help in thinking about this change. Research about the learning of
algorithmic processing tends to be old and isolated. Rogalski & Samurçay
(1990) found important conceptual difficulties, even with very simple
iterative processes, but no other research studies followed. There are also too
few research studies about data representation (Aharoni 2000 is a very
isolated example). The case of the algorithmic approach shows that, even
when powerful tools are available, we remain a long way short of achieving
a cultural algorithmic way of thinking, through a satisfactory transposition
of advanced mathematics to teaching and learning in the secondary school.

4. EXPERIMENTAL APPROACHES IN TEACHING
AND LEARNING

As compared to algorithms, the experimental dimension of mathematical
sciences seems at first sight more easy to transpose into the kernel of
mathematical culture, as mentioned above. In mathematical research,
producing and trying conjectures helps to discover new theorems and to
build new theories. Experimental approaches cannot have this role in
teaching, but other contributions are generally expected. Authors like Pérez
Fernández (1998) and Kutzler (1997) start from the idea that experimenting
can help students to develop a more in-depth understanding of mathematics.
They generally stress that ‘traditional teaching’ does not work properly
because students have just to repeat routines and are not allowed to search
by themselves. In these authors’ view, experimenting with new tools will be
a remedy. For instance, students, even with weak abilities in arithmetic or
algebraic procedures, might be able to use symbolic calculators to explore
advanced mathematical domains or to try several approaches to problems
that they could not do by hand. Thus, with new tools, mathematical teaching
would become more interesting and accessible to more students.

On one hand, using the potentialities of new tools in experimental
approaches is a stimulating idea. The visualizing capabilities of computers
could help more varied access to mathematical problems and concepts.
Exploring a problem, students could study a number of examples, using
varied representations of objects and inductive as well as deductive
approaches. On the other hand, in learning, as in mathematical sciences,
understanding of concepts does not emerge spontaneously from observation,
even with the help of powerful tools.
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Experimental approaches in research are harnessed to the production of
new knowledge. This articulation is what Borwein & al (ibid., p. 16) named
“theoretical experimentation” and includes structuring a domain to
formulate hypotheses, deriving examples to try with a machine, interpreting
the machine results... Transposition should thus maintain the linking of
experimentation with theoretical elaboration. Reflecting on this transposition
at the beginning of the TI-92 experiment, we found that, in teaching and
learning, this articulation is far from obvious, and that authors stressing the
potentialities of new tools generally tended to underestimate the difficulties
of their classroom use. To explain this, let us look at classroom situations
involving an experimental activity.

We consider two classes of situations. In the first class, students have to
observe and interpret a number of calculator answers. For instance,
approaching multiple representations of a concept, students have to consider
perceptually how a mathematical property appears as a phenomenon in
several windows of a calculator; or in an applied mathematics course,
students are meant to use a CAS to avoid too complicated hand calculation.
In the second class of situations students have to experiment on symbolic
phenomena and find general structures by induction. In other words,
students have to observe ‘how the machine does it’, try to discover
techniques ‘to do the same as the machine’ and give a mathematical
interpretation of the machine operation. The two classes of situations differ
in terms of the consideration given to the machine operation. In the first
class, a student is expected just to use the computer output as
mathematically relevant results, whereas in the second s/he is meant to think
about how they were obtained.

Berry & al (1994) identified “five potential ways to integrate the use of
DERIVE into a mathematical course” (Box 3-5). The first class of situation
that we consider in this chapter corresponds to potential way 2 and 5 (“as a
problem solving assistant” and “an aid to visualization and interpretation”)
and the second class corresponds to potential way 3 (“as an investigative or
exploratory environment”).

Let us consider a situation from the first class, related to the idea of
function. To help students to approach this idea, it is important to provide
them with varied views on the relationship between representations. For
instance one view of the relationship between algebraic definition and
graphic representation arises through considering that a zero of the function
corresponds to an intersection point between the graphic representation and
the x-axis. It is not a spontaneous view because, at first, students see the
intersection’s coordinates as the solution of a two equation system. To help
students to interpret graphically the zeros of a function, it is interesting to
ask them to consider together these values -- obtained by algebraic
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solution -- and the coordinates of the intersection points read from the graph.
Using symbolic calculators is helpful because the two operations are
performed by specific commands in two separate windows.

Box 3-5.

Classroom situations involving an experimental activity

(Berry & al 1994)

DERIVE as a problem solving assistant (p.84)

In many mathematical modeling courses greater emphasis is placed on the formulation of

problems and the interpretation of results, rather than the solution of the mathematical

problems that may occur. Similarly, courses in applied mathematics may wish to concentrate

more on the concepts and relationships that form the basis of the study but may also include

extensive use of algebraic manipulation or calculus. In the past the emphasis in these types of

courses has become distorted due to the large amount of time spent by the students obtaining

solutions to problems compared to the important formulation and interpretation stages (...).

By reducing the time that students need to spend obtaining solutions and increasing their

reliability and their accuracy, DERIVE allows more emphasis to be placed on the formulation

and interpretation phases of mathematical modeling or applied mathematics. In particular it

allows students to use mathematical concepts and techniques that they understand in

principle, can apply in simple cases, but find difficult to apply in the more complex cases that

may arise in real problem solving.

DERIVE as an aid to visualization and interpretation (p. 93)

It is important for students to be able to visualize and interpret mathematical results. Often

with some higher level mathematics it is quite hard for students to do so and DERIVE can

offer an environment in which it is possible to do mathematics and create visual images that

allow students to interpret and comment on the results they have obtained. A student may
show that a Maclaurin series approximation to sin x is It is quite hard however for

the student to relate this back to the original function, or establish the range of values over

which the approximation is reasonable. It is very simple to produce a series approximation of

this type on DERIVE and compare its plot with a plot of the original function.

DERIVE as an investigative or exploratory environment (p. 86)

It is possible to use DERIVE as an environment in which students can exploit and learn new

mathematics by making discoveries for themselves (...). One very real benefit of this

approach is that the students can gain an intuitive feel for mathematical ideas and principles

before they receive a formal introduction to the mathematics. As an example consider the

chain and product rules for differentiation. A typical text book introduction would give either

a formal statement or derivation of the rule followed by worked examples. Alternative

approaches designed to develop in students an initial intuitive feel for these rules have been

laborious for students to carry out. DERIVE however offers the potential to develop these

intuitive ideas very easily.
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Situations of this type are often presented to promote the use of new
tools, but it is seldom mentioned that they are effective only if students have
a suitable preparation. Wain (1994) reports on an observation of students not
able to recognize the decimal value that they read in the graphic window as
an approximation of the symbolic solution that they obtained in the algebraic
window. In contrast with the teacher’s expectation, they could not see a
relationship between zeros and intersection points.

Our opinion is that, before experiencing this situation, students should
have been prepared to recognize the differing form taken by a number under
several types of expression, particularly exact symbolic expressions in the
symbolic window and approximate values in the tabular or graphic window.
Guin & Delgoulet (1997) designed and experimented with classroom
activities to achieve this preparation (Chapter 9, § 2).

Box 3-6 provides another example of a situation where it was assumed
that CAS use would be transparent to students. DERIVE was supposed to
help students to acquire better methods of transforming trigonometric
expressions by performing automatically the more technical part of the
transformation. But it failed because of students’ misunderstanding of what
a simplification process involves for a machine. Ruthven’s analysis put to
the fore the ‘sense of the command’ that would be necessary. Even when
CAS is ‘just a tool’ an understanding of its technical operation cannot be
avoided.

In the second class of classroom situations, symbolic capabilities are
means for students to carry out algebraic transformations before knowing
how to perform paper-and-pencil techniques and even before knowing the
existence of these techniques and their mathematical underpinning. After a
first encounter with notions like limits or derivatives, students could use a
symbolic calculator to experiment with symbolic transformations (limits or
derivatives of sums and products, for instance) and become aware of
algebraic rules (or algebraic techniques) applied by the machine. They could
then imagine general structures underpinning these rules.

This use of computer tools is also a stimulating prospect but we have to
be aware that for students, detecting symbolic phenomena and inductively
formulating algebraic rules and techniques might not be so obvious. During
the TI-92 calculator experiment (Chapter 9, § 3) we had to reflect on how an
experimental inductive activity about symbolic techniques for limits and
derivatives could really be made to work.

Our first concern was to find questions that could provoke students’
inductive reflection. Questions like ‘observe what happens’ do not
necessarily yield interesting observations. Many algebraic transformations
actually maintain the structure of most expressions -- for instance when the
sum of limits is the limit of the sum -- and such examples are, of course, not
problematic. Even when the structure is not maintained -- for instance in the
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case of indefinite limits or of differentiation of a product -- students do not
spontaneously start thinking inductively. Results that the teacher expected to
be amazing to students (for instance DERIVE simplifications for the chain
and product rules of differentiation in Box 3-5) did not alone create much
surprise. The learning situation has to bring to the fore puzzling peculiarities
and to challenge students’ anticipations. For instance it is often interesting to
prepare examples where students’ predictions will very probably be wrong
and to ask them to compare these predictions with the calculator’s answer.

Box 3-6.

Difficulties with emergent subgoals. The task of transforming the trigonometric sum,

sin(x)+sin(2x), into a trigonometric product
(Ruthven 2002, p.287-288)

The French research provides a specific example in an episode in which students -- relatively

experienced in using CAS -- were charged with the task of transforming the trigonometric

sum, sin(x) + sin(2x) into a trigonometric product (Lagrange 2000, p. 5).

In response to a programmed command, the CAS gave the expression

2sin((2x + x)/2).cos((2x–x)/2). The students wanted to simplify this to

2sin(3x/2).cos(x/2). To their surprise, the response of the CAS to repeated simplify

commands was first to give the original expression and then sinx + 2sin x.cosx. To the

students, aware of the overarching goal, the emergent subgoal of simplifying the subsidiary

algebraic expressions 2x + x and 2x–x was clear. To them, this was transparently the

sense of the command to simplify. In other words, their articulation of the simplification

operation was a situated one. But, of course, no model of the larger task -- and no situated

sense of the command - - was available to the CAS; it was unable to take account of the wider

mathematical context giving rise to the instruction. The machine is unable to interpret or

adapt an instruction to accord with the wider purpose so evident to a user; it can only operate

literally, either in terms of the formal elections made by the user, or of preset defaults, which,

as in this case, may fail to coincide serendipitously with the wider purpose of the user. The

effective instrumentation of mathematical reasoning by means of a CAS depends, then, on

precise reframing of situated purposive actions into the decontextualised formal register of

the machine, and a corresponding reframing of results.

A second concern was the knowledge that students need in order to
understand observations as phenomena within an inductive approach, to
construct interesting examples, and to interpret the calculator’s answers
correctly. An example from Pozzi (1994) will help in examining this
question. Pozzi reports on an observation of two students who were trying to
find a general rule for differentiating a product by observing how DERIVE
computes derivatives of the product of a polynomial with a trigonometric

function. Asking DERIVE to differentiate cos x they got
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They then concentrated on the central

part, which they found very similar to the initial
expression. They tried to induce a general rule involving the transformation
of a product into a difference. Of course the central part has no meaning
because it is not a sub-expression of the derivative. But, to students, it
appeared to be the key to finding a rule because it is perceptually close to the
initial expression. Students’ algebraic knowledge about the structure of
expressions was not strong enough to counterbalance this perceptual
evidence and they could not make good use of DERIVE’s help.

Thus, considering new tools as providing ‘scaffolding’ (Kutzler 1997)
for weak student knowledge is an idea which needs to be re-examined. From
Pozzi’s example it is clear that we have to reflect on the prior algebraic
knowledge required. Students do not necessarily need strong procedural
abilities but obviously should not be lacking some key knowledge of
algebraic structure (Chapter 7). Finally we had another concern about
knowledge of the target concept itself in relation to the machine operation.
For instance if students follow an experimental approach to a concept like
limit mainly using the transformational capabilities of CAS, they will then
associate the concept too closely with transformational rules and/or develop
a ‘push button’ conception of the concept. Other modifications to the
meaning of concepts may result from computer implementation and also
interfere with experimental computer aided activity (Chapter 5).

5. CONCLUSION

This chapter started from the idea of transposing approaches from the
mathematical sciences into teaching and learning as a major avenue through
which to make sense of the use of new computer tools. We have seen that
this is not so easy. In particular, a real teaching of algorithms is not feasible
today because the traditional cultural kernel underpinning curricula is
resistant, and too few research studies and experiments have been
undertaken. Transposition of experimental approaches seems more viable,
but difficulties are very often underestimated. We located obstacles to
computer aided experimental activity making an intended contribution to
conceptualization. It appears that using computer symbolic tools as
resources in perceptual and inductive approaches requires reflection on what
prior knowledge students need both in algebra and about the machine, on
what questions can serve to provoke inductive thinking, and on what form
students’ representation of concepts and of the machine operation takes.

The consequence is that experimental computer-aided approaches to
teaching and learning cannot be thought of as simply a matter of using a
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machine to ease problem solving or to enhance inductive activity. Following
Ruthven (2002), using CAS for graphic and symbolic reasoning “influences
the range and form of the tasks and techniques2 experienced by students”,
and because tasks and techniques are resources available for more explicit
codification it also influences “the theorization of such reasoning”. Chapter
4 will give an example where teachers participating in a common project
take radically different and somehow restricting options regarding
management of this phenomenon in the classroom. Chapter 5 will provide
further insight both practical and theoretical. Task and technique will be
offered as structural levels organizing the study of a mathematical domain
and connecting experimental approaches to graphic and symbolic problem
solving with conceptual elaboration.

Jean-Baptiste Lagrange is a professor at the Institut Universitaire de
Formation des Maîtres in Reims.

He has contributed to the development of CAS use in schools and to the
associated didactical reflection. His present work includes the design of a
CAS environment for teaching and learning at secondary-school level and
investigation of the classroom implementation of this environment. He is
also working to contribute to a better understanding of the professional
situation of teachers trying to integrate ICT.
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NOTES

1.
2.

Our translation.
Our emphasis.
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THE INFLUENCE OF A COMPUTER ALGEBRA
ENVIRONMENT ON TEACHERS’ PRACTICE
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Abstract: Using a computer algebra system (CAS) in the classroom provides many
opportunities for improving student learning. However, to take advantage of
such a powerful instrument as CAS requires changes to many aspects of the
classroom. The different ways in which three pioneering Australian teachers
adapted their teaching to use CAS are described (see also Appendix 4-1, for a
comparison with similar experiences in other countries). Two of the teachers
taught an eight-week course in each of two consecutive years (the CAS-
Calculus project) at secondary school level, using a symbolic calculator. They
gave CAS different roles in the instruction and in defining their curriculum
goals. One teacher used CAS in a restricted way with the primary goal of
increasing understanding while the second teacher adopted CAS as another
technique freely available for solving standard problems and emphasized
efficient routines. Over several years (in a separate project, at university level,
using the computer program DERIVE), the third teacher has evolved a method
of teaching with CAS, moving from an early emphasis on teaching about CAS
as a tool and using it for difficult problems to incorporating its use for
primarily pedagogical aims. In reporting on these case studies we comment on
different ways of organising the classroom; the variety in approaches to
teaching the use of CAS; the increased range of methods for solving problems
and for teaching; the contrast between using graphics and symbolic
calculators; the place of paper-and-pencil skills; devoting time to mathematics
or technology; and finally the curriculum and assessment changes required in
schools.

Key words: Assessment, Curriculum, Functional use of CAS, Graphics calculators,
Pedagogical use of CAS, Symbolic calculators, Teaching styles.
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1. INTRODUCTION

The technological tool, CAS, with its powerful symbolic, graphical, and
numerical capabilities is becoming increasingly available to students of
mathematics (Chapter 1). Calculators with CAS are highly suitable for use
in secondary school classrooms since they are portable, can be used by
students whenever they do mathematics, and are becoming more affordable.
As yet, only a few countries around the world have established national
policies in regard to CAS use in schools. It is interesting to compare the
differences in priorities, curriculum, and assessment regimes that have
emerged. This chapter describes the experiences of three teachers who have
been pioneering the use of CAS in Australia (see Appendix 4-1 for other
examples). Some of the findings and constraints reflect these teachers’
individual contexts whilst others are universal.

Many Australian teachers have substantial experience in teaching with
graphics calculators and are now becoming interested in exploring the use of
the symbolic features of CAS on computers and calculators. Australian
people are generally keen to try new ideas and to adopt new technology such
as video-cassette recorders, mobile phones, and internet banking and there is
a general feeling within the education system that students should be
encouraged to use new technology. This is especially so in Victoria, the
Australian state where these studies took place. This preference is moderated
to some extent by a strong feeling for equity so that the introduction of a
new technology may be delayed because not all students can afford to buy it.
In the case of CAS, it is also moderated by an uncertainty about the effect of
powerful technology use on basic calculus1 and algebra skills, a concern that
underpins the approaches of two of our three teachers. As is the case in
France (Chapter 1), teaching mathematics in the senior secondary years in
Australia is largely determined by the external examinations that students
undertake at the end of school. There is currently a new senior mathematics
course (Victorian Curriculum and Assessment Authority 2003) that permits
students to use CAS in their examinations. However, Andre and Benoit, two
of the research project teachers whose early work teaching with CAS is
described in this chapter, were operating with a former curriculum that did
not allow CAS in examinations.

This chapter begins with describing the teaching and learning in three
classrooms. We highlight the ways in which the teachers have changed to
accommodate CAS in their classrooms and the benefits and challenges that
they believe it has brought. Benoit and Andre were teaching in a secondary
girls’ school and they volunteered to participate in a two-year research
project conducted by the University of Melbourne. During the CAS
Calculus2 project, they taught their Year 11 students (most are 16 years old)
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introductory calculus using symbolic calculators (TI-92). They no prior
experience in teaching with CAS but they and their students had used
graphics calculators routinely in their other work. All of the lessons of both
teachers, jointly prepared with the researchers, were observed and Andre
and Benoit were interviewed before and after the project. Claire3, the third
teacher, has taught at a university incorporating the use of CAS in the
computer program (DERIVE) for over eight years and more recently with
symbolic calculators (TI-89). Since her students generally had limited
school mathematics backgrounds the curriculum she adopted revisited much
of the senior school mathematical content. However, she was free to
organise the assessment as she decided (within constraints set by the
university). The information in this chapter comes from her own reflections
on her teaching, from the data gathered from her students by questionnaires
and interviews, from analysis of students’ work, and from analysis of
curriculum materials including assigned exercises and examinations.

The experiences of these three pioneers serve to pinpoint a wide range of
issues that emerge when teachers begin teaching with new technology.

2. BENOIT: TEACHING FOR UNDERSTANDING

In 1998, the University of Melbourne research team initiated the CAS-
Calculus project to investigate the use of CAS for the teaching of
introductory calculus. Over an eight-week period, we monitored three
secondary school teachers, Andre and Benoit (from the same school) and
Charles (from a different school) and their classes. They had no prior
experience using a symbolic calculator or teaching with it. Together, the
research team and the teachers planned the lessons, aiming primarily to
develop students’ conceptual foundation for differentiation, especially by
use of multiple representations: linking graphs, symbols, and tables of
function data. Results of the 1998 study are fully reported, by Kendal &
Stacey (1999) and McCrae & al (1999), including a description of the three
teachers’ pedagogy and how each teacher’s privileging impacted on student
learning outcomes. In 1999, the study was repeated and Andre and Benoit
participated again, with their new classes in the same school. The changes
that occurred in Andre’s and Benoit’s pedagogy in the second year are
reported in Kendal & Stacey (2001, 2002).

A central feature of the initial planning for the project was designing a
course which emphasized multiple representations and where understanding
would receive the major emphasis by preceding procedural work, as done by
Heid (1988). CAS was initially designed by mathematicians to increase their
efficiency in problem solving involving algorithms (Chapter 3). Hence, it
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presents as an ideal tool to relieve students of the tedium of paper-and-pencil
computations and algebraic procedures. It dispenses with much of the
routine symbolic manipulation and enables larger, more realistic problems to
be solved. While traditional courses have largely emphasized procedures at
the expense of understanding of related concepts, CAS-supported courses
may enable students to access concepts that previously required prior skill in
computation. Studies by Heid (1988), Palmiter (1991) and Repo (1994)
showed that CAS could provide support so that early mathematical
experiences can be concept-based. Lagrange develops this point further
(Chapter 5).

Benoit was a very experienced teacher of senior mathematics and was
Head of the Mathematics Department in his school. He was very interested
in teaching with the graphics calculator (officially endorsed for all forms of
assessment including state-wide examinations at the time) and he actively
encouraged other teachers to use it in their classes. Benoit had attended
professional training about teaching with graphics calculators and he was
keen that his students were aware of all of their calculators’ capabilities and
could use them efficiently. One indicator of his interest and expertise is that
he collected a wide range of programs and then downloaded them onto the
students’ calculators for their use in examinations.

When Benoit volunteered for this experiment, introducing the symbolic
calculators, he was especially interested in using them to give students a
better conceptual understanding of calculus. Benoit always emphasized
understanding the concepts being taught. He frequently used enactive
representations (e.g., making purposeful hand and arm movements in the air)
and visualization techniques to explain symbolic ideas. For example, he
constantly linked the symbolic derivative to gradient of the tangent to the
curve (represented by his outstretched arms). He also used real world
phenomena to explain mathematical ideas. For example, after discussion
with the research team, he explained the rule for finding the derivative of a
sum of two functions by considering the speed of a person running on a
moving platform. On another occasion, to discuss a problem about
maximising volumes, he constructed a box out of cardboard.

Benoit’s teaching style was student-centred. He involved every student in
the class by challenging them to explain their ideas to him and to the other
members of the class. He overtly encouraged students to construct their own
meaning for mathematical ideas through conjecture, analysis, negotiation of
meaning with other students in the class, making decisions, drawing
conclusions, and demonstrating conjectures. The construction of his
blackboard notes was basically guided by his lesson plan but he also
spontaneously incorporated key aspects of the class discussion. Benoit
moved around the classroom and checked individual students’ work as they
solved problems from worksheets (or the textbook) that were developed to
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work on in class and complete at home. He responded to common
difficulties by initiating further class discussion that helped the students to
resolve their specific problems.

Benoit also used orchestrated discussion to teach his students how to use
the symbolic calculators. He did not use an overhead projector or any other
special classroom arrangement to demonstrate CAS procedures (Chapter 8);
he would say what he was doing on his calculator, slowly enough so that all
the students could follow on their own machines. Benoit would wait until
the whole group reached each stage and walk around the classroom helping
students who were in trouble. In this way, he ensured that all the students
could follow on their own machines. Because of his expertise in group
management, everyone participated. He only used an overhead projector for
special demonstrations such as a dynamic experiment involving the
collection of real data by a data-logging device attached to the calculator.

Benoit had an over-riding concern for developing students’
understanding of the concept of differentiation. This was displayed in his
strong emphasis on the links between functions and their graphs and
between the derivative and the slope of tangents to curves. To Benoit,
knowing these l inks was the essential aspect of understanding
differentiation. A few years earlier he had embraced graphics calculators
wholeheartedly because they had provided excellent technological support
for this. The monitoring by the research team showed that this aspect of his
teaching was reflected in what his students learned. The tests showed that
most of his students were able to interpret a derivative in terms of the slope
of a tangent or as a rate of change. In providing this focus he often used the
graphical facility of the symbolic calculators.

On the other hand, Benoit’s concern for understanding led him to restrict
the use of the symbolic facility of the calculator. He was pleased to use it to
perform repetitive routine tasks quickly as a preliminary step to discovering
patterns and developing algorithms. For him the priority was developing the
understanding of concepts through exploration, investigation, and induction:

Potentially, it enables you to do a bit more investigation, in terms of looking at more

complex functions... It’s good for discovery, and it’s a lot easier in terms of discovering

[mathematical properties] because it takes a lot of hack work out of [it].

Benoit reported, for example, that through orchestrated discussion, the
class had constructed tables of derivative values of polynomial functions and
deduced the rules for the differentiation of and sums of these. He
commented:

I think we’ve done very nicely with the calculator. One thing I like is the routine

procedures. You haven’t got all that time wasting. You can do very nicely a lot of the
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algebra. You can do it so simply on the calculator and you’re avoiding in some ways the

time that goes by when you’re doing a lot of repetitive calculations.

Beyond uses such as this, Benoit carefully controlled when and how
students used their symbolic calculators. He believed that doing algebra by
paper-and-pencil methods was extremely important for understanding and
that if he allowed his students to do algebra constantly with CAS he would
be depriving them of an opportunity to understand. He stated in an interview
that there are “certain [algebraic] skills that kids have to have, even if you
can use the technology... They’ve still got to have hands-on, they ’ve still got
to get pen-and-paper skills ”.

There were two changes to Benoit’s privileging of, and preferences for,
representations of differentiation and technology in his second year of
teaching with CAS. One change was that Benoit reduced the use of CAS for
symbolic differentiation, replacing it by an increased emphasis on students’
performing algebra and differentiation calculations using paper-and-pencil.
He did this, at least in part, because he assessed this particular class to be
less mathematically able and in need of more practice at paper-and-pencil
techniques. Another change was that Benoit omitted all work with the
numerical (tabular) representation of differentiation, since he believed that
this less able class would be confused by a third representation. He
continued to emphasize the graphical representation of derivative but he
omitted finding approximate or exact derivatives from tables of function
values.

Benoit’s decision-making about the emphasis to be placed on paper-and-
pencil skills therefore seems to have been affected by three factors. Firstly,
he was influenced by the amount of paper-and-pencil practice he believed
the class required. Secondly, he noted that performing algebra step-by-step
with paper-and-pencil contributes to a sense of ‘understanding’, an
important issue that is addressed in Chapter 5. Thirdly, Benoit was always
mindful of the fact that these students could not use CAS in their
examinations. Although use of the symbolic calculator was permitted during
the experimental CAS-Calculus teaching program and for the associated
testing, Benoit would certainly have looked to the different requirements of
the state-wide examinations 15 months ahead. Interestingly, amongst the
graphics calculator programs that he provided for his students to take into
the examinations was one that factorised quadratic expressions symbolically.
This indicates that Benoit used technology to advantage his students’ grades
and raises the likelihood that if symbolic calculators had been available in
examinations, Benoit may have made different decisions.



The Influence of a CAS Environment on Teachers’ Practice 89

3. ANDRE: TEACHING FOR PERFORMANCE

Andre, a colleague of Benoit and also an experienced teacher of senior
mathematics, taught a parallel class the same introductory calculus material.
Unlike Benoit, Andre did not enjoy teaching with the graphics calculator. He
recalled his previous experience in an interview:

Actually, I tried to bring in the [graphics calculator] but I had real trouble with it. I

thought “I just can’t be bothered” and I haven’t [used it in class] since. I didn’t feel

comfortable with the [graphics calculator] because I had so many problems.

In contrast, Andre enjoyed using the symbolic capabilities of the TI-92
both for personal use and in his class. As the project progressed he began to
use it for demonstrating all procedures while teaching. He stated:

I hooked it up at the beginning of the lesson and I used it much more than I would use a

graphics calculator in the classroom... I was in the mode of always having it there and

having it set up so that the overhead projector was there and I just slipped on the screen,

hooked it up and it was there... It was on all the time and I felt comfortable.

Andre’s normal teaching style was to lecture, emphasizing rules and
procedures, with few teacher-student or student-student interactions. The
students mostly worked alone but occasionally consulted with their
neighbours. They were given the same mathematical questions as Benoit’s
students to work on in class and complete at home. During the research
project, Andre used an overhead projector to demonstrate how to use the
symbolic calculator to achieve given results. His students copied down two
sets of notes as he wrote them up on the blackboard: first, the paper-and-
pencil procedures; and second, the corresponding set of step-by-step
symbolic calculator procedures. An example of Andre’s blackboard notes is
given in Figure 4-1. In contrast, Benoit gave much less emphasis to the
procedures for using the calculator itself, and he generally managed to teach
students how to carry out the procedures by demonstrating them to the
whole class and then assisting individuals.

Figure 4-1. Andre’s blackboard notes showing both paper-and-pencil and TI-92
(symbolic calculator) procedures to solve a rate problem
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Andre and Benoit had very different attitudes to student use of the
symbolic calculator. Benoit controlled the use that students made of it,
especially its symbolic facility, suggesting when students should and should
not use it. In contrast, Andre gave his students complete freedom about
when they could use their calculators. After his presentation to the class, his
students were free to work using either paper-and-pencil techniques or
symbolic calculator methods using the relevant step-by-step guides to
procedures they had written in their notes. These guides also usually
included the use of compressed calculator commands to carry out routine
procedures in a minimum number of steps. So, for example, Andre
encouraged his students to use one-line procedures such as:

which both differentiates the expression x(32 – 2x) and solves to find the
point where the derivative is zero (Figure 4-2).

Figure 4-2. Result of a compressed use of TI-92

Whereas Benoit privileged the symbolic and graphical representations of
derivative and the link between them, Andre had a strong preference for the
symbolic representation. This seemed to be because it led to exact answers.
In an interview before the second teaching trial, when asked to discuss
alternative methods of finding the gradient of the curve at a point given the
function and its graph, he indicated this dislike of ambiguity:

Oh well, [differentiation and substitution] is accurate. An approximate method... would

be actually drawing a tangent at x = 1 and then working out the gradient. But I don’t

think the girls4 would ever attempt that because they hate anything where they have to

guess or where the answer might be really different. But that doesn’t necessarily mean

that they would use the exact method like mine.

Further evidence of the importance of exactness to Andre came during
the second trial, when he realized that the project evaluation would test
differentiation in different representations. Some questions, for example,
would require students to find the derivative of a function from the equation
of the tangent line and other questions would require them to find
approximate values of a derivative from a table of values. From this time on,



The Influence of a CAS Environment on Teachers’ Practice 91

in addition to the symbolic facility, Andre began to encourage the students
to use alternative calculator methods to find derivatives. In particular, he
encouraged them to explicitly calculate the numerical difference quotient
(f(x + h) – f(x))/h for a small value of h and a given value of x. He also
encouraged them to use the calculator to draw a tangent at the specified
point and read its gradient from the equation displayed on the screen. Andre
was motivated to do this by his belief that the answers obtained by these
methods were exact (in fact, the answers are not exact, but for simple
functions and whole number coefficients they usually coincide with the
exact values). Thus, during the trial, Andre increased his use of the symbolic
calculator to include additional graphical and numerical differentiation
procedures with CAS. Since he really liked using the symbolic calculator, he
experimented with the data logger: several times he enthusiastically
demonstrated (using projection) a dynamic program that linked the
numerical and graphical representations of derivative. Both of these were
new initiatives for him.

4. DIFFERENT TEACHER PRIVILEGING AND
DIFFERENT RESULTS

4.1 More options for solving problems

The advent of new technological tools such as CAS is accompanied by
an increased number of ways of solving mathematical problems. Methods
that in the past were extremely tedious and so were only available in
principle are now available in practice.

For example, it has always been possible in principle to solve equations
by graphing, supported by mathematical analysis to predict the number of
solutions and in what general regions they might be located. However,
solving equations graphically used to be a method of last resort, when other
methods failed, not a method of first choice. With advanced graphing
capabilities on calculators and computers, this is no longer the case: solving
equations graphically can be quick and easy.

A second example of the different status of mathematical methods with
improved calculation concerns differentiation. Before scientific calculators,
differentiation of the square root function might have been used to estimate

rather than calculate it numerically. This could be achieved by using
the approximation of f(x + h) by f(x) + f' (x).h with x = 100 and h = 0.2.

Now we could use the reverse situation to find quickly the derivative
(0.05) of the square root function at 100 with the calculation:
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Alternatively, the function can be graphed and ‘zooming in’ can locate
an approximate value, or automatically drawing the tangent also gives the
derivative (Figure 4-3).

Figure 4-3. On the left, the command Tangent in the TI-92; on the right, the result for
the square root function at the point x = 100

The National Council for Educational Technology in the United
Kingdom acknowledged this explosion of feasible methods of solution in the
new technological environments:

For any one problem there may now be a range of methods of solution. Typically, there

may be numerical and graphical approaches as well as algebraic and analytic approaches.

Indeed there may be a variety of algebraic approaches. Hence it is more likely that a

problem will be tackled with a view to comparing and contrasting different methods, with

each solution possibly giving rise to some new mathematics (NCET 1994).

A consequence of having a greater choice of methods was that Andre and
Benoit taught different ways of solving differentiation problems. Benoit
taught his students to work primarily from the symbolic derivative,
calculated using paper-and-pencil methods, and interpreted as the gradient
of the tangent to a curve. In contrast, Andre’s students had a wider range of
methods for calculating derivatives (at a point) since they might work
symbolically, or calculate a difference quotient from a table of values, or get
the calculator to draw a tangent to the graph and then read off its gradient.
We expect that this explosion in methods will be the norm: differentiation is
not special in this regard.

4.2 More options for teaching

The growth in options for solving problems with new technologies is
accompanied by a growth in options for teaching. Although Andre and
Benoit worked together and taught similar students in the same school and
planned the lessons together with the research team, the lessons that they
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gave were distinctly different. However, each adopted teaching practices
with technology that supported their beliefs about mathematics and teaching
mathematics. The two teachers had very different conceptions of
mathematics: their teaching styles, use of representations (numerical,
graphical, or symbolic), and general use of technology were distinctly
different. In consequence, although the two classes had similar overall
achievement, the students learnt rather different mathematics (for a more
detailed analysis see Kendal & Stacey 2001, Kendal 2002).

Andre demonstrated use of the technology and provided clear flowcharts
for students to follow in order to carry out routines efficiently. He was
attracted to CAS because it could give accurate answers (or in one case,
approximate answers that Andre believed to be accurate). It enabled Andre
to extend his teaching and his students’ skills with a new set of routine
procedures for using CAS that matched his usual lecture/demonstration style
of teaching, for teaching rules. He really appreciated the symbolic capability
of CAS and enjoyed using it.

Benoit, in contrast, privileged pedagogical use of CAS. He saw this
pedagogical use residing in two possibilities to increase understanding.
Firstly, he believed that linking the symbolic and graphical representations
of a function (or a derivative function) was a key to understanding.
Secondly, the CAS enabled students readily to collect symbolic data for
class discussions during which students would induce the rules for
differentiation and so forth. Beyond use of this nature, the symbolic
manipulation facility of the calculator was of little interest to Benoit.

4.3 Teaching with a graphics or symbolic calculator

Interesting differences were observed between the ways the teachers
taught with a graphics calculator and with a symbolic calculator. Andre
preferred the symbolic to the graphics calculator while Benoit preferred the
graphics to the symbolic calculator.

These preferences are consistent with observations by other researchers.
Teachers who view the graphics calculator as a tool for computation tend to
stress content-orientated goals: for them, pupils learn by listening to the
teacher’s instruction. Tharp & al (1997) noticed that rule based teachers
(like Andre) subscribed to the view that graphics calculators may hinder
elementary learning: they restrained students’ use of the graphics calculator.
Andre did not like using the graphics calculator since he was expected to use
it in ways (such as experimentation and discovery) that conflicted with his
rule-based conception of mathematics and his preferred
lecture/demonstration style of teaching during which he controlled the
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learning. In contrast, Andre was very enthusiastic about using the symbolic
calculator:

I loved it [symbolic calculator]. I thought it was great. I really liked the exact and
approximate [i.e. the modes which specify whether answers are given as decimals or as
rational numbers or roots], the spreadsheets [tables facility] and graphing from the
spreadsheets. Yes, I thought they were fantastic. And the girls did too. I pined for it when
I went back to the graphics calculator which I found very limited and inaccurate. [Some
comments on the usefulness of the larger screen and better menu structure of the
symbolic calculator followed].

Benoit’s reactions to the two types of calculators were the opposite of
Andre’s. As indicated earlier, Benoit was highly skilled in using graphics
calculators personally and he enjoyed teaching with then. He used then to
help students understand concepts, particularly in explaining symbolic ideas
graphically, and for explorations. His behaviour was consistent with other
research, which suggests that teachers (like Benoit) who tend to employ
interactive or inquiry-orientated methodologies use graphics calculators
more than others. This other research also shows that teachers who see the
graphics calculator as a tool for learning are more likely to have student-
centred goals, interactive inquiry driven teaching styles, and student-centred
views in learning. Tharp & al (1997) noticed that the teachers who were not
rule-based teachers did not restrict student use of the graphics calculator for
investigations and were more likely to be concerned with student conceptual
understanding and thinking.

However, Benoit taught differently with a symbolic calculator. While he
was willing to use it to perform repetitive symbolic tasks to generate
patterns quickly and accurately prior to inductive reasoning, he was
extremely wary of using its other symbolic capabilities, for reasons outlined
above. In consequence, in both studies, he restricted students’ use of the
calculator.

5. CLAIRE: FROM FUNCTIONAL TO
PEDAGOGICAL USE

In this section, we describe the journey of Claire as she experimented
with CAS in her teaching. The university where Claire teaches first
incorporated CAS using computer programs (DERIVE and MAPLE) into
the mainstream mathematics and engineering mathematics courses in 1990
(as part of a technology-based project). At first, CAS was used for
occasional demonstrations during lectures. Students used it in isolated
sessions scheduled in the computer laboratories, where an important purpose
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was to familiarize students with the use of a potential workplace tool. In
1995, problem-based projects involving the use of CAS were introduced.
These projects integrated mathematics and engineering through problem
analysis, mathematical modelling, simulation, and solution validation. In the
light of these experiences and the emerging research literature, CAS was
more fully integrated into both the teaching and assessment of the
mainstream mathematics courses from 1997. Pierce & Stacey (200la) report
the gradual changes in curriculum, teaching approaches, teaching materials,
and assessment that occurred. During 2000, the teachers began to introduce
hand-held symbolic calculators into their teaching.

Claire, who has been part of this transition since the mid-nineties, has
documented her experiences. Up until 1997, she taught a traditional
mathematics curriculum with CAS ‘added on’. This involved teaching rules
and procedures (as prescribed by the university) with an emphasis on paper-
and-pencil methods. To aid visualization, CAS demonstrations were
interspersed with the lectures. In laboratory sessions, the students completed
worksheets that focused on how to use DERIVE to quickly and accurately
perform the difficult calculations and complex symbolic manipulations. As a
result of these experiences Claire realized that CAS could be used
pedagogically (to assist students to learn mathematics) not only functionally
(to do mathematics).

In 1997, a new first year unit was introduced to provide students who had
limited secondary mathematics with the necessary pre-requisites to
undertake mainstream university mathematics. Claire was assigned to this
class and she decided to use CAS principally to aid students’ conceptual
understanding. She made sure that CAS was available at all times: in
lectures, in the frequent laboratory sessions, and for all forms of assessment.
Using an overhead projector, she carefully demonstrated relevant CAS
techniques for new mathematical ideas and for further explanation of
problems and issues arising during the lecture. Later, in the laboratory, the
students worked through guided worksheets. Some of the activities involved
learning essential new CAS techniques (Chapter 5), demonstrated on
familiar mathematics whenever possible. Other worksheet activities
involved exploration, investigation, and the solution of challenging
problems.

As her experience of teaching with CAS grew, Claire noticed that her
teaching style had become more student-centred. With CAS always
available, she was able to change the focus of her interactions with students
from the whole class to small groups and individuals. She also encouraged
the students to discuss their work with each other and to make notes on the
mathematics they were observing. Heid & al (1990) note that the roles for
teachers teaching with technology include technical assistant, collaborator,
facilitator of student learning, and catalyst. Claire believes that she had
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changed her role from lecturer to facilitator and catalyst, at least in part
because of the support that the technology was providing for independent
student work. She also believed that students’ understanding was enhanced
by their discussion with the teacher and other students, much of which
seemed to include the computer as an extra authority contributing its own
answers to the discussion (Pierce & Stacey 2001b). For example, a great
deal of student-student discussion arose in Claire‘s classes because the
students were still having difficulty with basic aspects of algebraic
equivalence (Chapter 9 § 2). Students who expected an answer
might comment “but my computer says it is –2log(x): what does your
computer say?” Schneider (2000) made similar observations about the
changing roles of teachers and students using CAS in an Austrian project:
“Whereas in the non-CAS supported classroom many students actively
participated in only half of the lessons this increased to three quarters of the
lessons in the CAS-supported classroom”. The literature suggests that these
changes in teaching style and classroom environment are likely to impact
favourably on students’ achievement. For example, Keller & al (1999)
report that student-centred teaching styles (independent of the type of
symbolic calculator adopted) had a significant, positive effect on the
numbers of students succeeding and the uniformity of success across ability
levels.

Along with a change in teaching style, Claire moved from primarily
using CAS functionally to primarily using it pedagogically. This different
use of technology was reflected in the worksheets. Early worksheets were
designed for students to take full advantage of the symbolic capabilities of
DERIVE. For example, the first exercises on derivative were based on the
function f(x) = sin(x)/x. The students used DERIVE as a tool to extend their
experience of mathematical functions. However, with experience, Claire
began to include activities for three different purposes:

some problems had the explicit purpose of introducing students to new
CAS commands and syntax, and Claire found that problems that reviewed
familiar material were most suitable for this;

new procedures or concepts were introduced through activities (with a
variety of exercises) involving one or more representations. These aimed to
give students a sense of ownership through the guided discovery of basic
patterns and concepts;

students were still expected (permitted) to use CAS for more challenging
questions and for computations that were more time consuming. For
example, to teach the early rules for symbolic differentiation Claire set
exercises that were now based on CAS use with simple power functions, for
example, Students used CAS to generate
derivatives of these functions and then conjectured what the general rules
may be (Figure 4-4).
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Figure 4-4. Looking for patterns to discover rules for differentiation

Other questions taken from textbooks often needed sophisticated
techniques and required the students to delve more deeply into a topic.

After this guided discovery phase, Claire formally lectured the students
using a traditional, paper-and-pencil approach. Understanding was
developed through a series of exercises requiring students to explore
multiple representations: rate of change, tangents to curves, and the
derivative function. Finally, after being introduced to both the mathematics
and the required CAS commands, the students (with CAS available),
successfully tackled realistic and complicated investigative exercises some
of which required paper-and-pencil techniques beyond most of these
students’ current capabilities. In Claire’s first experiences, students
complained about the workload involved in learning how to use CAS as a
modern tool for the workplace. However, as the interfaces of CAS machines
have become easier to use, and since many students now enter her classes
already possessing significant relevant technology skills (e.g., knowing how
to use a graphics calculator), the time spent directly learning to use the tool
is now much less.

Finally, Claire also changed the focus of examinations by including more
questions that required students to interpret and explain their answers rather
than merely recall facts and skills. For example, in the 1997 examination six
out of twelve questions involved interpretation compared with only two out
of twelve questions on the 1996 examination. After being taught
mathematics with CAS, the students were expected to move beyond routine
symbolic mathematical manipulations, or translating conventional
mathematical words and symbols into CAS commands. They were expected
to be able to explain their working, verbalise and justify their reasoning, and
interpret their results. Ability in paper-and-pencil computation or symbolic
manipulation was no longer regarded as an adequate measure of mastery of
a mathematical topic.

In summary, over a period of time, Claire changed her teaching approach
using CAS. Initially, she had privileged the symbolic representation using
paper-and-pencil techniques and symbolic algebra more than the graphical
and numerical representations. With experience, she redesigned her lessons
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to enable students to learn mathematics while using CAS. She gave the
students more opportunities to construct meaning for themselves, principally
through revised worksheets that required exploration of mathematical
patterns and multiple representations with relatively simple functions. Using
CAS to deal with more complicated functions came later. Claire also
changed the focus of examination questions. In sum, as Claire’s experience
in teaching with CAS has matured, her classroom use of CAS has shifted
from a primarily functional use to a primarily pedagogical use.

6. TEACHING IN A TIME OF TRANSITION

All three of our teachers are pioneers, working in a time of transition
from old to new ways of doing and teaching mathematics. Teachers need to
support students’ learning of both the technology and the mathematics,
which are simultaneously changing. In this section we draw together insights
from what the three teachers have done and the issues they have faced.

6.1 Teaching with new technology

Learning to use such a complicated machine as a symbolic calculator
cannot be left to the student alone. All of the teachers developed their own
styles of helping students and of managing the class using technology.

Andre showed considerable growth in his skills of teaching with
technology during the project. His positive experience of the convenience of
using the overhead projector and his admiration of the features of the
symbolic calculator (including its exact answers, large screen, and clear
menu structure) gave him confidence to try other technologies. His
systematic, procedural approach to mathematics was evident in his use of
flowcharts and notes about calculator procedures. He taught his students
mathematical procedures and symbolic calculator procedures
simultaneously, emphasizing both.

Benoit, in contrast, began the project already accomplished in teaching
with graphics calculators. He too taught his students mathematical
procedures and symbolic calculator procedures simultaneously, but
emphasized the latter much less. It was not as important to Benoit that the
students could use their symbolic calculators efficiently for symbolic
manipulation. In our testing, we saw that his students under-utilised the
machines and often made paper-and-pencil manipulation errors that
symbolic calculator use would have avoided, although they demonstrated
more conceptual understanding than Andre’s class (Kendal & Stacey 1999,
Kendal 2002). We suspected that Benoit’s method of teaching technology
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use through class discussion and visualisation, with only minimal use of
technological visual aids, worked only because of his exceptional classroom
management skills.

Over several years, Claire has developed a teaching style for teaching
with technology that has led students to adopt positive learning strategies
and co-operation in the computer laboratories. This is not an isolated
instance. Reporting on another Australian study, Forster (1997) commented
on the development of a classroom environment where students interacted
effectively with the teacher and each other. She concluded that,
“technology-based learning was well suited to a student-centred exploratory
approach and seemed most effective when the students worked
collaboratively with each other”. It remains to be seen whether this situation
will remain the same for Claire now that her students are using hand-held
symbolic calculators where they cannot easily see each other’s work, rather
than computers with screens visible to a group. She still uses the large
screen for the visualisation and demonstrations to the whole group, so that
full class discussion is unaffected, but the easy sharing amongst students
may not survive the move from computer to calculator.

In summary, the different strategies that the teachers employed suggest
that there will be a variety of successful solutions to the problem of teaching
both mathematics and technology use. Trouche (Chapter 8) describes an
alternative classroom structure that has been trialled in French classrooms
and he proposes a framework that considers the role of classroom structure
in technological environments.

6.2 Using time for mathematics or for technology?

Oldknow & Taylor (2000) are among the authors who believe that using
CAS in school mathematics will save time and that “The teacher is able to
use the time gained to extend the pupils’ mathematical understanding”. Is
this the experience of our three teachers?

All three of the teachers have found that teaching CAS procedures at the
same time as teaching the new mathematics content was possible. Benoit
focused on assisting students to understand the new mathematics; he used
the calculators alongside the students in a natural, matter of fact way without
using any additional classroom equipment (overhead projector, for example)
or new teaching strategies. He commented that, on occasions, using CAS
saved time such as when data gathering for lessons based on an investigation
of patterns. This additional time was absorbed into classroom discussion.

In earlier courses, Claire had allocated time specifically to learning to use
CAS, but this became unnecessary as the CAS interface became easier,
students came with more skills, and the focus of the university curriculum
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changed. The students spent the time saved on exploratory projects to
enhance their understanding of the mathematics. Andre was the teacher who
most freely permitted CAS techniques to be used by students; therefore he
was in a position to gain most time by reducing practice of paper-and-pencil
skills. However, he reallocated this time to teaching calculator procedures.

It is significant that Andre taught CAS procedures in a way that did not
integrate the technology and the mathematics: he spoke and wrote notes
about button sequences on the machine: “press F4, then F6”, and so forth.
In contrast both Claire and Benoit spoke about the mathematical procedures
using proper mathematical vocabulary: Differentiate, then Solve, and so
forth. Claire believes that doing this helps her students acquire an overview
of the mathematical method and not just routines that are specific to
particular hardware or software. More importantly, the focus of the teaching
is always on learning the mathematics with the CAS used as a means to this
end.

The amount of time that is gained by use of CAS technology is therefore
variable and is influenced by a range of factors. Stacey & al (2000a) observe
that the best way in which to reallocate time needs to be seriously
considered as part of the curriculum response to CAS use. It is apparent that
after the transition period, time should become available for teachers to
reallocate, but whether this is allocated to additional topics, to increase
understanding, to develop better capabilities for formulating real problems
in mathematical terms, or to some other goal is an important future choice.

6.3 Making full use of the symbolic facility

As we noted above, Benoit used the symbolic facility of CAS in a
constrained way; he embraced its use only for generating data for students to
guess patterns and rules. We explained above that, for several reasons, he
was very cautious, especially in the second trial. On reflection, however, we
see that the lessons we developed did not necessarily need symbolic algebra
for solving problems. Within a couple of lessons of being introduced to a
topic nearly all of the students could solve the problems using paper-and-
pencil manipulation. There was some re-ordering of material, so that
students could observe the numerical and graphical properties of
differentiation before the formal procedures were taught, but beyond this,
questions were quickly answered from within the expected student paper-
and-pencil repertoire. The lack of real need to use CAS may have
contributed to Benoit’s decision to reduce the emphasis on using CAS for
symbolic algebra. Whereas Claire’s classes included some problems where
the symbolic facility of CAS was needed, the CAS-Calculus project lessons
did not involve symbolic skills beyond the expected paper-and-pencil level.
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This lack of need for assistance in symbolic manipulation in the research
project is in direct contrast to the need for machine graphing: numerous
problems were used where tracing graphs on the machine was a precise aid.
Graphing is conceptually a relatively simple procedure that is very tedious to
carry out in practice without technology. Incorporating graphics calculators
into teaching therefore has obvious benefits and can make problems easier
and faster for students. In our schools, we are now seeing a rise in the
number of students who solve problems graphically. For example, Charles
(the third secondary school teacher in the first CAS-Calculus teaching trial)
stressed a graphical approach to a wide range of problems. In our testing, his
students used a high proportion of graphical methods: they were relatively
better at solving problems than students who mainly used an algebraic
approach (Kendal & Stacey 1999). It seems likely that problems that require
the symbolic algebra facility of CAS will be perceived as more complicated
or sophisticated than those in our standard curriculum. This issue (discussed
in more detail in the next section) is receiving ongoing attention as we
develop experience with the new subject that permits CAS in its external
examinations (Stacey & al 2000b, Flynn 2001, 2003).

6.4 Finding the place of paper-and-pencil skills in a CAS
curriculum

All three teachers faced decisions about which skills were essential for
students to master using paper-and-pencil. This issue was the least
problematic for Andre, who accepted the ability to carry out a routine
procedure (such as differentiating) on the symbolic calculator as of
equivalent value to the ability to carry it out with paper-and-pencil. Andre’s
procedural view of mathematics led him to accept that there are alternative
procedures. In contrast, Benoit wanted ‘understanding’ and felt that
implementing rules with paper-and-pencil (e.g., differentiating and

contributed to this to such an extent that it was
irreplaceable. As we noted above, this was also fuelled by concern that his
students needed to learn paper-and-pencil procedures for future, external,
state-wide examinations.

Claire, whose students do not do external examinations, was freer to
consider the mathematical worth of paper-and-pencil skills but still felt
external pressures. Since some of her students would become teachers, she
adopted a middle ground on teaching paper-and-pencil skills. Claire’s
students also tended to support this (Pierce & Stacey 2001b). Monaghan
(1997) suggests that the more important algorithms are those that play an
important part in students’ cognitive development or those that contain a
principle that is important for later development, but it is not an easy task to
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identify these. Claire encouraged students to perform routine skills exercises
by paper-and-pencil when she believed they contributed to the students’
understanding of the mathematics. However, until the external curriculum
environment changes, teachers and students will live in an ambiguous
situation about paper-and-pencil skills.

6.5 Changes required in schools

The experiences of Claire, Andre, and Benoit demonstrate that the
introduction of CAS will present many challenges to educators. Some
teachers will find it very difficult to make the changes to their teaching
practices that will enable students to use CAS in a non-trivial fashion.
Thomas & al (1995) report on a New Zealand study involving teachers using
computers in their classrooms during one school year. They point out that:

Putting a computer in the mathematics classroom is unlikely to result in changes in

learning or teaching unless the personal philosophy of classroom practice held by each

teacher undergoes a major transformation.

Andre and Benoit were volunteers who willingly explored new ideas, but
they demonstrate how technology is adapted to individual teaching styles,
rather than changing them. Teachers in other research (e.g., Simmt 1997,
Tharp & al 1997) showed a related behaviour. Although they made changes
to their teaching styles in their first attempt at teaching with graphical
calculator technology, they showed a tendency to return, in the second
attempt, to their former methods. For the CAS-Calculus project, the
teachers’ ability to change their teaching styles was exacerbated by the fact
that the CAS-Calculus project was conducted as a unique trial, in isolation.
The use of CAS was not institutionalised within the particular school and
this made it difficult for teachers to endorse its use fully (Kendal & Stacey
2002). In contrast, the university teachers were able legitimately to introduce
CAS into their curriculum and gradually change their teaching program
because they had control over the accreditation and assessment of the
courses. The teachers, including Claire, had the opportunity to make
significant changes to their pedagogy gradually.

For the wider school system, substantial professional development will
be needed. Research on the introduction of technology in schools points to
the importance of suitable professional development programs that explain
the rationale for change, support teachers’ learning how to use the new
technology, and show teachers how to teach with technology effectively.
Kutzler (2003) also believes that if teachers learn about good teaching
practices with technology, through high quality professional development,
they may be motivated to change their previous inappropriate pedagogy and
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become successful in teaching good mathematics with the assistance of
CAS. These issues are further discussed in the conclusions and perspectives
chapter of this volume.

Some students also experience difficulties adapting to technology and
changing their style of learning. In the CAS-Calculus project, the students
were familiar with paper-and-pencil methods and using a graphics
calculator. Some students were unable or unwilling to change during the
CAS-Calculus project. Voigt (1994) observes that hidden and stable
regularities of classroom life persist when teachers want to introduce
change.

Teachers have the responsibility to select appropriate curriculum
materials that help students learn and succeed in the new CAS environment
(Zbiek 2003). Thus, changes will need to be made to existing curriculum but
there is a range of possibilities about exactly what changes should be
implemented. Stacey & al (2000a) canvas options for goals of using CAS in
senior mathematics subjects. They contend that CAS can be introduced into
a school curriculum for a variety of purposes: in order to align school
mathematics with the use of technology in the modern world, to make
students better users of mathematics, to help students achieve deeper
learning, or to free up curriculum time so that new topics can be studied.
However, they comment that not all these goals can be achieved at once and
school systems must choose some at the expense of others.

Changes will also need to be made to student worksheets and textbooks
to accommodate changes in curriculum and teaching practices. Claire
showed that it is possible to modify pre-CAS worksheets to make them more
suitable for use in a CAS supported classroom. The book by Berry & al
(1997) shows a range of approaches to these tasks.

Changes must also be made to assessment if CAS is to be successfully
implemented into school curricula. Assessment drives students’ learning and
much of teachers’ teaching. All participants come to value and concentrate
on what will be assessed. Students who cannot use CAS in their
examinations are not likely to make a substantial investment of time and
effort to learn how to use it well. If CAS is to be taken seriously as a tool for
learning mathematics then students need to have access to it for assessment
tasks. In turn, what is assessed has to reflect what has been taught and learnt.
Paper-and-pencil calculation has been used as a test of understanding even
though all the evidence points to it being a limited indicator. Now the
challenge is to design a broader range of items that focus on widening the
bandwidth of mathematical knowledge assessed and better test symbolic
reasoning (for example, Flynn 2001, 2003). Flynn (2001) recommends that:

CAS-permitted examinations be on balance accessible to all CAS users and contain

examination questions that are appropriately worded and structured and take into account



104 Chapter 4

the capabilities of CAS. Marking schemes need to be constructed along principles

consistent with the way students document their solutions in such examinations. CAS-

permitted examinations should allow some newer-style questions to be asked and widen

the range of mathematical skills assessed currently.

As described above, Claire’s revised assessment included more questions
involving interpretation and explanation rather than routine symbolic
mathematical manipulations. This is a key observation.

Finally, there is substantial evidence accumulating that students do not
make enough use of technology when it is permitted in examinations. For
example, studies in quite different contexts (e.g., Forster & Mueller 2000)
show that students made insufficient use of the graphics calculators
permitted in their examinations. This was also observed in the CAS-
Calculus project and in examinations at the university. Some students
reported that they felt that they were cheating when they used CAS for
questions they had not completely mastered. For example, Claire gave her
students an assessment task that required them to examine the function
g(x) = sec(x) and the associated family of translated and dilated functions.
The function is available on DERIVE, but this terminology was not
known to Claire’s students. They could however enter g(x) = sec(x) into
DERIVE and use standard techniques for translations and dilations.
Although Claire expected them to do this, some students did not attempt the
question while others who were observed to graph the function with
DERIVE in the examination did not record their answer, subsequently
stating that they did not trust the computer for a function they did not
recognise. Teachers need to ensure students realise the potential of the
permitted technology.

Soon, every student in first-world countries may have access to CAS for
learning mathematics. This chapter has shown that using CAS in the
classroom provides many opportunities for improving student learning.
However, taking advantage of powerful software requires changes to many
aspects of the classroom and many players share the responsibility of
making sure that CAS use benefits students:

education researchers have the responsibility to identify the key
variables and disseminate findings on effective practice to educators. To
advocate change there should be substantial body of evidence that supports
the innovation and the ways that students learn with technology need to be
understood;

technology designers can make a great difference by providing interfaces
that are suitable to support teaching and learning;

schools will need to support careful changes in curriculum design and
assessment: they will need to encourage teachers to undertake training to
teach with CAS;
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teachers will have the opportunity to adopt more student-centred
teaching practices, and have the responsibility to provide students with
suitable tasks that help them to construct knowledge for themselves.

7. CONCLUSIONS

With CAS, students have the opportunity to fulfil their mathematical
potential with less computational burden. Using suitable teaching materials,
competent teachers can focus student attention on the meaning of the
mathematics under consideration. CAS can assist teachers to enhance
students’ opportunity to acquire insightful problem solving skills, develop
deep conceptual understanding, develop higher levels of thinking, and gain
an understanding of how to validate and interpret solutions. CAS technology
can prove to be a powerful mathematical partner.

The experiences of our pioneering teachers show some of the first steps
along the road towards this ideal situation. The classrooms of Andre and
Benoit illustrate how current differences between teachers will not disappear
and may even be exaggerated by intelligent tools. The technology supports
learning and teaching of many different styles, including both teaching
emphasizing routine procedures and teaching emphasizing understanding.
On the other hand, Claire’s experiences demonstrate an evolution that has
been driven by a thoughtful reaction to gradually emerging possibilities.
Whereas graphics calculators, for many teachers, slotted easily into the
curriculum and enhanced their teaching with little threat, CAS demands a
more thorough response. Neither Andre nor Benoit, working in a somewhat
artificial environment, were able to progress far along this track in the short
time of the research project. Their first reactions were interestingly different
on three points: in the ways they allowed it to change the curriculum
(especially how they came to regard paper-and-pencil skills), what they
valued when they taught with it, and how they managed their classrooms.
The task for educators is now to move ahead simultaneously on curriculum
and assessment, teaching styles and classroom organization, and more
generally to the problems posed for teaching mathematics in the information
age.
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APPENDIX

Appendix 4-1
Benoit, Andre, Claire... and others

Recent studies about teachers using technology
(Jean-Baptiste Lagrange)

A review of literature on the use of technology in the teaching of mathematics (Lagrange & al

2003) shows that there was very little research on the teacher from 1994 to 1999. At that

time, the main focus of interest was the instructional possibilities offered to the teachers

through the use of technology. Chapter 4 adopts a different approach. It is a study of the

constraints and opportunities introduced by the use of technology, from the point of view of

the teacher and in light of their conceptions of teaching and of mathematics.

Zbiek (2001) comments that experienced teachers have reached a certain ease in their

teaching practices, which is disturbed by the introduction of computer algebra; allowing, and

demanding at the same time. new decisions, new actions, and a new understanding. Thus, the

integration of computer algebra into teaching not only introduces new classroom variables but

it also changes the options for existing variables, which can increase the differences between

teachers. This approach to studying teaching may reveal, in a particularly clear way, the

impact of computer algebra on teaching. Eventually, as Zbiek (ibid.) emphasizes, it may lead

to the identification of particular strategies that make it easier for the teacher to teach with

computer algebra.

Among the rare studies based on this approach, Lumb, Monaghan & Mulligan (2000) report

the successes and the problems met by two teachers, Steve and Stephen, when they tried to

intensively use the computer algebra software, DERIVE. It is obvious that the introduction of

a new technology requires the teacher to devote considerable time to lesson preparation, but

according to Steve and Stephen, compared to other teaching software, DERIVE is at the

upper end of the ‘effort’ scale. Moreover, it takes longer to get a ‘feel’ for how to use

DERIVE, and the authors attribute this to the extensive possibilities afforded by this software.

In addition, Bottino & Furinghetti (1998), state that, even with experience, the teachers

exploit only a small part of the software’s potential.

Steve admits that many of his first ideas for exploiting DERIVE are actually not feasible. An

analysis of the activities he deployed in class shows, among other changes, that he reduced

the time he spent on what the authors call ‘coaching’ activity. ‘Coaching’ consists in

engaging the students in thinking and reasoning about the mathematical situation under

consideration, without telling them the key ideas. This reduction is paradoxical, since the

introduction of computer algebra was supposed to allow more time to be spent directly on

mathematical ideas. In Monaghan’s study (2001) of thirteen teachers, he notes, that in the

technology based lessons, the ‘coaching’ activity was reduced and replaced by another

‘coaching’, this one related to the technical aspects of the use of the software. He notes the
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idea that the teacher could play the role of a ‘catalyst for self-directed student learning’ seems

not to work.

This paradoxical decrease of the ‘coaching’ is obviously related to the teachers’ inability to

‘feel’ how to use the software for teaching and learning. Indeed, in order to elicit

mathematical insights from students, the teacher needs to anticipate learning opportunities.

Without technology, experienced teachers are able to improvise easily on their established

strategies. In contrast, with technology and especially with computer algebra, it is not always

immediately obvious to the teacher how to exploit the situation mathematically and his

previous ease in teaching is called into question. It is then easier for him to play the technical

assistant than to explain about mathematics.

Steve and Stephen put a lot of effort into preparations of worksheets for students, deviating

from their usual practice of using a text book because they believed it was not possible to

adapt much of the text book material for use with the technology. Neither did they use many

of the materials produced by the research group in which they participated. As stated by the

authors of the article (p.236): “... we think that teachers who plan to incorporate a significant

use of computer algebra in their teaching are presented with a re-evaluation of the

mathematics they were taught, and are familiar with”.

Thus, trying to really integrate computer algebra is not easy for Steve and Stephen, as for

Benoit, Andre, and Robyn. Moreover “it may be perceived as something that is neither

rewarding nor desirable” (Lumb, Monaghan & Mulligan, ibid., p.239). Nevertheless their

experience gives a fair idea of the work necessary for the successful integration of CAS into

teaching. In chapter five, drawing on observations of more teachers (Schneider 1999), we

interpret this work as the difficult elaboration of new praxeologies (Box 5-1). These include

not only some different mathematics, but also the new decisions and the new actions

mentioned by Zbiek (ibid.).
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NOTES

1.

2.

3.
4.
5.

The word ‘calculus’ refers to the first course in ‘analysis’ in the curriculum of high
schools in many English speaking countries.
We acknowledge the work of Barry McCrae and Gary Asp, who were other researchers
working on this project.
Claire is a pseudonym for one of the three authors.
Andre and Benoit’s students were all girls.
Sec(x) is standard notation for 1/cos(x).
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Abstract:

Key words:

This chapter will consider in more depth the possible contribution of
technology -- especially CAS -- to the study of mathematical domains. Using
a theoretical approach to treat examples of classroom activities, we will show
how a didactical reflection can help to understand this contribution. A variety
of new techniques will be presented and related to paper-and-pencil
techniques. Examining the pragmatic and epistemic value of both types of
technique will help to make sense of classroom situations. It will also help to
clarify the situation of teachers wanting to integrate new tools. Consideration
of other approaches will show that educators emphasize the use of computer
algebra to promote ‘conceptual’ mathematics. Nevertheless, they cannot
ignore instrumented techniques when considering the real potentialities of new
tools and the conditions for their integration.

Conceptualization, Tasks, Techniques.
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1. INTRODUCTION

Using new tools, students can now easily perform numerical and
symbolic calculation that would be very painstaking by hand. As we saw in
Chapter 3, transposing experimental approaches from mathematical sciences
into teaching seems to be a realistic and stimulating prospect, but the
question of the contribution that experimental approaches inspired by
mathematical sciences might bring to students’ conceptualizations remains
open. We concluded that this question would require the addressing as a
whole of the study of a mathematical domain and the way in which it is
changed by new approaches that tools make possible.

Box 5-1.

The anthropological approach

(Artigue 2002)

The anthropological approach (Chevallard 1999) shares with socio-cultural approaches in the

educational field (Sierpinska & Lerman 1996) a vision of mathematics as the product of a

human activity. Mathematical productions and thinking modes are thus seen as dependent on

the social and cultural contexts where they develop. As a consequence, mathematical objects

are not absolute objects, but are entities, which arise from the practices of given institutions.

The word institution has to be understood in this theory in a very broad sense: the family is an

institution for instance. Any social or cultural practice takes place within an institution.

Didactic institutions are those devoted to the intentional apprenticeship of specific contents of

knowledge. As regards the objects of knowledge which it takes in hand, any didactic

institution develops specific practices, and this results in specific norms and visions as

regards the meaning of knowing or understanding such and such an object. Thus to analyze

the life of a mathematical object in an institution, to understand the meaning in the institution

of ‘knowing/understanding this object’, one needs to identify and analyze the practices which

bring it into play.

These practices, or praxeologies, as they are called in Chevallard’s approach, are described

by four components: a type of task in which the object is embedded; the techniques used to

solve this type of task; the technology, that is to say the discourse which is used in order to

both explain and justify these techniques; and the theory which provides a structural basis for

the technological discourse itself and can be seen as a technology of the technology. Since we

have already assigned a meaning to the word technology in this book, so as to avoid

misunderstanding, in the following we combine Chevallard’s technological and theoretical

components into a single theoretical component. The word theoretical has thus to be given a

wider interpretation than is usual in the anthropological approach. Note also that the term

technique has to be given a wider meaning than is usual in educational discourse. A technique

is a manner of solving a task and, as soon as one goes beyond the body of routine tasks for a

given institution, each technique is a complex assembly of reasoning and routine work. We

would like to stress that techniques are most often perceived and evaluated in terms of
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pragmatic value, that is to say, by focusing on their productive potential (efficiency, cost,

field of validity). But they have also an epistemic value, as they contribute to the

understanding of the objects they involve, and thus techniques are a source of questions about

mathematical knowledge.

For obvious reasons of efficiency, the advance of knowledge in any institution requires the

routinization of some techniques. This routinization is accompanied by a weakening of the

associated theoretical discourse and by a ‘naturalization’ or ‘internalization’ of associated

knowledge which tends to become transparent, to be considered as ‘natural’. A technique

which has become routine in an institution tends thus to become ‘de-mathematized’ for the

members of that institution. It is important to be aware of this naturalization process, because

through this process techniques lose their mathematical ‘nobility’ and become simple acts.

Thus, in mathematical work, what is finally considered as mathematical is reduced to being

the tip of the iceberg of actual mathematical activity, and this dramatic reduction strongly

influences our vision of mathematics and mathematics learning and the values attached to

these.

The anthropological approach opens up a complex world whose ‘economy’ obeys subtle laws

that play an essential role in the actual production of mathematical knowledge as well as in

the learning of mathematics. A traditional constructivist approach does not help us to perceive

this complexity, much less to study it. Nevertheless, this study is essential because, as pointed

out by Lagrange (2000), it is through practices where technical work plays a decisive role that

one constructs the mathematical objects and the connections between these that are part of

conceptual understanding.

First we have to define what we mean by the study of a domain. This
notion comes from Chevallard (1999): to study a domain is to do
mathematical work on this domain for educational purposes. In education as
in professional research, working on a mathematical domain is trying to
solve a set of problems through using and creating concepts. An important
issue is how concepts are produced. As far as we can say in general, the
work of a researcher is to structure a domain so as to make good questions
appear. Good questions are not just problems, but specific questions that can
be addressed in a mathematically appealing way. Concepts appear when
structure becomes visible. Their formulation is the product of further
structuring work.

In a teaching and learning context, we consider that working in a
mathematical domain is done at three structural levels. The first level is that
of tasks. Here, tasks are taken not just to be individual problems but rather
as more general structures for problems. For instance, consider the domain
of real functions. Problems can be expressed enactively from ‘real life’
situations. A task like “find the intervals of growth of a given function”
constitutes a common reference for some problems but not for others;
likewise another relevant reference task is “find the zeros...”
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Techniques are the second structural level. Technique has to be taken in
the general sense of “a way of doing tasks”. Techniques help to distinguish
and reorganize tasks. For instance different techniques exist for the task
“find the intervals of growth of a given function” depending on what is
known about the function. If the function is differentiable the task can then
be related to the task “find the zeros” of another function. In other cases, a
search based on a more direct algebraic treatment can be more effective.

The third level is that of theories. While the first two levels are related to
action, this level is related to assertion. At this level, the consistency and
effectiveness of techniques are discussed. Mathematical properties, concepts
and a specific language appear.

In some respects, this three level structure defining the study of a domain
has to be taken as a postulate. On the one hand, doing mathematics in a
domain necessarily involves structuring problems in terms of concepts. On
the other hand, why choose to focus on tasks and techniques as intermediate
structures? The reason is that, as we saw in Chapter 3, the potentialities of
technologies -- and especially of CAS -- are expressed in terms of the
expanded possibilities of action in solving problems. Thus, if access to
concepts is seen as depending on the possibilities of investigating problems,
technology should automatically enhance this access. We have stressed that
things are not so simple. Observing several windows does not necessarily
stimulate multi-representation thinking. Easily obtained symbolic results do
not automatically provoke real inductive activity. The postulate we make in
this chapter is that taking the above structural levels of tasks and techniques
into consideration can account for these difficulties and help to think better
about the support that technology can bring. Such a perspective has its origin
in our surprise that consideration of tasks and techniques is often omitted in
technological innovations, whereas they have an important place in ‘real
life’ teaching and learning. Like all postulates, it will be justified inductively
by its productivity.

2. THE IMPACT OF TECHNOLOGY ON STUDY

Our interest in techniques led us towards the anthropological approach
developed by Chevallard (1999). The main elements are presented in Box
5-1. From these, the impact of computers on teaching and learning can be
thought of at the level of techniques: traditional paper-and-pencil techniques
are challenged by ‘push button’ techniques while, as we shall see, the use of
technology requires new techniques dependent on the tool. The pragmatic
and epistemic value of traditional techniques (Box 5-1) have to be
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reconsidered and new techniques have to be examined for a possible
epistemic contribution.

To facilitate understanding, let us take the example of a small praxeology
(Box 5-1) and examine the impact of a tool on techniques. Chevallard (ibid.,

p.243) considers the domain of expressions like a, b, c, and d

integers. The study of this domain can be seen as a praxeology whose

central task is the reduction of such expressions into and
rationals. The technique to accomplish this task is to multiply numerator and
denominator by a suitable expression to obtain an integer denominator. This
(tedious) technique provides for a pragmatic canonical writing of
expressions from the domain, helping for instance to recognize that

quotients like and are equal. Since performing the

technique includes several elementary actions, each action implying an
algebraic analysis of the expression -- especially before it has been
routinized --, it can play an epistemic role (Box 5-1) towards developing
knowledge of algebraic properties of quotients and radicals. At a theoretical
level, it is a basis for the field structure of the algebraic extension
and provides an algorithm to transform expressions into the canonical form.

In contrast a symbolic calculator accomplishes the reduction in just one
operation. Using a paper-and-pencil technique, a human being wil l
necessarily limit the number of expressions s/he will try, and focus on the
underlying algebraic property of radicals. The use of a symbolic calculator
for this task makes it possible to do more examples and orients the activity
towards pattern discovery -- for instance recognizing that every quotient can
be expressed as the sum of a rational and a rational multiplied by that
the expression is rational whenever ad = bc...-- and generalization building
a praxeology for or Clearly, the paper-and-pencil technique
is linked to knowledge of elementary algebraic properties while the
symbolic calculator technique opens up stable structures more directly,
while hiding properties explaining the stability.

3. ‘PUSH BUTTON’ TECHNIQUES AND THEIR
EFFECT ON CONCEPTUALISATION

CAS was created to ease the simplification of most common symbolic
expressions. Corresponding tasks can be performed without great reflection.
Thus, for students, ‘push button’ techniques tend to predominate over
ordinary more painstaking techniques. For instance, after overcoming
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syntactical difficulties, an grader will get limits even as simple as

by using the symbolic calculator Limit command with less pain

than by reasoning. While by reasoning, s/he would have to think of a graphic

asymptotical representation of the function or of a bounding by

with a calculator s/he only has to enter Limit(1/(x+1),x, Students

adopt ‘push button’ techniques like this because of their simplicity and
efficiency and there is a chance that they will link a concept too closely with
the corresponding technique (Monaghan & al 1994).

This is an example that, with new tools, painstaking paper-and-pencil
techniques retain little pragmatic value because they are challenged by ‘push
button’ techniques. Routinization is no longer a necessity and thus their
epistemic value could become more visible. However, paper-and-pencil
techniques tend to become obsolete because of the ease of using CAS
commands. This obsolescence is a problem because traditional techniques
can no longer play their role in conceptualization and ‘push button’
techniques cannot take over this role directly.

Mathematics education has thus to reconsider the study of a domain,
taking the obsolescence of traditional techniques into account, and to
conceive new techniques as components of new praxeologies for this
domain. Thinking of new techniques linked to the use of computer tools and
of their possible epistemic value is not easy because mathematical culture is
implicitly linked with paper-and-pencil techniques and is not accustomed to
the idea that other tools can support conceptualization. However, this is
indeed possible, as the next section will show.

4. A CAS TECHNIQUE AND ITS EPISTEMIC
VALUE

The situation described in Box 5-2 illustrates how a technique linked to
the use of CAS can be more than just ‘pushing a button’ and how it
contributes to students’ problem solving activity and mathematical
conceptualization. Two teachers trialed three versions of the same situation.

The first version was deceptive as students worked with paper-and-pencil
and could not go far in the value of n and thus in their conjectures. In the
second version the teachers tried to use the CAS DERIVE to liberate
students “from the technical aspects of paper-and-pencil computing” while
encouraging them “to keep sight of the main goal”. While students actually
engaged in experimental activity and learned about algebraic facts (degree



Using Symbolic Calculators to Study Mathematics 119

of factors...), the situation did not produce real conjectures in spite of the
teachers’ expectation that students could find motivating conjectures by
observing CAS factorizations with enough detachment so that they would
not miss general factorizations.

Box 5-2.

The factorization of
(Mounier & Aldon 1996)

grade students (scientific stream) were asked to conjecture and prove ‘general’ -- true for
every n -- factorizations of these polynomials by observing examples for some values of n.
Three successive versions of this situation were developed:

Version 1: solving this problem with paper-and-pencil in a single session
Students found easily that x – 1 is a factor, then they used polynomial division to obtain a
factorization for two or three values of n and were able to generalize into

Polynomial division was a tedious manipulation and after
that, students did not look for other factorizations.

Version 2: with CAS in a single session
Students had to observe a set of outputs from DERIVE’s Factor Rational command. A
difficulty is that this command gives a most factored form while the general factorizations
expected by the teachers are not complete for every n. For instance, the two-factor
decomposition above is obtained only for prime values of n.
This is how students typically behaved. They used the Factor Rational command for n=2 and
3 and conjectured the above two-factor general factorization. Factoring for n=4 they thought
that even n are not regular and trying n = 5, 6, 7 provided confirmation. At this point, they
conjectured that there were two separate general factorizations, the above for odds and a
three-factor one for evens. Wanting a confirmation for n = 9, they got a three-factor

decomposition The conjecture was then rejected and students
tried a variety of new conjectures but without success because they always found anomalous
values of n. They did not go farther because a theory of cyclotomic polynomials that would
explain DERIVE’s factorizations was beyond their reach.

Version 3: a long-term problem
Students had access to Derive on laptops in the classroom and for personal work. The
teachers assigned the factorization of as ‘a long term problem’. A first session
introduced the problem and students were initiated to techniques for manipulating factors in
DERIVE. Then students practiced at home and found conjectures and proofs that they
reported in classroom discussions. For instance they recognized that the above factorization is

true for all n and they proved factorizations like

Students could not actually distinguish between DERIVE’s and ‘general’
factorizations because they could not grasp the following idea: for a given n,
several factorizations may exist, but only some of them are ‘general’ or true
for a large set of values of n.

This situation is remarkable because students will have learned much
about algebra if they can say, “Yes, for given polynomials DERIVE gave us
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factored forms that are not the general factorization, but the general
factorization is still valid because we can find it by collecting and expanding
parts in the factored forms”. An important point to emphasize is that
students who are able to make this statement know what it means to collect
and expand parts of an expression. Mathematicians may think that this
technique is obvious because they recognize complete and incomplete
factorizations and understand that CAS provides the means to pass from one
form to another.

To collect and develop several factors in a factorization is not so easy a
manipulation for students: one must understand software-specific copy and
paste functionalities and link them with an understanding of the structure of
a factorized expression. In the situation reported above, this ‘DERIVE
technique’ was missing, and this arose both from an insufficient knowledge
of DERIVE and from a lack of understanding of the concept of
factorization. Classroom elaboration of this technique is a condition for
enabling experimental activity on the part of students and for giving this
activity a mathematical dimension.

This observation illustrates what we said in Chapter 3. Experimenting
‘like professional mathematicians’ with the help of new tools is not so easily
transposed into education. When not enough emphasis is put on techniques
specific to the tool, a potentially rich situation may fail to bring students to
conceptualizations. We observed that teachers using CAS were often
reluctant to give time to these techniques. Since working regularly in a
computer room presented difficulties, most of the teachers taught only a few
sessions with DERIVE. In this context, they saw little pragmatic (Box 5-1)
use for DERIVE techniques and tried -- often unsuccessfully -- to focus on
conceptual issues. In contrast, experienced teachers and researchers
successfully integrated DERIVE techniques into the classroom.

In a third version of the situation, introducing students to techniques for
manipulating factors in DERIVE and making it possible for them to practice
at home was more productive as the final report (Mounier & Aldon 1996,
p.59) illustrates: for instance, students found and proved a non-trivial
factorization where n is a power of 2. This proof by induction uses the
expansion of a part of a factorization, a finding obviously linked to the
technique. According to the authors, students did learn DERIVE as a new
tool and changed their image of the concept of factorization. These teachers
recognized the need to build techniques for using DERIVE and the
epistemic role of these techniques in understanding algebra.

A provisional conclusion is that there is a great variety of new
techniques, including ‘push button’ techniques and techniques needed to
manage expressions. Obviously, in a paper-and-pencil context, one cannot
bypass such techniques because of their pragmatic utility and one can easily
overlook the epistemic value of such techniques. That is why recognizing
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new techniques and their epistemic value is not obvious for mathematics
educators. In our analysis, instead of trying to reduce their importance or to
bypass them, teaching has to considerer their pragmatic and epistemic value
and their evolution during the mathematical work in a domain, in order to
understand how the use of technology can support conceptualization.

In the next sections we will have a closer look at the variety of new
techniques, emphasizing possible specificities, and we will consider how
this approach to techniques helps to look at the teacher’s role in the
classroom use of tools.

5. LINKING CAS AIDED PATTERN DISCOVERY
AND PAPER-AND-PENCIL TECHNIQUES

Since CAS first appeared in classrooms, there has been a recurrent
debate about what should happen to paper-and-pencil techniques. Authors
who see these techniques simply as skills tend to think that, if there is some
necessity for students to learn them, this learning should be ‘resequenced’ as
late as possible in order to avoid interference with conceptualization (§ 9).
Other authors refer to paper-and-pencil proficiencies as sometimes valuable
and meaningful. They recognize that technology changes the scene and try
to identify ‘lists of basic skills’ that mathematics educators would agree are
necessary for students to know how to perform by hand, even in a
technological environment.

Goldenberg (2003) wonders whether “algebra is dead” now that “CAS
do, with no effort, what we previously thought we wanted the students to
do” (ibid., p. 13). He reminds us that the role of algebra is not just to solve
practical problems. Algebra can play a role in “opening up various black
boxes, including the ones we called patterns” and thus “some algebra skills
that are no longer needed for finding answers still remain essential for
understanding answers...” (ibid., p.17) He proposes the example of the

expansion of ‘collapsing’ to

produce CAS gives the answer, but does not give insight into the
process involved (ibid., p.29).
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Box 5-3.

A challenge: Find the order derivative of
(Trouche & al 1998)

This situation comes from a booklet made up from reports by grade students on their
solutions to a number of ‘challenges’. Here, the challenge was: for every positive integer n

find the order derivative of Two students presented their work.

Their first solution appears on the two TI-92 screens below.

Then the students wrote:
“Using the TI-92, we discovered a pattern and proved it. We had then to look again at this
exercise. Actually, we searched for the derivative of a product of two functions u and v, with

and Every derivative of u is u, the first derivative of v is
the second is and the other derivatives of v are zero ”.

From this, they calculated the first, second and third derivative of uv, then they referred to the

‘Leibniz formula’ and found From this, they obtained

again the expression for the order derivative of

We can think of ‘discovering patterns’ and ‘getting insight into patterns’
as two activities, one with the use of a tool and the other with paper-and-
pencil. The associated techniques make possible different epistemic
contributions to the learning of algebra as the example in Box 5-3 shows.

This example deals with differentiation. The algebraic paper-and-pencil
techniques for differentiation are developed in secondary mathematics
education mainly for their pragmatic utility and they tend to be seen as
meaningless skills. Their epistemic contribution to the understanding of
algebraic aspects of calculus is nevertheless important. For instance one

cannot understand why CAS simplifies the antiderivative of only for
odd numbers n, without some knowledge of the differentiation of products
and chain expressions.

We noted above that the pragmatic value of paper-and-pencil techniques
is challenged by ‘push button’ techniques, and that putting their epistemic
value to the fore is not obvious. The situation of Box 5-3 can help to make
sense of techniques for differentiation of products. The stability of sets of
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expressions, like the set of products of the exponential with quadratic
polynomials is a consequence of the algebraic properties giving these
techniques an epistemic value. The CAS technique of pattern discovery
helps to conjecture and prove this stability but it hides the underpinning
algebraic properties.

Students challenged to ‘explain’ the stability had to use the algebraic
techniques in a different way as compared to the usual paper-and-pencil
differentiation. They produced a second non-CAS solution based on
properties of the differentiation of the exponential and quadratic expressions
and on the Leibniz formula generalizing the product differentiation to the
order derivative.

The interest of this situation is the following: a CAS technique of pattern
discovery helps to find and prove a property but students recognize that this
solution ‘tells only part of the story’. Actually, pattern discovery gives the
property a meaning at a local level and algebraic techniques are a link with
general calculus objects (polynomial, exponential, derivatives...) One can
then expect from this interrelation of techniques a more general and
reflective understanding of algebraic techniques than in the usual paper-and-
pencil exercises on differentiation.

More generally, we cannot envisage students doing mathematics only by
using CAS. Rather, we envisage a ‘CAS assisted’ practice intertwining
technology and paper-and-pencil. Thus we should think of the use of CAS as
calling for an interrelation between new techniques and paper-and-pencil
techniques. Goldenberg’s reflection and the above example help to illustrate
that this interrelation can be mathematically productive as a specific
epistemic contribution can be expected from each type of technique.

6. ACCESSING GENERALIZATION THROUGH
SYMBOLIC TECHNIQUES

We will now present a situation which is interesting for similar reasons,
but in reverse. In the order derivative task, CAS techniques gave a local
meaning to the solution and traditional paper-and-pencil work provided for a
wider sense. In the tank problem situation (Boxes 5-4 and 5-5), access to
generalization is provided by CAS. It is primarily a problem of optimization.
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Box 5-4.

The concrete tank problem
(Artigue & Lagrange 1999; Chapter 9, § 3)

A man wants to build a tank. The walls and base of the tank are to be made of concrete 20 cm
thick, the base is to be a square, and the tank must contain 32 cubic meters. Let x be the
horizontal dimension of the side of the inner square, and let h be the inner vertical of the tank,
both measured in meters. What should be the values of x and h to use as little concrete as
possible?

Solution
The function giving the quantity of concrete

simplifies into

Generally, students do a graphical or numerical
study of this function and observe that a minimum
seems to appear near the value x = 4.
In a more mathematical approach to the problem,
students can compute, with or without the TI-92,
the derivative of this function.

They can find that it has two zeros one for x = 4, and another for x = – 0.4, and generally,

they do a numerical study of the sign of this derivative, finding that it is negative between 0
and 4 and positive above 4.

These problems are popular because students can work using precalculus
concepts. The graphic and numerical facilities of calculators are excellent
supports to encourage students to consider multiple approaches to these
problems. In France, students learn about derivatives in eleventh grade and
can then solve optimization problems symbolically. They have learned
various techniques to tackle these problems and are able to approach
calculus concepts when working out these techniques and reflecting on them
(Lagrange 2000). By designing lessons for students using a TI-92, we
thought that the availability of CAS could help amplify the tasks of
optimizing and the associated techniques passing from a particular to a
generalized configuration.

Studying a numerical case (Box 5-4) is interesting and the graphical,
numerical, and even symbolic capabilities of the TI-92 can help but it has
two significant limitations. It primarily ‘encourages’ the numerical or
graphical approach to the problem. Students are not encouraged to use more
powerful approaches, such as studying the sign of the derivative. The answer
is not remarkable because it does not pave the way for new questions, such
as “Is it a general result that there is a minimum and only one? What can
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you say of this minimum?” and so on. Limitations such as those described
above do not exist in the generalized problem (Box 5-5).

Box 5-5.

The generalized concrete tank problem

The walls and base of the tank are to be made of concrete of the same thickness e, the base is

to be a square, and the tank’s inner volume must be V. Let x be the horizontal dimension of

the side of the inner square, and let h be the inner vertical of the tank, both measured in

meters.

The aim of the problem is to know whether a value of x and h exists that uses as little

concrete as possible. In addition, we want to know how this value depends on e and V.

Solution

Students can adapt the function giving the quantity of concrete from the numerical case and

get its derivative from the TI-92. Then the task is more difficult because they cannot conduct

a graphical study of the function or a numerical study of the derivative as they usually do, but

study symbolically its sign by factoring the derivative. The TI-92 gives this factorization

showing that the derivative has the same

sign as for positive x.

A minimum quantity of concrete is used at The problem was
trialed during a TI-92 experiment with grade students and Chapter 9
(§ 3) will report on its place in the experiment and on students’ work. We
discuss here a possible student solution. Solving the numerical case should
help students to understand the problem and try a numerical or graphical
approach. The main difficulty will be to find an algebraic expression of the
concrete volume with respect to x. With the generalized problem, students
will meet the limitations of their graphic calculator techniques. They will be
driven towards a symbolic technique that they learned before, but do not use
in numerical cases when they see more sense in graphic and numerical
approaches. They will be able to perform this technique only with the help
of the TI-92 not just because the expression is ‘big’ but really because
grade students’ knowledge of algebraic manipulation and differentiation is
too weak to handle parameterized expressions.

We expected that students could answer the above questions in the
following terms -- “The minimum depends on V, but it does not depend on
e” --and see that this issue of dependence and independence is more
important than the value of x itself. The general problem is thus not simply a
continuation of the numerical problem; it reveals the limitations of an
existing technique and promotes a new, more general and symbolic
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technique. The objects that the general technique handles bring more sense
to the problem. It is an example of CAS providing new techniques in
interrelating with old techniques, opening a new understanding of
optimization. These new techniques are possible because the use of CAS
allows students to interpret calculations with symbolic constants, or
parameters, as a continuation of the same calculation with explicit values.
As another example, Chapter 7 offers a report on students’ solutions of two-
variable systems and a discussion of the role of parameters and of
techniques -- or schemas -- in the CAS context.

The techniques presented in the two last sections are richer than simple
‘push button’ techniques. Their value follows naturally from the
potentialities of computer tools. Easy computation helps pattern discovery.
Recovery of a memorized numerical calculation allows students to rethink a
technique so as to introduce generalization and make use of CAS for proof.
Situations to work on these techniques can then be easily introduced into
teaching. However, we are aware that not all obstacles will be suppressed.
For instance it is relatively easy to introduce parameters to generalize a
numerical situation, but students may have difficulties resulting from the
plurality of roles that a letter can play, as we will see in the example of
Chapter 7.

7. TECHNIQUES FOR MANAGING EXPRESSIONS

In this section, we return to the techniques for managing expressions;
their importance and difficulty were shown above in the situation involving
factorization. For instance, when students use a symbolic calculator on an
everyday basis, these techniques are a necessity for effectiveness and
reflectivity. As an example, students using the TI-92 algebraic window have
to learn to consciously use the items of the Algebra menu (Factor, Expand,
ComDenom), to decide whether expressions are equivalent, and to anticipate
the output of a given transformation on a given expression. Since a CAS
does not generally check conditions for the validity of a transformation
involving for instance radicals or quotients1, a student must learn what s/he
has to control and what s/he can trust in CAS operation.
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Box 5-6.

Working on techniques for finding equivalent expressions grade)
(Artigue & Lagrange 1999)

The following screens illustrate three tasks that we proposed for work on the equivalence of

expressions. This work is a consolidation of high school algebra and an introduction to the

In the first task, (screen A) students had to enter

expressions and observe the TI-92 simplification.

They then had to identify the mathematical treatment

that the simplification carried out. We chose the

expressions (see left side of screen A) to obtain a

variety of simplifications (see right side of screen A).

Expanding, factoring, reordering, partial fractional

expanding, and cancellation by a possibly null

expression

In the second task, (screen B) students had to explore

the effect of algebra menu items on the same
expressions. In this task, they learned to identify the

algebraic transformations and their TI-92 syntax.

Students also learned how to copy an expression into

the entry line. Therefore, they saved time and effort

by not entering expressions several times.

In the third task (screens C and D) students had to
look for equivalence in four expressions:

To encourage students to use various transformations,
we offered expressions in different forms: reduced,
more or less expanded, and factorized.

With this aim, we developed a set of three tasks (Box 5-6) to help
students acquire flexible use of the TI-92 commands for algebraic
transformations useful in working on the equivalence of expressions2. This
situation was inspired from situations proposed in a grade class in Guin
& Delgoulet (1997) which will be analyzed in detail (Chapter 9, § 2). The
goal of the first task was to make students aware of the output of the TI-92
simplification and the many possible equivalent forms of an expression. In
the second task, our goal was to link the understanding of general forms of

TI-92 algebraic techniques.
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expressions with the various items of the Algebra menu. In addition, we
wanted students to remember the associated TI-92 syntax. They could also
notice that the number of transformed expressions depends on the original

expression itself. For instance, every transformation of gives

whereas Expand, ComDenom and Factor have different effects on

Interesting discussion may follow this observation. In this task,

students may also learn how to copy an expression into the entry line, saving
time and effort by not entering expressions several times.

After completing this task, students could learn to use these transformations to decide

whether two given expressions are equivalent. With CAS, the technique is as follows:

enter the two expressions separated by the equals sign, and simplify. CAS generally
returns true for equivalent expressions3. The epistemic value of this technique is poor

because it provides no insight into the reasons for the equivalence. Although the

technique is simple, it requires two expressions to be entered and thus can be tedious for

complex expressions. We designed the third task to make the use of transformations

which are more convenient than entering a test of equality.

The third task gives a rational expression G along with three other apparently equivalent

rational expressions H, I, and J. For instance G was H was

I  was and J was With these expressions, a

good strategy is to expand G. It yields an expression opposite in sign to I. The user can

then copy this expression into the entry line, split the first two terms, and apply the

ComDenom command. G and H are thus proved equivalent. J is a factored form of H, but

the mere Factor command does not transform H into J (Screen B and C). Because J is a

‘radical’ factorization of H, a special form of the command must be applied. The solution

described in Box 5-6 is one of several possible strategies. This topic can prompt many

rich mathematical discussions in the classroom.

Pragmatically, these techniques are a necessity for proper use of CAS
and their development in the classroom provides opportunities for
mathematical discussion. Their epistemic role is clear, as they shed light on
the structure and equivalence of algebraic expressions. However, this does
not ensure that they will easily gain a place in ‘standard’ teaching, because
of institutional obstacles: the institutional values of the school are defined
relative to paper-and-pencil techniques and the dependence of these
techniques on a tool is not recognized. We mentioned above that teachers
are reluctant to devote time and discussion to techniques that they think too
far from ‘official’ mathematics. They simply reflect the position of the
institution: even techniques for managing the graphic window, that would be
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very useful for students and mathematically meaningful, have no official
status in French secondary teaching4.

8. THE OBSOLESCENCE OF PAPER-AND-PENCIL
TECHNIQUES AND TEACHERS’ WORK

Many teachers have not yet really considered classroom use of
technology5. It is an indicator of the difficulties of this endeavor confirmed
by the observation of teachers in Chapter 4. The intriguing fact is that even
when the introduction of a technology has been well prepared by an
epistemological analysis and situations have been proposed, implementation
by teachers still looks like a struggle to give birth to a more personal
creation. As indeed it is. In our view, new techniques and the way in which
they change the teaching and learning of a mathematical domain are not
given with the tool and cannot even be just thought of in terms of the design
of tool-aided lessons. When a teacher wants to introduce technology, s/he
has to integrate these techniques into his/her own understanding of the
domain, into his/her own personality and to create relevant situations,
certainly not an easy task.

Schneider (1999) offers an example where two teachers wanted to
introduce students to TI-92 use in the study of logarithmic functions. They
had to entirely rethink their teaching because the techniques they used to
work with became obsolete. Without the TI-92, a central task was to solve
exponential equations. Students progressively built techniques relevant for a
variety of equations and learned about the properties of logarithmic
functions by reflecting on these techniques. The teachers became rapidly
aware that the TI-92 solved the equations in one easy action and that all had
to be rebuilt. The outcome was an entirely new approach to the domain,
where symbolic techniques were complemented by graphic and numeric
exploration. It is striking that this elaboration appears to be work for the
teachers themselves -- or maybe on themselves -- rather than a creation to
share with colleagues. A praxeology (Box 5-1) is not just an organization of
mathematical contents. At classroom level it offers teachers ‘command
levers’ with which to make students enter the study of a domain. Thus a
teacher cannot just receive and apply a new praxeology. S/he has to create
something new.
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9. THE POTENTIALITIES OF TECHNOLOGY

The conclusion of this chapter is that the potentialities of new tools can
only be appreciated by considering the impact of technology on existing
techniques and the possible new techniques that students can develop as a
bridge between tasks and theories. This is certainly a different viewpoint
from that of an influential mathematics-education tradition, which tends to
stress an opposition between skills and understanding. In this section we will
look at this tradition, see how it lives on in conceptualizations of the use of
new tools, and how these conceptualizations converge on the idea of a direct
access to concepts, an idea that, from our perspective, cannot really account
for the potentialities of technology.

The opposition between manipulation and understanding is ancient
especially in the study of algebra. Rachlin (1989) states, “Teachers in the
USA even (in 1890) were opposed to what they saw as an overemphasis on
manipulative skills and were calling for a meaningful treatment of algebra
that would bring about more understanding”. In the past fifteen years, the
idea that universal access to new technology would “enable us to modify our
skill-dominated conception of school algebra and rebalance it in favor of
objectives related to understanding and problem solving” (Kieran & Wagner
1989) gained greater acceptance.

To many authors, CAS was an appropriate technology for this “new
balance” because it is not limited by the approximate treatment of numbers
or by the necessity of programming. Mayes (1997) states that authors of
research papers on CAS often study how CAS may help “set a new balance
between skills and understanding” or “resequence skills and understanding”.

As early as 1988 Heid published a paper about the educational use of
CAS. Her guiding hypothesis was that:

If mathematics instruction were to concentrate on meaning and concepts first, that initial

learning would be processed deeply and remembered well. A stable cognitive structure

could be formed on which later skill development could build (Heid 1988, p.4).

This paper had a great influence and authors very often refer to it as a
confirmation for hypotheses about benefits of technology and especially
CAS. One of these authors, Pérez (1998) published a text following a talk at
the International Conference on Mathematics Education (ICME 8) and he
interpreted Heid’s study as a proof of the many advantages of CAS
including “students’ definite progress toward higher levels of formal
thinking and easier integration of conceptual representations”.

It is interesting to look in detail at Heid’s argumentation. Her research is
about an experiment involving the use of early computer programs -- a
symbolic calculator software with a command line user interface and a
graphing application without connection to the calculator -- in a project
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involving a new approach to introducing calculus. The author was also the
teacher and she chose to delay training in computational skill, to develop
graphic approaches to concepts and encourage reflection on the meaning of
computer results, and to set students wider classes of problem to solve. She
compared her students’ proficiency with that of a control group following a
‘traditional’ curriculum. Delayed skill training did not harm her students and
they achieved some more varied representations of concepts.

Using computers, more varied approaches are certainly possible and
Heid’s experiment provides a remarkable example of such use in a calculus
course. Although maybe not this definite progress “towards higher levels of
formal thinking”, students’ tendency towards more varied representations is
worth noting. Ruthven (2002) took a closer look at the conditions that made
technology contribute to this tendency:

In the experimental classes, the constitution of a quite different system of techniques

appears to have played an important part. The shift to “reasoning in non algebraic modes

of representation [which] characterized concept development in the experimental classes”

(p. 10) not only created new types of task, but encouraged systematic attention to

corresponding techniques (...). Not only did the ‘conceptual’ phase of the experimental

course expose students to (...) wider techniques; it also appears to have helped students

to develop proficiency in what had become standard tasks, even if they were not

officially recognized as such, and had not been framed so algorithmically, taught so

directly, or rehearsed so explicitly as those deferred to the final ‘skill’ phase.

It deferred routinization of the customarily taught skills of symbolic manipulation until

the final phase of the applied calculus course, while the attention given to a broader range

of problems and representations in the innovative main phase supported development of a

richer conceptual system. Equally, however, (...) this conceptual development grew out

of new techniques constituted in response to this broader range of tasks, and from greater

opportunities for the theoretical elaboration of these techniques. At the same time,

standard elements emerged from these new tasks, characteristic of the types of problem

posed and the forms of representation employed, creating a new corpus of skills distinct

from those officially recognized.

Artigue (2002) has noted that Chevallard’s approach gives technique “a
wider meaning than is usual in educational discourse” comprising not just
recognized routines for standard tasks but more “complex assembl[ies] of
reasoning and routine work”, whereas mainstream mathematics education
research delimits the technical domain more narrowly in terms of routine
manipulations, computational procedures and algorithmic skills.

Ruthven’s analysis above takes technique in this wider meaning and
sheds helpful light: the traditional opposition of concepts and skills should
be tempered by recognizing a technical dimension in mathematical activity
which is not reducible to skills. A cause of misunderstanding is that, at
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certain moments, a technique can take the form of a skill. This is particularly
the case when a certain ‘routinization’ is necessary. But techniques must not
be considered only in their routinized form. In this chapter we tried to show
that when CAS is used, the technical dimension is different, but it retains its
importance in giving students understanding. The work of constituting
techniques in response to tasks, and of theoretical formulation of the
questions posed by these techniques remains fundamental to learning.

This chapter provided a first approach to the techniques appearing when
new tools are used and a sense of their variety. We have restrained our
reflection to the fact that new artifacts were designed as tools to facilitate
some techniques and so necessarily have a strong impact on the technical
level of mathematical activity, making new techniques possible and old
techniques in some sense obsolete. However we have also mentioned that
changes in the teaching and learning of a mathematical domain resulting
from this impact are not directly determined by an artifact. These changes
cannot be appreciated without considering the evolving relationship between
users and tools, an idea that the next chapter will develop, stressing the
transformation of an artifact into an instrument (Chapter 6) for mathematical
work. There the term instrumented techniques will be used to denote the
way in which new techniques are linked to the tool that makes them possible
but also to the mathematical domain that they address and to the user’s
representations of both.
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NOTES

1.

2.
3.

4.

5.

For instance, the TI-92 gives a solution –1 for the equation of a real unknown

Chapter 9 § 3 will discuss the implementation of this situation within a curriculum.
Actually this is true only for expressions belonging to a set where a canonical form for
equivalent expressions exists and is implemented in the calculator.
In 1998 the French Ministry for Education designed an experimental (non official)
baccalaureate. The paper included an interesting question about characteristics of a
window to conjecture the intersection of two curves. No change followed in the official
exam (Guin & Trouche 2002, p.109).
Little data is actually available on the use of technology by teachers and biases can often
be suspected. For instance BECTa (2002) maintains that the proportion of upper
secondary school pupils in the UK never -- or hardly ever -- using ICT in their
mathematics lessons is as much as 82%. This statistic however ignores the extent to which
graphic calculators are used, since the survey in question appears not to have classed these
as ICT.
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Chapter 6

AN INSTRUMENTAL APPROACH TO
MATHEMATICS LEARNING IN SYMBOLIC
CALCULATOR ENVIRONMENTS

Luc Trouche
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Université Montpellier II, France
trouche@math.univ-montp2.fr

Abstract: A rapid technological evolution (Chapter 1), linked to profound changes
within the professional field of mathematics (Chapter 3), brings into question
the place of techniques in mathematics teaching (Chapter 5). These changes
have created serious difficulties for teachers; obliged to question their
professional practices, they make different choices regarding integration of
new technologies and techniques (Chapter 4), choices that are linked to their
mathematical conceptions and to their teaching styles.

In this chapter, we place ourselves on the side of the students. We have
already seen (Chapter 1) that they seem to adopt the new computing tools
faster than the institution. In this chapter, we study more precisely their
learning processes related to their use of symbolic calculators.

First of all, we pinpoint the didactic phenomena taking place in the
experiments; subsequently, we suggest a new theoretical approach aimed at
giving a better description, for each student, of the transformation of a
technical tool into an instrument for mathematical work.

Key words: Computational transposition, Instrumentation and instrumentalization
process, Instrumented technique, Operational invariants, Schemes.
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1. DIDACTIC PHENOMENA APPEARING IN FIRST
EXPERIMENTS

Research studies on symbolic calculators as environments have been
conducted in France since 1995. These were preceded by research on
calculator integration (from 1980), and by research on DERIVE software
integration (institutionally supported in France from 1991). These studies
have revealed many didactic phenomena. Artigue (1997) distinguishes two
interrelated classes of phenomena: those linked to knowledge transposition
and those linked to students’ adaptation to new environments.

1.1 Didactic phenomena linked to processes of
knowledge transposition

These processes are linked to computational transposition (Box 6-1),
described by Balacheff (1994) as “work on knowledge which offers a
symbolic representation and the implementation of this representation on a
computer-based device”.

Artigue (1997) brings out two phenomena linked to these processes:
the phenomenon of pseudo-transparency, linked to the gap between

what a student writes on the keyboard and what appears on the screen (a gap
arising from differences between two representation modes, internal and
interface):

[To enter (a+2)/5], some students, having correctly written a couple of parentheses

around (a+2), are surprised to see a screen display without parentheses. They wonder if

their production is correct, or not. Parentheses appearing and disappearing seems to be a

mysterious game they can’t understand, precisely because they have not mastered

parentheses techniques.

The phenomenon of double reference, linked to the double interpretation
of tasks, depending on the work environment (paper-and-pencil or
computerized). Artigue (ibid.) evokes in the following terms the rational
factorization of in a grade class, with DERIVE software (Box 5-
2):

In a paper-and-pencil environment, polynomial factorizations are linked, at this school

level, to the search for real roots ( . In the software environment, these rational

factorizations come first from factorizations in Z/pZ ( ): the factorization by (x – 1) for

example is obtained only if n is a prime number and the factorization by (x – 1) (x + 1)

only for n = 4 (...). Students choosing the machine interpretation have much greater

difficulties in producing conjectures.

)
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1.2 Didactic phenomena linked to students’ processes of
adaptation to environments

Box 6-1.

Computational transposition
(Balacheff 1994)

Balacheff defined computational transposition in the following terms:
“A representation of the world is not the world itself. This now largely shared assertion can
be taken as a commonplace. Nevertheless, ... to understand it, we have to go further and
consider that a representation is not an approximation (i.e. a simplification) of its object in
order to re-present it. Each representation has properties which come both from modeling
choices and from chosen semiotic modes. These properties have, a priori, no connection with
the represented world. Moreover, as a material device, a computer imposes a set of
constraints which themselves will impose an appropriate transformation allowing the
implementation of the adapted representation.
I will name as computational transposition this work on knowledge which offers a symbolic
representation and the implementation of this representation on a computer-based device, in
order to show knowledge or to manipulate it. In a learning context, this transposition is
particularly important. It implies indeed a contextualization of knowledge, with possible
important consequences for learning processes”.
Balacheff distinguishes constraints linked to the internal universe of a machine (for example,
the program for representing a circle, Figure 6-1) from interface constraints (for example, the
screen representation of a circle distorted by pixellation).

Figure 6-1. Circle computational transposition

These phenomena point to the importance, for learning, of precisely delimiting the domain of
epistemological validity of an artifact, i.e. to characterize the objects it gives access to and to
identify its semiotic and functional characteristics.

Experiments also reveal processes of adaptation to environments: in
these processes, the constraints and potentialities of computerized
environments play a determining role.
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1.2.1 Perceptual adaptation processes

First of all these processes are linked to the potentialities of calculators as
regards visualization, in terms of graphical as well as algebraic
representatives (Schwarz & Dreyfus 1995). The influence of ‘direct’1

perception is most widely noted in the graphic frame. We showed (Guin &
Trouche 1999), for example, that answers to the question “Does the function
f, defined by f(x) = In x + 10 sin x, have an infinite limit as x tends
depend strongly on the working environment (even though elementary
theorems make it possible to answer yes to this question).

Figure 6-2. A graphic representation of the function

In a graphic calculator environment, 25% of students answered no,
appealing to the oscillation of the observed graphic representation (Figure 6-
2); in a paper-and-pencil environment, only 5% of students answered no.

The importance of framing perception in algebraic terms was pointed out
by Artigue (1997); students, in a DERIVE environment, had to explain how
to move from the equation 2x – 5y = 8 to the equation 12x – 30y = 48 , then
6x – 15y = 24.

On first passage, the teacher gave an indication: multiply by 6. This will favor a solution

based upon formal analogies which are essentially perceptual (...). [Students] suppose

that 6 has been obtained by dividing, but wonder how this division could be done. After

some hesitation, they decide to try using DERIVE, to do something which according to

them, “would probably give nothing, but trying costs nothing”: they enter the two

equations under division and ask DERIVE to simplify. DERIVE answers with: 3 = 3,

which amuses students (“it’s trivial!”) but also intrigues them. They do not try to

understand this answer, but decide to do the same thing with the first equation. This time,

(12x – 30y = 48) / (2x – 5y = 8) gives 6 = 6.

As DERIVE answers 6 = 6, when the teacher’s answer is 6, so, in the second case, when

DERIVE answers 3 = 3, the right answer must be 3.

Thus, perceptual adaptations can come into play within both graphical
and algebraic frames, but this does not guarantee the establishment of
relationships between these two frames: Dagher (1996) shows that frequent
use of software allowing algebraic and graphical representations of functions
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to be manipulated does not necessarily help students to build an efficient
articulation between these two frames.

Perceptual adaptations are also linked to potentialities for animation. We
have pinpointed numerous manifestations of this in calculator environments;
for example (Trouche 1995), students had to find a parabola tangential to
three given lines (Figure 6-3). To perform this task, students tested diverse
parabola equations. In order to check if their parabola was a correct solution,
they zoomed in on the contact point between a line and the parabola. They
supposed this contact to be ‘good’ if, after several zooms, curve and line
appeared confounded on the calculator screen. At the end of this work, the
teacher asked: “How can a tangent to a curve be defined?”

Figure 6-3. Search for a parabola tangential to three given lines

The first answer proposed from the class was: “a line is the more
tangential to a curve the more common points it has with it”. This definition
does not correspond with any taught knowledge acknowledged by the
institution; it is the simple translation of students’ observation of a ‘good’
contact between a curve and a line on a calculator screen composed of pixels
(Figure 6-3). This is a visualization effect, linked to the computational
transposition (particularly, here, the constraints of discrete traces, Box 6-2).

In tackling the same task, the strategy of finding by trial and error a
curve of equation also leads to the construction of knowledge
(related to the roles of the coefficients a, b and c). In this context, students’
activity is essentially based on observing the displacement of curves through
modification of coefficients in their equation. Thus, for c, students claim:
“when c increases the parabola goes up, when c decreases the parabola
goes down ”. Even after a clarification from the teacher (“c is the y co-
ordinate of the intersection of the curve with the y axis”), it is often the first
interpretation that is memorized: when the teacher asks about the sign of the
coefficient c in the equation of the specified parabola (Figure 6-4), some
students answer that c is equal to zero in the case of the left parabola (“the
parabola is at the level zero ”) and c is negative in the case of the right
parabola (“the parabola is underneath the x-axis ”), although c is strictly
positive in both cases.
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Figure 6-4. Two unknown parabola equations

This reaction shows the importance of movement for students’
perception and description of what appears on a screen (what students
remember is more the change between two images, rather than the
properties of each image. The same reasoning in terms of animation (more
precisely, the possibility of moving a point on a curve thanks to the Trace
command) could explain students’ conception of a function graph, in a
calculator environment, as the trajectory of a moving point, rather than as a
set of points whose coordinates are (x; f(x)).

Box  6-2.

Constraints of discrete plots and some consequences
(Guin & Trouche 1999)

Many phenomena arising in relation to the graphical interface of calculators are linked to the
presentation of discrete plots on a screen composed of a finite number of pixels.

Figure 6-5. A diagram showing the consequence of a discrete plot:
an usual period for sine function

For example, if the represented function is periodic (sine function, Figure 6-5) and if the
distance between two computed points is close to its period, the two computed images will
also be close together. As the calculator joins these two points, the oscillation between these
points will not be shown.

1.2.2 Phenomena linked to the organization of students’ work

The multiplicity of easily available commands has effects on the
economy of students’ work.

Students carry out trials and tests without paying attention to their organization and

control. They hope that, within a reasonable time, they will obtain something interesting.
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Observations show that these fishing behaviors can be productive for students, often

more productive than more reflective behaviors available to them. The low cost of these

trials and their productivity tend to discourage retroactive approaches, involving looking

back and modifying accordingly, generally considered as essential in generating the

cognitive adaptations hoped for (Artigue 1997).

In the same category, Defouad (2000) pinpoints a zapping phenomenon
(which consists of quickly changing graph window, without having time to
analyze each of the representations obtained), an oscillation phenomenon
(students oscillating between several techniques and strategies) and an over-
checking phenomenon (students carrying out multiple checks, using all the
means provided by the calculator).

We have also noted similar phenomena, in a calculator environment
(Trouche 1997):

a phenomenon of automatic transportation: students enter all the
problem data into the calculator, and then look for the command which
could give the solution directly:

[A student] studies a positive sequence u(n) converging toward 0. He wants to determine
the value of n from which u(n) will be smaller than He takes his calculator, enters

u(n) in the sequence editor, enters in the window setting, as “nmax”. Then he

wonders what is the right key he has to press in order to have the result?

a phenomenon of localized determination, linked to the difficulty of
moving from one register to another one (Duval 2000; Guin & Trouche
2002, p. 158) and of changing application on a symbolic calculator. It
consists of repeating the same type of technique, within the same calculator
application, making some adjustments, even if this type of technique does
not appear relevant.

To answer the question “Are there some power functions with curves tangential to the

curve of the exponential function?”, some students tried in succession ( then then

then ). Each curve was tested through successive zooms. During the whole

activity (taking one hour), the same type of approach was repeated.

While looking back is exploited effectively (unlike in fishing behavior),
work remains confined to a single graphical application, with a double
consequence:

firstly, for problem solving: doing mathematics often requires changing
one’s point of view. Keeping the same point of view, using a single
technique, often does not allow a given problem to be solved;

secondly, for building knowledge: working in a single register,
representing a mathematical object in a single form, does not make it
possible to form a complete notion of this object.
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These phenomena generally appeared in long-term experiments, where
students had calculators at their disposal (both at school and at home). These
parameters are probably important, facilitating the appropriation of the
calculator by students and the stabilization of techniques to perform given
tasks. This necessity of taking into account the potentialities and constraints
of new tools led us to study appropriation and utilization processes. More
generally our interest in mediation linked to the learning process (Vygotsky
1962) led us to seek new theoretical approaches, which would yield better
understanding of the role of material and symbolic instruments within
mathematical activity.

2. A NEW APPROACH IN ORDER TO
UNDERSTAND AND DESCRIBE NEW
PHENOMENA

Recent work in the field of cognitive ergonomics has provided
theoretical tools allowing a better understanding of processes of
appropriation of complex calculators. Verillon and Rabardel, dealing with
training in general (1995) propose a new approach, which essentially
distinguishes an artifact from an instrument:

an artifact is a material or abstract object, aiming to sustain human
activity in performing a type of task (a calculator is an artifact, an algorithm
for solving quadratic equations is an artifact); it is given to a subject;

an instrument is what the subject builds from the artifact.
This building (Figure 6-6), the so called instrumental genesis, is a

complex process, linked to characteristics of the artifact (its potentialities
and constraints) and to the subject’s activity, her/his knowledge and former
work methods.

Figure 6-6. From artifact to instrument
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This schema rests on some fundamental ideas:
an artifact partially prescribes the user’s activity, through its constraints

and potentialities;
instrumental genesis is a process (therefore needs time) and has two

components, the first one (instrumentalization) directed toward the artifact,
the second one (instrumentation) directed toward the subject;

a subject builds an instrument in order to perform a type of task; this
instrument is thus composed of both artifact (actually a part of the artifact
used to perform these tasks) and subject’s schemes (Box 6-4) allowing
her/him to perform tasks and control her/his activity.

We are going now to make these ideas more precise in the context of
symbolic calculators.

2.1 Analyzing constraints and potentialities of symbolic
calculators

Computational transposition and design choices produce constraints in a
symbolic calculator which Balacheff classifies as internal constraints and
interface constraints (Box 6-1).

Regarding general relationships with artifacts, Rabardel (1995)
distinguishes three types of constraint: existence mode constraints, linked to
properties of the artifact as a cognitive or material object, finalization
constraints, linked to objects it can act on and to transformations it can carry
out, and, lastly, action prestructuration constraints, linked to
prestructuration of the user’s action.

Concerning symbolic calculators, we have used (Trouche 1997) both
Balacheff ’s and Rabardel’s typologies, distinguishing internal constraints
(identified as existence mode constraints), command constraints (linked to
the existence and the nature of specific commands) and organization
constraints (linked to ergonomic questions, particularly keyboard and menu
organization).

Defouad (2000) notes some shortcomings in this typology:
internal constraints do not cover all existence mode constraints (for

example, the nature of the calculator screen is not an internal constraint, but
an existence mode constraint);

all the constraints actually prestructure the user’s activity (and not only
organization constraints);

this typology does not take into account various information levels:
information introduced by the user at the interface, information accessible at
the interface, but not open to transformation by the user, and information not
accessible at the interface;
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it does not take account of syntax constraints, even though these can be
decisive when introducing information at the interface.

Box 6-3.

Internal constraints of one graphic calculator
(Bernard & al 1998)

The authors studied internal constraints of the TI-82 calculator. Figures 6-7 and 6-8 show one
illustration, linked to implemented algorithms for approximate computation: while the limit at
0 of the given function is 1/6, the table of values and graph of the function give first a value
close to 1/6, then, as x approaches 0, produce some oscillations, and finally seem to give, as
the function limit, the value 0.

Figure 6-7. Numerical observation of the function near 0

Figure 6-8. Graphical observation of the function near 0

Taking account of these remarks, we make precise three types of
constraint, all serving to prestructure the user’s action and related to a type
of task:

internal constraints (in the sense of physical and electronic constraints)
intrinsically linked to material. They are linked to information which the
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user cannot modify, whether accessible or not. They strictly shape action.
They include for example processor characteristics, memory capacity (Box
6-3) and screen structure, composed of a finite number of pixels (Box 6-2);

command constraints linked to the various commands in existence and
their form (including syntax). They are linked to information accessible at
the interface which the user can sometimes modify:

Example 1: the Range application of the calculator allows the viewing window to be

fitted to a graphic representation of the function. The choices open to the user are

relatively free: s/he can choose Xmin and Xmax (but not Xmax smaller than Xmin). The

graphic representation of the function which is obtained through setting these values

provides feedback allowing a better fitting window to be found.

Example 2: some calculators (Texas Instruments symbolic calculators) require the use of

parentheses when computing function values (sin(2), log(3), etc.). This is not the case for

other calculators (Casio symbolic calculators) which accept entries such as sin2, or log3:

these different design choices can have consequences for students’ conceptions about

functions.

last, organization constraints l inked to keyboard and screen
organization, i.e. to available information and command structure.

Example 1: designer choices related to functions (the naming of commands, means of

accessing them and their placing within a menu) give a particular point of view on

available objects (Appendix 6-1). These choices are linked to an ergonomic study of

users’ needs, and, at the same time, they favor a particular form of tool use.

Example 2: the placing of the symbol is not neutral. On Texas Instruments

calculators, this symbol is directly given by a keystroke (and it can be manipulated as a

number or a letter). On Casio symbolic calculators, it is available only in the CAS

application. These different approaches can instill different relationships with this symbol

and, beyond, with the notion itself (Appendix 6-1).

It is possible to discuss the placing of a given constraint into one of the
three defined types. But this interest in typology is not strictly in partitioning
constraints; it is rather in making easier, for teacher as well as for researcher,
an a priori analysis of different ways proposed for performing tasks with an
artifact. Distinguishing these three levels allows this analysis to be organized
in a given mathematical context (Box 8-5, for such an analysis of limit
computation). Particularly, distinguishing an elementary level of command
constraints and a more complex level of organization constraints permits a
distinction, within students’ activity, between a level of gesture and a level
of technique.

Analyzing calculator constraints shows clearly that it presents
mathematical knowledge in a particular way: “These tools wrap up some of
the mathematical ontology of the environment and form part of the web of
ideas and actions embedded in it” (Noss & Hoyles 1996). A user is thus not
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‘free’ to use, as s/he wants, a given tool: “This use is, relatively,
prestructured by the tool” (Luengo & Balacheff 1998). These constraints do
not necessarily lead to impoverishment of activity: by taking in charge part
of the work, by favoring exploration in various registers (Yerushalmy 1997),
tools open new ways for conceptualization. It is indeed difficult to separate
potentialities on the one hand and constraints on the other: both are
intimately linked, each facility offered presses the user to realize one type of
gesture rather than another.

2.2 Understanding two components of instrumental
genesis: one directed toward the artifact, the other
directed toward the subject

Instrumental genesis (Figure 6-6) is a process of building an instrument
from an artifact. It has two closely interconnected components:

the instrumentalization process, directed toward the artifact;
the instrumentation process, directed toward the subject.
The instrumentalization process, directed by the subject, involves several

stages: a stage of discovery and selection of the relevant keys, a stage of
personalization (one fits the tool to one’s hand) and a stage of
transformation of the tool, sometimes in directions unplanned by the
designer: modification of the tool bar, creation of keyboard shortcuts,
storage of game programs, automatic execution of some tasks (the web sites
of calculator manufacturers or the personal web sites of particularly active
users often offer programs for functions, methods and ways of solving
particular classes of equations etc.). Instrumentalization is a process of
differentiation as regards the artifacts themselves:

differentiation regarding the calculator’s contents: in making
comparisons between students’ calculators it is possible to identify
differences (from both quantitative and qualitative points of view) between
the various programs stored;

differentiation regarding that part of the artifact mobilized by the subject
(for some students, a very small part of calculator, for others a large one).

Instrumentalization is the expression of a subject’s specific activity: what
a user thinks the tool was designed for and how it should be used: the
elaboration of an instrument takes place in its use.

Instrumentalization can thus lead to enrichment of an artifact, or to its
impoverishment.

Instrumentation is a process through which the constraints and
potentialities of an artifact shape the subject. As Noss & Hoyles (1996) note:
“Far from investing the world with his vision, the computer user is mastered
by his tools”. This process goes on through the emergence and evolution of
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schemes (Box 6-4) while performing tasks of a given type. We will study an
example of such processes in the following section. As instrumentalization
processes, instrumentation can go through different stages. Defouad (2000)
analyzes these processes of evolution for students who, after using graphic
calculators, then move on to use symbolic calculators (TI-92). He
distinguishes two main phases, first an explosion phase and second, a
purification phase:

At the beginning of instrumental genesis, the student’s work seems to be at a crossroads,

as if s/he was looking for an equilibrium between her/his former techniques and strategies

(linked to graphic calculators) and various new possibilities opened up by TI-92

calculators and the evolution of classroom knowledge. We call this phase an explosion

phase, as new strategies and techniques appear to burst out; it seems to be characterized

by oscillation, zapping or over verification phenomena (§ 1).

Progressively, students enter into a second phase we call a purification phase, where

machine use tends to an equilibrium, in the sense of the stabilization of instrumented

strategies and techniques. This phase often goes with a fixation on a few commands (and

such choices could be different, according to each student).

Box 6-4.

Schemes and conceptualization
(Vergnaud 1996)

Vergnaud distinguishes:
Conceptions: “one can express them by sequences of statements whose elements are

objects, monadic or polyadic predicates, transformations, conditions, circumstances,
forms”...

Competencies: “one can express them by actions judged adequate for the treatment of
situations”.
He introduces the scheme concept, allowing relationships to be established between
conceptions and competencies. A scheme is an invariant organization of activity for a given
class of situations. It has an intention and a goal and constitutes a functional dynamic entity.
In order to understand its function and dynamic, one has to take into account its components
as a whole: goal and subgoals, anticipations, rules of action, of gathering information and
exercising control, operational invariants and possibilities of inference within the situation.
Vergnaud names as operational invariants the implicit knowledge contained within schemes:
concepts-in-action are concepts implicitly believed to be relevant, and theorems-in-action are
propositions believed to be true. He distinguishes theorems-in-action and concepts-in-action
(“truth is not the same thing as relevance”), but insists on their deep links (“theorems-in-
action cannot exist without concepts-in-action, as theorems cannot exist without concepts,
and vice-versa”). These operational invariants occupy a central place in this frame as: “two
schemes are different as soon as they contain different operational invariants”.

To better understand the complexity of these two processes, let us make
two elements precise:



150 Chapter 6

i) Instrumental genesis is a process of building an instrument, from an
artifact, by a subject. This instrument is built from a part of the initial
artifact (modified through the instrumentalization process) and through
schemes built in order to perform a type of task (Box 5-1). A complex
artifact such as a symbolic calculator will thus give birth, for a given
student, to a set of instruments (for example an instrument for solving
equations, an instrument for studying function variation, etc.). The
articulation of this set is a complex task (Chapter 8, § 2).

ii) Instrumental geneses have both individual and social aspects. The
balance between these two aspects depends on:

material factors (it is quite obvious that the ‘intimacy’ of calculator
screens favors individual work whereas computer screens allow common
work by small student groups);

the availability of artifacts (sometimes, they are available only at school,
sometimes they are lent for the whole school year, sometimes they are
students’ property);

the way in which the teacher takes these artifacts into account (Chapter
8, § 2).

Moreover artifacts are mediators of human activity and activity mediated
by instruments is always situated (Chapter 8, § 2).

Chacon & Soto-Johnson (1998) analyze some effects of these variables
on students’ behaviors and on their relationships with artifacts: when
calculators or computers are available only from time to time, students often
develop a critical attitude toward technology; indeed they are sometimes
quite confused (because learning in the two environments -- computerized
and ‘classical’ -- is not the same) and frustrated (computers are not available
outside laboratory scheduled work).

2.3 Understanding different levels and different
functions of instrumented action schemes

Rabardel (1995) introduced the notion of the utilization scheme of an
artifact to describe a scheme operative within activity mediated by an
artifact and distinguishes two such sorts of schemes:

usage schemes, “oriented toward the secondary tasks corresponding to
actions and specific activities directly linked to the artifact”;

instrumented action schemes, whose “significance is given by the global
act aiming to carry out transformations on the object of activity”.

All are partially social schemes, as their emergence comes, in part, from
a collective process involving artifact users and designers. Schemes of usage
and instrumented action are deeply linked. A scheme of instrumented action
aims to perform a given task. It includes operational invariants (Box 6-4).
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One can consider instrumented action schemes as a set of usage schemes.
Understanding the function of a usage scheme requires it to be considered
not in isolation, but as a component of an instrumented action scheme
involved in performing a given task.

2.3.1 Usage schemes and gestures

We define a gesture as the observable part of a usage scheme. For
example, we illustrate (Trouche 2000) the importance of a particular gesture,
approximate detour; it consists of a combination of keystrokes which
results, when working on a symbolic calculator in exact mode, in an
approximate value of a symbolic expression. It is not a simple gesture, only
oriented toward calculator management: beyond (or psychologically
underneath) this gesture, there is a usage scheme, with associated
knowledge. Looking for this knowledge involves considering the gesture not
as an isolated act but as integrated within an instrumented action scheme
employed by the student in order to resolve given tasks.

We identified (Trouche 1996) the three main schemes of instrumented
action in which approximate detour appears as those of solving equations,
computing integrals, and computing limits.

The observation of students’ work shows rules of action, of gathering
information, of exercising control (Box 6-4):

for some students, the approximate detour has always a determination
function (the approximate value obtained is considered as the value);

for other students it has always an anticipation or checking function
(obtaining an approximate value may be a step in the process of seeking an
exact value).

In other words, approximate detour contributes to building different
kinds of knowledge about, say, the real numbers.

2.3.2 Instrumented action schemes and instrumented techniques

One can describe human activity (and students’ activity in particular) in
terms of techniques (Box 5-1), i.e. sets of gestures realized by a subject in
order to perform a given task. When a technique integrates one or several
artifacts, we will speak of an instrumented technique. Instrumented
technique is thus the observable part of an instrumented action scheme. For
example, an instrumented technique which can be described in this way
(Trouche 2001) is one for limit computation, in a symbolic calculator
environment, as presented by a teacher (Figure 6-9).

Its presentation is made as a tree. In general, such a tree can be:
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more or less ‘vast’ (in the sense of the number of calculator applications
used, of the number of frames evoked, etc.). We can observe in this case that
the numerical frame is not used (for numerical observations, for example);

more or less dense (in the sense of the granularity of prescribed
gestures). In this case, use of the calculator in order to split the problem is
not indicated.

Figure 6-9. An instrumented technique for limit computation, as seen by a teacher

An instrumented technique can be taught, but what is taught is not
necessarily what students learn: the gap between instrumented techniques as
taught and as practiced may be important (Appendix 6-2, which shows two
students’ very different work within the same class and for the same taught
instrumented technique).

Describing activity in terms of instrumented action schemes calls for
consideration of operational invariants (Box 6-4). A scheme is an observer’s
construction from the different activity traces of a subject (gestures,
anticipations, inferences, etc.). Let us illustrate this, for the same student, in
two different environments. He is a student from an experimental class
(Trouche 2000), working first for three months with graphic calculators,
then for six months with symbolic calculators. The task consists in studying
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the following question: “has the given function an infinite limit as x tends to

Graphic calculator environment
If one only described the gestures of the instrumented technique, one

would say that the student takes his calculator, ‘enters’ the function to be
studied in the function editor, uses numerical applications to observe the
function behavior for large values of the variable, and infers the answers by
observing the values taken by f(x) as x takes large values.

If one wants to look at the instrumented action scheme (Figure 6-10), one
will search for the operational invariants guiding this technique. Searching
for them depends on observing the student performing other tasks of the
same type and asking him to justify his answers. This student explains he
does not use the graphical application, because defining a ‘right’ window for
graphing the function on a large scale is too difficult. Therefore he uses the
calculator table of values, and, as far as he can, infers the function behavior.
He thus concludes, in the following cases: “if f(x) is much greater than x, or
if the function increases with great speed it is okay. On the other hand, if the
function starts to decrease or oscillate then it is no good”. Consequently one
can hypothesize that the student’s scheme integrates theorems-in-action of
the following type “if f(x) takes much larger values than x, then the limit of f
is infinite ”, “if the function increases very strongly, then the limit of f is
infinite”, “if the limit of f is infinite, then f is necessarily increasing”. From
all these properties emerges a concept-in-action of the type: “f has an
infinite limit means that, when x is large, f(x) is very large, increasingly
large” .

Symbolic calculator environment
If one describes only instrumented technique, one will say that the

student takes his calculator and applies the limit command to the given
function.

Concerning the instrumented action scheme (Figure 6-10), there is,
compared to the graphic calculator environment, an apparent simplification:
less effort while manipulating the artifact (the only effort is a syntactic effort
of writing a correct command) and less effort of explanation (since the
software ensures the correctness of results, any justification of a result, even
when required by the teacher, appears less necessary). The instrumentation
process leads here to a simplification of the scheme, accompanied by an
impoverishment of the operational invariants. To the question: “what is the
meaning of the function having an infinite limit?” the student, in a graphic
calculator environment, gave an answer related to the concept-in-action
which we evoked above; four months later, in a symbolic calculator
environment, he could not give any definition any more: the function limit

2
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did not have any other existence than as a product of the software symbolic
application, as a response to a computation command. There was a
vanishing of the concept. Vanishing does not mean disappearing: the limit
conception moves from a process result, in a graphic calculator
environment, to an operation result, in a symbolic calculator environment.

Figure 6-10. Evolution of limit computation action schemes, from a graphic calculator
environment to a symbolic one

As we can see for these two instrumented action schemes, there is a
dialectic relationship between operational invariants and realized gestures:

operational invariants guide gestures: in the first case, they guide
gestures through the investigation process, the inference process and the
justifying process. In the second case, they guide gestures of writing a
command, reading a result, and (although weak) a process of justifying. In
the graphic calculator environment, the mobilization of operational
invariants requires an important cognitive effort (one has to evaluate if the x
values are large ‘enough’ and if f(x) is large ‘enough’). In the symbolic
environment, the cognitive effort is not of the same nature: it is not related to
a search process, but only to a control of syntax (here we speak of a
particular student; amongst other students, we observed other schemes,
Appendix 6-2);

at the same time, activity, through gestures, institutes operational
invariants: “From successive approximations, the hand finds the right
gesture. The mind registers the results and infers an efficient gesture
scheme. Gesture is a synthesis.” (Billeter 2002). Operational invariants
appear as an abstraction of what is judged an apt gesture. Then, because
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operational invariants enable a task to be performed, their field of
operationality and validity will naturally spread.

A schema expresses this dialectic between action and conceptualization
(Figure 6-11).

Figure 6-11. Relationships between scheme and technique, gesture and operational invariants

This study of schemes of instrumented action leads to two conclusions:
the first one relates to the two instruments successively built by the same

student: it clearly appears that extension (or complexification) of an artifact
can go with a reduction (or an impoverishment) of the corresponding
instrument built by a subject ;

the second one relates to the method of studying instrumented action.
The study of instrumented action schemes requires studying, beyond the
techniques themselves, their epistemic, heuristic and pragmatic functions
(Box 5-1). It requires analysis of the student’s activity in more depth: over
time, in order to pinpoint regularities, and with regard to the student’s
discourse, in order to pinpoint the justification offered for gestures. These
regularities of activity and justifications of gestures allow hypotheses about
operational invariants to be formulated.

Having a good knowledge of calculator constraints and more precise
ideas on students’ operational invariants may give teachers some means to
orient their mathematics lessons:

choosing situations which help students to master concepts (something
which cannot be realized for an isolated concept, but only in the frame of a
conceptual field, Box 6-5). This question will be studied in Chapter 9;

taking into account the artifacts available in the learning environment in
order to favor social aspects of schemes. We will see this point in Chapter 8.

3
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Box 6-5.

Operational invariants, concepts and conceptual fields
(Vergnaud 1996)

A concept acquires its sense through several situations and phenomena and, thus, has its roots
in several categories of operational invariants. Besides, it becomes fully a concept only
through articulation of its properties and of its nature, in a mathematical wording where it has
the status either of predicate or object.
This idea leads to the definition of a concept as a triplet of three sets:

a set of situations which give sense to the concept;
a set of operational invariants through which such situations are treated;
a set of language and symbolic representations which allow the concept to be represented.

A concept cannot be built in isolation. It has to be studied as an element of a larger set which
Vergnaud names a conceptual field (for example, the limit concept has to be built within the
conceptual field of calculus). One can define a conceptual field in a twofold manner:

as a set of situations needing to be progressively mastered and a closely interconnected
range of concepts, procedures and symbolic representations;

as the set of concepts which ensure a mastering of these situations.
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APPENDICES

Appendix 6-1
Some organization constraints for two symbolic calculators
What are, for two different symbolic calculators, the organization constraints

related to study of functions?

Computation

TI-92 (Texas Instruments)
The same application (available on the
keyboard: HOME) allows numerical and
formal, approximate and exact computation.
Within this application, the user can choose
the computation mode s/he wants. This mode
is indicated at the foot of the screen.

Algebra FX 2.0 (Casio)
Two different computation applications:
first (N U M) for approximate
computation, second, CAS, for formal
and exact computation. The computation
mode does not remain indicated on the
screen when calculating something.

Two different design choices:
for Casio, approximate mode appears privileged through the first application proposed,

NUM, only allowing approximate computation;
for TI, the two modes are placed on the same plane. A keystroke combination (approximate

detour, § 2.3.1) allows the shift from an exact to an approximate result (from example from
1/3 to 0.33333). Both exact and approximate values can coexist on the same screen.
Between the two cases, a different relationship to numerical approximation is favored.

Combination of commands

TI-92 (Texas Instruments)
One can combine approximate and symbolic
computation, writing for example the
following command:
Approximate value(limit f(x), x, a).

Algebra FX 2.0 (Casio)
It is impossible to combine approximate
and symbolic computation commands.

These different design choices could have consequences, for example on the conceptualization
of the limit notion.

Graphical and numerical analysis of functions

TI-92 (Texas Instruments)
GRAPH application (allowing graphically
representing function) and TABLE application
(allowing obtaining table of values) are
accessible on the same level on the keyboard.

Algebra FX 2.0 (Casio)
Opening GRAPH application gives
access to several menus. One of these
menus contains the TABLE application.
This application thus appears to be
included within the GRAPH application.

Two different design choices:
for Casio, graphical representation (compared to table of values) appears privileged;
for TI, these two types of representation are on the same level;

In these two cases, it is not the same graphical/numerical articulation which is favored.
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Appendix 6-2
Two instrumented techniques for computation of limits, in a symbolic

calculator environment, for two grade students
(Trouche 2001, p.16)

One can see below the gap between the instrumented technique which is taught (Figure 6-9)
and the two students’ techniques.
Students had to determine the limit as x tends to of the function f defined on by

NB. The TI-92 symbolic calculator does not “know” this limit (Box 8-4, § 2.1, p.222), but

students could use some basic theorems to derive this limit as equal to 0.

Student 1
He first defines the f function for the calculator (Figure 6-12, next page) “then I could avoid
having to write this complex thing several times”. Calculator answer: undef.

“Oh, these functions sine and cosine often cause trouble when looking for limits, I need to
get rid of them”.

On his paper, he bounds sine and cosine as lying between – 1 and +1, and then bounds the f
function, for x > 0:

He uses his calculator to find the limits of the left and right function: 0.
“According to the theorem about limits and inequalities, I can say that my function f has

also 0 as a limit”.
“Let us have a look at the graphs of the three functions. He graphs the three functions:
“ the function f is well bounded by the two others in the neighborhood of

Then: “I can also change the variable”. On paper:

“I can use the theorem about the polynomial functions, or do some factorizations and
use the theorems about limits and operations”:

On paper again:

End of the work (one hour): paper-and–pencil and calculator approaches articulated, a work in
multiple-registers (algebraic and graphical studies), expression and construction of
knowledge about limits, a rich limit scheme.

The tool complexity is mastered and contributes to enrich the instrumentation process and to
build an efficient instrument for study of function limits.

Student 2
He uses the limit command of the CAS application, applied to the given function.
Calculator answer: undef.

“Oh, I made a mistake in writing the command!”
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He writes again, same calculator answer.

“Oh, I am useless, I’ll have to try again ” (writing the function takes a lot of

time). Same calculator answer...
“Oh, I have understood, the calculator doesn’t know the f function, I have to define it!”.

He defines the function f (Figure 6-12).
Again the command limit, again the answer undef.
New perplexity, and new idea: “when a limit isn’t defined, it is sometimes possible to look at
the left, or at the right of the point. So I am going to look at the right of so I will go as far
as possible” (Figure 6-12). Still answer undef.

Figure 6-12. Calculator screen copy of student 2

At last, he breaks down the problem into sub-problems, looking for the limits of ( “It
works, I obtain as a limit!”) and of sinx and cosx (“that is the problem: these two
functions have no limit, that is the reason why my function f has not limit”).

End of the work (1hour 30minutes): no paper used, work in a single register (no numerical
nor graphical studies), no idea of the function behavior, a quite weak scheme for studying
limits.

The complexity of the tool does not contribute to assist the student’s activity or build an
efficient mathematical instrument.
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NOTES

1.
2.

3.

“We don’t see only forms, but also meanings” (Wittgenstein, in Bouveresse (1995)).
This concept-in-action appears close to a kinematic point of view on function limit (Box
8-4).
This situation is not necessarily linked to a given environment. In the same class, we
showed (Trouche 1996) the existence of very different processes for other students:
different forms of instrumentalization developed (storage into calculator of the main
theorems related to function limits, of specific programs for computation of limits, etc.)
and instrumentation becoming richer with the shift from graphic to symbolic calculator
environment, through use of a great diversity of applications (Appendix 6-2).
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COMPUTER ALGEBRA AS AN INSTRUMENT:
EXAMPLES OF ALGEBRAIC SCHEMES
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Abstract: In this chapter, we investigate the relationship between computer algebra
use and algebraic thinking from the perspective of the instrumental approach
to learning mathematics in a technological environment, which was addressed
in the previous chapter.

Data comes from a research study on use of computer algebra for
developing algebraic insights. Teaching experiments were carried out in ninth-
and tenth-grade classes in which the students used symbolic calculators to
solve algebraic problems, and in particular for solving parameterized
equations and substituting expressions.

We describe in detail instrumented action schemes for solving
parameterized equations and substituting expressions. We observe that the
approach which students take in their work in the computer algebra
environment is closely related to their mental conceptions. The instrumental
approach offers ways of making this connection more explicit and better
understanding students’ difficulties. In particular, we note that students found
it difficult to integrate the two schemes into one comprehensive scheme.

We argue that a relationship needs to be established and elaborated
between the instrumental approach and other theoretical notions on learning
such as the symbolization perspective.

Key words: Algebra, Computer Algebra, Instrumental Genesis, Instrumentation,
Mathematics Education, Scheme, Symbolic Calculator, Technology.
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1. INTRODUCTION

Computer algebra systems (CAS), both handheld and desktop versions,
are finding their way into mathematics classrooms on a regular basis. In the
early 1990s, technology became more widespread and software became
more user friendly. The interest in the potential of computer algebra for
mathematics education grew, and optimism dominated the debate. As has
already been indicated in Chapter 1 (§ 1), this technological device was
supposed to open new horizons that had previously been inaccessible and to
provide opportunities for exploring mathematical situations. In this way, the
tool would facilitate students’ investigations and discoveries.

This optimism about CAS in the classroom has now taken on additional
nuances. The research survey of Lagrange and his colleagues indicates that
difficulties arising while using computer algebra for learning mathematics
have gained considerable attention (Lagrange & al 2003). For example,
Drijvers (2000, 2002) addresses obstacles that students encountered while
working in a CAS environment. Heck (2001) notes differences between the
algebraic representations found in the computer algebra environment and
those encountered in traditional mathematics. He suggests that such
differences may provoke conceptual difficulties. Lagrange (2000, Chapter 5)
indicates that techniques that are used within the computer algebra
environment differ from the traditional paper-and-pencil techniques, which
once more may lead to conceptual difficulties.

The integration of computer algebra in mathematics education seems
more complicated than one might expect it to be. The idea that we can
separate techniques from conceptual understanding and that leaving the first
to the technological tool would enable us to concentrate on the latter has
been shown to be inadequate and naïve. Rather, we now acknowledge the
intertwining of machine techniques and conceptual understanding, which co-
evolve simultaneously. In fact, this insight can be considered as the core of
the instrumental approach to learning mathematics in a technological
environment. According to this approach (addressed in the previous chapter
of this book), a process of instrumental genesis involves the development of
schemes in which technical and conceptual aspects interact and co-develop.

It goes without saying that, in a computer algebra environment, algebraic
schemes are of particular interest. Therefore, one of the goals of our research
project Learning Algebra in a Computer Algebra Environment1, which we
refer to in this chapter, is to investigate the complex relationship between
computer algebra use and algebraic thinking. In this chapter we present
some concrete examples of such instrumented action schemes. By doing so,
we make concrete the notion of instrumented action schemes, and
investigate whether this affords a better understanding of student behavior.
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As a second goal of this chapter, we want to reflect on the possible links
between the instrumental approach and other theoretical perspectives.

The outline of the chapter is as follows. § 2 revisits the essential elements
of the theoretical framework, the instrumental approach. We focus on the
notions of schemes and techniques in particular. The design and
methodology of the Learning Algebra in a Computer Algebra Environment
research project are briefly sketched in § 3. In § 4, 5 and 6 we elaborate the
notion of instrumented action schemes by providing concrete examples of
algebraic schemes as end products of the learning process. These schemes
concern solving parameterized equations (§ 4), substituting expressions (§ 5)
and integrating the two into a comprehensive scheme (§ 6). § 7 contains a
reflection on the research study and the theoretical framework of
instrumentation in particular. It considers possible links with other
theoretical perspectives, such as symbolization. Concluding remarks are
provided in § 8.

2. THE INSTRUMENTAL APPROACH AS
THEORETICAL FRAMEWORK

2.1 Artifact and instrument

The instrumental approach to learning using tools emanates from
cognitive ergonomics (Rabardel 1995). The ideas of Vygotsky (1978) on
how tools mediate learning can be considered to be the basis of the
approach. French mathematics educators (Artigue 1997, Guin & Trouche
1999, Trouche 2000, Lagrange 2000) have applied the instrumental
approach to the learning of mathematics using Information Technology (IT).
We briefly review the main elements, which have already been developed in
Chapter 6 (§ 2).

A central issue in Vygotsky’s work is the idea that tools mediate between
human activity and the environment. These cultural-historical tools can be
material artifacts -- such as calculators or computers -- but also cognitive
tools, such as language or algebraic symbols. Rabardel (1995) elaborates on
this distinction by stating that a ‘bare’ artifact is not automatically a
mediating instrument. The artifact, the material or abstract object, which is
given to the user to sustain a certain kind of activity, may be a meaningless
object unless the user has used it before or has seen others using it. Only
after the user has developed means of using the artifact for a specific
purpose, which he considers relevant, does the tool become part of a
valuable and useful instrument that mediates the activity and that is build up
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by the user. The experienced user has developed skills to use the tool in a
proficient manner and knows in what circumstances it is useful.

Following Rabardel (1995) and Verillon and Rabardel (1995), we speak
of an instrument when there is a meaningful relationship between the artifact
- or a part of the artifact - and the user for dealing with a certain type of task,
in our case mathematical tasks, which the user has the intention to solve.
The tool develops into an instrument through a process of appropriation,
which allows the tool to mediate the activity. During this process, the user
develops mental schemes that organize both the problem solving strategy,
the concepts and theories that form the basis of the strategy, and the
technical means for using the tool. The instrument, therefore, consists not
only of the part of the artifact or tool that is involved -- in our case, for
example, the algebraic application of a symbolic calculator or CAS -- but
can only exist thanks to the accompanying mental schemes of the user -- in
our case the student -- who knows how to make efficient use of the tool to
achieve the intended type of tasks. The instrument involves both the artifact
and the mental schemes developed for a given class of tasks, as symbolized
in Figure 7-1. Fig. 6-6 in Chapter 6 provides a different visualization of the
same idea.

Figure 7-1. The instrument as (part of the) artifact and mental scheme for a class of tasks

It is worth while noticing that the meaning of the word instrument here is
more subtle than it is in daily life: the artifact develops into an instrument
only in combination with the development of mental schemes.

2.2 Instrumented action schemes

As a result of the distinction between artifact and instrument, the ‘birth’
of an instrument, termed the instrumental genesis, is crucial. This
instrumental genesis involves the development of mental schemes. But what
is such a scheme? How can we identify it and observe its development?
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As a first approach to the notion of scheme, we follow Vergnaud, who
elaborated on Piaget. Vergnaud defined a scheme as “une organisation
invariante de la conduite pour une classe donnée de situations”, an invariant
organization of activity for a given class of situations (Vergnaud 1987,
1996). A mental scheme has an intention, a goal and it contains different
components, such as operational invariants, the often implicit knowledge,
which is embedded in a scheme in the form of concepts-in-action or
theorems-in-action (Chapter 6, Guin & Trouche 2002, Trouche 2000).

We consider a scheme, therefore, as a stable mental organization, which
includes both technical skills and supporting concepts for a way of using the
artifact for a given class of tasks. Such schemes are called utilization
schemes (schèmes d’utilisation in French). Two kinds of utilization schemes
can be distinguished (Chapter 6, Guin & Trouche 2002, Rabardel 1995,
Trouche 2000). The first category comprises usage schemes (schèmes
d’usage). A usage scheme is a basic, elementary scheme, which is directly
related to the artifact. For example, the moving of a text block while writing
in a word processing environment can be done with a cut-and-paste scheme.
An experienced user applies this cut-and-paste scheme quickly, accurately
and without thinking by means of a sequence of keystrokes and/or mouse
clicks. Still, a novice user has to deal with both technical and conceptual
aspects, such as knowing the menus or short cuts for the cut and paste
commands, but also the frightening fact that the text block that he/she wants
to move elsewhere, seems to have disappeared after it has been cut.
Accepting the latter requires some insight in the difference between what is
on the screen and what is in the memory of the computer.

The usage schemes can serve as building blocks for schemes of the
second category, the instrumented action schemes (schèmes d’action
instrumentée), in which the focus is on carrying out specific kinds of
transformations on the objects of activity, which in our case are
mathematical objects such as formulas, graphs, etc. Instrumented action
schemes are coherent and meaningful mental schemes, and are built up from
elementary usage schemes by means of instrumental genesis. This
articulation of usage schemes may involve new technical and conceptual
aspects, which are integrated in the scheme.

A well-known example of an instrumented action scheme with related
conceptual and technical aspects concerns scaling the viewing window of a
graphing calculator (Goldenberg 1988). An instrumented action scheme that
needs to be developed involves the technical skills of setting the viewing
window dimensions, but also the mental skill to imagine the calculator
screen as a relatively small window that can be moved over an infinite
plane, where the position and the dimensions of the window determine
whether we hit the graph. We conjecture that it is the incompleteness of the
conceptual part of such a scheme that causes the difficulties that many
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novice graphing calculator users have with setting appropriate viewing
screens. One of the component usage schemes here is a scheme for entering
negative numbers with a different minus sign than is used for subtraction.
This usage scheme requires insight in the difference between the unary and
the binary minus signs.

The difference between usage schemes and instrumented action schemes
is not always obvious. Sometimes, it is merely a matter of the level of the
user and the level of observation: what at first may seem an instrumented
action scheme, may later act as a building block in the genesis of a higher
order scheme. For example, further on in this chapter we will describe the
integration of two instrumented action schemes for solving equations and
substituting expressions into one comprehensive scheme. As an easier
example, we refer to the approximation detour (Chapter 6, § 2.3.1) for
approximating exact answers by decimal values. When the teaching focuses
on this, it could be considered as an instrumented action scheme with
difficult conceptual issues such as the difference between real and decimal
numbers, and between exactness and accuracy. In a later phase, the
approximation detour can be seen as a usage scheme which is integrated into
a composite scheme, for example for calculating the zeros of a function
which involves the approximation of the outcomes of a Solve command.

The examples of the cut-and-paste scheme and the viewing window
scheme illustrate that utilization schemes involve an interplay between
acting and thinking, and that they integrate machine techniques and mental
concepts. In the case of mathematical IT tools, the mental part consists of
the mathematical objects involved, and of the mental image of the problem-
solving process and the machine actions. The conceptual part of utilization
schemes, therefore, includes both mathematical objects and insight into the
‘mathematics of the machine’.

The instrumental genesis, in short, concerns the emergence and evolution
of utilization schemes, in which technical and conceptual elements co-
evolve. Two concluding remarks should be made. First, we point out that the
relation between technical and conceptual aspects is a two-dimensional one:
on the one hand, the possibilities and constraints of the artifact shape the
conceptual development of the user; the conceptions of the user, on the other
hand, change the ways in which he or she uses the artifact, and may even
lead to changing the artifact or customizing it. These two dimensions are
reflected in the difference between instrumentation and instrumentalization
(Chapter 6). As a second remark, we should notice that, although the
instrumental genesis is often a social process, the utilization schemes are
individual. Different students may develop different schemes for the same
type of task, or for using a similar command in the technological
environment.
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In practice, the construction of schemes, the instrumental genesis, is not
easy and requires time and effort. Students may construct schemes that are
not appropriate, not efficient, or that are based on inadequate conceptions.
Examples of difficulties with the instrumental genesis can be found in
Drijvers (2000, 2002, 2003b) and Drijvers & Van Herwaarden (2000). In
this chapter, we will study such schemes in § 4, 5 and 6.

2.3 Instrumented techniques

As our primary interest in mathematics education concerns the cognitive,
conceptual development, the technical side of an instrumented action
scheme may seem the less interesting part. However, technical and
conceptual aspects interact in an instrumented action scheme. Furthermore,
mental schemes cannot be observed or assessed directly, whereas technical
actions are visible, observable and can be the subject of teaching. Lagrange,
therefore, developed the notion of instrumented techniques, in particular for
the case of computer algebra environments, and stresses the fact that
techniques change when a technological device is used, but should not be
neglected as irrelevant (Lagrange 1999abc, 2000, Chapter 5). He argues that
techniques are still important in the computer algebra environment, because
they are related to the conceptual aspect by means of instrumented action
schemes. Lagrange describes a technique as follows:

In this l ink with concepts, the technical work in mathematics is not to be seen just as

skills and procedures. The technical work in a given topic consists of a set of rules, and

methods and, in France, we call such sets techniques, as they are less specific and imply

less training than skills and more reflection than procedures (Lagrange 1999c).

In line with this, we see an instrumented technique as a set of rules and
methods in a technological environment that is used for solving a specific
type of problem (Chapter 5). As such, an instrumented technique is the
technical side of an instrumented action scheme. The instrumented
technique concerns the external, visible and manifest part of the
instrumented action scheme, whereas in the instrumented action scheme, the
invisible mental and cognitive aspects are stressed. The visibility of
instrumented techniques is why they -- rather than the instrumented action
schemes, which have a more internal and personal character -- are the
gateway to the analysis of instrumental genesis.
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3. METHODOLOGY AND DESIGN

One of the research questions of the study Learning algebra in a
computer algebra environment concerns the instrumental genesis of
schemes in a computer algebra environment:

What is the relation between instrumented techniques in the computer algebra
environment and mathematical concepts, as established during the instrumentation
process?

In this study we focus on the development of algebraic schemes related
to the concept of parameter (Drijvers 2001). As a research design, the
paradigm of developmental research -- or design research -- is used, which
includes a cyclic design (Gravemeijer 1994, 1998). Each cycle consists of a
preliminary phase in which a hypothetical learning trajectory is developed
and student activities are designed, a teaching experiment phase in which the
learning trajectory is tried in classroom reality, and a retrospective phase in
which data is analyzed and ‘feed-forward’ for the next research cycle is
formulated.

The experiments from which the observations in this chapter are drawn
took place in the period 2000-2002 in 6 classes. The students were in ninth
and tenth grade (14 to 16 year-olds) of the highest, pre-university level of
upper secondary education. The grade-nine classes consisted of future
students of the exact science stream and of the language or social studies
stream grouped together. The tenth-grade classes consisted of students who
opted for the exact sciences stream of upper secondary education.

The teaching experiments ran for between three and five weeks with four
weekly lessons of forty-five minutes each and dealt with ways in which
computer algebra could support the development of insight into the concept
of parameter. In this chapter, we focus on two types of algebraic operations:
solving systems of equations that may contain parameters, and substituting
expressions into equations.

For a better understanding of the episodes described below, we need to
explain the approach to algebra adopted in the Netherlands. The introduction
of algebra during the first years of secondary education, for students aged 12
to 15, takes place carefully. Much attention is paid to the exploration of
realistic situations, to the process of mathematization, and to the
development of informal problem-solving strategies. Variables, for example,
often have a direct relationship with the context from which they come, and
are called price, cost, length, to mention some examples. The translation of
the problem situation into mathematics is an important issue, whereas
formalization and abstraction are delayed. As a consequence, algebraic skills
such as formal manipulations are developed relatively late and to a limited
extent. Hence, at the time of the experiments described in this chapter, the
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students’ knowledge of algebraic techniques is limited. For example, the
general solution of a quadratic equation has not yet been taught.

The students participating in the experiment had access to the TI-89
symbolic calculator as their computer algebra tool. The rationale for this
choice lies in the portability of the machine, its flexibility, and the soundness
of the algebra module. The students used the TI-89 both in school and at
home. Because they had no previous experience with technology such as
graphing calculators, using this type of handheld technology was very new
to them.

Data consists of classroom observations (audio and video taped), mini-
interviews with students, post-unit interviews with students and teachers,
written notebooks, and pre-test and post-test results. In the design phases we
identified key assignments. We expressed our expectations on these items
beforehand. These expectations were tested by means of mini-interviews
with students during the teaching experiments. In the retrospective phase,
we investigated patterns in the students’ reactions and mini-interviews. In
this chapter, we do not provide a full overview of the data and the patterns
we found. Instead, we confine ourselves to presenting exemplary
observations and mini-interviews, which represent the data in general2.

4. AN INSTRUMENTED ACTION SCHEME FOR
SOLVING PARAMETERIZED EQUATIONS

In this section we discuss the first more elaborated example of an
instrumented action scheme. This scheme concerns solving parameterized
equations in the computer algebra environment and of course includes
technical as well as conceptual aspects. First we discuss two representative
classroom observations; then we present the key elements of the scheme as
we would like it to emerge from instrumental genesis, together with the
main conceptual difficulties that our students encountered in the teaching
experiments.

4.1 Prototypical observations

The first observation concerns the task of finding the general coordinates
of the intersection points of the graph of with the horizontal
axis. The following dialogue shows how this assignment presents two tenth-
grade students, Maria and Ada, with problems:

Maria:

Ada:

This is an extremely difficult question. Find the general coordinates. How can
you find coordinates of something if it has no numbers?
[reads the assignment]
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Maria:
Ada:
Maria:

Ada:

Maria:

That’s impossible, isn’t it?
last year...

But how can you know in general where it intersects? That’s different for
each...
Intersection points with the x-axis is just filling in zero, that’s what they want,
isn’t it?
But you can’t fill in anything in a formula with a’s, b’s and c’s?

Even though Maria is, technically speaking, able to solve the
parameterized equation with respect to x in the computer algebra
environment, a conceptual conflict prevents her from doing so. What Maria
expresses in the first sentence of the above protocol is a view of solutions as
numerical results instead of something being “different for each” value of
the parameters a, b and c. Apparently, algebraic expressions cannot be
solutions to her.

Applying the TI-89 Solve command in this situation requires overcoming
this so-called lack-of-closure obstacle (Collis 1975, Küchemann 1981, Tall
& Thomas 1991). Maria’s conception of solutions of an equation needs to be
extended from only numerical results to algebraic expressions. A limited
view on solving equations was observed frequently in the teaching
experiments of our research study.

Figure 7-2 shows the next assignment in the teaching experiment. In task
b the question is similar to the one in the previous assignment, namely to
express the coordinates of the zeros in the parameter b.

Figure 7-2. The sheaf of graphs assignment

Maria does indeed enter the Solve command into the TI-89, but solves
the equation with respect to b instead of x:
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Maria:

Observer:
Maria:

So you do = 0 so to say, and then ‘comma b’, because you have to solve it with
respect to b.
Well, no.
You had to express in b?

The idea of expressing one variable in terms of others, or, as it is called
in the student text, isolating one variable, is apparently not completely clear
to Maria. She fails to distinguish the roles of the different literal symbols in
an adequate way. Maybe she does not even realize that different values can
be substituted for b, each leading to one graph in the sheaf. One can also
wonder whether she understands the problem-solving strategy, or is
‘blindly’ following the suggestions in the assignment text.

Later, however, she solves the equation with respect to the correct
unknown (Figure 7-3 upper part). However, copying the result into her
notebook leads to an error in the second square root, which indicates that
Maria does not understand the structure of the expression in detail (Figure 7-
3 lower part).

Figure 7-3. The Solve command on the TI-89 and the copy in Maria’s notebook

4.2 Key elements in an instrumented action scheme for
solving parameterized equations

On the basis on an analysis of observations similar to the ones presented
in the previous section, we identified some key elements of an adequate
instrumented action scheme for solving parameterized equations and the
accompanying technique (Figure 7-3), as it might emerge from successful
instrumental genesis. Here we ignore aspects that are specific to the
assignment presented in the previous section, as this problem situation also
encompasses a process of horizontal mathematization. Using Thompson’s
distinction between relational and calculational reasoning, we limit
ourselves here to the latter (Thompson & al 1994). We distinguish the
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following core elements in an appropriate instrumented action scheme for
solving parameterized equations:

1.

2.

3.
4.

5.
6.

Knowing that the Solve command can be used to express one of the
variables in a parameterized equation in other variables.
Remembering the TI-89 syntax of the Solve command, that is Solve
(equation, unknown).
Knowing the difference between an expression and an equation.
Realizing that an equation is solved with respect to an unknown and
being able to identify the unknown in the parameterized problem
situation.
Being able to type in the Solve command correctly on the TI-89.
Being able to interpret the result, particularly when it is an expression,
and to relate it to graphical representations.

In this list some of the elements have a primarily technical character
(items 2 and 5) whereas others have a mainly conceptual character. The first
item involves an extension of the notion of solving to situations other than
the ones already encountered, namely, for expressing one variable in terms
of others. Many students have conceptual difficulties in using the Solve
command to ‘isolate’ one variable in a parameterized relation that contains
other literal symbols. To them ‘solve’ means finding a numerical solution,
whereas an expression is not considered to be a solution. Using computer
algebra for this purpose requires the conception of solving to be extended
towards a broader view.

The third item concerns being aware of the difference between
expressions and equations. Particularly when the equation has the form
expression = 0, this distinction may be unclear to students. A lack of
awareness of this point may lead to errors in the syntax mentioned in item 2.

The fourth item in the list highlights the -- often implicit -- notion of the
‘unknown-to-be-found’ (Bills 2001), and is already reflected in the need to
specify the unknown in the syntax (item 2). It also addresses the possible
shift of roles in the case of a parameterized equation that is to be solved with
respect to the parameter. Also, the difference between ‘solving with respect
to b’ and ‘express in b’ should be clear to the students.

This seemingly technical necessity to add ‘comma-letter’ to the equation
has a mental counterpart: if students are unaware that an equation is always
solved with respect to a certain variable, they will not understand this
requirement and will tend to forget it. However, the fact that the TI-89
requires the letter specification may foster the making explicit of the idea of
‘solving with respect to.’ Some of the students’ explanations (“you have to
get out the x”,  or “you have to calculate x apart”)  provide evidence for this
claim. While using paper-and-pencil, planning to solve an equation and
carrying out the solution procedure often take place simultaneously, thus
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obscuring the implicit choice of the letter with respect to which the equation
is solved.

The fifth item concerns the ability to use the technical knowledge of item
2 in combination with the insights referred to in items 3 and 4 to enter a
correct command.

The sixth item concerns dealing with the lack-of-closure obstacle and
with the ability to perceive algebraic expressions as objects. If students see
an algebraic expression as an invitation to a computation process, as a recipe
for calculating concrete numerical solutions, they will perceive a lack-of-
closure when the result of the Solve command is an expression. They are not
satisfied with a formula as an object that represents a solution. The ability to
see formulas both as processes and as objects is indispensable for algebraic
thinking (Gray & Tall 1994, Dubinsky 1991, Sfard 1991). In this case, this
process-object duality may prevent the students from understanding the
solution. In fact, an extension of the conception of a solution, including
expressions, is required. Also, the student should expect a result in the form
unknown = ....and should be alerted when the result looks different. On the
one hand, the process perception of algebraic expressions makes the goal of
taking full advantage of the power of computer algebra more difficult to
attain. On the other hand, using computer algebra may foster the reification
of algebraic expressions.

To summarize this section, we notice that in an appropriate instrumented
action scheme for solving parameterized equations technical and conceptual
aspects are intertwined. The episodes of student behavior in this section
illustrate the differences between the Solve command as it is available on the
TI-89 calculator and the way in which students perceive the notion of
‘solve’ from the traditional paper-and-pencil setting. The computer algebra
environment seems to foster awareness of elements in the solving process
that are often implicit in solving by hand or by head, such as the
mathematical equivalence of calculating a numerical solution and expressing
one variable in terms of others, the notion that an equation is always to be
solved with respect to an unknown, and the object character of algebraic
expressions. In this manner, working with computer algebra environments
creates opportunities for the teacher to frame these issues as topics for
discussion.

Two concluding remarks should be made. First, we stress that reducing
an instrumented action scheme to a list of items has the advantage of being
concise and concrete, and may help to draw up an inventory of technical and
conceptual elements of such a scheme, which may guide teaching and task
design. However, it does not do justice to the process of instrumental
genesis that leads to its development. In that sense, our representation is
limited. Second, we point out that it is not the use of computer algebra per se
that fosters the instrumental genesis of the instrumented action scheme for
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solving parameterized equations in the intended way; it is the combination
of computer algebra use, task design and educational decisions that together
form an appropriate environment for instrumental genesis. For example,
reflective discussions on the techniques guided by the teacher may influence
collective instrumental genesis in an important way.

5. AN INSTRUMENTED ACTION SCHEME FOR
SUBSTITUTING EXPRESSIONS

As a second example of an instrumented action scheme, this section
addresses an instrumented action scheme for substituting an algebraic
expression into another expression or equation in the computer algebra
environment. As was the case for the scheme for solving parameterized
equations described in the previous section, technical and conceptual aspects
interact. First we discuss an example and some representative classroom
observations; then we present the key elements of a scheme as we would
like it to emerge from instrumental genesis, together with the main
conceptual aspects as we observed them in our teaching experiments.

5.1 Prototypical observations

The observations concern an assignment on the volume of a cylinder,
shown in Figure 7-4. Figure 7-5 shows how substitutions, such as the one
called for in part b in Figure 7-4, can be carried out on the TI-89. The
vertical substitution bar, symbolized by and read as ‘with’ or ‘wherein’,
offers a means to substitute numerical values as well as algebraic
expressions.

Figure 7-4. The cylinder assignment
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Figure 7-5. Substitution on the TI-89

After a student, Fred, solved part b of Figure 7-4, the teacher asks him to
explain the meaning of the substitution bar in a classroom discussion. Fred
got help from Cedric:

Teacher:
Fred:

Teacher:
Fred:
Teacher:
Fred:
Teacher:

Cedric:

Now what exactly does that vertical bar mean?
Well, it means that here [after the bar] an explanation is given for that
variable.
You mean the variable is explained, so to say?
Yes. Anyway, that’s what I thought and that came out more or less.
But what do you mean exactly, the variable that is before the bar, or...
Yes the ones before the bar, they are explained here.
Yeah, that’s true, but... Who can explain what exactly the effect of that
‘whereby’ is?
Well it, that is in fact a manual for the formula that stands beside [in front]
because it says, well, v equals a times h and besides it says yes and there a,
that is pi and then r squared.

Similar explanations are often observed. Students understand the
substitution of an expression as “explaining a variable”, as “a guidebook”
or an instruction. Some students come up with vaguer terms such as
combining, simplifying or “making one formula out of it”. For example,
Tony’s perception of substitution merely reflects the combining of two
formulas:

Observer:
Tony:

Observer:
Tony:
Observer:
Tony:

Now what exactly does that vertical bar mean?
It means that the left formula is separated from the right, and that they can be
put together.
And what do you mean by putting together?
That if you, that you can make one formula out of the two.
How do you do that, then?
Ehm, then you enter these things [the two formulas] with a bar and then it
makes automatically one formula out of it.

The students who use the vaguer explanations seem to have missed the
idea of substitution as visualized in Figure 7-6:

Figure 7-6. Visualization of substitution as ‘pasting expressions’
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This visualization supports the image of ‘cutting an expression’ and
‘pasting it into’ the right position(s) in the expression left of the wherein bar.
Our impression is that this visualization contributes to the development of an
appropriate conceptual understanding of substitution.

5.2 Key elements in an instrumented action scheme for
substituting expressions

On the basis of an analysis of observations similar to the ones presented
in the previous section, we identified some key elements of an adequate
instrumented action scheme for substituting expressions and the
accompanying technique (Figure 7-5), as it might emerge from successful
instrumental genesis. Again, we ignore aspects that are specific to the
assignment presented in the previous section. We distinguish the following
key elements in an appropriate instrumented action scheme for substituting
expressions:

1.
2.

3.

Imagining the substitution as ‘pasting an expression into a variable’.
Remembering the TI-89 syntax of the Substitute command expression1
variable = expression2, and the meaning of the vertical bar symbol in it.
Realizing which expressions play the roles of expression1 and
expression2, and considering expression2 in particular as an object rather
than a process.
Being able to type in the Substitute command correctly on the TI-89.
Being able to interpret the result, and particularly to accept the lack of
closure when the result is an expression or equation.

4.
5.

As was the case for the instrumented action scheme for solving
parameterized equations, some elements of this list have a primarily
technical character (items 2 and 4) whereas others have a mainly conceptual
character.

The first item involves an extended understanding of substitution. At
first, students usually consider substitution to be ‘filling in numerical
values’. Now, they have to expand this view to the substitution of algebraic
expressions, which involves ‘pasting expressions’. To put it in a more
mathematical way, it involves the understanding of the phenomenon that one
of the independent variables in an expression (a in the example of Figure 7-
6) in its turn depends on other variables. The use of computer algebra -- in
an appropriate educational setting -- on the one hand requires this extension
of the notion of substitution and on the other hand may foster it.

In item 3 we recognize once more the process-object issue that we
discussed briefly in § 4.2 of this chapter, and the need to perceive an
expression as an object in order to be able to use the syntax mentioned in
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item 2. On the one hand, the student must have an object view of
expression2 before he is able to apply the Substitute command; on the other
hand, the application of the scheme for substituting expressions may foster
this object view. Note that it is sufficient for the students to view
expressions as objects that can be equated. This does not necessarily imply
that they also conceive a function in the example in the previous
section) as an object. The process-object duality is elaborated in more detail
in Drijvers (2003a).

In item 5, the student has to deal with the result from the application of
the technique mentioned in item 4, and, for example, may notice that all the
instances of the variable in expression1 are replaced by expression2. If the
result still contains the variable, the student should be alerted. Once more,
the process-object issue and the lack-of-closure obstacle are encountered, as
the resulting expression has to be considered as a result, as an expression or
equation which symbolizes a relation that often can be used as input for a
subsequent process.

To summarize the list of elements, this instrumented action scheme for
substituting expressions reveals again an interplay between technical and
conceptual aspects. The main conceptual issues in the scheme are the
extension of the notion of substitution towards including substitution of
expressions, and the object view on the expressions that are substituted. The
classroom observations show that the students develop the scheme for
substituting expressions relatively easily. The visualization by means of
ovals is helpful and the TI-89 notation with the ‘wherein bar’ is a natural
one. The machine technique seems to stimulate the development of the
conception of substitution as a replacement mechanism.

We point out that the view of substitution as ‘pasting expressions’ and
the understanding that one of the independent variables in its turn depends
on other variables can be seen as the inverse process of the so-called Global
Substitution Principle (Wenger 1987). This principle deals with the
identification of parts of expressions as units. Maybe the approach of
‘placing tiles’ over sub-expressions might have been good preparation for
the instrumental genesis of an instrumented action scheme for substituting
expressions, particularly if the sub-expressions are meaningful in the
context.

The substitution activities in the experimental instructional sequence
were not limited to substitution as ‘pasting expressions’. Students also
substituted different parameter values, carried out computations with them
and investigated functional relations. However, looking back, we notice that
the experimental instructional sequence did not pay attention to a specific
kind of substitution: the substitution of relations that were provided in an
implicit form. In the next section, where we discuss the integration of a
scheme for solving parameterized equations and a scheme for substituting
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expressions into a more comprehensive scheme, we will encounter the
consequences of this omission. As was the case in the previous section, we
finish this section by pointing out that our list focuses on the final result of
the instrumental genesis and not on the process, and that computer algebra
use cannot be separated from the educational context, including task design
and teacher guidance.

6. A COMPOSED INSTRUMENTED ACTION
SCHEME FOR SOLVING SYSTEMS OF
EQUATIONS

In this section we discuss a more comprehensive instrumented action
scheme for solving systems of equations. Such a scheme concerns solving
systems of equations by means of a strategy which includes application of a
scheme for solving equations and a scheme for substituting expressions.
Even if the instrumental genesis of the two component schemes has been
appropriate, their integration in the composite scheme for solving systems of
equations turned out to be far from evident. First we discuss an example and
some representative classroom observations; then we present the key
elements of a scheme as we would like it to emerge from instrumental
genesis, together with the main conceptual aspects as we observed them in
our teaching experiments.

6.1 Prototypical observations

Figure 7-7 shows the right-angled triangle assignment which was
included in the student texts for the teaching experiments in grade 9. This
example is described in more detail in Drijvers & Van Herwaarden (2000).

For this assignment, the textbook proposes an Isolate-Substitute-Solve
strategy. This technique, abbreviated as ISS, is shown in Figure 7-8.
Question a leads to a system of two equations with two unknowns,
x + y = 31 and where x and y stand for the lengths of the two
perpendicular edges. First, one of the variables, in this case y, is chosen to
be isolated in one of the equations, here x + y = 31. The result is then
substituted into the other equation using the wherein operator, symbolized
by the vertical bar In the resulting equation, there is only one variable left
(here x) and a second Solve command provides the answer, in this case x = 7
or x = 24. The computation of the corresponding values of the other
variable, y is a matter of substituting the values of x in one of the equations.
In question b this scheme is repeated for other values, and in c it is
generalized for the case with parameters.
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Figure 7-7. The right-angled triangle assignment

Figure 7-8. The solution scheme ISS on the TI-89

Observations show that some students carry out the first step of this ISS
technique -- the isolation -- in their head and substitute the equation
x + y = 31 immediately as y = 31 – x in the other equation. This, of course,
is efficient. However, to students who are not able to do the isolation
mentally, the first step of the ISS scheme is not trivial. Many students have
conceptual difficulties in using the Solve command to isolate one of the two
variables. To them ‘solve’ means finding a solution, whereas 31 – x in this
context is seen as an expression, not a solution for y. Maybe the concrete
geometrical context leads students to expect concrete numerical results more
strongly than context-free problems would do. Whatever the reason, the fact
that the same Solve command is used both for calculating numerical
solutions and for isolating a variable requires an extended conception.
Evidence presented elsewhere (Drijvers 2003a, 2003b) suggests that even if
this conceptual development has been part of the instrumental genesis of the
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scheme for solving parameterized equations, it is difficult to use this notion
in the more complex situation of the comprehensive ISS scheme.

The second step in the proposed ISS scheme, the substitution, presents
many difficulties. The frequently observed and persistent error here was that
the first step, the isolation, was skipped and the non-isolated equation was
substituted directly into the other. The next protocol shows how Rob
substitutes the non-isolated form by entering The
CAS does not know which variable in the quadratic equation is to be
replaced, so it just returns the quadratic equation. John explains this issue
adequately to Rob.

Observer:

John:
Rob:
Observer:
John:

Rob:

Rob, you wrote down How about that
bar?
You have to put one apart: you have to put either the x or the y apart.
You can only work on one letter?
John, could you explain this to Rob?
I think if you have got the vertical bar, you are allowed to explain only one
letter, so x =.
Oh, x = 31 – y.

There are several explanations for this error. First, the two equations in
the system play equal, symmetric roles, whereas this symmetry no longer
exist in when the two are treated in a different
manner. The students probably see the ‘wherein bar’, annotated by as a
symmetric ‘with’, close to the set theory notation

In fact, it might be better to call this bar the ‘cut-and-paste bar’ or the
‘substitution bar’ instead of the ‘wherein bar’ or the ‘with bar’. Second,
students may have the idea that while entering the two equations ‘the CAS
will find a way to combine them’. The analogy with the combined Solve
command, and x + y = 31, x) that does work on the TI-
89, may play a role here. Third, the immediate substitution obscures the
process. Maybe ‘lazy evaluation’ might help the students: if the result of the
substitution had been instead
of this would provide more insight into the process
of substitution as the machine carries it out. However, a mature
understanding of substitution would prevent the student from making this
error, so once more we see the relation between the syntactic mistake and
the conceptual understanding of the process of substituting expressions.

In the final step of the ISS strategy, the solving, a common mistake
shows up when the substitution and solving are nested in one combined line.
As Rob’s input above shows, some students try to combine the substitution
and the solution in one line. A correct nested form is:
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The problem with this nested form, however, is the choice of the
unknown at the end. With respect to which letter do we need to solve?
Several times, students chose the wrong letter, the y instead of the x, after
the comma. In such instances, the substitution is performed. However,
because the y does not appear any longer in the resulting equation, it cannot
be solved with respect to y; therefore, it is returned in an equivalent form,
which is not always easy to understand (Figure 7-9). The original problem is
symmetric in x and y, but in the problem solving process x and y acquire
asymmetric roles.

Figure 7-9. Solving for the wrong unknown in the nested ISS technique

To avoid this error, students need to mentally split the nested command
into two sub-processes. They need to realize that if the substitution part
starts with ‘y =’, the resulting equation will no longer contain y; therefore, it
must be solved with respect to x. This problem-solving behavior shows that
students’ insight into the substitution process is not mature enough to handle
this more complicated situation satisfactorily. The power of computer
algebra to integrate two steps requires an increased awareness of what is
happening. One of the students avoided this mistake by symbolizing the two
sub-processes in the command with an extra pair of brackets:

One of the teachers in the teaching experiments privileged the nested
form of the ISS technique. At the first instance of the problem situation she
immediately demonstrated the nested form, which led to many more errors
in this class compared to the other class. Observations such as this support
the findings of Doerr & Zangor (2000), who argue that the teacher
influences the classroom culture and the collective orchestration (used in a
broader sense here than in Chapter 9), and the results of Kendal & Stacey
(1999, 2001), who state that teachers privilege specific techniques and
schemes, and de-privilege others.
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6.2 Key elements in an instrumented action scheme for
solving systems of equations

On the basis on an analysis of observations similar to the ones presented
in the previous section, we identified some key elements of an adequate
instrumented action scheme for solving systems of equations and the
accompanying technique (Figure 7-9), as it might emerge from successful
instrumental genesis. Again, we ignore aspects that are specific to the
assignment presented in the previous section. We distinguish the following
key elements in an appropriate instrumented action scheme for solving
systems of equations:

1.

2.

3.

4.

5.

Knowing that the ISS strategy is a way to solve the problem, and being
able to keep track of the global problem-solving strategy in particular.
Being able to apply the technique for solving parameterized equations for
the isolation of one of the variables in one of the equations.
Being able to apply the technique for substituting expressions for
substituting the result from the previous step into the other equation.
Being able to apply the technique for solving equations once more for
calculating the solution.
Being able to interpret the result, and particularly to accept the lack of
closure when the solution is an expression.

This list does suggest an order, as the sequence of steps 2 to 4 cannot be
changed. We notice that steps 2, 3 and 4 are instrumented action schemes,
which were described in the previous sections. They include technical and
conceptual aspects and are embedded here in a composite ISS scheme.

In item 1 we notice that students may have difficulties with keeping track
of the overall strategy. For example, students may try to substitute the
isolated form into the equation from which it has been derived (Figure 7-10).
Of course, the message ‘true’ causes some confusion, and often students do
not understand the logic behind it. Once more, we conjecture that lazy
evaluation, in this case leading to x + (31 – x) = 31, would facilitate
understanding.

Figure 7-10. ‘Circular substitution’ in the ISS problem-solving strategy



Computer Algebra as an Instrument 185

As an example of such circular substitution, the following dialogue
shows that Donald did not know how to solve the system of equations
x*y = 540,

Observer:
Donald:
Observer:
Donald:
Observer:

Donald:
Observer:
Donald:
Observer:
Donald:

What would you do now?
Ehm, well, I calculated that x is 540 divided by y.
Exactly.
Well, and if... you then can replace this [x in x*y = 540] by that [540/y].
Well, yes, but that is not sensible, because x is 540 divided by y but you
shouldn’t fill that in the equation where you got that from, where you derived
it from.
Oh.
So you’d better substitute it into the other equation.
In that one [the quadratic equation].
Right. So if you fill in this [540/y] here [x in
... and that one below [y = 540/x] there [the y in the quadratic equation].

The last line of the above dialogue reveals a second strategic error of
‘double work’: by means of two ‘isolations’, both x and y are isolated from
x*y = 540. Then x in is replaced by 540/y and simultaneously y
is replaced by 540/x. That clearly is double work with no progress towards
the result. Both the circular approach and the double-work error show a lack
of overview of the solution strategy and of the composite scheme as a
whole.

In items 2 and 3 of the list, we have already noted the error of forgetting
the isolation and substituting a non-isolated form directly. Apparently,
embedding a substitute scheme into a more comprehensive ISS scheme,
where it is tangled up between two Solve commands, causes this error to
occur frequently.

The most frequent error in the solution step 4 of the scheme was to solve
the equation with respect to the wrong unknown, which does not appear in
the equation any longer. This was observed particularly when the students
used the nested form of an ISS scheme, in which the substitution and the
solving are combined in one command. The compactness of the nested form
increases the complexity of the technique.

In step 5 we encounter the process-object duality again in a way similar
to the simple instrumented action schemes which constitute the ISS scheme.

We cannot end the discussion of an ISS scheme without pointing out the
variations that may exist, and that were indeed observed, in the classrooms.
For example, some students prefer to solve both equations first with respect
to the same unknown, and then to equate the two right-hand sides. This
variation, which we called Isolate-Isolate-Equal-Solve, comes down to the
following in the example of Figure 7-7:

Isolate twice with respect to y:

Equate both right-hand sides:

and y = 31 – x
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Solve with respect to x: x = 24 or x = 7.

To summarize this section, we see that a comprehensive scheme for
solving systems of equations is more than just the sum of its simple
components. The complexity increases, which may lead to errors in the
component schemes, even if these errors seemed to have been overcome in
the instrumental genesis of these component schemes. Also, keeping track of
the overall problem solving strategy may be difficult. For example, the
extension of the conception of solving towards isolation of the unknown or
‘expressing one variable in terms of the others’ is probably more difficult if
the outcome of the isolation is an intermediate result than if it is the final
outcome of an exercise. This illustrates the interaction between machine
technique and conceptual development in the instrumented action scheme:
the fact that the same command is used for isolating an unknown as for
calculating the final outcome indicates that these operations -- quite different
in the eyes of the student -- are identical in the world of computer algebra
and are mathematically equivalent. For substitution, a similar remark can be
made. Students regularly try to substitute an isolated form into the equation
from which it originated, or they try to substitute a non-isolated form. These
errors reveal a limited awareness of the problem solving strategy or a limited
conception of substitution. Again, we perceive these errors as
instrumentation matters. If students have an appropriate mental image of
substitution, they should be able to perform the substitutions in the computer
algebra environment correctly. Classroom discussion of these
instrumentation problems can improve students’ understanding of
substitution and strengthen the machine skills needed to solve problems like
those shown above. As was the case for the simple instrumented action
schemes, this shows that the instrumental genesis as well as the resulting
schemes may depend largely on the educational setting, the tasks and the
role of the teacher.

7. REFLECTION

In this section we first reflect on the findings in our study. Then we
reflect on the merits of the instrumental approach and on its possible links
with other theoretical frameworks.

7.1 Reflections on the findings of the study

In the previous sections we observed a close relationship between
machine techniques and conceptual understanding within the instrumented
action schemes. Students can only understand the logic of a technical



Computer Algebra as an Instrument 187

procedure from a conceptual background. Seemingly technical difficulties
often have a conceptual background, and the relation between technical and
conceptual aspects makes the instrumental genesis a complex process. We
illustrated this by drawing up lists of key elements in instrumented action
schemes. Although such lists tend to have a prescriptive and rigid character,
and ignore the process of individual instrumental genesis, they were found
to be helpful for making explicit the relation between technical and
conceptual components, and for indicating possible ‘end products’ of the
instrumental genesis.

The students in our study encountered many obstacles during this
instrumentation process, which can be explained in terms of the technique-
concept interaction. We argue that such obstacles offer opportunities for
learning, which can be capitalized on by reflecting on their conceptual
aspects and the relation with the corresponding paper-and-pencil technique.
Of course, the teacher plays an important role in turning obstacles into
opportunities.

The examples of the instrumented action scheme for solving
parameterized equations and substituting expressions show how the mixture
of technical and conceptual aspects may lead to difficulties that are not easy
for the students to overcome and often demand conceptual development.
The development of the instrumented action scheme for solving systems of
equations indicates that the integration of elementary schemes into a
composite scheme requires mastering of the component schemes at a high
level.

Two comments should be made on these conclusions. First, one can ask
whether computer algebra is an appropriate tool for algebra education if the
instrumental genesis requires so much effort. Indeed, the CAS environment
has a top-down character in the sense that ‘everything is already there’. No
symbolizations have to be developed and the computer algebra environment
is not flexible with respect to notational or syntactic differences. The CAS
does not provide insights into the way in which it obtains its results. As a
consequence, the students may suffer from a perceived lack of transparency
and congruence, so that the CAS is seen as a black box. Although the
flexibility of any IT tool is limited, this issue is striking for CAS use at this
level -- ninth and tenth grade -- of education. Maybe other technological
tools, for example environments that provide intermediate results and show
‘black box behavior’ to a lesser extent, might foster algebraic insight better
for students at this educational level.

The second comment concerns the embedding of CAS use in the
educational setting. As indicated by Doerr & Zangor (2000), the results of
the integration of technology into mathematics education depend on the
coordination of many factors, such as the learning goals, the available
instructional tasks, the didactical contract (Box 8-6), the socio-mathematical
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norms in the classroom, the guidance provided by the teacher and the
previous algebra education, to mention some. For the integration of CAS in
education, we recommend realistic problem situations as points of departure,
which may foster the development from informal meanings and strategies to
more formal methods. In this way the contexts, which first function at a
referential level, may acquire a general meaning. We conjecture that the
instrumentation difficulties that we reported in the § 4, 5 and 6 might appear
in different ways in such an educational approach, depending on changes in
some of the factors involved; we do believe, however, that these difficulties
will be encountered in one way or another during the instrumental genesis.

7.2 Reflection on the instrumental approach

§ 4, 5 and 6 illustrate how the instrumental approach can be used as a
framework for observing, interpreting and understanding students’ behavior
in the computer algebra environment. We acknowledge that we used the
approach in this chapter only to a limited extent, namely for focusing on the
individual algebraic schemes as end products rather than taking the process
perspective. We neglected the embedding of these schemes in the
educational process as well as the process of instrumental genesis. The roles
of the teacher and of the classroom community were hardly addressed.

In the present section, we reflect on the role of this theoretical
framework, and we discuss possible links with other theoretical approaches.
The latter issue is important, as we agree with Hoyles and Noss who
consider the connection between research on technology use and trends in
research on the learning of mathematics in general as highly relevant:

Our aim therefore, is to bring the field of research with and on computationally-based
technologies in mathematical learning closer to the broader field of mathematics
education research. We take it as axiomatic that each has much to learn from the other;

but we are fully aware of just how insulated the work with digital technology has been
(Hoyles & Noss 2003).

What does the instrumental approach to learning mathematics using
technological tools allow for? In our opinion, it stresses the subtle
relationship between machine technique and mathematical insight, and
provides a conceptual framework for investigating the development of
schemes, in which both aspects are included. Important elements of this
framework are the notion of instrument, the process of instrumental genesis
and the distinction between different kinds of schemes. These elements are,
in our opinion, helpful for designing student activities, for observing the
interaction between students and the computer algebra environment, for
interpreting it and for understanding what works out well and what does not.
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The seemingly technical obstacles that students encounter while working in
the computer algebra environment often have conceptual components, and
the instrumental approach helps to be conscious of this and to turn such
obstacles into opportunities for learning.

After noticing the power of the instrumental approach, we now reflect on
the directions for future development, and on issues which might need
further investigation. Below, we address the questions of task design for
provoking instrumental genesis, of the scope of the instrumental approach,
of the accessibility of the theory, and of the need for articulating the
instrumental approach with other theoretical perspectives such as theories on
symbolizing, cultural-historical activity theory, and the socio-constructivist
framework.

The first issue concerns the question of task design. The instrumental
approach investigates the intertwining of technical and conceptual aspects
within instrumented action schemes, and the process of developing such
schemes, the instrumental genesis. Therefore, important questions for
classroom practice are: What do we know about the design of instructional
activities which foster instrumental genesis? What characteristics can we
identify in tasks that enhance a productive instrumental genesis? The
articulation of the instrumental approach and the notion of didactical
engineering is addressed in Chapter 9.

The second issue is the scope of the instrumental approach. We notice
that the instrumental approach to learning mathematics using technological
tools is developed and applied particularly in the context of using computer
algebra. Although it has also been applied to the use of dynamic geometry
software (Laborde 2003, Mariotti 2002), it is not yet completely clear how
general its applicability is. What would the instrumental approach offer us
for the educational use of other types of software environments, such as Java
applets or statistical software? How does the instrumental approach relate to
different types of tool use? For example, while studying the integration of
the graphing calculator, Doerr & Zangor (2000) distinguish the
computational tool, the transformational tool, the data collection and
analysis tool, the visualizing tool and the checking tool. What does
instrumental genesis mean for each of these types of tool use? These
questions deserve further investigation.

Let us elaborate on this. Computer algebra has specific features, such as
its rigidity concerning input syntax and, in the case of the TI-89, which we
used, its direct evaluation of input without possibilities for providing
intermediate results. For educational purpose, one could use other, more
open software environments for developing the insights that proficient
computer algebra use requires, such as Java applets. For example, one might
want to anticipate the object view on formulas and expressions, which is
privileged by the computer algebra environment, more at a functional level
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using other types of technological tools. As an aside, we can draw the
analogy with data analysis. We conjecture that the use of data analysis
software packages leads to similar instrumentation problems as CAS use
does. To choose an adequate statistical operation or representation, the
student has to be able to anticipate how these might help in answering the
problem at hand. This, in turn, requires a deeper statistical understanding,
which encompasses, for instance, a well-developed conception of a
distribution of data points, within which a distribution is conceived as an
object-like entity. Research shows that pedagogical software tools can be
used to foster the development of such a notion of distribution in parallel
with the corresponding graphical representations and statistical tools to
prepare students for the use of ready-made statistical toolboxes (Cobb,
McClain & Gravemeijer 2003, Bakker & Gravemeijer in press).

As a third comment on the instrumental approach, we point out that the
accessibility to novice researchers might be improved by considering our
terminology. We have already mentioned the quite specific meaning of the
word instrument. As a second example, we mention the difference between
instrumentation and instrumentalization, which is far from self-evident from
the wording. In line with the terminology of Hoyles & Noss (2003), would it
not be more clear to just speak about the two-sided relationship between tool
and learner as a process in which the tool in a manner of speaking shapes the
thinking of the learner, but also is shaped by his thinking? In order to
disseminate it further, the terminology of the instrumental approach might
be reconsidered.

The fourth comment concerns the articulation of the instrumental
approach with other theoretical perspectives. For example, many current
research studies on mathematics education focus on semiotics, symbolizing,
modeling and tool use (e.g. Cobb & al 1997, Gravemeijer 1999, Gravemeijer
& al 2000, Meira 1995, Nemirovsky 1994, Roth & Tobin 1997). These
approaches stress the dialectic relation between symbolizing and
development of meaning in increasing levels of formalism. As our example
of data analysis tools illustrate, this relation may be problematic if in the tool
‘everything is already there’. Computer algebra offers limited possibilities
for the student to develop his own informal symbolizations. The
instrumental approach stresses the development of schemes in a fixed
technological environment, but does not seem to pay much attention to the
‘symbolic genesis’, the development of symbols and their related meanings.
However, instrumental genesis includes a signification process of giving
meaning to algebraic objects and procedures. Therefore, we suggest a study,
which addresses the compatibility or incompatibility of the instrumental
approach and the perspective of symbolizing, both within and apart from the
technological environment.
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To what other theoretical perspectives do we think the instrumental
approach might be connected? Utilization schemes have both an individual
and a social dimension. As utilization schemes are mental schemes, they are
essentially individual, and instrumental genesis is an individual process. In
the meantime, instrumental genesis takes place in a social context. As
Rabardel & Samurcay (2001) phrase it: “... their emergence results from a
collective process that both the users and designers of artifact contribute to”.
The articulation of these two dimensions, and in particular of the
instrumental approach with cultural-historical activity theory (Engeström &
al 1999) and with the notion of the community of practice (Wenger 1998),
deserves much attention. The elaboration of the concept of orchestration in
Chapter 8 can be seen as a good step in this direction.

In connection with this we refer to the interpretative framework that is
developed by Yackel & Cobb (1996). They show how an individual,
psychological, perspective can be coordinated with a social perspective that
takes the group as a unit of analysis. This coordination is elaborated in an
analysis of the reflexive relation between social norms, socio-mathematical
norms and mathematical practices on the one hand, and individual beliefs
and insights on the other. On the basis of this interpretative framework,
questions with respect to the relations between classroom norms, the way
technology is used by the students, and the role of the teacher in this, may be
investigated. Preliminary results of studies that take into account the role of
the teacher (Doerr & Zangor 2000, Kendal & Stacey 1999, 2001) suggest
that this perspective might add value.

To summarize this reflection, we note that, although we applied the
instrumental approach only in a limited way, it provided help in observing,
interpreting and understanding the student-machine interactions. However,
in order to fully investigate its relevance, we recommend further research on
applying the approach to other technological environments and to relate it to
other relevant theoretical perspectives to research on the learning of
mathematics in general.

8. CONCLUSION

In this chapter we argue that the understanding of algebraic concepts and
computer algebra techniques are closely related to one another. Difficulties
while carrying out computer algebra techniques could often be linked to
limitations in the students’ algebraic insight. The development of mental
conceptions, on the other hand, could be fostered by the machine techniques.

The instrumental approach to learning mathematics using technological
tools made explicit this close relation. As such, it is an adequate framework
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to better understand students’ difficulties. In fact, an error that occurs while
using a machine may reveal a lack of congruence between machine
technique and mathematical conception, or may indicate limitations in the
conceptualization of the mathematics involved. The concept of instrumented
action schemes, which involve both machine techniques and mental
conceptions, is a powerful one for making concrete the interactivity between
machine technique and conceptual understanding.

By means of providing examples of instrumented action schemes
-- though presented as end products rather than as processes of instrumental
genesis -- we show how the instrumental approach and the notion of
schemes in particular may help the observer -- whether he is a researcher or
a teacher -- to interpret and understand what is happening while students
work in the computer algebra environment. The lists of key elements of
instrumented action schemes are not intended to suggest that such schemes
have a rigid and universal character. They do provide examples of how the
decomposition of elements within the schemes can help the observer to
analyze the complexity of the students’ work in the technological
environment.

Our conclusion, therefore, is that the instrumental approach provides a
fruitful framework in the research study that we report on. In the meantime,
however, we have identified some limitations. So far, the instrumental
approach seems to suffer from a somewhat isolated position, and a too close
link to research on the integration of computer algebra into mathematics
teaching. Therefore, we recommend investigating the usefulness of the
approach in studies that focus on other technological devices, and linking
the instrumentation approach to other theoretical perspectives from research
on mathematics education.
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NOTES

2.

1. Granted by The Netherlands Organization for Scientific Research (NWO) under number
575-36-003E and described in detail in the dissertation of the first author (Drijvers,
2003b).
For a more detailed description of the data see (Drijvers, 2003b) or
(www.fi.uu.nl/~pauld/dissertation).
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INSTRUMENTAL GENESIS, INDIVIDUAL AND
SOCIAL ASPECTS
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Abstract: In Chapter 6, we analyzed didactic phenomena occurring during
experiments in integrating symbolic calculators. We then showed how
adopting an instrumental approach to analyzing these phenomena helped in
understanding the influence of such tools upon mathematical activity and upon
knowledge building. It is during the process of instrumental genesis that a
calculator becomes a mathematical instrument.

In the first part of this chapter, we analyze the different forms that
instrumental genesis takes by studying students’ behavior so as to establish a
typology of work methods in calculator environments. This typology indicates
that the more complex the environment, the more diverse the work methods,
and, consequently, the more necessary the intervention of the teacher in order
to assist instrumental genesis.

In the second part of this chapter, taking this necessity into account, we
introduce the notion of instrumental orchestration, defined by a didactical
configuration and its modes of exploitation.

An orchestration is part of a scenario for didactical exploitation which aims
to build, for every student and for the class as a whole, coherent systems of
instruments.

Key words: Command process, Instrumental orchestration, Metaknowledge, Scenario
in use, Work methods.
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1. DIFFERENCES IN INDIVIDUAL
INSTRUMENTAL GENESIS

Students have very different relationships with their calculator. Several
methods help to pinpoint this diversity: conducting surveys of a wide student
population to elicit their answers to a few questions posed at a given time, or
following the instrumental genesis for a few students over the course of
quite a long period of time. These different methods make it possible to
bring out, for students’ behaviors, several ‘types of typologies’.

1.1 Local typologies

These typologies take into account only some aspects of instrumental
genesis. In this sense, we speak of local typologies.

1.1.1 A typology linked to calculator learning type

Faure & Goarin (2001), from a survey of 500 grade students (most
of them using graphic calculators), propose a typology depending on the
calculator learning type. They take into account three approaches: learning
with the teacher, learning through instructions for use, and learning by trial
and error. Then the authors distinguish, within the given population, four
profiles (Figure 8-1):

Figure 8-1. Distribution of calculator learning types

teacher-trained students (22%) who have primarily learnt calculator use
from the teacher;

self-trained students (26%) who have primarily learnt calculator use
from the instructions for use, and not substantially from the teacher;

tinkerers (47%) who have learnt calculator use without guidance from
any institutional source (whether teacher or instructions for use);
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novices (5%) who have had no training from the teacher, not consulted
the instructions for use, and not tried to learn by themselves.

This typology can be related to some questions asked to the students.
i) “Do you know, with your calculator, how to find an approximate value

for to define a given function, to use a table of values, to graph a

function, to choose an adequate window, to write programs?”
We can see, Figure 8-2, the frequencies for the answers well and very

well.

Figure 8-2. Typology and type of calculator knowledge

Techniques related to function graphs seem to be best mastered by all
students. Teacher-trained students and self-trained students appear very
confident in all the domains, whereas novices, logically, show quite weak
competencies.

ii) “Is a calculator useful for computation, studying function variation,
finding function limits, graphing functions, solving equations, and studying
the domains for which functions are defined?”

Figure 8-3 shows the frequencies of the response very much:

Figure 8-3. Typology and calculator usefulness
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Answers for the different profiles are very similar: for all students,
calculators are used essentially for computing and graphing functions.

iii) “Is a calculator useful in the classroom (for assessment, for the
lesson, to help research), at home (for exercises, to learn lessons, to
explore)?”

Figure 8-4 shows the frequencies of the response very much:

Figure 8-4. Typology and type of calculator work

Teacher-trained students accord a greater importance to calculator use
during the lesson, which is to be expected: if the teacher has shown them
how to use a calculator, s/he probably uses it in her/his mathematics
teaching.

iv) “What is the relative importance of your notebook, your textbook and
your calculator?”

Figure 8-5 shows the frequencies of the responses great and essential:

Figure 8-5. Typology and usefulness of mathematical tools
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In each case, the notebook appears the essential tool, but, for trained
students, calculator use overtakes textbook use. It is also interesting to
remark that self-trained students, who learned calculator use from the
printed instructions for use, are the most frequent users of textbooks.

To summarize, for the four questions asked, while the typology gives
some results it does not identify great differences in calculator use. Some
elements can explain this situation:

the nature of the different typology categories is not the same: the
teacher-trained students have not chosen to be trained (they have simply
been in a classroom where a teacher took charge of this training), whereas
self-trained students, tinkerers and novices are related by being placed in a
situation (of no institutional training) which imposes a personal choice
(choosing to learn from written instructions for example rather than through
a trial and error strategy);

the nature of tool utilization does not depend only on the type of
training. Instrumental genesis is a process: other elements necessarily
intervene (mainly individual work methods and learning environments,
which are obviously different for the 500 students surveyed).

1.1.2 A typology linked to the privileged frame of work

Defouad (2000) notes that “instrumental genesis is not the same for all
students; it depends on their personal relationships with both mathematics
and computer technologies”. He adds that, at the beginning of instrumental
genesis, the relationships with graphic calculators are the most important.
He distinguishes thus, in this graphic calculator environment, three profiles,
a numerical one, a graphical one and a paper-and-pencil one, according to
the frame of work privileged by the student: computation by calculator for
the numerical profile, graphing with calculator for the graphical one, and
obviously, work mainly with paper and pencil for the paper-and-pencil
profile.

These categories are not stable:
Defouad shows that, over the course of instrumental genesis, the nature

of students’ relationships with mathematics becomes more and more
influential;

we saw (Figure 6-10) that the applications employed to achieve tasks
could change, according to the type of environment (for example, when
moving from a graphic calculator environment to a symbolic calculator
environment).
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1.2 A more global typology

1.2.1. Principles for a typology

Understanding differences in students’ behaviors is quite difficult. It
needs to take into account, over a long time, more than just their privileged
frame of work. For example, Mouradi & Zaki (2001) took into account the
importance of paper-and-pencil work, but also the knowledge that students
effectively use, interactions between pairs of students, students and teacher,
and finally between students and computer. We have also (Trouche 2000)
tried to consider various elements:

information sources used, which can be previously built references,
resort to paper-and-pencil, to the calculator or to the setting (in particular,
during research activity, in practical work for example);

time of tool utilization (both the global time over which the calculator is
in use, and the time spent performing each instrumented gesture);

relationship of students to mathematics and in particular proof methods:
proof can proceed through analogy, demonstration, accumulation of
corroborating clues (a particular form of over-checking, Chapter 6, § 1.2.2),
from confrontation (based on comparison of various results obtained via the
different information sources), and last from cut and paste (based on the
transposition of isolated and not necessarily relevant pieces of proof);

metaknowledge that is to say, knowledge which students have built about
their own knowledge (Box 8-1).

Box 8-1.

Metaknowledge

Somebody is never in a wholly ‘new’ situation when discovering an artifact. S/he has already
built knowledge about her/his environment and about her/himself, which is to say
metaknowledge. Metaknowledge has emerged from several research fields:

in the field of Artificial Intelligence, Pitrat (1990, p. 207) distinguishes, between
metaknowledge, knowledge about knowledge, knowledge about one’s own knowledge,
knowledge necessary to manipulate knowledge;

in the field of didactics of mathematics, Robert & Robinet (1996) distinguish knowledge
linked to mathematics, knowledge linked to gaining access to mathematical knowledge, and
knowledge about one’s own mathematical functioning (here these authors evoke the notion
of control, as a global metaknowledge);

in the field of cognitive psychology, Houdé & al (2002) also raise the question of control,
when speaking of the co-existence, in each person, of both relevant and non-relevant
schemes. If rationality, which generally exists for each individual, doesn’t appear in her/his
cognitive performances, the reason is often that the irrelevant schemes have not been
inhibited.
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We have stressed (Trouche 2000) the central role of the subject’s control
of her/his own activity. More precisely, we named this control command
process, defined as the “conscious attitude to consider, with sufficient
objectivity, all the information immediately available not only from the
calculator, but also from other sources, and to seek mathematical
consistency between them” (Guin & Trouche 1999b).

This command process takes place within a chart of essential knowledge
(Figure 8-6), which is required in mathematical activity, in particular, when
using symbolic calculators. It distinguishes two types of metaknowledge:

first-level metaknowledge which makes it possible to seek information
(investigation) from several sources: built references -- both material and
psychological --, paper-and-pencil, the calculator, other students -- in
particular within group work -- which makes it possible to store this
information or to express it;

second-level metaknowledge which makes it possible to process this
information (semantic interpretation, inference, coordination-comparison of
information coming from one or several sources, from one or several
calculator applications or from other students).

Figure 8-6. Information sources and metaknowledge

This chart itself does not completely describe a subject’s behavior:
each aspect of metaknowledge should be more clearly defined; for

example investigation does not have the same character if it is applied only
to the calculator or to the textbook, or to the setting as against it unfolding in
all directions; the storage of new knowledge can be achieved alongside
former knowledge or can lead to a cognitive reorganization (we know from
Dorfler (1993) that experiences in computerized environments do not easily
lead to such a cognitive reorganization);
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it is necessary to give a more precise description of the order in which
the different types of metaknowledge are made use of, the respective time
attributed to each of them. This precise description could be given when one
has to describe the action of a given subject aiming at executing a given task
in a given environment. The chart above could then provide us with a grid
for analyzing this action.

Considering these different points, we have identified five extreme types
of behavior, from observing students’ work over a whole year (firstly in a
graphic calculator environment, then in a symbolic calculator environment)
and from analysis of their written productions and questionnaires, regularly
handed out to them:

a theoretical work method1, characterized by the use of mathematical
references as a systematic resource. Reasoning is based essentially on
analogy and over-excessive interpretation of facts with occasional use of
calculator;

a rational work method, characterized by reduced use of a calculator,
and mainly employing a traditional (paper-and-pencil) environment. What is
distinctive here is the strong command by the student, with inferences
playing an important role in reasoning;

an automatistic work method, characterized by similar student
difficulties whether in the calculator environment or in the traditional paper-
and-pencil environment. Tasks are carried out by means of cut and paste
strategies from previously memorized solutions or hastily generalized
observations. The rather weak command by the student is revealed by trial
and error procedures with very limited reference to understanding of the
tools used, and without strategies for verifying machine results;

a calculator-restricted work method, characterized by information
sources more or less restricted to calculator investigations and simple
manipulations. Reasoning is based on the accumulation of consistent
machine results. Command by the student remains rather weak, with an
avoidance of mathematical references;

a resourceful work method, characterized by an exploration of all
available information sources (calculator, but also paper-and-pencil work
and some theoretical references). Reasoning is based on the comparison and
the confrontation of this information, involving an average degree of
command by the student. This is revealed in the form of investigation of a
wide range of imaginative solution strategies: sometimes observations
prevail, at other times theoretical results predominate.

The time devoted to each instrumented gesture is also an important
element when discriminating between the various types of work method:

this time is extremely brief for calculator-restricted and rational work
methods. In the first case, because zapping behavior (Chapter 6, § 1.2.2)
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involves going from one image to another without thinking; in the second
case, because the calculator is only used for targeted choices (no hesitation
before nor adjustment after doing it);

this time is much longer for theoretical, automatistic and resourceful
work methods, for different reasons: for the theoretical and resourceful work
methods, this time is necessary in order to analyze and compare one result
with others; for the automatistic work method time is necessary to carry out
the gesture itself and to understand the calculator result.

We summarize this typology in Figure 8-7.
Various sources of information were used to build this typology. Among

them, practicals play an important role. Below we illustrate the typology in
relation to a particular task studied during the course of the research.

Figure 8-7. Five work methods in a calculator environment

1.2.2 Illustration of the typology

We proposed work on this task to an experimental grade class, in a
graphic calculator environment: students did not have at their disposal a
Limit command as in a symbolic calculator environment (Appendix 6-2).
This work took place after a detailed lesson on function limits, in particular
about polynomials (Trouche 2000).

The function is defined by:

The questions are:
“determine its limit at
determine a calculator window which confirms your result”.



206 Chapter 8

This type of function is well known to students. Here the difficulty
comes from the distance between the four real roots (– 10/3, 10, 10.01 and
10000), which makes the choice of a relevant window difficult. On the
standard window (Figure 8-8), the graph obtained is not easy to interpret. On
a fitted window, the graph does not correspond to the students’ idea of a
limit at for a function.

Figure 8-8. A function graphic, which looks quite strange

From observation of students it was possible to identify examples of the
different work methods:

theoretical work method: student A
S/he identified a polynomial function

and evoked the relevant theorem: this
polynomial has the same limit at as its
term of highest degree. Therefore, is

Through making a sketch on paper, A
indicated that s/he knew the overall shape
of a fourth degree polynomial.

This theoretical result was also used to find a relevant window for the
calculator: A chose a wider and wider range for the x–axis [0, Xmax],
adjusting Ymax with respect to the value of 0.03 (Xmax)4;

rational work method: student B
B reproduced the method shown during the lesson (in order to

demonstrate the theorem). So B factorized the term of highest degree. Then
s/he gave the limits of each factor and, by applying the theorems on limit
sums and products, found the limit of P. In order to obtain an appropriate
window, B undertook a traditional function analysis: finding the derivative
of P, then the derivative of P’ and the sign of P’’(x). Due to lack of time, B
could not finish the work;
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automatistic work method: student C
C did not recognize a reference function form (Chapter 9, § 3.2.1, note

13) and used her/his calculator to form some idea about it. Defining the
function on the calculator took rather a long time.

C was unable to analyze the graph
shown on the standard window or to
obtain a more appropriate window, and
was not able to use a more theoretical
approach, which seemed too difficult for
such a complex object. The only
information was obtained from the table
of values (see right side). An answer was
given from these results: seems to be

calculator-restricted work method: student D
From the beginning, student D started looking for an appropriate window

for the graph and carried out various tests involving numerous commands:
the Trace command led to the location of points situated outside the

screen and therefore, the student redefined the window to allow the overall
graphic representation to be shown;

secondly, Zoom commands permitted quicker searches.
D used all forms of exploration possible on this calculator (using the

widest possible range for the x variable). In this way, s/he obtained the
required result using only the resources of the calculator, without any
reference to theoretical results, and without putting any record of her/his
work on paper;

resourceful work method: student E
Using theorems learnt during the lesson, E was able to assert that

Then s/he looked for confirmation through a graphic

representation of the function. After some concordant tests, s/he assumed
that the graphics invalidated her/his first result obtained with a theoretical
argument: the function seemed to be strongly decreasing, even for high
values of x. E therefore tried to solve this contradiction and to find a
justification for the exceptional status of this function. Observing the
expression of P, s/he noticed that the coefficient of was extremely large
while the coefficient of was very small. For E this point justified the
exceptional status of this polynomial:

“For standard coefficients, it is the term with the highest degree which
counts;

in this case (a great difference between these coefficients), it is the term
which counts. Therefore is
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This makes clear the characterization of this work method in terms of a
search for coherence when confronted with various results from different
sources.

This typology has also been put to test in other situations, particularly in
symbolic calculator environments (Guin & Trouche 2002).

1.2.3 Interest of the typology

Clearly this typology does not aim to (and could not) constitute a
partition of the work methods of different students in a given environment.
The work methods of most students cannot be classified as one of these
types: they generally fall between positions and they can move between one
and another. However, this typology does make it possible to establish a
geography of the class, which has three-fold interest:

it gives indicators to mark out, at a given moment, the relationship of a
student with the five working styles brought to the fore. Besides, these five
poles appear in similar form in other work: Hershkowitz & Kieran (2001)
distinguish, for example, two types of behavior, linked to different methods
of coordinating representations in a graphic calculator environment: “A
mechanistic-algorithmic way (where students combine representatives in
non-thinking, rote ways) and a meaningful way ”. The former one is close to
our calculator-restricted work method. The latter one looks like the
theoretical work method, which we have previously described;

it helps the teacher to play on the complementarities of the various work
methods: we have shown (Trouche 1996) the interest of the association
between rational and resourceful work methods for practicals. It thus gives
the teacher a means to organize the learning environment. However, these
evolutions depend significantly on work situations and arrangements set up
by the teacher;

it gives indicators to mark out the evolution of student approaches and
thus to interpret their moves in terms of instrumental genesis. We have
shown, for example (Trouche 1996) significant evolutions of the calculator-
restricted work method toward the resourceful work method; we have also
shown that the more complex the environment, the more difficult the
command process and the greater the diversity of work methods (Trouche
2004), and, consequently, the more necessary the intervention of the teacher
in order to assist instrumental genesis and help the process by which the
student exercises command.



Instrumental Genesis, Individual And Social Aspects 209

2. INSTRUMENTAL ORCHESTRATIONS

In both Chapter 6 and Chapter 8 (§ 1), the complexity of instrumental
genesis is apparent, and so the need to articulate a set of instruments from a
set of artifacts. Variability amongst students is also apparent in the
instrumental genesis taking place in a given class2. Until now, we have
considered these processes only in their individual dimension. But each
utilization scheme has also a social dimension3, of which Rabardel &
Samurçay (2001) point out the importance:

The world that genetic epistemology is interested in is a world of nature, not of culture.

We have moved beyond this limitation by giving utilization schemes the characteristics

of social schemes: they are elaborated and shared in communities of practice and may

give rise to an appropriation by subjects, or even result from explicit training processes.

The integration of instruments within a class needs to take the process of
instrumental genesis into account. Obviously while it does not remove the
individual dimension of this process, it reinforces the social dimension, thus
limiting individual diversity.

Box 8-2.

Didactic Exploitation System
(Chevallard 1992, p. 195)

The successful integration of a technical tool in the teaching process requires complex and
subtle work of didactical implementation. Chevallard uses a computer metaphor in order to
distinguish three levels whose interaction is essential:
1) Didactical hardware: didactical environment components, various artifacts (calculators,
overhead projectors, teaching software...), but also instructions for use, technical sheets, etc.
2) Didactical software: mathematics lessons.
3) Didactic exploitation system: essential level concerned with making relevant use of the
potential resources of a didactical environment and with achieving both the coordination and
integration of first and second levels.
Chevallard underlines the importance of this third level: without it, the didactical hardware
components run the risk of being completely excluded from the teaching scene. Within the
history of introducing computers into the institution of schooling, account has begun to be
taken of the necessity of acknowledging and coordinating these three levels only in the face
of failures and under the pressure of disappointments. Available software (word processing,
spreadsheets, CAS, etc.) has not generally been conceived with teaching in mind and thus
requires exceptional work for didactical implementation, along lines which have hardly been
developed in rough.
A didactic exploitation system requires didactical exploitation scenarios. A didactical
exploitation scenario is composed of a pedagogical resource and its implementation modes
(in an ordinary classroom, in a special classroom, etc.) referred to as a didactical
configuration.
Solving problems of the didactical integration of computerized tools requires the
development of a true didactical engineering of computerized tools. The didactical engineer,
between computer scientist and teacher, does not yet exist (or only as a prototype). Once such
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a profession does exist, the teacher will be freed from tasks which s/he cannot carry out
(didactical materials production) and will be able to become a specialist in teaching. Further
from machines; closer to students. More than a teaching evolution, this would be a teaching
revolution.

The institution of schooling has to take charge of these ‘explicit training’
processes. These explicit training processes require that a didactic
exploitation system be designed (Box 8-2) so as to ensure the integration of
tools in a class, and their viability.

This design requires models and exemplars of use:

The degree to which this [CAS] technology is likely to be productive in the classroom

will be highly dependent on the availability of proven models and exemplars to guide

teachers and students in its use (Ruthven 1997).

Models and exemplars of use must include questions of management of
time and space, and organization of tools within the classroom.

In order to take account of this necessity, we have introduced the notion
of instrumental orchestration (Box 8-3) to refer to an organization of the
artifactual environment, that an institution (here the schooling institution)
designs and puts in place, with the main objective of assisting the
instrumental genesis of individuals (here students).

An orchestration is part of a didactical exploitation scenario: it is
designed in relation both a given environment and to a mathematical
situation (Brousseau 1997). As states Rabardel (2001): “activity mediated
by instruments is always situated and situations have a determining
influence on activity”.

Box 8-3.

The word orchestration is often used in the cognition literature. Dehaene (1997) uses this

word pointing out an internal function of coordination of distributed neural networks.

Ruthven (2002) also uses this word, in the mathematical field, pointing out a cognitive

internal function (in relation to the construction of the derivative concept): “unifying ideas are

careful orchestrations of successive layers of more fundamental ideas around a more

abstracted term”. In fact, the necessity of orchestrations, in this sense, clearly manifests itself

in the learning of mathematical sciences seen as “the construction of a web of connections -

between classes of problems, mathematical objects and relationships, real entities and

personal situation-specific experiences” (Noss & Hoyles 1996, p. 105). In our sense, the word

orchestration means an external steering of student’s instrumental geneses.

The word orchestration is indeed quite natural when speaking of a set of instruments.

The orchestration, in the musical register, may indicate two things:

the work of the composer to adapt, for an orchestra, a musical work originally written for

only one instrument or a few;
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“the art to put in action various sonorities of the collective instrument which one names

orchestra by means of infinitely varying combinations” (Lavignac, French musicographer,

1846-1916).

By choosing this word, we refer here to this second and more general sense.

Both define an instrumental orchestration:
a set of configurations (i.e. specific arrangements of the artifactual

environment, one for each stage of the mathematical situation);
a set of exploitation modes for each configuration.
These exploitation modes may favor production of activity accounts.

These accounts can themselves be integrated as new learning and teaching
tools.

An instrumental orchestration may act mainly at several levels:
at the level of the artifact itself;
at the level of an instrument or a set of instruments;
at the level of the relationship a subject maintains with an instrument.
These levels correspond to the three levels of artifacts distinguished by

Wartofsky (1983):
“The level of primary artifacts which corresponds to the concept of the

artifact as it is commonly used (...), computers, robots, interfaces and
simulators;

(...) [The level of] secondary artifacts, which consists of representations
both of the primary artifacts and of modes of action using primary artifacts;

(...) The level of tertiary artifacts (...) represented, for trained subjects in
particular, by simulated situations as well as by reflexive methods of self-
analysis of their own or the collective activity”.

2.1 A first level instrumental orchestration: guide to
mathematical limit

We have proposed such a guide (Trouche 2001) to assist learning of the
idea of limit.

In order to define this orchestration, we have to analyze the gap between
the mathematical idea to be taught (Box 8-4) and the ways in which the
artifact has implemented it (Box 8-5).

From these constraints of the artifact, one can generate some hypotheses
about the techniques which students put in place to study limits of functions,
and about the operational invariants (Boxes 6-4 & 6-5) likely to be built in
such an environment. The constraints of the TI-92 do not favor moving
beyond a kinematic point of view on the idea of limits:
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Box 8-4.

The limit concept

Several frames4 (geometrical, algebraic and numerical) are involved in studying limits,
sometimes creating productive intuitions, sometimes acting as obstacles. Trouche (2003)
distinguishes two main points of view:

a kinematic point of view, within a generally geometrical frame: a quantity y (depending on
x) tends towards b as x tends towards a if, when x becomes closer to a, y becomes closer to b.
For this definition, movement has a crucial role: one can say that ‘variable pulls function’.
The geometrical frame is also important: the limit idea involves bringing together graphical
representatives or geometrical objects (curves and asymptotes for example);

an approximation point of view, in a numerical frame: a quantity y (depending on x) tends
towards b as x tends towards a if y can be as close to b as one wants, as long as x is close
enough to a. It is thus the degree of precision that one wants which constrains the variable.

Construction of the limit concept involves going beyond the first point of view, but it is often
an articulation of the two points of view that permits this notion to be grasped.

the calculator, through its symbolic application, only gives (if it ‘knows’
an answer) the value of the limit, which is not sufficient to give sense to the
idea;

through its graphical and numerical applications, the calculator clearly
presents a kinematic point of view.

We want to define an orchestration aiming to support instrumental
genesis, transforming the TI-92 artifact into an instrument for computation
of limits. To achieve this objective, it is necessary to fit out the artifact itself
(it is a first level orchestration) in order to favor, in this environment, the
passage from a kinematic point of view to an approximation point of view.

Box 8-5.

Constraints on limit computations of one symbolic calculator (TI-92)
and corresponding potentialities

We use here the typology of constraints presented in Chapter 6, § 2.1.

1) The internal constraints (what, by nature, the artifact can do?)
A symbolic calculator contains a CAS application (Computer Algebra System); it can
determine an exact limit provided that the corresponding “knowledge” has been entered.
A symbolic calculator can also (as a graphic calculator) give graphic or numerical
information on the local behavior of functions. The processing is done by numerical
computation.

2) The command constraints (what are the available commands?)
Only one Limit keystroke exists. It is a formal command, located in the calculator symbolic
application.



Instrumental Genesis, Individual And Social Aspects 213

Its syntax is (see screen) “limit(f (x),x,a)”; it
corresponds to the order of the statement “the limit
of f(x) as x tends toward a”. Nevertheless this
command can be combined with the approximate
detour (Chapter 6, § 2.3.1). In the example shown,
the Limit command, applied to the function

does not give the result “directly”,
but gives it by switching to approximate detour
(screen copy, line).
3) The organization constraints (how are the available commands organized?)
The different applications (symbolic, graphical or numerical) permitting the study of
functions are directly accessible on the keyboard. As a part of graphical or numerical
applications, the operation of the calculator requires the interval of x and then the interval of
y to be chosen first. This is a natural order for the study of functions, but is not an adequate
order for studying limits (Box 8-4): the mathematical organization and tool organization are
opposed from a chronological point of view.

This configuration rests on putting in place, within the calculator, three
levels for each study of a limit. We present these through an example of a

These three levels5 are accessible from a subsidiary menu linked to the
Limit command (Figure 8-9).

Figure 8-9. Menu and sub-menu allowing access to three levels of study of limits

Level 1. Conjecture searching
The Conjecture command gives access to a split screen: on the left side

is the TABLE of values application, on right side, the GRAPH application
(Figure 8-10). The split screen allows these two applications to be
connected.

One has to choose a table setting and a graph window (here, the study
being in the neighborhood of infinity, corresponding to ‘large’ values of the
variable x).

Observation of both tables of values allows a conjecture to be formed:
maybe the function limit is equal to 0.

limit, the value of which is not known by the calculator

(Appendix 6-2).
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Figure 8-10. Conjecture searching

Level 2. Testing
The Testing command gives access to a

new split screen, again with the table of
values and graphical applications (Figure
8-11). But here there is a fundamental
logical reversal: one has to choose first the
neighborhood for y, image of the variable
x. Figure 8-11. Conjecture testing

It is thus the degree of precision one wants which constrains the variable.
It is a sort of challenge, linked to the approximation point of view (Box 8-4):
if one wants y to be in a given neighborhood of 0, in which interval

is it sufficient to choose x?

The obtained numerical and graphical
results (Figure 8-12) show that the
constraints on the variable are not
sufficient: the aimed degree of
approximation is not achieved. The
student thus has to go back to choose a
new table set and graph window. These
gestures are not only gestures of
exploration: they are preparing the passage
from a kinematic point of view to an
approximation point of view.

Figure 8-12. Not sufficient constraints
on the variable

Level 3. Proof
The Proof command gives access to a

new split screen: on the left side, the
symbolic application, on the right side a
work sheet dedicated to proof (Figure 8-
13). The symbolic application can give the
limit value (although this is undefined in
the case shown here). Figure 8-13. Proof screen
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The right work sheet gives access to menus which allow the “guiding of
thinking about problems and tool classification principles” (Delozanne
1994):

the F1 menu gives access to a set of theorems. It leads to work on
characterizing the functions studied (for example, “is it possible to apply
theorems on limits of rational functions to the given function?”);

the F2 menu allows framing strategies to be tried out, with the help of
calculator numerical and graphical applications. It leads to a comparison
with reference functions (Chapter 9, § 3.2.1, note 13);

the F3 menu gives access to symbolic functionalities (factoring,
expanding, etc.).

We have thus defined an orchestration configuration. Defining
orchestration involves choosing some exploitation modes. Several modes are
possible:

this limit math guide can be always available or available only during a
specific teaching phase;

students can be free to use this guide, when available, as they want, or
they can be obliged to follow the order of the three given levels;

the list of stored theorems can be fixed, or it can be progressively
established, linked to the mathematical lessons, built in the classroom and
collectively stored in each calculator;

activity accounts can be required, describing all the steps of
instrumented work, or not.

The orchestration defined in this way, modifying the artifact itself, is not
a matter of building the explication module of an expert system (besides,
Delozanne (1994) indicates that this task is quasi-impossible if the software
designer has not initially taken this development into account). It could only
constitute a guide6, an assistant for instrumental genesis, in the study of
limits, making it possible to move from one frame to another, and providing
balance between the two points of view constituting this notion (Box 8-4).
Designing such an orchestration involves analyzing precisely both the notion
to be taught (from an epistemic point of view) and the way in which the
artifact has implemented it. It does not solve, in itself, the problem of the
learning process of the limit idea: one also has to choose a field of critical
functions, more generally a field of problems nested in didactic situations
which have to be elaborated. Defining a didactical exploitation scenario
requires then the choosing of an orchestration which is well adapted to each
stage of this problem treatment.
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2.2 A second level orchestration: around the sherpa-
student

The utilization of individual tools within the school, in the form of
calculators fitted with a small screen, raises the issue of the socialization of
students’ actions and productions. This socialization requires particular
arrangements. Since the beginning of the 1990s, there has been a particular
artifact -- a view-screen -- which allows one to project the calculator’s small
screen7 onto a big screen, which the entire class can see. Guin & Trouche
(1999a) presented an instrumental orchestration, which exploits this
arrangement with the main objective of socializing -- to a certain extent --
students’ instrumental genesis.

Figure 8-14. The sherpa-student, part of an instrumental orchestration

The configuration of this orchestration (Figure 8-14) rests on the
devolution of a particular role to one student: this student, called the sherpa-
student8, pilots the overhead-projected calculator. S/he will thus be
considered, for both class and teacher, as a reference, a guide, an auxiliary
and a mediator. This orchestration favors the collective management of a
part of the instrumentation and instrumentalization processes (Chapter 6,
§ 2.2): what a student does with her/his calculator -- traces of her/his
activity -- is seen by all. This allows one to compare different instrumented
techniques and gives the teacher information on the schemes of
instrumented action being built by the sherpa-student.

It also has other advantages:
the teacher is responsible for guiding, through the student’s calculator,

the calculators of the whole class (the teacher does not perform the
instrumented gesture but checks how it is performed by the sherpa-student).
The teacher thus fulfils the functions of an orchestra conductor rather than a
one-man band9;
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for his/her teaching, the teacher can combine paper-and-pencil results
obtained on the board, and results obtained by the sherpa-student’s
calculator on the class screen. This facilitates, for students themselves, the
combination of paper-and-pencil work and their calculator work at their own
desk.

Several exploitation modes of this structure may be considered. The
teacher may first organize work phases of different kinds:

sometimes calculators are shut off (and so is the overhead projector): it
is then a matter of work in a paper-and-pencil environment;

sometimes calculators are on as well as the overhead projector and work
is strictly guided by the sherpa-student under the supervision of the teacher
(students are supposed to have exactly the same thing on their calculator-
screens as is on the big screen for the class). Instrumentation and
instrumentalization processes are then strongly constrained;

sometimes calculators are on as well as the overhead projector and work
is free over a given time. Instrumentation and instrumentalization processes
are then relatively constrained (by the type of activities and by referring to
the sherpa-student’s calculator which remains visible on the big screen);

sometimes calculators are on and the projector is off. Instrumentation
and instrumentalization processes are then only weakly constrained.

These various modes seems to illustrate what Healy (2002) named filling
out and filling in10, in the course of classroom social interaction:

when the sherpa-student’s initiative is free, it is possible for
mathematically significant issues to arise out of the student’s own
constructive efforts (this is a filling out approach);

when the teacher guides the sherpa-student, it is possible for
mathematically significant issues to be appropriated during children’s own
constructive efforts (filling in approach).

Other variables must also be defined: will the same student play the role
of the sherpa-student during the whole lesson or, depending on the results
proposed, should such and such a student’s calculator be connected to the
projector? Must the sherpa-student sit in the front row or must she/he stay at
her/his usual place? Do all students have to play this role in turn or must
only some of them be privileged?

Depending on the didactic choices made, secondary objectives of this
orchestration can arise:

to favor debates within the class and the making explicit of procedures:
the existence of another point of reference distinct from the teacher allows
new relationships to develop between the students in the class and the
teacher, between this student and the teacher -- about a result, a conjecture, a
gesture or a technique --;

to give the teacher means through which to reintegrate remedial or weak
students into the class. The sherpa-student function actually gives remedial
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students a different status and forces the teacher to tune his/her teaching
procedures to the work of the student who is supposed to follow her/his
guidelines. Follow-up of the work by this student shown on the big work-
screen allows very fast feed-back from both teacher and class.

This instrumental orchestration involves coordination of the instruments
of all students in the class and favors the connection, by each individual, of
different instruments within her/his mathematics work.

2.3 Another second level orchestration: practicals

Guin & Trouche (1999a) present an organization of students’ research
work in a calculator environment: practicals.

This orchestration aims to:
make it possible for instrumental genesis to proceed at its own rhythm;
develop social interactions between peers;
favor establishment of relationships between different tools (calculator

and paper-and-pencil) within a research process.
The configuration is this one: each student has at her/his disposal a

calculator, paper-and-pencil. Students work in pairs (work groups are small,
because of the smallness of the calculator screen) to solve a given problem.
These problem situations (Appendix 8-1) are created with the aim of
promoting interaction between calculators, theoretical results, and
handwritten calculations as an aid to conjecture, test, solve and check. After
working on these problem situations, each pair has to explain and justify
their observations or comments, noting discoveries and dead-ends in a
written research report. The role of this report is twofold:

it focuses the student activity on the mathematics and not on the
calculator, forcing students to give written explanations for each stage
undertaken in their research (a very important step);

it gives the teacher a better understanding of the various steps of the
students’ work method, and makes it possible to follow the instrumental
genesis of students.

There is only one notebook for each pair. This choice is an important
one: each research team is thus obliged to find a consensus, or to explain
divergences.

Several exploitation modes are possible:
students can be free (or not) to form themselves into pairs. We showed

(Trouche 1996) the value of some specific pairings, for example a student
with a quite rational work method and a student with a quite calculator-
restricted work method: the interaction allows an evolution of each work
method and some enrichment of instrumentation processes;
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students can be free (or not) to choose which one will write the research
report;

the teacher can offer appropriate assistance to help students out of
deadlocks, to reinitiate reflection during the practical, or only at the end of
it, or a week after;

written research reports can be given to the teacher at the end of
practicals, or a week later. In the first case, research reports are more faithful
(showing what happens during practical, moment by moment, step by step).
In the second case, students can have more time to read their own report, to
think about their own work, to criticize their own research;

after reading students’ research reports, the teacher can give a problem
solution, in relation to the students’ results, or give only some partial
indications opening up new strategies for students to pursue during further
practicals.

In the frame of this orchestration, teachers and students play a new role,
as stated by Monaghan (1997): “the teacher is viewed as a technical
assistant, collaborator, facilitator and as a catalyst, and students have to
cooperate in group problem solving”.

2.4 A third level orchestration: mirror-observation

In the previous orchestration (§ 2.3), a research notebook constitutes an
essential tool for students (for making explicit their own calculator and
paper-and-pencil approaches, evaluation of the relevance of results, etc.).
This notebook thus appears to be a tool for activity self-analysis (Rabardel &
Samurçay 2001). We have presented (Trouche 2003) another arrangement,
so called mirror-observation (Figure 8-15).

Figure 8-15. The mirror-observation configuration
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This device aims at analysis of a work period during the course of the
year. The configuration is this one: students work in pairs. Half of the pairs
(Figure 8-15, observed students) carry out a given mathematical task. The
other half observe and note the actions carried out, with the help of two
artifacts:

a palette for overhead projection makes it possible to capture the
calculator screen of one of the students from the pair (the one who is not in
charge of the written research report);

observation sheets are used to note, every fifteen seconds11, the whole of
the students’ actions. These sheets (Figure 8-16) appear as grids in which are
located different types of tasks: paper-and-pencil tasks, calculator tasks
(distinguishing the different applications involved), tasks relating to
interactions (with the teacher, other students, or oneself: hazy gaze) and last
the other actions that have nothing to do with the problem dealt with.

Figure 8-16. A timed observation sheet
(During the first 15 seconds, student reads problem text, then s/he uses her/his calculator

for some computations, etc.)

Examination of the grids, corresponding to observation of five student
pairs during the first five minutes is presented in chronological order (Figure
8-17). One may observe the large dispersion of work methods: pair number
1 takes a very short time reading the problem text, and rushes toward the
calculator. Pairs number 3 and 4 spend a certain time on various irrelevant
actions.
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Figure 8-17. Compared synthesis of actions performed by the five pairs of students
during the first five minutes of the activity

This instrumental orchestration highlights, not so much the results of the
activities, but the various forms that these can take. It enables students, as
they themselves noticed, “while observing others to observe oneself” (hence
the suggestion of the term mirror for this type of observation) offering the
possibility of an auto-analysis of the action, the construction by a reflexive
mediation: for the majority of the observed subjects, the organization of
action revealed by the chronological synthesis caused major surprise (for
instance: “How come, I haven’t spent more than 15 seconds reading the text
of the problem?”). The gap between what the students actually did and what
they remembered doing, as well as the gap between the written traces of the
research report and the written traces of the observation sheet, allow a
profound reflection on the shape of activity, allow the understanding of
certain defaults and the rectification of certain failings.

Various exploitation modes are possible. Among them:
this orchestration may be used only exceptionally, or may be a regular

tool for regulation of students’ instrumented activity;
one may fix, or not, the role of each observed student (for example one

can be in charge of the calculator, the other in charge of the research report);
the type of tasks noted on the timed observation sheet can be modified,

in relation to the type of mathematical problem set;
each observation sheet analysis can be done within the group of four

students (the students observed and the two observing), or all these
observation sheets can be made public with the whole class.

Other devices can arouse students’ thinking about their own activity12:
for example some experiments (Trouche 1998) incorporated some form of
“barometer” of the integration of instruments, i.e. questionnaires asking
students about their instrumented activity. These accounts, giving
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information about what students think about their own activity, are
complementary to observations from their peers.

3. DISCUSSION

Common elements can be recognized within these various instrumental
orchestrations: a favoring of interaction between students, the publication
and use of accounts of activity (sherpa-student’s screen, research reports, or
timed observation sheets), thus giving the teacher means to understand and
guide the instrumental genesis of students. Instrumental orchestration
combines all these elements to reinforce the social dimension of
instrumented action schemes and to assist students in the process of
command.

The need for a strong process of command is linked to the practice of
mathematics; mathematics seen as “a web of interconnected concepts and
representations which must be mastered to achieve proficiency in calculation
and comprehension of structures” (Noss & Hoyles 1996). It is also linked to
the tools available.

The necessity of taking the tools of the environment into account is not
new. Proust (2000) notes, for example, recurrent mistakes in Babylonian
numerical texts, in computation involving numbers composed of more than
five figures. Her hypothesis is that these mistakes came from sticking
together two computations realized with a tool linked to the five fingers of
the hand. More exactly, it is a matter of the bad articulation of two types of
artifacts: artifacts for material computation, and for writing, fingers being
involved in both types of gesture.

What is true for ‘old’ computation environments is all the more true in a
computerized environment (Basque & Doré 1998). Very sophisticated
artifacts such as those available in a symbolic calculator environment give
birth to a set of instruments. The articulation of this set demands from the
subject a strong process of command, allowing her/him to build coherent
systems of instruments. As Rabardel (2000) notes, this is a crucial point:

This question seems to us particularly crucial in view of the current context of
technological expansion. What artifacts should be proposed to learners and how should
we guide them in their instrumental genesis and through the evolution and adjustment of
their systems of instruments?

Instrumental orchestrations seem to give some elements of an answer to
this question. They take into account artifacts in the learning environment, at
three levels (tool level, instrument level, meta-level). They take place
(Figure 8-18) within a didactical exploitation scenario (Box 8-2). According
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to the metaphor, we could say that designing an orchestration requires a
musical frame. The following chapter will treat this point, i.e. the design of
mathematical situations and problems.

Figure 8-18. Evolution of a learning environment

After choosing a mathematical situation and defining the management of
successive situation stages, designing an instrumental orchestration implies
defining a didactical configuration and its exploitation modes.

A didactical exploitation scenario has effects on a learning environment:
obviously it has effects on the knowledge built, via the treatment of

mathematical situations;
it has effects on the didactical contract (Box 8-6). For example, the

devolution of a particular role to a sherpa-student (§ 2.2) enables parts of
this contract to be made explicit;

it has effects on instrumental genesis, i.e. on instruments and systems of
instruments.

Box 8-6.

Didactical contract
(Brousseau 1997)

Brousseau evokes the contract, i.e. “the relationships determining - explicitly for a small part,
but mainly implicitly, what each partner, teacher and learner, has to manage and what s/he
will have the responsibility for”. Part of this contract, which is related to the content,
mathematical knowledge, is the didactical contract.
Brousseau points out the importance of the points at which this contract breaks down:
“knowledge is precisely what will solve the crisis related to these breakdowns (...). The
surprise of the student, when s/he can’t solve the problem and rebels against the teacher who
has not made her/him able to solve it, the surprise of the teacher who estimated her/his
lessons to be sufficient… revolt, negotiation, search for a new contract depending on the new
state of knowledge”. The essential notion is therefore not the contract itself, but, through the
breakdowns, the process of searching for a hypothetical contract.



224 Chapter 8

Designing such scenarios of didactical exploitation is a complex task, calling
for various competencies (Chevallard 1992): computer engineers, didactical
engineers, curriculum designers, etc. Such work certainly exceeds the
possibilities of a teacher, alone in her/his class.

In the context of ICT distance learning, some experimentations (Joab &
al 2003) allowed teachers to work collaboratively and gave birth to a new
type of pedagogical resource, including a scenario in use (Allen & al 1994,
1996) taking the management of artifacts into account. This seems to be a
way to make orchestrations explicit (see Conclusion).
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APPENDIX

Appendix 8-1
About practicals

(Trouche 1998, p. 16)

Work method proposed to students

You have to study this problem as a mathematical researcher. The most important thing

therefore is the writing of a research report, in which you will note your approaches (even

dead-ends), methods, tools used (if you use a calculator, you will specify which applications,

which gestures, etc.).

If you solve the problem, so much the better! If not, the research done will not be useless!

One learns from failures as well as from successes. What will be assessed will be more the

relevance of your methods than the results themselves.

Your research report obviously has to be readable. But don’t think of it as a final

examination: it will necessarily bear marks of hesitation linked to each research process.

Working in pairs calls for collaboration, putting ideas in common and sharing tasks: a team

enterprise. Avoid becoming too specialized in function (for example: always the same student

using the calculator, always the same writing the research report): prefer task rotation!

During practicals, you have to study the following main question. You will probably have no

time to study extra questions: you will tackle this problem later, in order to go further than the

main question.

A example of practical text

Main question

How many figures 0 are there at the end of the numerical value of these expressions: 10!,

100!, 1000!, 1997!

Extra question

n being a given positive integer, a sequence u(n) is defined by “the number of figures 0 at the

end of n!”. Can you define this sequence for your calculator (and so answer easily the main

question above)?
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NOTES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

It has been difficult to find good labels for each work method. Other difficulties appear
when translating them. Firstly we chose the five French labels théorique, rationnel,
scolaire, bricoleur and expérimentateur. The label scolaire, criticized, has been replaced
by automate in our most recent papers (Trouche 2004). At first, our English labels were
theoretical, rational, random, mechanical and resourceful (Guin & Trouche 1999b). The
new labels chosen here seem to us better adapted, even if a single expression cannot
summarize the whole description itself: for example, the fourth work method cannot be
only characterized by the fact the work is mainly restricted to the calculator.
In this paragraph, the word class means basic schooling structure. Our propositions are
based on experimentations carried out in and grade classes.
What is true for instrument use is also true, more generally, for mathematical practice.
Brousseau (1997) writes: “… doing mathematics is first, for a child, a social activity, not
only an individual activity”.
The notion of frame, in this sense, was introduced by Douady (1986, p.11): it is “made of
the objects of a branch of mathematics, the relationships between these objects, their
eventually diverse formulations and the mental images associated with these objects and
relationships”.
These are theoretical proposals, not yet implemented on a calculator and not
experimented.
With the same goal, Texas Instrument has developed a Symbolic Math Guide for its
symbolic calculators “to help students learn algebra and some aspects of calculus by
guiding them as they develop correct text-book-like solutions. SMG can be used when a
student first learns a topic or as quick review” (http://education.ti.com).
Some constraints of this artifact can be analyzed:

the connection with a calculator requires a special plug on it, available only on some
calculator types;

the cable linking this artifact to a calculator is only 2 m long.
The consequence of these two constraints is that this device is probably designed for the
teacher’s use. Bernard & al (1996) showed indeed that it is, when available in a classroom,
connected to the teacher’s calculator.
On the one hand, the word sherpa refers to the person who guides and who carries the load
during expeditions in the Himalaya, and on the other hand, to diplomats who prepare
international conferences.
This advantage is not a minor one. Teachers, in complex technological environments, are
strongly prone to perform alone all mathematical and technical tasks linked to the problem
solving in the class (Bernard & al 1996).
Healy (2002) identified a major difference between instructional theories drawing from
constructivist perspectives and those guided by sociocultural ideologies, which related to
the primacy assigned to the individual or the cultural in the learning process.
Constructivist approaches emphasise a filling-outwards (FO) flow in which personal
understandings are moved gradually towards institutionalized knowledge. A reverse
filling-inwards (FI) flow of instruction described in sociocultural accounts stresses moving
from institutionalized knowledge to connect with learners understandings. Teaching
interventions in Healy’s study were therefore designed to allow investigation of these two
different instructional approaches: the FO approach aimed to encourage the development
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of general mathematical models from learners’ activities; and the FI approach intended to
support learners in appropriating general mathematical models previously introduced.
Meinadier (1991) thus estimates the size of the “task unit” in the context of computer use.
Vasquez Bronfman (2000, p.227) defined the reflexive practicum, an arrangement of quite
the same nature, as “a frame, a way, aiming helping learners to acquire the art of working
in uncertain (or undetermined) domains of their practice”.

11.
12.
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Abstract: In this chapter, we approach the question of the integration of symbolic

calculators into education, through the analysis of two didactic engineering

projects developed and experimented by the research teams ERES (Université

Montpellier II) and DIDIREM (Université Paris VII). The first project

concerns exact and approximate computation, and the equivalence of algebraic

expressions; it was planned for grade 10 students (15-16 year-old students);

the second project concerns the teaching of the derivative to grade 11

scientific students. Through retrospective analysis of these two experiments,

and by using the theoretical frames and approaches developed in the previous

chapters, we investigate the problems raised by the integration of symbolic

calculators into secondary mathematics education. This leads us, in the last

part of this chapter, to discuss the viability of such an integration.

Key words: Algebra, Derivatives, Didactic engineering, Instrumental genesis. Viability
conditions.
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1. INTRODUCTION

The evolution of the mathematical field has always been dependent on
the computation tools available and, as was shown in Chapters 2 and 3, the
development of software for symbolic computation has had an increasing
influence on mathematical practices and even problematics1. School, as is
the case every time that it faces an evolution of scientific and/or social
practices, can neither stand apart from this evolution, nor ignore the new
needs it generates. But, as was underlined in Chapter 1, the appropriate form
of adaptation by School is not obvious and is the source of many tensions.
These tensions become easily understandable if one considers the reasons
which, in the culture, legitimize mathematics education. What School wants
firstly to transmit, through mathematics education, is some mathematical
culture and the values of this culture: a way of approaching the world and a
way of arguing which seem to characterize this discipline2. As evidenced by
research in the philosophy and epistemology of mathematics, such
characterization is more difficult than it appears at first sight, but beliefs
about mathematics are well anchored in the culture and they condition the
relationships that School develops with computational tools.

Professional worlds as well as society at large have a pragmatic
relationship with computational tools: their legitimacy is mainly linked to
their efficiency. But what School aims for, even in the most professional
streams, is much more than developing an effective instrumented
mathematical practice. The educational legitimacy of tools for mathematical
work has thus both epistemic and pragmatic sources: tools must be helpful
for producing results but their use must also support and promote
mathematical learning and understanding. Answering this question is not
simple. Mathematical needs are not absolute, independent from the
evolution of problematics, of scientific and social practices; and the
evolution of these is itself dependent on technological evolution. Up to now,
nevertheless, school mathematical values and needs have tended to be seen
as something rather absolute and independent from technological evolution.
This position is less and less sustainable and new balances need to be found.

All technologies are not equally affected, but software for symbolic
computation (CAS) is especially sensitive to these issues of educational
legitimacy, all the more as what is at stake in secondary education is not the
learning of symbolic computation as a specific domain, but the use of
symbolic tools in mathematical education. Any instrumentation of these
tools certainly requires some awareness of the problems and issues attached
to formal calculus, as well as those arising from the representation of
numbers and algebraic expressions, and from the validity, effectiveness and
complexity of algorithms, but this awareness can remain very superficial.
The dominant logic is that of the tool and this is often the only one visible.
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While obeying the same logic, the use of dynamic geometry systems (DGS)
does not raise the same problems. They were conceived as educational tools
and are used in a domain -- geometry -- which crystallizes for our culture the
values of mathematical reasoning and proof. It seems evident that DGS
cannot take charge of all the mathematical work expected from the student
in geometry. The situation is quite different with CAS. Our culture is little
sensitive to the richness of the modes of reasoning which underlie numerical
and algebraic computations, and to the learning of these modes, and it tends
to reduce computation to the execution of algorithms. With symbolic
software efficiently taking over this execution, teaching values are strongly
destabilized and the integration of such tools into secondary education
generates unavoidable tensions.

And even if one takes account of the evolution of practices and
mathematical needs, and declares an ambition to train students to work,
think, reason, produce, in a world instrumented by these technologies -- as
the current world is -- the problem is still not solved. What remains open is
the question of the strategies to be implemented to reach such an objective.
As shown in previous chapters, such strategies have to manage jointly and
coherently the development of both mathematical and instrumental
knowledge, and this is far from being an easy task.

The research underlying this book takes this perspective and therefore
can only have, with regard to the current state of integration, a prospective
value. Even if it seems reasonable to think that, in the near future, symbolic
calculators will be as common at secondary level as graphic calculators are
now, today these technologies remain more or less marginal in secondary
education. We are now in a phase where, while being in principle legitimate,
they are not a living part of the educational institution. Thus, to carry out the
experiments presented in this book, it was necessary to create protected
environments allowing the researchers to study didactic processes which the
usual environment did not allow them to observe. Thus the results which
arise from these experiments have obvious limitations but, as we will try to
show, they are nevertheless illuminating.

In this chapter, revisiting some engineering work which has been
developed, we would like to give a synthetic view of the main contributions
that this work offers for reflection on the integration of ICT into secondary
mathematics education. These contributions are diverse. They are firstly of a
theoretical nature as they provide us with a framework for approaching
learning and teaching processes in symbolic environments, and with ideas
allowing us to make this framework operational, such as those attached to
instrumentation processes, both in their personal and institutional
dimensions. This frame is more generally situated within the anthropological
approach developed by Chevallard (Box 5-1). Then they are of an
experimental nature, bringing us detailed information about the way in
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which students can jointly develop their mathematical and instrumental
knowledge, about the new needs that these elaborations require, and the
ways in which teachers can take charge of them efficiently. All these
contributions have been presented and discussed in the previous chapters. In
this chapter, we would like to draw on them to analyze some of the
engineering strategies which were developed, to analyze and discuss the
choices underlying these, to point out some interesting regularities, and
finally to question their conditions of viability. Even if they were carried out
in privileged environments, these engineering strategies could not wholly
escape institutional and cultural constraints; their actors faced problems of
compatibility with standard mathematics education, and many other
problems. The ideas that they offer are essential in order to think about less
marginal uses, to think also about one key issue, that of teacher training.

For obvious reasons of space, we could not seriously analyze in this
chapter the whole engineering work developed by the DIDIREM and ERES
teams, not to mention others. Indeed, this work covers the teaching of
algebra and calculus over the three years of senior high school (from grade
10 to grade 12). We have preferred to focus on some examples and to
evidence, through these examples, the type of work carried out, the
problems met, the results obtained. We have chosen two examples. The first
example deals with numbers and algebra in grade 10. It corresponds to a
piece of ‘local’ engineering (over three sessions). The scenario and the
reported observations correspond to a first experiment, carried out with
students who, at the same time, were discovering the TI-92 calculator. The
second example concerns the teaching of the derivative to grade 11 scientific
students. This is a more ‘global’ product. The analysis, furthermore, takes
into account the evolution of the design between the first and the second
year of experiment. These two examples thus present different
characteristics and offer complementary insights for reflection on the
questions raised in this introduction.

2. EXACT AND APPROXIMATE COMPUTATIONS,
EQUIVALENCE OF EXPRESSIONS (GRADE 10)

The ERES team in Montpellier decided to link familiarization with the
TI-92 to some mathematical work on exact and approximate computations,
and on the equivalence of expressions (Guin & Delgoulet 1997). Before
going into the detail of this engineering and into its analysis, we shall clarify
what it seems in principle possible to expect from this kind of design,
considering it as a particular but representative example of a wider set.
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2.1 The mathematical and instrumental potentialities a
priori of such an engineering

2.1.1 Rethinking the relationships between exact and approximate
computations

The use of numeric and graphic calculators, in secondary education,
tends to separate two worlds: that of exact computations, done by hand, and
that of approximate computations performed by the calculator, and used
when exact computations are impossible or too complex. In this practice of
approximate computation, the quality of the estimates obtained is not
seriously evaluated, as was shown by Birebent’s recent thesis (Birebent
2001)3. This vision of the relationships between exact and approximate
computations is well anchored in the culture but does not reflect current
scientific functioning4.

With symbolic calculators, both types of computation become
instrumented by the machine. We can imagine that this change helps to
approach the question of relationships between exact and approximate
computations in a more adequate way and can have positive effects on the
students’ understanding of approximation.

2.1.2 Working on the relationships between sets of numbers

It is well known that the use of scientific and graphic calculators tends to
obscure the distinctions between numbers. Real numbers, whether they be
decimal, rational or irrational, uniformly appear in the form of a decimal
estimate limited to at most a dozen places.

This allows the true status of the numbers involved in mathematical work
to remain fuzzy and does not help students to distinguish between numbers
and their representations. The secondary curriculum, at least in France, does
not give students the means to clarify the situation, as was evidenced by
Bronner (1997), and students’ conceptions of numbers continue to be fuzzy
beyond the secondary level. Bronner shows, for instance, that even students
preparing for the CAPES5 examination can have difficulties with questions

such as the following: what is the exact nature of the number What
do you think about the decimal value given by the calculator?

By offering the possibility of working both on decimal estimates and on
symbolic expressions of rational and irrational numbers, the symbolic
calculator changes the conditions of mathematical work and allows the
teacher to introduce issues that traditional education has difficulty in
bringing to life.
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2.1.3 Working on the sense of algebraic expressions

Considering algebraic objects, it is interesting to distinguish, according
to Frege, their sense and their denotation6. In the algebraic work,
transformations carried out (for instance in solving an equation or an
inequation) must preserve the denotation of the objects involved but, as soon
as one goes beyond routine tasks, transformations are driven by the sense of
the expressions involved. The different equivalent forms that an algebraic
expression can take do not give us the same information about this
expression and do not present the same utility according to the problem to

solve. The expanded form is useful if one wants
to study the behavior of this polynomial when x tends towards infinity but
the factorized form is better adapted if one wants to
find the roots of this polynomial or to study the sign of this expression
according to the values of x (to study for example the variations of a
function whose derivative is this polynomial modulo a factor of constant
sign). In France, at junior high school level, students are not given real
autonomy in planning computations according to the sense of the
manipulated objects. It is when students enter senior high school that
developing such an intelligence of algebraic computation becomes a real
concern of mathematics education.

The use of symbolic calculators can be particularly useful to support this
learning. In a paper-and-pencil environment indeed, limitations in the
students’ abilities make it necessary to severely limit the complexity and
variety of the expressions manipulated. These limitations tend to reduce
algebraic computation to a small number of routines. Thus, the intelligence
of computation does not have an appropriate space to develop. Working
with symbolic calculators modifies the economy of the didactical system.
On the one hand, it becomes less expensive to work with more complex
expressions if the transformations are made by the machine, and the
necessity of choosing appropriate commands makes explicit and central the
planning of computations according to their precise aims. On the other hand,
the machine does not always work as expected. The simplifications which it
automatically performs on the expressions entered, the form in which it
expresses results, are often different from those usual in the paper-and-
pencil environment at school. Thus, students are necessarily faced with
problems of equivalence and have to develop competences for dealing with
these efficiently, both mentally and with the help of the calculator. Another
point is that transformations which seem elementary can be impossible to
obtain, for example in trigonometric computations, while the machine gives
immediate results for computations which would be very painful, even
impossible to perform by hand. This faces the student with a rich and
unexpected algebraic landscape. Learning to understand it in order to
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become an efficient user of the machine is a new concern for algebraic
education which can help to develop what we called above the intelligence
of algebraic computation.

2.1.4 Making students sensitive to key issues in the field of symbolic
computation such as simplification and data representation

The use of symbolic calculators, even if these are mainly considered as
tools for mathematical activity, faces students and teachers with key issues
of symbolic computation seen as a discipline, such as simplification and
representation issues. Beyond the tool dimension of CAS, what is at stake
here is their object dimension, according to the distinction made by Douady
between these two facets of mathematical concepts (Box 9-1).

Box 9-1.

Tool and object dimensions of a mathematical concept
(Douady 1986, p.9)

An important part of the activity of mathematicians consists of setting up and solving
problems. To do that, researchers are led to create conceptual tools, to which have been
added technical tools (such as computers and software today). Due to the needs of
communication inside the scientific community, the concepts thus created are de-
contextualized, and expressed in the most general form possible. They integrate, then, the
body of already built knowledge, extending it or substituting for some pieces of it. In this
process, they gain an object status. It also may happen that researchers directly create new
objects in order to reorganize a branch of mathematics.
For these reasons, we say that a concept is a tool when we focus our interest on the use made
of it for solving some problem. By object, we understand the cultural object having some
place in a larger body, that of scholarly knowledge at a given moment, socially
acknowledged.
Knowing mathematics is thus two-fold: on the one hand, it means having some functional
availability of certain notions and theorems for solving problems, for interpreting these and
rising new questions. On the other hand, knowing mathematics means also identifying
notions and theorems as elements of a corpus, scientifically and socially acknowledged.
This is also a matter of articulating definitions, formulating theorems and proving these. In
this case, notions and theorems have the status of object.
Summarizing, a concept is a tool when it is used for solving problems internal or external to
the mathematical field; it is an object when it is worked on for itself or for its relationships
with other objects.

The entry of an expression into a symbolic calculator automatically
produces an evaluation and simplification of this expression as shown by the
screen reproduced in Box 9-2. The entered expression appears on the left
side of the screen, and one can thus check that it was correctly entered; the
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simplified form appears on the right side. Sometimes these two forms are
identical or differ only in the order of their terms, sometimes changes are
more substantial: a polynomial expression can be factorized or expanded, a
rational fraction can be reduced to simple elements, quotients can be
simplified by factors, radicals can disappear… Why such transformations?
Are they always legitimate? Do they always correspond to simplifications?
And what does simplifying really mean? Here, there is in principle a
fantastic opportunity for approaching issues that are generally only a matter
of didactic contract in school algebra (Box 8-6).

Box 9-2.

Different effects of the key

Let us consider simplification. On symbolic calculators, such as the
TI-92 and TI-89, it is automatically performed; with software such as
MAPLE or MATHEMATICA, it is no longer automatic, and different
options are offered7. But, whatever be the case, what makes one expression
simpler than another? If one considers as a criterion the number of
operations to be performed to calculate the value of a polynomial for a given
value of the variable, the Horner’s form8 is doubtless simpler than the
expanded one. If one has to find its roots, a factorized form will be simpler.
And this is not even systematic: to determine the roots of this
expanded form is more illuminating than the rational factorization (x – 1)

given by the machine. Thus, simplification
cannot be defined in an absolute way, and those produced by symbolic
software are not necessarily the best adapted to the user’s aims. Working
with them provides students with a clear opportunity to understand this
essential fact, and beyond that, to learn to combine simplification commands
with other software commands or with paper-and-pencil work in order to
achieve their mathematical goals.

Checking the equivalence of expressions is a problem whose solution
relies on the possibility of recognizing a mathematical object through the
various representations which can be associated with it. Here, the notions of
canonical form and normal form play a fundamental role (Chapter 2, § 1.3).
In the best cases, if E is a class of symbolic expressions, there is a calculable
mapping from E to E which is such that if p and q represent the same
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object, they have the same image under the canonical representation of
this object. If such a mapping is implemented in a piece of software, this
allows it to check equivalence for expressions from the class. Unfortunately,
such canonical forms only exist for a few classes of objects. A weaker but
very useful property is the existence of a mapping which verifies the
condition given above only for the subclass of the objects equivalent to 0.
Once again this makes possible a test that p and q represent the same object,
by verifying this time that p – q is in the subclass of 0. This also makes it
possible to check automatically that the results of simplifications do not
involve factors from this subclass. In fact, for a given piece of software, only
particular classes of symbolic expressions admit canonical or normal forms.
This explains why equivalent forms are not necessarily recognized or why,
in some cases, while the software does not return a positive answer to the
test p = q, it does to the test p – q = 0.

An efficient instrumentation requires some sensitivity to these problems
which are linked to the representation of formal objects, and to the
development of instrumented schemes allowing the user to take these
phenomena into account in computations.

Here, we approached the question of data representation through
simplification and equivalence, referring to the particular engineering which
we are analyzing. This question could be also treated in a more direct way,
by trying to reach the internal representation of expressions, through the
specific commands offered by symbolic software for this purpose. MAPLE,
for example, via the Tree command, gives access to the tree associated with
a given symbolic expression. Texas calculators have no equivalent
command, but the TI-92 Plus and the TI-89 include a Part command, which
makes it possible to obtain a progressive decomposition into a tree (with the
limitation that any node is at most binary). This can provide an interesting
alternative approach for secondary students, for instance grade 10 students,
since associating a tree with a symbolic expression is not obvious at this
level. Such a syntactic analysis assisted by the machine can help the students
to differentiate expressions which they tend to confuse.

We thus see that this type of engineering has, in principle, many
interesting potentialities. What precise choices were made in the particular
piece of engineering carried out by the ERES team? What were the results of
these? This is what we shall now examine.

2.2 The engineering

This piece of engineering consists of three laboratory sessions which are
also the first three sessions with the TI-92 for the students. This inevitably
conditions the choices made by the ERES team as the teacher will be
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obliged to spent a substantial amount of time on the collective appropriation
of the machine during these sessions.

Thus session 1 begins with a presentation of the machine using overhead
projection. Documents concerning the keyboard, the screen, the status line
and the different options for computation offered by the menu MODE are
also given to the students. The machine is then configured in exact mode
and students are shown how to obtain approximate results with the Diamond
key, without changing this mode (approximate detour, Chapter 6, § 2.3.1).
The teacher also asks them to systematically note error messages in the
individual work which they will do, as well as the computation which
produced the message, and how they solved the problem.

In session 2, the use of menus is approached more systematically, with
particular attention to the menus MATH, CATALOG, CHAR and the
different menus offered by the application HOME. The teacher shows
shortcuts which save time, and how to copy an expression from the screen
into the command line. Finally, the syntax of the main commands to be used
in this session, Factor and Expand, is introduced. A document concerning
the menus of the application HOME is also distributed.

2.2.1 The first session

A priori analysis
This session (Box 9-3), only involves numerical computations. Three

series of computations are proposed to the students, including respectively
decimal numbers and fractions (series 1), powers (series 2), radicals (series
3).

Box 9-3.

TP1
(Guin & Delgoulet 1997, p.42)

1

2

3

4

Series 1 : with decimal
numbers and fractions

21.753×(0.123–3.5426)

0.1234567×136963

Normal Float

Results with Results with

Scientific Fix 5

Results with
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5

6

7

Series 2: with powers Normal Float

Results with Results with

Scientific Fix 5

Results with

For the series 1 and 2, an exact computation and parallel approximate
computations, the first in floating mode, and the second in scientific mode
with the number of decimal places fixed at 5, are asked for. For the series 3,
only an exact computation is asked for. The essential aim of this activity is
to understand and to interpret the results given by the machine. The students
have to note the results they obtain, to interpret them (they are told that
results may be different from those expected), and to compare the results of
apparently similar computations (expressions 10 and 11 for instance).

The first two series also have an aim of establishing some link with
previous activities that these students have carried out with scientific
calculators. Computations 1, 2, 5, 6 and 7 have already been proposed in a
previous session. Expression 2, with a scientific calculator, leads to the
result 16909 but elementary reasoning about the last digits of the numbers
involved shows that this result cannot be exact. The TI-92 where results can
be expressed with 12 digits, gives the exact result in the normal floating
mode, 16909.0000021, and, naturally, in the exact mode, this time with a

fractional representation, The fractional expressions 3 and

8

9

10

11

12

13

14

Series 3: with square roots Results with
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especially 4 are more complex than those ordinarily used in a paper-and-
pencil environment. While showing that the symbolic calculator
immediately turns these expressions into their canonical fractional
representation, these examples can serve to verify students’ ability to deal
with brackets, and to make them aware of the fact that they can check their
entries by looking at the left side of the screen. The result of computation 6
involving powers can be, for its part, easily predicted or at least interpreted
after the event.

With the series 3, students enter a new domain: that of exact computation
with expressions involving radicals. It is no longer the comparison between
exact and approximate results which is at stake but some understanding of
the way in which such exact computations are performed by the machine.

Expressions 8 and 9 show that expressions of the type are simplified
by extraction of the squared factors of b. Expressions 10 and 11 evidence a
more complex functioning of simplification: expression 10, where a

factorization is possible, is factorized into whereas expression 11

is expanded, Note however that if one enters the expression

it is automatically expanded, giving with a factor
– 3 (while in paper-and-pencil work, the factor would rather be 3), but this
computation is not asked for. The TI-92 recognizes the equality between
expression 10 and this last expression, as could be expected, the canonical

form being accessible by simple expansion and extraction of
squares.

Expressions 12, 13 and 14 can, in principle, be represented in a
homogeneous way by a canonical expression of the type

easy to obtain by multiplication by the conjugates of
denominators and by reduction. Even so, this is not systematically the case:

expression 12 is transformed into whereas, for expression 13,

a factorization is made leading to the expression and,

for expression 14, one gets a mixed representa t ion ,

Let us note also the presence, which can be

surprising for a student, of the sign – in front of the factors in the
expressions 13 and 14. Furthermore, the TI-92 recognizes the equality of the
expression 12 and its canonical form but this is no longer the case for
expression 13 (negative results are obtained both when testing equality and
equality to 0 of the difference).
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Working on these expressions, which remain relatively simple,
demonstrates the differences between the treatment in a paper-and-pencil
environment and that of the machine, even if both types of treatment lead to
the elimination of radicals from denominators. The simplifications carried
out by the machine depend strongly on the particular characteristics of the
expressions. Furthermore, such work shows that the formal equality of two
expressions can be recognized by the machine, even if it does not transform
the first one into the second one. Nevertheless this is not systematic for
expressions involving several radicals, even if these have a canonical
representation, from a mathematical point of view.

In the a priori analysis that we have developed so far, we made use of
our mathematical knowledge about computations involving radicals, and we
performed paper-and-pencil and machine computations which were not
explicitly asked for, so as to understand better the functioning of the
calculator. We cannot expect the same behavior from grade 10 students
whose familiarity with radicals is very limited and who have just begun to
use the machine. How did they react to the proposed tasks and what was
brought about by their interactions with the teacher in the summing up phase
of the lesson?

A posteriori analysis
The report written by the ERES team on this experiment confirms the

importance of the collective phase of appropriation. In the group work by
students, with few exceptions, handling the machine did not raise problems.
As could be expected, students received different error messages, many of
these being linked to problems in the management of brackets, but they were
able to overcome them. In spite of what had been pointed out to them in the
collective phase, they did not spontaneously check their entries by looking at
the left side of the screen, and the teacher was obliged to intervene in that
respect. Furthermore, contrary to the expectations of the teacher, the
students were not surprised at discovering the possibilities of exact
computation with the machine and did not remember having already made
some of the proposed computations, with the exception of expression 2.
Computations with radicals gave rise to few interpretations; results were
noted by the students but no more. Here we touch on the evident limits of
this type of exercise: surprise effects and the resulting motivation for
understanding can only exist if there is some expectation. The familiarity of
these students with this type of computation was much too limited to induce
spontaneous predictions on their part, in contrast to the case for us designers.
Moreover, the work of forming such a prediction is only of reasonable cost
if it can be partly done mentally and does not oblige the student to carry out
very detailed calculations. This was not the case for the majority of these
students, and they simply did what they were asked, fulfilling the minimum
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obligations of the didactic contract. For the expressions of the third series,
prediction would have needed to be collectively initiated. In the summing up
phase of the lesson, due to time constraints, the teacher could not go beyond
the interpretation of the first four computations with radicals, leaving the last
three, the richest, for the following session.

2.2.2 The second session

In the second session (Box 9-4), the collective appropriation of the
machine continued as explained above and commands for the factorization
and expansion of algebraic expressions were introduced. It was shown that
the TI-92 permits computations generally regarded as forbidding to be done
quickly, and factorization of expressions beyond what students’
mathematical knowledge usually makes possible at this level of schooling.
Taking into account the results of the first session, students were explicitly
asked the following: when the machine produced an unexpected or
incomprehensible result, they had to record the expression concerned, the
nature of the algebraic manipulation involved: expansion or factorization,
the result given by the TI-92, their remarks and comments, as well as their
interpretation of the result, if any.

Box 9-4.

TP2
(Guin & Delgoulet 1997, p.55)

Factorization

Expansion

Factorization

Expansion

Factorization

Expansion

A priori analysis
In the first series, factorization precedes expansion. None of the

expressions is factorized immediately but the first one is a difference of two
squares and, in the second one, the factor (2x–3) although masked by a
fractional coefficient is common to both terms of the sum. Other expressions
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are, as regards factorization, outside the field of students’ knowledge. The
command Factor works with the first three expressions, and the command
Factor (, x) is necessary for the last one, seemingly of the same type but
with irrational roots9. The fourth expression is not factorizable in the reals
and the machine does not transform it. The expansion of the factorized
forms does not offer any surprises.

In the second series, expansion precedes factorization. Three of the four
expressions are already factorized and, in the last one, a common factor
(x–1) is visible in both terms of the sum. The expansions do not raise
problems. The radicals disappear in the third expression,

Notice that, in the last expression, the product is not transformed into

as would be done in a paper-and-pencil environment. As regards the
factorizations of the expansions, with the command Factor one finds the
original expression as expected. For the third one, one finds the initial
expression only by using Factor (, x). The last one is factorized through the
command Factor, which is surprising as the roots are also irrational and the

result is which is not the initial expression. This

time is not decomposed into a product. As we can see, even if the
expressions are not complex, here the student faces the fact that the same
expression can admit various factorizations or expansions, that the machine
privileges certain forms, but that it is not easy to anticipate what form
exactly, in any particular case.

A posteriori analysis
The part of the lesson given over to the collective exploration of the

different menus and the introduction of new commands took more than half
an hour, then the students worked in groups on the worksheet. The teacher
was obliged to intervene on different occasions as some students did not
check their entries or did not take notes. Some differences also became
visible between the students as regards the manipulation of the machine.
Some felt very much at ease whereas others still needed to be helped.

As in the previous session, the teacher wanted to make the students
aware of what he called “contradictions or incoherences of the machine” (in
fact these reflect the complex problems raised by formal simplification as
mentioned above, and the machine is not inconsistent, but when compared to
the normalized forms of simplification employed in school algebra, its
functioning can appear rather chaotic). He wanted to make them sensitive to
the differences between machine and paper-and-pencil computations, but
apparently the situation did not bring about this sensitivity, at least for the
students concerned here, and the more precise instructions given, taking
account of the previous session, were not effective.
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In fact, the successful functioning of the situation would have required
students to know how to discriminate between expanded, factorized and
other equivalent forms. The implementation revealed that this was far from
being the general case. No group except one, for example, noticed that the
factorization given by the TI-92 for the last expression was different from
the initial one, and the collective discussion showed that two groups at least,
put out by the radicals, had not read the last two expressions given as

factorized forms. Some students did not even link and which did
not facilitate interpretation. In the face of such difficulties, students tended
to convince themselves easily that the machine was inevitably right and
passed on to the next task. Finally, the students’ work with the machine, by
facing them with more complex expressions than those they usually met,
showed the fragility of the criteria they used for identifying factorizations
and expansions, and the collective summing up provided a good opportunity
for coming back to these questions.

2.2.3. The third session

The second session dealt only with polynomial expressions; in the third
session (Box 9-5) fractional expressions appeared, and equivalence issues
became explicit.

Box 9-5.

TP3
(Guin & Delgoulet 1997, p.65)

Series 1 : Fill the table by using the corresponding commands

1

2

Expressions Expand Factor ComDenom

Series 2: Which expressions in the first line are equal? Note your results in the last column.
Do the same with the second line.

3

f(x) g(x) h(x) k(x) Results

4
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Series 3: The expressions A and B are equal; how can A be turned into B or B into A with
the TI-92. Is this always possible?

7

A B

8

9

For this session, in order to focus classroom activity on interpretation and
analysis, the worksheet was distributed to the students in advance. They had
to do the computations at home and to note carefully the results and error
messages. The plan was especially to discuss, during the collective summing
up, the notion of equivalence and its checking both by paper-and-pencil
techniques and with the machine.

A priori analysis
For the first series, two expressions are given and students have to note

the results obtained by using the following commands: Enter, Expand,
Factor and ComDenom. The machine automatically decomposes the first
expression into simple elements, which also corresponds to the effect of
Expand. The command Factor produces the reduction to the same
denominator (in factorized form), the numerator being expanded (its roots
are irrational). The ComDenom command gives numerator and denominator
in expanded form. The second expression is left as such by Enter, is
decomposed into simple elements by Expand, reduced to the same
denominator and factorized by Factor, the ComDenom command having the
same effect as on the first expression.

For the second series, the ComDenom command gives the expression

–g(x) with an expanded denominator, the command Expand:

and the command Factor: k(x). For the second expression, Expand gives
–g(x), Factor(, x) gives h(x). Finally the second term of k(x) can be also
obtained from –g(x) by ComDenom (the denominator is then developed).

Thus passing effectively from one expression to the other with the
machine supposes a preliminary analysis of the form of the targeted
expression so as to judge which command(s) will make it possible to obtain
the expression directly, if this is possible, or to get an expression close
enough to make comparison easy. Of course the machine also offers the



possibility of comparing expressions, by testing equality directly or by
calculating differences. The equality f(x) = k(x) is returned as it was entered
but the test f(x) – k(x) = 0 gives the answer true and the computation of the
difference gives 0.

The series 3 raises the question of transforming an expression to another
equivalent one. The situation has apparently been designed so that this
transformation is not always possible. As might be expected, for the first
expression, B can be turned into A by Expand (if the order of the terms is
not taken into account) but it is impossible conversely to turn A into B.
However the numerator and the denominator can be obtained separately by
applying to A the commands GetNum and GetDenom, two options of the
submenu Extract. The third expression raises the same problems, in both
directions this time. The second expression leads to equivalence problems
similar to those met with radicals in the first session. If one enters the
expression A, the form obtained is similar to that obtained for the expression

14 in session 1: If one tests directly the
equality of both forms, the machine answer is false, but if one tests the
equality to 0 of the difference, the answer becomes true.

As we can see, in this session also, the expressions, although relatively
simple, allow for interesting work and one can a priori hypothesize that both
the new organization chosen, and the increasing familiarity students have
with the machine and this kind of algebraic task, are going to allow the
teacher to engage students in analysis and interpretation, as wished. All the
more so, as there is only one new command to learn: the command
ComDenom.

A posteriori analysis
The collective discussion of the results obtained in the first series made it

possible to clarify the functioning of the various commands. It was, for the
teacher, the occasion to point out that understanding the effects of these
commands was easier than understanding the effect of the automatic
simplification activated by the Enter command.

For series 2, the students had difficulty in remembering the way they had
verified the equalities. Apparently, many did not use the different
possibilities that we outlined in the analysis a priori, and just tested the
equality for a simple value of x. Two students checked it for and
as if that ensured equality for every number. In the discussion, students
suggested checking the equalities by systematically expanding the two
expressions but only one of them suggested testing whether the difference is
0. Another suggested using the Solve command which is indeed effective for
this type of expression. Once again, the work with the machine served as a
revelator of the fragility of the students’ mathematical knowledge, and

248 Chapter 9



At the beginning of this part, we tried to elucidate the didactic potential
of such algebraic work with a symbolic calculator. As is often the case,
consideration of a particular engineering design in a particular context -- that
of a class considered by the teacher as rather passive -- allows us to measure
the distance between the identification of potentialities a priori and their
actual implementation in a given class, even an experimental class as was
the case here. In this engineering design, the authors relied on a lever which
had been identified as a productive one in different research projects about
DGS or CAS: the software was used as a provider of strange phenomena
involving mathematics already known or to be learnt, and was cast as means
for understanding these phenomena, for anticipating or even producing
them, at will. Different examples have already been given in this book.
Conditions necessary for the effectiveness of this lever, as pointed out by
Laborde (1999), are the following: the phenomenon has to be easily
identifiable; it has to arouse the students’ curiosity enough for motivation
towards understanding to be provided not only by the teacher; finally, the
expected mathematical work has to be accessible to the students, with their
mathematical and instrumental knowledge. These conditions are not easy to
satisfy and, in particular, if the cognitive gap is too great, if a refuge is
possible in tasks of simple computation or in poorly controlled trials,
students’ work risks being far from the expectations of the designers. Here,
the students clearly had difficulty in developing expectations, and thus
phenomena intended to be surprising to them were not so. In fact, the
potential of this engineering lay more in the diagnosis which it allowed. By
exposing the students to unusual expressions, the work with the machine
provided evidence of a certain fragility of knowledge which could have
remained invisible with simpler examples and more routine tasks. This led
to a return, in this context of the instrumentation of a new object, to
important questions in algebra and more extensive work on these. But, as
evidenced by this experimentation, the success of such an enterprise requires
a precise piloting by the teacher, extending beyond the careful choice of a
progression in the proposed expressions and tasks and in the commands
introduced and worked10.
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evidenced up to what point mathematical knowledge was necessary to
efficiently pilot the machine. This time, the session led to a making explicit
of the methods used by the students to test the equality of two expressions,
to the destabilization of some previously popular strategies, such as the test
on one particular value, and to an enrichment of their instrumented
techniques.

2.3 In conclusion



250 Chapter 9

3. TEACHING THE DERIVATIVE TO SCIENTIFIC
GRADE 11 STUDENTS

3.1 Introduction

The second engineering design presented in this chapter deals with the
teaching of the derivative to grade 11 students and was piloted by the
research team DIDIREM (Artigue & al 1998, Artigue & Lagrange 1999). In
the two classes where it was tested out, this piece of engineering followed
some work on functional situations involving algebraic, numeric and graphic
representations. This had accompanied students’ familiarization with the TI-
92. A first approach to the notion of limit had also been organized. As with
the previous project, before going into more detail, we will clarify the
interest we see in principle in this type of didactic construction. We shall
emphasize especially the different categories of use of the calculator that
such a project can involve, in the different phases of the teaching process.

In the current French syllabus for senior high school, the teaching of
elementary Analysis (or Calculus in the English-speaking world) is
organized mainly around the notion of derivative and its applications. It is
through this notion and the different perspectives which can be taken on it,
that students begin to enter the interplay between local and global points of
view on functional objects, which is crucial in this conceptual field, as
underlined in the report on Computation produced by the already mentioned
CREM (Chapter 3, § 1; Kahane 2002). As also pointed out in this report, a
reasonably aim for Calculus teaching in high schools today cannot be an
entrance into the field of formal analysis based on definitions in and but
it can be a first approach which, while remaining more ‘intuitive’, prepares
for the necessary reorganization of knowledge:

Access to the field of Analysis and to the world of approximation is known to be

difficult. The available time, the evident limits of the students’ algebraic competence

when this teaching begins, impose modesty. But if computation in Analysis wants to be

more than a formal functional calculus, which seems desirable to us, it has to make

students understand its essential values, through computations remaining at a reasonable

level of complexity. From this point of view, we think that it is essential to develop two

awarenesses as early as secondary education:

understanding that computation in Analysis differs from previous algebraic

computation, in the interplay which it establishes between ‘the local’ and ‘the global’;

understanding that computation in Analysis involves, in a fundamental way, the notion

of order of magnitude.
It seems to us that some awareness can be reached with reasonable levels of formalization

and technicality.



The Integration of Symbolic Calculators into Secondary Education 251

For instance, on entering the field of Analysis, linearity, previously
perceived as a global phenomenon, has to take a local dimension and, as also
underlined in the same report, while calculators can help this localization
through the effects of the zooming they permit, nevertheless the essential
work of mathematization remains:

Today graphic calculators make it possible to illustrate local linearity very easily by

means of successive zooms in the neighborhood of a point. They also allow its

problematization. Indeed, if in the neighborhood of a point the graphic representation of a

function tends to become a straight line, how can this phenomenon be characterized

mathematically? Here, it is important to underline that visualization does not permit the

order of the approximation to be checked; thus the mathematical object is not given but

has to be built.

The engineering design on the derivative which we present and analyze
below takes this perspective. It was designed in order to study how the use
of tools of symbolic computation can support the realization of such
ambitions and inform us about their conditions of viability.

Globally, the project was built around various phases which contribute to
approaching the notion of derivative both in its tool and object dimensions
(Box 9-1), in order to ensure a good connection between the main points of
view related to the derivative at this level of education -- geometrical,
numerical, kinematic and algebraic points of view -- and the associated
reconstructions of knowledge, while developing naturally the technical
competence necessary for work in this domain (Box 9-6).

In an engineering approach of this type, the TI-92 and the symbolic
computations which it allows, can serve various purposes a priori. We
clarify some of these below, and this will help us to situate the engineering
design analyzed within a wider context, as was the case for the first one.
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Box 9-6.

3.1.1 Exploiting graphic visualizations for problematizing the
notion of tangent and establishing the local character of the
notion of derivative

According to the point of view taken on the notion of tangent, the
potential for visualization offered by the calculator can be exploited in
different ways. One can use the geometrical software of the TI-92 in order to
visualize the movement of a secant having a fixed point on the curve, when

Relationships between the tool and object dimensions of the derivative in the project
(Artigue & al 1998, p.98)
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the second point of the curve which defines this secant tends towards the
fixed point. One can also use the calculator to illustrate the fact that the
graphic representation of a function at a point where it admits a derivative,
tends to become a straight line when successive zooms-in on this point are
performed. The first type of visualization leads to the tangent being
perceived as the limit of secants and the derivative as the limit of differential
quotients; the second type, to it being perceived in terms of linear
approximation. But, as stressed, if visualization brings out some interesting
perceptual phenomena, its does not provide their mathematization. In many
innovations and experiments with graphic calculators, this question of
mathematization is quickly passed over: functions and windows are chosen
so that the line that appears on the screen has a particularly simple equation
(with whole number coefficients) (Chapter 4, § 3), and the exact nature of
this line is not discussed. This is treated as if it really were the tangent to the
curve. The use of symbolic calculators, by the help they provide for the
development of the computations underlying the mathematization, modifies
the economy of the didactic system and makes accessible discussions on this
mathematization which are not viable in the usual teaching environments.

3.1.2 Exploiting devices for data capture to allow a kinematic
approach of the notion of derivative connected to students’
movement

It is now possible to connect graphic calculators to devices for data
capture (Chapter 4, § 2, see data logging device). In this way for example, it
is possible to ask to a student to move, faster or slower, steadily or not, so
that s/he gets back a discrete sampling of data. Given a time/distance curve,
students can also be asked to imagine and carry out, if possible, a movement
which corresponds to it. In the case of simple movements, the statistical
module of the calculator can also be used to find, via the search for linear or
quadratic regressions, equations fitting these data and to work on these
equations. These devices allow a kinematic approach to the notion of
derivative. They can serve to introduce this notion or, when this notion has
already been introduced, for example by appealing to visualizations such as
those described above, for connecting the notion of derivative to that of the
instantaneous speed. This potential was not available on the first TI-92 used
in this experiment and thus could not be exploited. Nevertheless, it seems
important to mention it because it corresponds to cognitive approaches
which are gaining increasing influence in the educational field: those related
to the field of embodied cognition. Embodied cognition insists on the role
played by our physical experience of movement in mathematical
conceptualization (Lakoff & Nuñez 2000). For experiences drawing on these



As was the case in the engineering design on numbers and algebraic
expressions, differentiation provides the opportunity to approach symbolic
computation as an object, not only as a tool (Box 9-1). Here, it is through the
algorithmization of the computation of derivatives that this approach arises
naturally. Two didactic strategies can be used for this purpose. In the first
one, similarly to the first engineering design, the symbolic calculator is used
as a provider of symbolic expressions and the students are asked to make
sense of these expressions. In the second one, more ambitious, students are
asked to program a module for the symbolic computation of derivatives.

In research carried out on formal calculus in secondary education, the
second strategy seems more or less absent. This is easily understandable.
One can find an outline of the type of mathematical and instrumental work
necessary to underpin such a construction by looking at the module
developed by Fortin for teacher training sessions organized by Texas
Instruments11. This module exploits the already mentioned Part command
for decomposing functional expressions into atomic elements, and then
applies derivation rules to the generated tree12. Such a strategy is of
problematic viability at high school level today, even in experimental
circumstances, at least if one wants to develop it within the ordinary
activities of the class. Beyond its evident cognitive cost, it appears too
distant from the values that curricula emphasize today. However the
situation could change if mathematics curricula were to be more sensitive to
the connection between mathematics and computer science, as for instance
the report on this theme by the CREM (Chapter 3, § 1) proposes, and as
suggested in Chapter 1 (§ 2.3).

The first strategy can itself take different forms. In some cases, it is used
to introduce the notion of derivative which thus appears first in its symbolic
dimension. Here, the software works as a black box which transforms
functions into other functions and what is at stake is the determination of the
rules which govern these transformations. Linking this symbolic perspective
on the derivative with others is then postponed. In most innovation and
research projects, however, the notion of derivative is first established as a
local phenomenon, using one of the strategies described above, and the
black box device is used after this first phase, in order to set up the algebra
of derivatives. An essential difference between these two strategies lies at
the level of the technological and theoretical discourse involved in the
corresponding praxeologies, according to the anthropological theory, evoked
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approaches with symbolic calculators, the reader can refer for example to
(Oldknow & Taylor 2000).

3.1.3 Exploiting the calculator to approach differentiation in its
symbolic dimension and develop an ‘algebra of derivatives’
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in Box 5-1. In the second case, even if the aim of the situation is the search
for symbolic rules, reasons for the necessity of these rules, once discovered,
can be sought on the basis of already built knowledge. In the first case,
rationality can only be found, at this first stage, in the internal coherence of
the formal game, and the development of a richer technological and
theoretical discourse, from a mathematical point of view, is necessarily
postponed. Doubtless, both strategies also differ at the level of prediction
and checking. Analysis of the first engineering design showed the crucial
role played by abilities of prediction and checking when the calculator is
used as a producer of phenomena. It is evident that a first meeting with the
world of derivatives, previous to the black box symbolic game, is likely to
change the students’ means of prediction and checking in that game, making
this kind of situation more productive from a mathematical point of view.

3.1.4. Exploiting the symbolic potential of the calculator to work on
more complex objects and to approach generalization

3.2 The engineering

In this domain as in many others, the symbolic potential of calculators
can serve to approach more complex situations or, at least, situations less
calibrated and adapted so as to be compatible with the paper-and-pencil
environment. But here we would like to insist more on another aspect: the
potential offered by symbolic calculators for approaching issues of
generalization. Analytic work, at high school level, deals with particular
objects. It is carried out on specific objects and not on objects defined by
general conditions, and the first access to generalization allowed by the use
of parameters often seems incompatible with the students’ algebraic
competence. Nevertheless, overcoming the limitations of a perspective
restricted to particular, isolated objects, is necessary to approach the
connections, generalizations and unifications which are an essential
component of mathematical learning. The symbolic assistance supplied by
symbolic calculators should here again change the ecology of the system by
modifying the cost of symbolic computations and of generalization through
introduction of parameters, as already underlined in Chapters 5 and 7.

Thus, for this kind of engineering design as for the first one, symbolic
calculators offer interesting didactic potential in principle. How was this
potential exploited in the particular engineering design we analyze? With
what effects? This is what we will now examine.

We first describe the main choices of this piece of engineering, before
focusing on some of its key situations.
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3.2.1 The main choices

3.2.2 The introduction of the derivative

Having regard to what has preceded, this particular engineering can be
described globally in the following way. The introduction to the notion of
derivative exploits the first strategy listed, using the notion of tangent. The
choice is made to use the geometrical module of the calculator and to
visualize the tangent as limit of secants (Box 9-6), but the approximation
point of view is also introduced very early. A progressive devolution of
algebraic computations to the machine is organized and it is only in the third
phase, when the notion of a derivative function has officially been
introduced, and the cases of some reference functions13 have been dealt
with, that the symbolic dimension is introduced, by using the black box
game outlined earlier. In the fourth phase, the relation between the sign of
the derivative and the variation of a function is introduced by drawing on
graphical experiments, and the corresponding knowledge is then used in
solving simple problems of variation and optimization in the fifth phase. The
sixth phase comes back to the local point of view. The hypothesis is made
that this point of view, even though the initial one, tends to gradually fade
from students’ consciousness, replaced by the global point of view attached
to derivative functions, which supplies them with a new and effective tool
for solving the problems of variation and optimization which they meet in
high school. This coming back is linked to the development of a kinematic
perspective and the transition from the notion of average speed to that of
instantaneous speed. Finally, the seventh phase of the process is that of
reinvestment in more complex problems requiring connections between
graphic and symbolic work, as well as generalization.

In what follows, we analyze four particular situations of this engineering,
allowing us to discuss the exploitation of three different potentialities
mentioned above: the situation of introduction of the derivative, the black
box situation, and finally two situations that involve some generalization
work.

The session aimed at introducing the derivative which we describe and
analyze here lasts for 2 hours and is conceived in terms of three successive
phases where the same problem of mathematizing a perceptual phenomenon
is reworked with different points and functions. This aim of this device is to
gradually increase the students’ mathematical autonomy, and also to
organize the transition from paper and pencil computation to instrumented
computation, this transition being accompanied by a progressive increase in
complexity of the computations concerned. We quickly describe the a priori
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scenario then give some information about the actual implementation, before
coming to the a posteriori analysis.

The a priori scenario

Phase 1
The first phase focuses on the function studied in the

neighborhood of the point A (1, f(1)). The management is collective. The
teacher manipulates the overhead-projected calculator. Using a
prepared program, the teacher moves the variable point M on the parabola
and thus the secant (AM). The coordinates of M and the slope of the secant
are displayed in the upper-left corner of the screen (Figure 9-1).

The question posed to the students is the following one: “What happens
when M gets closer to A?” Note that, when M is at A, the software sends
back the value undef for the slope. In this situation one can expect students
to identify the geometrical movement of the secant and to guess, in view of
the trend of the slope, that the secant tends towards the line passing through
A with slope 2, due to the attractive character of the whole-number value 2.

Figure 9-1. The movement of the secant in the geometry application

The scenario plans to then use the graphic application to question these
interpretations. Entered in advance, in the graphing application Y =, are the
equations of three different lines passing through A, with respective slopes:
1.9, 2, 2.1. To facilitate interpretation, the equations of these secants are not
simplified but left in the form In the graphical window,
all the lines appear to fit equally to the parabola. This observation should
allow the teacher to introduce a mathematical discussion on the legitimacy
of the choice of the value 2 among the neighboring values (Figure 9-2).
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Figure 9-2. The three different lines

This graphic phenomenon persists under zooming-in around A which
might be envisaged as separating the different lines, and this is intended to
motivate the necessity of going beyond perceptual criteria to find the line
best fitting the parabola. But, it seems unreasonable to expect grade 11
students to discover by themselves a technique allowing them to solve this
problem, in the short time available here. That is why, in the scenario, once
the problem has been articulated and understood, the teacher is expected to
take more responsibility, and to suggest that the problem can perhaps be

solved by studying the distance with having x-coordinate 1 + h on
the curve and the points with the same x-coordinate on the three lines.

The scenario plans a collective management of the first computation,
then a distribution of the other two computations between two halves of the
class, to favor an individual appropriation of the collective work. This leads

to the three expressions: all of which tend towards 0 as

h tends towards 0, but it is expected that the students, thanks to the previous
work they did on limits and orders of magnitude, will be able to distinguish
these three expressions according to the respective speed with which they

tend towards 0. Thus the value 2 appears particular: for it is has no

term of order h, or equivalently: It then remains to show that

it is the only value to have this property. The corresponding computation
necessarily involves a parameter but it reproduces a type of computation
already done three times with particular values. It is planned to carry it out
collectively, piloted by the students, and by hand with paper and pencil, as
the preceding ones:

This last equality shows that has no term of order h if and only if
m = 2.

At this point, the scenario incorporates a first summing up of the work
piloted by the teacher and the introduction of the word tangent if it has not
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already emerged spontaneously (these students have previously solved a
problem on the tangents to a parabola, by adopting an algebraic point of
view: looking for double intersections by analogy with the tangents to the
circle). This connection with the former point of view on the tangent
concludes the work on this first example chosen so that the computation
does not present any difficulty (since it leads to a well known identity).

Phase 2
In this phase, the same method has to be applied, this time to the function

at the point with x-coordinate 2.

For this adaptation to a new function, the plan is for the students to pilot
the solving process collectively, the calculator being used for computations,
with the various steps involved as well as the details of the computations and
the results obtained being noted on the blackboard. This example has also
been chosen to make students meet a case where the tangent cuts the curve
(but not at the tangential point).

The question posed is the following one: “Is what we found with the
parabola still valid here and do the same methods of computation work? ”

This is, of course, the case, as shown by Figure 9-3.

Figure 9-3. Generalizing the computation

The link with the algebraic point of view is also made with the help of
the calculator (Figure 9-4).

Figure 9-4. Link with the algebraic perspective

Note that the search for intersection points with the Solve command does
not make it possible to distinguish between the two roots: 2 and –4, but that
this can be achieved through the use of the Factor command.
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The plan is to end this second example with a summing up where the fact
will be stressed that tangents to a cubic curve can cut it, contrary to what had
been noticed for the parabola.

Phase 3
Working more autonomously, in pairs and with the calculator, in this

third phase the students themselves have to handle the case x = 0 for the
same function. The hypothesis is made that the whole method will then be
accessible to them. This new case will confront them with a situation of
inflection, leading to discussion of the doubtless strong conviction that a
tangent cannot cut the curve at its contact point.

As a conclusion to these three phases, it is planned that the teacher
introduce the definition of the derivative of a function f at the point with x–
coordinate a, and stress the equivalence between the two following
formulations:

For some m,

which makes it possible, by directly seeking the limit of the differential
quotient, to simplify the work of guessing and proving carried out on the
first three examples.

The implementation
This scenario of introduction was experimented in the following way: a

collective session of one hour (phase 1) followed by a one hour session of
work in half-groups (phases 2 and 3). What emerged from this experiment?

The beginning of the session took place according to the predictions
made and no student introduced the word tangent. The students seemed
surprised by the closeness of the three lines and even more by the fact that
the zooms they proposed did not make it possible to clearly discriminate the
line with slope 2. As anticipated, they had no idea a priori about possible
techniques for comparing the respective nearness of the three lines and the

curve. Thus, the teacher suggested studying the value of and
introduced the notations, as expected. The expression of the algebraic value

of in the case of the line of slope 2 was produced collectively, and set
out by a student, after a very brief period of individual work. The
computations and various substitutions were carefully detailed. The teacher
asked: “What does this expression become as h tends towards 0?”. Various
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answers were produced: “It becomes nothing”, “It is invalid”, “It tends
towards 0 ”.

The teacher summarized and asked for a reformulation in the usual
language of limits, underlining that the function of h under consideration is a
reference function (note 13). The class was then divided into two groups to
deal with the two other cases. This computation was carefully prepared: the
teacher asked where changes in the algebraic expression were going to
occur, and the work was quickly executed by the great majority of the
students. They seemed disappointed to notice that all the expressions had the
same limit 0, which was nevertheless predictable, thinking doubtless that the
suggestion made by the teacher should lead directly to the result. The three
results were written on the blackboard in a table, the teacher ensuring that
the computations of limits were carefully justified, which apparently raised
no problems for the student being questioned.

Having found these limits, the teacher asked how to continue. This time
she obtained an answer at once: “We could see which one goes the fastest”.
The teacher immediately reformulated this suggestion as the absence of a
term of order h, appealing to the memory of the class. A column was added

to the initial table to record the limits of the quotients, and the
limits of these were found and justified without any difficulty. The teacher
then asked the students to write down this conclusion in their exercise
books, before relaunching the problem, as expected, by asking the question:
“Is the line of slope 2 the only one with this property? ”.

A student immediately suggested redoing the computation in terms of x,
(x being, for him, the slope). The teacher suggested using the letter m to
avoid confusions and let the students do the computation. Apparently, for
most of the students, the structure of the expression was well understood and
the adaptations quickly made. However one student asked if f(1 + h) was

equal to and the teacher went over the substitution in detail with
the class. Thus they arrived at the expression h + 2 – m and quickly
concluded that 2 was indeed the only possible value. The teacher
recapitulated the different steps in the reasoning and noted the result
obtained, before concluding: “Thus this line plays a very special role with
regard to the parabola at the point with x-coordinate 1”.

A student asked: “Is this the derivative?”. The teacher asked him to
make his suggestion clearer and the word tangent was introduced by several
students. The teacher immediately took advantage of this to ask on what
occasions they had already heard about tangents. Some spoke about the
tangent to the circle as being perpendicular to the radius, of the tangent in
trigonometry. Appealing to the memory of the class, the teacher asked them
if they did not remember work done earlier that year. Students then recalled
the homework mentioned above. The teacher brought out the link with the
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present situation by returning to the geometrical visualization and made
them recall the strategy used in the problem: writing a system of equations
to determine the intersection of a line and the parabola, solving the system
and looking for double roots to find the tangent. The students then carried
out the computation in the case of the parabola and quickly found that the
double root was 2.

The teacher then recapitulated the whole activity, announced that this
slope of the tangent was going to play a very special role and that, in the
next session, they would have to do similar work with other functions.

During this session, in the first half-group, what happened at the
beginning conformed to the scenario. The limit value 1 obtained on the
screen perturbed some students who wondered whether the line of slope 1
was really the closest to the curve in the neighborhood of 1. The teacher
showed the line of slope 1 by moving the point M and the conjecture was
quickly refuted. The adaptation to this new situation was apparently made
without difficulties, the students piloting the collective computation while
carrying it out at the same time on their machines. After the characterization
of the value 1.5, the teacher came back to the graphing application Y =, and
asked them to study more generally the respective positions of the tangent
and the curve. As expected, the fact that the tangent cuts the curve (but
outside the window used initially) perturbed many students who began to
doubt the reliability of the tangent. The teacher did not let them persist in
this difficulty and asked those who had plunged into a graphic investigation
of the situation to return to the algebraic computation.

Roots were found with the Zeros command, or the Solve command
(Figure 9-5).

Figure 9-5. Finding the roots with the symbolic calculator

Several students were amazed to find there were only two roots for a
polynomial of degree 3, and the conjecture was soon made that there was
both a double root and a single root, the double root being 2. The teacher
asked how this conjecture could be verified and a student immediately
suggested factorizing. The expression obtained satisfied everybody and the
problem was apparently closed.

The teacher commented on this situation, pointing out the difference with
the parabola and insisting on the fact that the property of tangency is a local
property: a line is tangent to a curve at a point.
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As expected, she then asked them to study individually the case x = 0 for
the same function, without trying this time to make them collectively form a
conjecture about the slope of the tangent. Most of the students undertook a
graphical investigation, reducing the standard window so as to better see the
curve in the neighborhood of the origin, but the time remaining was less
than 10 minutes and the teacher very quickly resumed a collective
management.

One student proposed at once that the tangent had slope 1.5. He had
found this value by using the Derivative command of the menu F5 which
had not been officially introduced. The teacher showed them that there was
also a Tangent command which gives a value different from 1.5, and took
this opportunity to stress the fact that the computations performed in the
graphic application are always approximate even if the exact mode has been
selected (Figure 9-6).

Figure 9-6. Using the Tangent command

She then asked the students how to decide whether 1.5 is the right value
or not. Students suggested calculating the limits with respect to 1.5. The
teacher accelerated the process by suggesting a direct computation with the
parameter m. The session ended with this computation, and with the teacher
saying that in the following session she would define the value of the
derivative by drawing on what had been done during this session.

In the second half-group, the teacher met a small technical problem
during the investigation: she could not separate points M and A, having
released the mouse while both points were very near to one another. Not
succeeding in solving this technical problem quickly, she jumped to the
application Y =. The dynamics of the session were then approximately the
same as for the first group; for the first case, however a bit faster.

In the second case, after graphing the curve, a student declared that this
could not have a tangent at 0 (showing the inflection with a hand
movement). Others did not agree with him. The teacher then suggested using
the Tangent command in the menu F5. The students noticed that the
calculator gives the equation of a tangent, and that this tangent cuts the
curve at 0.

Some found this strange: “ It looks like a tangent, but it crosses”. Some
of them were really perturbed. The teacher then asked them to count
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intersection points. Most answers were that there was only one intersection
point but a student suggested that it could count as 3. The teacher asked for a
verification and the same student suggested using the same method as
previously with a point P and a point M. This reorientated the work towards
the classic strategy and they arrived at the end of session at the conclusion

that has no term of order h if and only if m = –3/2.
The teacher concluded that this line was going to be the tangent to the

curve at the origin, even though cutting it, and that the number m was going
to be the value of the derivative of the function at 0. She also introduced the
Derivative command of the menu F5 which had been used spontaneously by
a student in the other group. She asked them to look for the number of
intersection points between the tangent and the curve in preparation for the
next session.

Analysis
This session differs in many respects from the sessions presented from

the first engineering project. On the one hand, prior to it taking place, the
students had already developed some instrumental izat ion and
instrumentation of the TI-92; on the other hand their mathematical
knowledge was different from that of the grade 10 students. Their capacities
with regard to the identification of forms needed to interpret symbolic
computations and to substitute other numerical or even literal values seemed
effective enough to allow them to access the individual and collective work
central to this session. The differentiation between different orders of
magnitude, which had been introduced in preliminary work on limits, was
easily brought back into use in this situation where the comparisons
remained technically easy. The problem of mathematization of an interesting
perceptual phenomenon seemed to make sense for these students who could
have been considered a priori as less interested than others in mathematical
abstractions since most of them planned to enter vocational programs. But
what we want to stress is that what we observed, three months after the
introduction of the TI-92 to this class, were the effects of an instrumentation
process which had been organized and coherently managed by the teacher,
and of a culture of instrumented mathematical work that had been
progressively built up.

The careful management of the variables affecting the complexity of the
computations concerned doubtless played a decisive role too, as did the fact
that, during the session, on different occasions, students had to reproduce,
modulo some adaptations, similar computations, and also the progressive
interaction of work instrumented through pencil-and-paper and through the
machine. Such sensitivity to the complexity of the computations when
working with symbolic calculators or software is not very frequent. Misled



The Integration of Symbolic Calculators into Secondary Education 265

by our personal experience, we are tempted to forget that, in order to benefit
from the machine, the student must give some sense to the computations s/he
is asked for, which is not so easy as the symbolic complexity of the
computations increases. The report (Artigue & al 1998, p.19) shows the
deceptive results obtained during the first year of experimentation as we
were not sensitive enough to these complexities. A reflexive analysis on this
first experiment allowed us to become aware of their importance and
consequently to adapt the design.

Another essential difference to the first project is related to the
management of the session. This situation cannot be qualified as an
adidactic one, in the particular sense given to this term in the theory of
didactic situations (Box 9-7). We cannot say that students are faced with a
problem and solve it progressively thanks to the interactions they have with
the medium (Box 9-7). A problem can certainly be identified: to make sense
mathematically of a certain type of numeric-graphic phenomena, but this
problem breaks down into a succession of sub-problems, in a scenario
tightly piloted by the teacher. Choices are thought to give, in every phase,
the maximum autonomy to the students but the students’ and teacher’s lines
of action are strongly intertwined, precisely to allow an autonomy that the
first experiment had shown to be something difficult to achieve. Here the
role of the teacher is decisive at each point and, to make this visible, we
adopted a different style, more narrative, to present the scenario and report
on the actual implementation. Of course this raises the question of the
students’ personal commitment and of the learning opportunities that each of
them was able to seize or not. The first session, essentially collective, does
not make it possible to answer this question. Rather, what was tested there
was the viability of a collective activity; as regards individuals, we only have
the information provided by the collective exchanges about those students
involved in them. However, the data collected during the two half-group
sessions where four students at different academic levels were specifically
observed, tend to confirm the impression that the introduction provided by
the collective session was viable.

The scenario which was built presents however evident weaknesses.
Firstly, it is too long for only two sessions, if the expectations of the a priori
analysis as regard the division of mathematical responsibility between
teacher and students have to be respected. In both groups, the last part was
not reached and the phase 3 was covered too quickly and collectively.
Furthermore, as underlined in the report, the scenario of the third phase does
not ensure that students will find in their interactions with the medium the
means allowing them to carry out the mathematical work expected. Indeed,
the students do not have a personal version of the program used in the first
two phases in order to provoke conjectures. This was only installed on the
teacher’s calculator and used collectively with the view-screen. Thus what is
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asked of them, is not the mere reactivation of a previously used strategy, as
they might expect. In this context, two strategies seem a priori possible:

by making successive zooms or by choosing a suitable window, to
produce a nearly linear graph and to exploit it in order to conjecture the
slope of the tangent as a simple decimal number;

to directly undertake a computation involving the parameter m.

Box 9-7.

Adidactic situations and devolution
(Brousseau 1997)

In the theory of didactic situations, elaborated by Brousseau, the notion of adidactic
situation plays a fundamental role. In such situations, the teacher provokes the adaptations
expected of students by a clever choice of the problems s/he sets up. Between the moment
when the student accepts the problem as his or her own and the moment when s/he produces
an answer, the teacher refuses to introduce the target knowledge: the student works at
solving the problem, alone or with other students. Knowledge is produced through
interactions with the medium which is defined as the system in opposition to the student, and
which can include both material artifacts and symbolic tools. Such a situation is called
adidactic because its teaching aims remain invisible in an important sense; nevertheless it is
organized with an undeclared didactic intention. The teacher wants to devolve to the student
an adidactic situation which will induce the most effective interaction possible. The strong
didactic contract is temporarily relaxed permitting the student to be modeled as a
“mathematical subject”. Setting up adidactic situations is not easy and Brousseau introduced
the word devolution to label the process by which the teacher devolves mathematical
responsibility to the students and tries to maintain it. One of the basic principles of the
theory of didactic situations is the following: real mathematical learning requires adidactic
situations or at least adidactic phases in didactic situations.

The designers of this piece of engineering thought that the first strategy,
even if requiring some initiative, was reasonably accessible and that the
second one might appear but would certainly remain marginal since it
required a real change in perspectives. But they planned to exploit the
difficulty met by the students in this phase to introduce the definition of the
derivative and make the students sensitive to the value of the second
formulation (see above). As shown by this experiment, these predictions did
not work: in the first group, because students made use of specific
commands offered by the menu F5, but not yet introduced; in the second
group because the situation provoked a debate on the existence of the
tangent, in the case of inflection. We cannot say what would have occurred
if the students had had more time to solve this problem, and if the teacher,
under the pressure of time, had not stopped individual work so quickly. The
question remains open.
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3.2.3 The formal computation of derivatives

From the start of the experimentation, the teaching of rules for
calculating derivatives exploited the symbolic potential of the calculator. We
asked students to observe how the TI-92 answers when commands asking
for the derivative of sums, products, quotients of general functions (for
example: d(f(x) + g(x), x), d(f(x)/g(x), x), or composite functions are entered
(a similar task about limits is presented in Chapter 3). They had to transpose

what appeared on the right part of the screen in terms of into the

standard notations they used for the derivative and to conjecture rules which
were then discussed collectively. The results were not convincing. As in the
engineering with grade 10 students, the work of observation and
transcription was of limited productivity, and insufficient to motivate the
search for reasons for the conjectured rules. Furthermore, it appeared that
when the calculator simply returned the original expression used to
calculate, for instance with composite functions, the students had difficulties
of interpretation and tended to infer erroneous rules, such as:

The engineering was thus modified for the second year. More precisely,
we planned:

to ask for predictions before using the calculator;
to work first on some particular functions, in order to establish a basic

repertoire of associations between functions and derivatives, which would
help to motivate the search for more general rules. Looking at the
functioning of the TI-92 with general expressions was postponed to a second
phase, and linked to the development of a more theoretical discourse aiming
at finding mathematical reasons for the rules observed.

In this situation students have limited means of prediction. However, one
can reasonably expect that they will extend the conservation of operations in
relation to the algebra of limits into an algebra of derivatives, leading them
both to correct (for sums and multiples of functions) and incorrect (for
products, inverses, quotients of functions) conjectures. The confrontation
between students’ predictions and the results given by the calculator should
thus be particularly interesting.

Scenario
The session is planned in two phases, separated by a summing up, for a

total duration of 2 hours. In the first phase, the aim is to establish rules for
the computation of derivatives, with the help of the TI-92, as explained
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above. The derivatives for reference functions already learnt are first
recalled collectively. The student worksheet is reproduced in Box 9-8.

Box 9-8.

Student worksheet, first phase
(Artigue & al 1998, p. 165)

Computation of derivative functions

Your TI-92 calculates derivative functions quite well:

You can use the menu F 3 then 1:
Differentiate, or [d], or [CATALOG]

Don’t use the normal style of d on the
keyboard and don’t forget the variable for
differentiation

Recall the results found on Monday and check these with the machine:
Function defined by Derivative function

How can you be nearly as fast using paper-and-pencil?
As we did with the limits, we will look for rules:
Fill the following table by using your imagination:

1.

2.
3.

Function defined by

x sin x
Other functions: 2x+l ; sin(2x) ;
3sin(x) ; 4sin(3x) ; sin(x+l) ; cos(x) ;
cos(2x) ; f(x)+g(x) ; f(x)g(x) ;

Derivative function

Now using your TI-92, can you confirm the above rules?

1.

2.
3.

Function defined by

x sin x
Other functions: 2x + 1 ; sin(2x) ;
3sin(x) ; 4sin(3x) ; sin(x+1) ; cos(x) ;
cos(2x) ; f(x) + g(x) ; f(x)g(x) ;

Derivative function
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In the summing up, it is planned to list the rules discovered by the
students, to discuss these, to search for justifications by relying on limits,
and to discuss the functioning of the TI-92 and what can be expected from it,
especially through analysis of the answers given to the derivative of general
expressions (this analysis shows for example that the quotient f/g is treated
as the product of f with 1/g).

Finally, in the second phase, students are asked to practice on various
examples, with the computations being performed by hand, and the
calculator serving to check these hand computations. The worksheet
distributed to students (reproduced in Box 9-9) asks them to indicate the
rules that they are using, and the interval on which the computation is valid,
determination of this interval being, even in case of instrumented work, the
responsibility of the student.

Box 9-9.

Student worksheet, second phase
(Artigue & al 1998, p.167)

Summing up of results

1.

2.
3.

4.

5.

6.
7

8.
9.

Function defined by
f(x) + g(x)

f(x) g(x)

kf(x) with k a constant
f(kx) with k a constant

with n an integer

f(x + k)
cos(x)

Derivative function with the TI-92

We will prove these rules in the next session; they result from computation rules for limits.
Using differentiation rules

By using the previous rules, calculate the derivatives of the following functions, and state for
what values of  this computation is possible. Check with the machine.

Function defined by Derivative function for in Rule used
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As can be observed, trigonometric functions are over-represented in the
corpus of particular functions: 7 out of 9 (reproduced in Box 9-8, 3). We
hypothesize as follows: these functions are well adapted to the work on
derivatives of composite functions which is planned later on in the session.
In fact, four cases among these first nine are already composite functions.
On the contrary, rational expressions which correspond to the cases which
students meet most frequently at this level are under-represented (2 cases
only) and there is no quotient. Thus the set of functions seems unbalanced
with regard to what could be expected a priori. With the exercises of the
second phase, we meet the opposite situation: only one trigonometric
function is proposed and rational functions strongly predominate (7 cases
among 10). The technical work focuses thus on the categories of objects
whose mastery is expected.

Implementation
The first worksheet (Box 9-8) concerning the reference functions (note

13) was collectively filled in after a short introduction by the teacher. When
the students came to check their answers with the calculator, some of them
obtained a different result for the sine. The problem resulted from the fact
that their calculator was in degree mode and/or in approximate mode. The
teacher took advantage of the occasion to remind them that the derivative of
the function sine is the function cosine only if x is expressed in radians.
However, at this time, he could not yet explain the multiplicative coefficient
which appeared by appealing to the derivative of composite functions.

The students then proceeded to the work of prediction, the teacher asking
them to switch off their calculators and to try to justify their predictions.
Box 9-10 below summarizes what they proposed after the ten minutes
devoted to this activity14.
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Box 9-10.

Summary of the students’ predictions

Functions Comments

Correct derivative for most students, found by using the previous
examples and One student writes under the equivalent form

and calculates the derivative by following a rule

Two students give the correct derivative *. The others return the product
of the derivatives or the derivative only of the sine.

Fifteen students give the correct derivative. A student adds that the slope
of 2x + 1 is 2, another one that the derivative of 1 is 0. Six other students
add 1 to the derivative of 2x.
Four students give a correct answer*. Two others answer according to:

and the majority (11) according to:

Twenty students give a correct answer, one returns cosx and one 0; he

followed a rule

Five students give a correct answer (the same ones as for sin (2x) plus one
more). Other students follow a rule or as above. A student

(the same one as above) obtains 0.
The correct answer is predicted by 10 students. Four others return the
derivative of the 1 in the bracket as 0.

Three students know the derivative of the cosine. The majority think that
sine and cosine are exchanged by derivation.
Four students predict correctly the derivative of the cosine and the
derivative of f (kx)*. Two students predict only the derivative of f (kx).
The rule is correctly predicted by the twelve students who answer.
Only one student gives the right rule for the product. Ten other students
assume the conservation of the product.
Ten students are influenced by the derivative of 1/x and thus omit

Three others return One takes the derivative of the numerator

and obtains 0.
Few students tackle this last question. Two answers assume the
conservation of the quotient and three are influenced by the derivative of
1/x, proposing –

In the summing up which followed, the teacher wrote on the blackboard
the results given by the students without saying a word. He asked them then
to redo the same work with the machine, so as to fill in Box 9-9. He pointed
out that the machine may give false results and that they had to argue and
validate the correct answer. Obtaining the results with the TI-92 did not raise
any major problems. We noted only some problems of syntax: implicit
product for x.sin x, previous assignment of the functions f, g in the general
case, forgetting derivative signs in the transcription to paper.

The screens obtained are reproduced in Figure 9-7.
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Figure 9-7. Derivatives on the TI-92

A little more than half an hour after the beginning of the session, the
comparison between the conjectures and the results supplied by the
calculator began, conducted collectively. It generated lively discussion
between students and with the teacher, but the students often had difficulty
in explaining their conjectures and in associating precise rules with these,
which limited the scope of the discussions about the first examples (the
particular cases). The transition to general expressions made it possible to
return, as expected, to the specific cases by wondering about the consistency
of the answers given to the particular cases with the general rules. It also
made it possible to point out seductive errors. In the case of the inverse, the
link was made with the derivative of and, in the case of the quotient, a
collective computation was done: reducing both quotients to the same
denominator in order to get the usual formula. The summing up was
satisfactory, even if it remained more at a descriptive level than expected:
students stated the rules and the consistencies but they did not go beyond
this level; nevertheless when the summing up ended they seemed a bit tired.

Approximately one hour after the beginning of the session, the results
were recorded in the third table and, with this table, new cases appeared:
those relating to compound functions especially. Contrary to what might
have been expected, the students had difficulty in conjecturing the derivative
of from the examples already met (did this result from
tiredness?); so the teacher moved to the TI-92. But they also met difficulties
in interpreting the productions of the machine correctly, linking these to the
particular cases already treated. The teacher intervened firmly; he asked for
3 to be substituted in place of k (form k = 3) so as to make them aware of
the fact that the calculator does not give any answer when f is not specified.

For f(x + k), having reminded students of the particular case sin(x + 1),
he asked for a graphic interpretation. In that case, indeed, a graphic
interpretation is more accessible than in the case of products because only
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translations are involved, but this attempt, too abruptly introduced, did not
generate any real recognition. The teacher closed the first phase at this point
and asked the students to work individually for the second phase. He also
announced that the proofs of rules would be done in the next session.

This second phase began after about one and a quarter hours of intensive
work and the teacher insisted on the third column of the table being filled,
that dealing with domains of validity. He would have liked his students not
to reduce derivatives to their symbolic aspect. During the individual work he
again insisted on this point several times, but unsuccessfully. In fact, the
students had grasped the symbolic aspect of the work developed during this
session and were not willing to accept another agenda. Essentially, their
errors concerned the management of constants (5 remained in the derivative
of expression 3, 1 disappeared in the derivative of expression 6, for
example), the derivatives of products (for some students, the derivative of
the first expression was 6, of the last one, 0) and quotients. There were also
many algebraic errors in the expansions, which is not surprising if one
considers the symbolic complexity of some of the expressions proposed.
Finally, the students had difficulty in coordinating the results they obtained

by hand for sinx.cosx, and as supplied by the TI-92    ,

A posteriori analysis
This session, as noted above, aims at exploiting the productions of the

machine to motivate and develop mathematical work on the rules of
differentiation. This makes it closer to the sessions from the first project, as
regards the functionality given to the calculator. It is also closer in terms of
management: students work with worksheets defining a corpus of functions
which will be used as a base for reflection and elaboration of rules. As was
the case with grade 10 students, the limits of such an organization, when
observations cannot be linked to a structured system of predictions, were
quickly perceived as a result of the first experiment. The second experiment,
on the contrary, tends to confirm the potential for mathematical work of the
confrontation between predictions and results supplied by the machine, in a
case such as this one, where the rules on which the prediction is more or less
explicitly based, are partially erroneous. The predictions made by the
students, summarized in Box 9-10, and the liveliness of the collective
discussions clearly evidence it.

But observations also show us the multiplicity of the variables which
intervene in the efficiency of such a session. First of all, the work of
prediction can only be productive if machines are switched off. Here, this is
the case when the activity is launched and the students, being accustomed to
respecting this type of didactic contract in the classroom, do not try to free
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themselves from it; nevertheless as some students begin to fill the worksheet
during the first phase of the session, there is some unexpected perturbation
to the work of prediction. Another point is that the phase of prediction must
have a real status. If it seems just like an introduction, the confrontation will
lose much of its efficiency; the authority of the result supplied by the
machine will sweep away all the previous work, whatever its coherence. In
this situation, observations show that the students’ predictions are consistent,
at least locally. Trying to clarify some of these consistencies, and to pose
questions about them before using the calculator gives the prediction work
quite another status. Here, what actually unfolded does not seem to take
such a form: the time devoted to prediction is short, the results are recorded
on the blackboard without comment; there is no discussion either by groups
or the class organized as a whole before passing on to the work with the
machine. Even if the discussions are then lively, their productivity is limited
by the fact that students no longer recall why they predicted such and such a
thing and, a posteriori, they are certainly not motivated to look for the
reasoning behind answers invalidated by the machine. The third variable is
the variety of cases which one wishes to treat. Here, managing in the same
session the destabilization of spontaneous rules concerning the
differentiation of products and quotients (a case more difficult than it
appears at first sight), the differentiation of constants and the differentiation
of compound functions (even when limited to composition with linear
functions), this is too much for a single session. Serious work on each of the
objectives becomes difficult and one can easily slip into an approach which
remains superficial. This limits in particular the investment that it is possible
to make in the technologico-theoretical work outlined in (Box 5-1). Students
notice more than they explain, they observe more than they argue about,
justifications are postponed to another session, in spite of the initial
intentions. To this must be added the delicate problems of interpreting the
expressions provided by the machine in the case of composite functions,
certainly premature at this point.

In the case of composite functions, we also see the teacher encountering
serious difficulties on discovering the incapacity of the students to use the
trigonometric examples they have previously met, trying to introduce a new
and interesting way of justification, by coming back to the geometrical
meaning of differentiation. But the students were unable to make sense of
this proposal breaking with the symbolic line of the session, introduced at
the level of a collective discussion, and without any preparation.

Taking this analysis into account, the engineering was modified once
more. Two different 2 hour sessions were organized: the first one centered
on algebraic operations on derivatives: sum, product by a scalar, product,
inverse and quotient; the second centered on composite functions. In the first
session, prediction of particular cases and conjectures about the four
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operations, as quoted above, formed the theme for work in small groups
followed by a collective summing up. This summing up aimed to clarify
general conjectures as well as their consequences in particular cases, and to
reject in a reasoned way some erroneous predictions, to formulate some
questions. The calculator was only used after this substantial phase. The
search for reasons for the rules of differentiation of f + g and f.g was, in the
summing up, piloted by the teacher relying on the approximation point of
view. Then the other rules were formally derived from these by the students.

The second session, focusing on composite functions, was planned for
later in the academic year. Trigonometric functions played a privileged role
in it, as was the case in the initial engineering, but also the square root
function which makes it possible to tackle questions related to the domain of
validity of symbolic computations (Chapter 2). The work was not only
conducted at the symbolic level. The graphic setting was also brought into
play. Graphic representations of specific functions of the form
and for several values of a and k were used to establish the
corresponding rules of differentiation. Proofs linked graphic and symbolic
elements but remained guided by the teacher, in particular for the product.

This new design was not systematically observed in the way that the
preceding one was, but, according to the teachers involved in the initial
project who are still using this approach, it now works in a completely
satisfactory way.

3.2.4 Accessing generalization

In Chapter 5 (§ 6), Lagrange discusses the potentialities of computer
tools in allowing students access to generalization. He concludes that CAS
provide students with new techniques which, when inter-related to old
techniques, can open up new understandings and support generalizations
which lie beyond the range of student possibilities at this level in paper-and-
pencil work. In this section we consider this issue again, focusing on access
to generalization through functional activities involving parameters, and on
conditions for the viability of such activities at high school level. For that
purpose, we use two situations from this piece of engineering. The first one
-- the tank situation -- corresponds to one of the first optimization problems
met by the students; the second -- the pipe situation -- is a much more
complex situation involving functions defined by constraints. Posed initially
to the students over two sessions at the end of the year, it was then
integrated, under different variants, within a project involving Internet
exchanges between classes, piloted by the inter-IREM ICT commission
(Box 1-3). We briefly present these two situations and what we learnt from
the experiments. The reader can consult the report (Artigue & al 1998) and
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the web site of the Academy of Besançon (http://www.ac-besancon.fr) for
more details.

Box 9-11.

The tank problem
(Artigue & al 1998, p.54)

A mason has to make in concrete a tank in the form of a
parallelepiped. The base is a square, the concrete has a
thickness of 20 cm, and the interior volume of the tank is

x (in m) denotes the internal measure of the side of the

square base and h (in m) the internal height of the tank.
Determine x and h so that the volume of concrete be
minimal.

In Chapter 5 (§ 6), it was stressed that in the tank problem (Box 9-11),
posed to students, which appears at first to be a problem of optimization
corresponding to a very particular situation, the motivation for
generalization results from peculiarities of the result found. The value of x
which corresponds to the minimum is 2, a number connected to the data of
the problem: this is for example half the number that measures in the
internal volume of the tank. Is this a mere coincidence? The introduction of
parameters to denote some of the data allows this question to be answered. If
one denotes the thickness of the tank by e and reworks the computations
with this parameter, one discovers that the value of x which corresponds to
the minimum does not depend on e. Is the result obtained also independent
of the chosen volume? This time, the answer is negative: if V is the internal

volume (expressed in the minimum is obtained for A new
functional dependence appears which can be studied...

What can we learn from the experiment about the potential of this
problem for motivating and approaching generalization issues in a CAS
environment, at high school level?

In this piece of engineering, this problem is posed to the students quite
early, at a point when the computation of derivatives has not yet been well
mastered. The issues of generalization which we choose to emphasize here
are not the only ones justifying its didactic value at this point in the learning
process and, before going on to these, we would like to point out some other
potentials revealed by the experiment. The first problem met here is a
mathematization problem. Some hints are given but to move forward,
students must find a way of calculating the volume of concrete (to proceed
by difference of volumes, which is obviously the most successful method
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here, is not a spontaneous strategy for many students). This volume, once
obtained, depends on two variables x and h, and students have to eliminate
one of these by using the relation so as to be able to make use of
their analytic tools. Even if this situation is a priori frequent at high school
level when functions are related to the modeling of systems, generally,
selecting the independent variable and expressing the others with respect to
it is the responsibility of the teacher or the text of the exercise. Once these
initial difficulties are overcome, students obtain for the volume V(x) the

expression: or an equivalent expression if they choose x

as independent variable and some expression with square roots if they
choose h. In the experiments, this phase of mathematization proved to be
difficult. Students were not able to succeed without additional guidance,
even though the teachers tried to give them maximal responsibility.

Students meet optimization problems from grade 10 onwards in France,
but their culture for solving such problems is an algebraic-graphic one, not
bringing in the notion of derivative. Under these circumstances, the scenario
asked students, following a collective synthesis, to investigate the variation
of the volume with respect to x and to make conjectures. This graphical
exploration mediated by the TI-92 led to a conjecture that the function
seemed to have a minimum in the neighborhood of 2. By symbolic
computation, it would have been possible to show algebraically that 2 is a
minimum: by calculating and factorizing V(x) – V(2). This strategy had
been used in other functional situations at the beginning of the year. But,
after this phase of exploration which was followed by a second overview,
the scenario directed the students to an analytic solution exploiting the
newly introduced notion of derivative. As they were not yet very familiar
with the computation of derivatives, students were asked to calculate V’(x)
with paper and pencil, and then to check the result obtained with the
machine. This choice is not neutral. The function V(x) is complex and,
depending on the way in which it is expressed, the computation of the
derivative is more or less laborious, more or less a source of errors. It proves
especially difficult if the students choose to use the ‘simplified’ form given
by the calculator (Figure 9-8). In the classroom this motivated an interesting
discussion about forms and differentiation, taking into account the
management of quotients, and the respective advantages of expanded and
factorized polynomial forms. Checking the computation with the calculator
raised equivalence problems, already described in relation to the first
project: no less than five different forms generally arose, without counting
the erroneous ones, all different from the derivative given by the TI-92. To
conclude, the study of the sign of the derivative showed the advantages of
factorized forms, the numerator being a polynomial of degree 4. As can be
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seen from these comments, independently of any perspective of
generalization, this situation is already a rich and complex one for grade 11
students.

Figure 9-8. Expression for the volume on the TI-92

For the first experiment, generalization was introduced by posing the
students two more questions to solve, presented as an extension of the first
problem:

Extension (class B)
solve the same problem with a thickness of the tank of e meters.

(The volume of the tank is still
solve the same problem with a thickness of the tank of e meters and an

interior volume of the tank of

The students tried to solve these two problems but they perceived neither
their value, even a posteriori, nor the role played in generalization by the
introduction of parameters. The lack of problematization was evident here.
Once again, the first observations and the associated analyses led us to
revise the scenario. The value of h, once found, had to be connected with the
data so that generalization made sense. Tools available for such a
generalization had to be collectively discussed so that the limits of numerical
attempts be perceived and the introduction of parameters be considered as
the appropriate mathematical tool. In fact, once these conditions were
clarified, revising the scenario was quite easy and this revision turned out to
be effective. As regards the technical work associated with generalization,
this would have been impossible for these students without the support of
the symbolic calculator. And, even if most of the students, for the first
generalization, started the new computations from scratch, for the second
one, they tried to save the computations: they came back to previous screens
on the machine, adapted the expression for V(x) by introducing the second
parameter, and then followed the steps of the process very economically.

The second problem belongs to the class of problems labeled as search
for functions satisfying certain constraints15, and was taken from the Belgian
project AHA (1996)16. The didactic value of this kind of problem has been
demonstrated by different researchers, for instance Rogalski (1990) and,
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more recently Bloch (2000, p. 171). The problem was initially posed in the
following form, for a 2 hour session:

Box 9-12.

A problem of pipes
(AHA 1996, p.47)

One wants to link the two pipes shown in section in the figure below.

The joint is generated by the rotation of a curve around the axis of the pipes. This curve must

be tangent to both pipes at the junction points and its slope cannot change abruptly.

The purpose of the problem is to find such joints and to choose that or those which minimize

the slope of the joint.

Generalization enters into this problem via the choice of one or several
types of joints: by cubic functions or polynomial functions of odd degree, by
sine functions, by combination of segments and arcs of circles, of
parabolas... For every type, one deals with a family of functions depending
on several parameters whose values will then be determined by expressing
the constraints to be satisfied.

Even if grade 11 students have at their disposal, when this problem is set
up, a rather rich repertoire of functions which allows them to enter into this
type of generalization, the problem is doubtless difficult. They are not
familiar with this class of problems, the constraints concern both the
function and its derivative, not to mention the fact that the introduction of a
functional frame is itself their responsibility. Furthermore, the problem does
not stop with the determination of possible joints, they are asked to compare
these by trying to optimize, subject to a general criterion concerning the
derivatives. In order to shorten the text proposed, this criterion is formulated
fuzzily, but what is aimed for is the minimization of the maximum value of
the slope on the interval under consideration17.

What responsibility can the students be given in solving such a complex
problem and what are their needs in terms of instrumented knowledge? In
the next paragraph, we try to draw lessons from the experiments carried out.

The lessons drawn from the first experiment
The first experiment proved that our students, if faced with this problem,

were not, as a group, completely without resources. The fact that it is
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possible to make such a joint by rounding off a linear joint at its extremities
was suggested immediately. Other students, quickly taking the functional
point of view, envisaged different types of joints by cubics and sines, and by
connecting two parabolas with their respective summits at the two
extremities of the joint. It was their perspective which prevailed over the
first one, more pragmatic, for evident reasons of the didactic contract (Box
8-6).

But the experiment also showed the complexity of the knowledge
required by this mathematization and in solving this problem, once various
possible joints are considered, as well as the problems raised by an effective
instrumentation.

For most students, working with the TI-92 favored graphical
investigations at first. These aimed at finding functions whose graph had the
form of the joint, before adjusting the coefficients more precisely. After a
phase of general discussion, they decided to begin with cubic functions.
Thus they entered particular cubic functions into the calculator and graphed
them, then changed the coefficients, trying to get a good form. The attempts
were poorly structured and, as could be foreseen, the coefficients of the
chosen cubics were small integers, so that their graphs did not take on the
required form in the standard window used by the students, but were, on the
contrary, very steep in form as a result of the high values taken by the terms
of degree 3 (Figure 9-9). All the session could have been spent in these
attempts!

Figure 9-9. ‘Ordinary’ cubics

Passing from the idea of using cubics to the idea of determining a cubic
function within a family by choosing values for parameters, becoming aware
that choosing these values cannot be done by chance but requires an
adequate expression of the constraints to be satisfied, that expressing these
constraints requires the choice of axis..., each of these steps required
interventions from the teacher, as the strategies of those students who
spontaneously worked in this way did not spread across the classroom.
However, once the necessity of fixing coordinates was understood, most
students were able to choose axes in order to take advantage of the
symmetry of the situation. But, once these first difficulties were overcome,
other new ones emerged linked to the expression of the constraint of
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smoothness. This constraint was interpreted by the students in the following
correct way: the curve has to have horizontal tangent at the junction points,
but many of these evidently had difficulty in reformulating this as saying
that the value of the derivative is 0 at the junction points. Such difficulties
resulting from a lack of flexibility between the different perspectives that can
be adopted with respect to the derivative were omnipresent in the
experiments. The time spent on cubic joints led the teacher to give up the
initial idea of comparing the solutions according to the choice of the axis.
And the collective summing up after this phase only considered the
modeling in the system of coordinates predominantly chosen by the
students.

The second type of joint envisaged in the class, involving two parabolas,
can be dealt with in several ways. In continuity with what had preceded,
students introduced general expressions depending on three parameters and
tried to determine the parameters by expressing the constraints. The problem
is less simple than it appears at first sight, if one does not reason in terms of
the symmetry with respect to the point C in the middle of the segment
linking the two extremities of the joint, even if one reasonably decides to
connect the two parabolas at C. Indeed, the condition of tangency at C adds
a new condition which involves the two functions, but it is a condition
which is actually automatically satisfied as soon as the others are. One can
also solve the problem more geometrically by considering a first parabola
passing through C, then by considering its image by point-wise symmetry
with respect to C. If one admits that symmetries preserve tangency, which
seems to be accepted by these students, as observed several time in the
experiments, the problem of connection at C is thus solved because the
tangent to the first parabola is invariant in this symmetry. The problem of
connection at the other extremity of the joint can then be managed in a
similar way. The teacher outlined this possibility very briefly in the
collective summing up.

The comparison of the first two joints found was then made without
difficulty. The students calculated with the machine then drew the
derivatives of both functions, which led them to conjecture that the

Figure 9-10. Expression of the parabolic joint and drawings of the cubic and parabolic joints

(Artigue & al 1998, p.189)
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maximum of the slope was obtained in both cases at the middle of the joint.
The proof was not difficult because they had either a parabola (cubic joint)
or two segments (parabolic joint). The comparison of the two maximum
values: 3/4 and 1, showed that the cubic joint was better.

The third type of joint considered at the end of session could also be
managed via the writing of a general form depending on four parameters:
f(x) = a.sin (bx + c) + d. But the equations obtained are unmanageable for a
grade 11 student. In fact, for this third type of joint, reasoning by successive
transformations, taking into account the characteristics of the targeted sine
function and the existing links between geometrical and algebraic
transformations, is doubtless the most economic approach for these
students18. The teacher explicitly engaged the students in that direction at the
end of the session, when she asked them to study at home the case of the
sine joint for the next session.

This problem is thus a very rich one, in terms the types of functions it
brings into play, and by the different points of view it requires to be
introduced and connected, both within analysis and in interaction with
geometry. For the students involved in this experiment, nothing was routine,
every phase of the solving process involved something problematic.
Contrary to the situation of the tank problem as previously described,
calculators did not necessarily play a positive role. At the beginning of the
session, the extensive use of graphical investigations, poorly structured and
controlled, was not effective at all. Conversely, at the end of the session,
graphical exploration turned out to be very useful when students looked for
relations between the coefficients of sine functions and their graphical
characteristics, or when they tried to compare the slopes of different joints.
But what was at stake here, was essentially the graphic application. The
symbolic application could have been brought into use for the solution of the
linear systems involved, but the level of students’ instrumentation as regards
this type of task was rather limited, so they preferred to solve these systems
by paper-and-pencil techniques.

Under these conditions, within the reduced amount of time devoted to
this problem, what was observed was a functioning where the mediations of

Figure 9-11. Drawing of the cubic joint and of its derivative

(Artigue & al 1998, p.188)



the teacher were very important. That is the reason why the same type of
problem was then adopted in another experimental mechanism involving
Internet exchanges between classes. This new mechanism which constitutes
a particular orchestration (Chapter 8, § 2) allowed the research to develop
over a longer period (approximately one month), and the students to benefit
from the ideas of other classes and from competition between them.
Similarly, one more situation (Trouche 1996, p.225) of the same category
-- looking for functions subject to a set of constraints -- was used in a piece
of long term engineering including research on open problems, piloted by
the teacher but mainly developed in out of school time (Aldon 1999, p. 170).
This type of management makes it more easy to manage the reorganizations
of knowledge that these situations require.

The document accompanying the new grade 10 French syllabus (DESCO
2001) mentions:

Recent developments in calculators allow us to anticipate everyday access to systems for

formal computation. These have to be efficiently integrated into the whole learning

process. Complemented by the necessary training for the mastery of the most common

computations, they can represent a valuable means for checking, but also for

investigating, opening the way to richer mathematical situations (p. 10).

As pointed out at the beginning of this chapter, the examples of
engineering presented here are guided by this perspective. They envisage an
integration process in which the instrumentation and instrumentalization of
the calculator on the one hand, the mathematical knowledge on the other
hand, simultaneously develop through a dialectic which tightly connects
paper-and-pencil work and work instrumented by the calculator.

The descriptions and analyses of this chapter tend to show that, at least in
the experimental environments concerned here, such an integration is
possible. They also tend to show that such an integration is likely to help
high school mathematics education:

to bring alive important but difficult questions whose management in
standard environments is highly problematic, such as those relating to the
sense of algebraic, expressions and objects, to the relationships between
exact and approximate computations, to the status of numbers;

to benefit better from the current visual culture in order to motivate the
introduction of new concepts and the associated work of mathematization;

to allow approaches to generalization, to complexity, at a point when
students’ competences make these approaches difficult in paper-and-pencil
or even graphic calculator environments.
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5. GENERAL DISCUSSION



But the descriptions and the analyses of this chapter also show that such
an effective integration is not easy at all and they help us to identify
conditions to be satisfied. Some of these conditions were obviously achieved
from the start of the engineering work described: the legitimacy of the
symbolic calculators, inside the classroom, inside the high school, in the
relationships with parents; the fact that even if the calculator was always
available, its use in mathematical work remained under the control of the
teacher and that the rules established in the class as regards its use were
respected. The teachers involved in these experiments were also aware of
the fact that these rules would necessarily evolve, throughout the year,
according to the development of students’ instrumental and mathematical
knowledge, and that this evolution was only one facet of the necessary
evolution of the didactic contract. They managed this evolution, making
precise its most crucial points, in order to avoid possible misunderstandings.
This management can lead to specific didactic inventions, such as the
different codes introduced by the Montpellier team to assessment texts in
order to make clear the status of the calculator in solving different questions
as well as the level of recording expected: paper-and-pencil type solution,
solution possibly referring to the calculator but mentioning the commands
used with the corresponding syntax and the outputs obtained... The teachers
were also aware of the role that they had to play in the instrumentalization
and the instrumentation of the calculator, and they took up these processes
officially from the start. However, in spite of the preparatory reflection
carried out, the first didactic scenarios were far from being satisfactory and
required serious reorganization. For instance, they did not pay enough
attention to the fact that exploring a perceptual phenomenon via the screen
of the calculator does not automatically generate real mathematical work;
they tended systematically to minimize the complexity of the work which
remains for the student when s/he works with a symbolic calculator; they
tended to systematically underestimate the mathematical needs of
instrumented work.

How can these recurrent phenomena be explained? In order to deepen
our reflection, we will use the thesis study which Defouad (2000) conducted
in the context of the second engineering project referred to above, addressed
to grade 11 students. This thesis focused on understanding a particular
instrumental genesis: that associated with the study of the variation of
functions. Through regular classroom observations and the following up of a
set of students, selected according to their sex and their mathematical and
technological profile, throughout the academic year, this thesis showed the
complexity of the instrumental genesis in question. Regular interviews were
organized with the selected students and, among other questions, students
were systematically asked to study a function they were not familiar with.
With the help of the calculator, they had to explore the situation, propose
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conjectures about the behavior of the function, and then try to prove these.
These interviews allowed Defouad to identify some important didactic
phenomena which were not so visible in classroom sessions and
assessments, due to the more constrained character of these.

A first phenomenon is the slowness of instrumental genesis. Defouad has
shown that, facing an unfamiliar situation, in a context where the pressure of
the didactic contract is lighter, the students rely longer than expected on a
graphic culture of the study of functions, which has begun to develop in
grade 10. This culture becomes richer as the students tend to progressively
make use both of the graph of the function and the graph of its derivative in
their explorations, conjectures and proofs, but the symbolic computations
offered by the calculator and the modes of reasoning they support are, for a
long time, confined to a marginal role. Typically, the symbolic application is
used for calculating the derivative before entering it into the Y= application.
The connections between symbolic, numerical and graphical approaches are
thus poorer than expected. The economic strategies for use of the TI-92
envisaged a priori before every interview are rarely those chosen by the
students who seem more likely to favor strategies of zapping and of over-
checking. Moreover, this slow experimental genesis is marked by an
alternation of phases that Defouad qualifies as phases of explosion and
purification. The first ones are characterized by an explosion of different
techniques and it is only slowly that a temporary stabilization takes place
around schemes which can remain variable from one student to another.

These results lead one to wonder about the status of instrumented
techniques in the experimental classes and about the influence of this status
on the genesis observed. This question of the status of instrumented
techniques along with that of their institutional management will structure
the analysis we will develop below, by approaching, from a slightly different
perspective, the data already analyzed above.

Education, in an environment of symbolic computation, inevitably links
two types of technique: paper-and-pencil techniques and instrumented
techniques. As has already been mentioned in Box 5-1, every technique has
a pragmatic value and an epistemic value, the second value interesting
education as much if not more than the first one. The institutional status of
techniques depends on these values, and a technique which is not recognized
as having sufficient epistemic value has difficulties in becoming fully
legitimate. As has also been explained in Chapter 5 (§ 5), while it is easy to
recognize a pragmatic value in instrumented techniques, it is much more
difficult to grasp their possible epistemic value. In some sense, while the
epistemic value of a paper-and-pencil technique often emerges from the
details of the technical gestures attached to its execution, the immediacy
with which results are obtained makes the possible epistemic value of
instrumented techniques less evident: making visible this possible epistemic
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value requires reflection and some reorganization of the tasks proposed to
students. We see this reflection and reorganization as something essential
for legitimizing symbolic tools in education, and for overcoming the evident
limitations of the institutional discourse in that respect. If we look back at
the two examples of engineering analyzed in this chapter, we can see that
different levers have been used for that purpose, consciously or not:

the surprise lever: this plays on the effect of surprise produced by
unexpected results so as to destabilize erroneous conceptions, to promote
questioning, to motivate mathematical work;

the multiplicity lever: this plays on the potential offered by technology
for producing a great number of results very quickly, so as to promote the
search for regularities and invariants and to motivate mathematical work
aiming to understanding these;

the dynamic lever: this plays on the dynamic potential of graphic
representations to overcome the evident limitations of paper-and-pencil
work and to promote a dynamical way of approaching mathematical
concepts and problems, the potential of which is now fully acknowledged.

But, even if these levers can be identified and if one decides to make use
of them, their effective exploitation is not obvious. Our observations, like
those carried out by various other researchers, for example Schneider
(Appendix 4-1), illustrate this very well. In order to better understand the
difficulties confronting an effective exploitation, it is necessary to deepen
our reflection on the institutional status of the instrumented techniques and
their relationship with paper-and-pencil techniques.

What Defouad’s thesis shows, is the difficulty experienced by teachers,
even in the experimental environments, in giving an adequate status to
instrumented techniques and to managing them institutionally. In fact, the
observations made during the first year of the research showed that paper-
and-pencil techniques and instrumented techniques had very different lives
within the class.

After a first classic phase of investigation and craft work, some paper-
and-pencil techniques for the study of variation became official. They
became the object of specific training and some of these even became
routines (Box 5-1). A more theoretical discourse goes alongside their
implementation, having explanatory and justificatory aims, even if
fundamental theorems such as the theorem linking the sign of the derivative
on an interval with the monotonic variation of the function are not formally
proved at this level of schooling.

The situation was not the same for the instrumented techniques involved
in the study of variation: techniques for the framing of graphic
representations, techniques associated with the determination of the sign of
the derivative, techniques allowing recognition of the equivalence of
algebraic expressions... The calculator expands the range of possible actions
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for solving the corresponding tasks: consider for instance the number of
types of zoom offered in the graphic application, the different commands
which can be used for determining the sign of an expression by solving
equations, factoring, and also the different commands which can be used for
testing equivalence, both in exact or approximate mode. Teachers faced this
multiplicity and had obvious difficulties in selecting instrumented
techniques, which, supported by the culture, they would have done without
effort in more standard environments. The spontaneous tendency seemed
more towards showing the students the richness of the potential offered by
the machine, which produced a technical congestion. As the institution did
not give them rules, they were less sensitive to the necessity of choosing,
and not equipped to do so. There was an explosion of techniques which thus
remain in a relatively simply-crafted state, and this did not favor progression
towards an effective instrumented activity.

Another difference can be added to the previous ones. Any technique, if
it wants to be more than a simple gesture mechanically learnt, must be
accompanied by a more theoretical discourse. For the official paper-and-
pencil techniques, this discourse is known and can be found in textbooks or
teacher material. For instrumented techniques, it has to be built and its
elaboration raises specific difficulties as it necessarily brings both
mathematical and technical knowledge into play. For example, mastering the
instrumented techniques associated with the graphic representation of
functions requires both mathematical knowledge about functions, about
discretization processes and their possible effects and more specific
knowledge about the way in which the artifact implements these
discretizations (Box 6-2). Mastering the instrumented techniques associated
with the treatment of algebraic expressions requires both algebraic
knowledge and more specific knowledge about the symbolic representation
of algebraic expressions in CAS, the notion of canonical form, the
differentiation between semantic and syntactic equivalence. As has been
stressed in this book (Chapters 2, 3 and 6), this specific knowledge is not
always easily accessible, and can even be out of reach, when it concerns the
algorithms implemented in the machine. For these reasons, building a
theoretical discourse adapted both to the instrumented techniques concerned
and to the level of students is not obvious. The observations we made during
the first year of experimentation confirm this difficulty and its negative
effects: instrumented techniques did not take on a real mathematical status
and their epistemic value remained limited.

Finally, the last phenomenon which marks the differences between the
two types of technique is a direct consequence of what has come before:
instrumented techniques were not institutionalized in the same way as
official paper-and-pencil techniques, even when they seemed fully
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legitimate in the class. This gave them an intermediate status and Defouad
introduced the expression locally official techniques to label this status.

We were not sensitive to these differences at the beginning of our work
and we did not analyze them immediately in these terms. It is the alternation
of the phases of explosion and reduction, the slow and very personal
stabilizations observed during the first experimental year that drew our
attention to the particular life of instrumented techniques. The analyses we
developed of the data collected then allowed us to identify the differences
mentioned above and the difficulties which attested to these. This analysis
had clear effects on the organization of the experiment during the second
year. The teachers, made sensitive to these questions, tried to face up to
them and we helped them to set up adapted explanations, justifications,
institutionalizations for those instrumented techniques which they chose to
privilege and to make official19. We also paid more attention to the
necessary evolution of the didactic contract as regards instrumented
techniques, according to the advance of mathematical and instrumental
knowledge. This resulted in a very positive evolution of the instrumental
genesis for most students, both in time and quality.

The viability of an integration of symbolic calculators in mathematics
education requires that a real institutional status be given to some coherent
and substantial set of instrumented techniques. This supposes choices
between those which are possible a priori, as well as the development of a
discourse allowing these techniques to be explained and justified, a
discourse supporting their institutionalization. This also supposes that the
mathematical needs of instrumented work be recognized, and that it be
accepted that, for a given mathematical domain, these needs do not coincide
with the needs of paper-and-pencil work.

This is not obvious and requires, beyond official discourses and texts, an
adequate training of teachers. Our experience with pre-service teachers
preparing for the CAPES examination (note 5, this chapter) or having just
passed it, tend to show that their initial training does not equip them well,
mathematically and didactically, to take care of these problems. Research
carried out on in-service teacher training concerning ICT shows that training
sessions in this domain have limited efficiency. Often trapped in some kind
of militancy, having as its first aim to sweep away the teachers’ resistance, it
does not provide them with means for overcoming the difficulties they
necessarily meet. As shown by Abboud in her thesis (1994) teacher trainers
are generally teachers expert in the use of ICT; they are no longer conscious
of all that they had to learn in order to gain this expertise. Training is based
on imitation: trainers propose teaching situations they have built and used
with their students; they select those that best demonstrate the interest and
innovative power of technology for mathematics teaching, but unfortunately
these often also require much technological expertise from the teacher.
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During the training sessions, these situations are simulated, the teachers
playing the role of hypothetical students, according to the strategy of
homology20 so frequent in teacher training. They are then invited to use
some of the simulated situations with their own students and, in the best
cases, are asked to report on these experiences in further training sessions
and are thus offered the opportunity of comparing these experiences with
that of their colleagues, and of discussing these with the trainer. Taking
account of the analysis developed in this chapter, and more generally in this
book, such strategies, in our opinion, are inadequate in facing effectively the
complexity of the problems involved. And it is not by chance that most
teachers attending such training sessions do not take these further in their
own classes. Other strategies must be developed. The chapter we dedicated
to this issue in Tinsley & Johnson (1998) has already presented some
alternatives. Others will be considered in the last chapter of this book.

In conclusion, we would like to underline that the didactical engineering
presented in this chapter shows that symbolic tools can support the
development of mathematical knowledge through different categories of
situations and especially in the following two ways:

through the mastering of instrumented techniques, which at first
appeared rather as a constraint;

through the new potential offered by instrumented work in symbolic
environments.

Situations from the second category are easier to conceive because they
often appear as enrichments of situations that already exist in customary
environments. Situations from the first category, on the contrary, often have
no immediate equivalent in customary environments and are, therefore,
much less present in the literature, including the research literature.
However, they cannot be neglected because, as has been pointed out in this
chapter, they contribute in a essential way to the epistemic status of
instrumented techniques.

In our opinion, situations organized around problems of equivalence and
simplification, approached here in the grade 10 example of engineering, are
paradigmatic of the first category whereas situations giving access to
generalization via symbolic computations involving parameters are
paradigmatic of the second category, for secondary education at least. In the
first case, knowledge comes from reflection on the object (Box 9-1); in the
second case it is the tool which is used through the potential it offers for
quickly obtaining numerous results, for accessing the details of a
computation already done and for adapting it to the case where one item of
numerical data becomes a parameter, for using the software as an assistant
for computation and proof.

Understanding the potential of symbolic tools for the learning and the
teaching of mathematics requires a deep reflection on the potential epistemic

The Integration of Symbolic Calculators into Secondary Education 289



value of instrumented techniques, where these two facets so different a
priori are simultaneously taken into account. Such a reflection, of course,
should not be thought of as something absolute but is something which
depends on context, both cognitive and institutional. From the clarification
of potential to the achievement of effectiveness is a long distance to cover:
designing adequate situations and more general progressions, testing their
viability and robustness, by taking into account the connection and
complementarity between paper-and-pencil techniques and instrumented
techniques, as well as the necessary institutional negotiation of certain
mathematical needs, a negotiation which is not so easy today.
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at the University Paris VII Denis Diderot, director of the IREM Paris VII
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elementary analysis or calculus. She is also vice-president of the
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NOTES

Problematics: this term refers to the structured set of questions addressed in research.
This is shown by the recurrent debates around mathematics education and leads to a
distinction between what is a matter of social utility and what has more a cultural value.
The recent book Mathematics and Democracy, produced by the National Council on
Education and the Disciplines, in the USA (NCED 2001), makes a distinction between
mathematical learning and the quantitative literacy that is today necessary for citizens
living in democratic countries. The authors show that quantitative literacy requires much
more than is traditionally taught about numbers and data processing, in the contemporary
world where the critical management of numerical data, probabilistic and statistical
reasoning play a crucial role. They also point out that the competences required by
quantitative literacy cannot be considered as some natural by-product of a classical
mathematical education.
Through a historical analysis of educational practices over the twentieth century, Birebent
(2001) shows in his thesis that this problem with the checking of approximations already
existed before the introduction of calculators. The introduction of scientific calculators
certainly modified practices in this domain, introducing new routines and, for example,
the idea that, in normal computations, it is enough to calculate with the maximal precision
of the machine then to drop two or three decimals so as to get an estimate of the
corresponding precision. By taking the example of simple trigonometrical computations,
Birebent shows how this naïve idea does not take into account the properties of the
functions involved in the computation.
The reader can consult for instance the report on computation produced by the CREM
(Kahane 2002).
CAPES: the competition in France in which success gives access to a position as a teacher
in secondary education. It is open to students who have gained the “Licence” (a university
degree awarded after three years of study, broadly equivalent to a bachelor’s degree in the
US and the UK).
This distinction, initially introduced by Frege (1892), between sense and denotation has
been used by various educational researchers to analyze students’ functioning and to
understand the difficulties they meet in algebra. The reader can refer for example to
(Arzarello & al 2001) or to the research developed by the team GECO in France. This
team exploits these ideas to define strategies for remediation for high school students
(GECO 1997).
MAPLE for instance offers 20 options for the command Simplify. These make it possible
to use some rules of simplification while ignoring others.
A polynomial can be written in the following form:

This form, known as the Horner’s form, is better adapted
to the computation of numerical values of P(X) as the computation requires n products
instead of 1 + 2 +... n – 1 products for the usual form.
As soon as the factorization of an expression involves square roots, one needs to use the
command Factor(expr, var).
The part of this piece of engineering concerning the equivalence of algebraic expressions
was used with grade 11 students in the trial carried out by the research team DIDIREM
(Artigue & al 1998). In this trial, already described in (Box 5-6), the greater mathematical
maturity of the students made predictions, interpretations and checking easier to engage
with and manage, and nearly the same design led to very interesting and useful
mathematical work.
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In these sessions, secondary mathematics teachers present the functionalities of calculators
and examples of their use in classrooms (Chapter 1, § 3.5.2).
This document, entitled Introduction au calcul formel, is one of the documents distributed
by Texas Instruments within the framework of Europe (Chapter 1, § 3.5.2).
The expression: reference function is used in the high school syllabus in France. It refers
to the functions: and These prototypical functions are first introduced
and then teaching pays specific attention to the way the properties of functions from the
associated families, called associated functions can be obtained by using geometrical
transformations which make it possible to pass from the graph of a function to the graph
of the reference function from the same family (for instance is associated with

and with (Artigue 1993).
* in Box 9-10 refers to the fact that, in the previous phase some students began to compute
the derivatives corresponding to Box 9-9.
Another example is given by Aldon (1995, p.31).
The group AHA: Approche Heuristique de l’Analyse has developed a project for the
teaching of analysis in the two last years of Belgian high schools relying on the results of
didactic research in that area.
An optimal solution to this problem does not exist because one can build joints for which
the maximum of the slope is as close as one wants to the limit value given by an affine
joint (which does not answer the problem).
Working on these links and the way they make it possible to pass from one function from
a particular class (second grade polynomial functions, homographic functions, for
instance) to another one in the same class is an explicit aim of the French syllabus from
grade 10 onwards.
These choices could depend on the possibilities offered at this level.
This term was introduced by Kuzniak in his doctoral thesis (1994) for labeling training
strategies where the trainer, putting the teachers in training into the position of a student,
uses teaching situations and methods with them which he wants the trainees then to
reproduce with their own students. Kuzniak shows the present dominance of these
strategies in the training of elementary teachers.
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CONCLUSION

The contributors to this book set out with two main objectives: on the
one hand, to seek reasons for the continuing marginality of symbolic
calculators within mathematics teaching; on the other, to identify conditions
necessary to make their integration viable.

We have not sought to minimize the problems confronting integration of
symbolic calculators in particular, and of information and communication
technology in general. On the contrary, we have wanted to provide readers
-- whether they be policy-makers, researchers, or teachers -- with means
-- fitting these various levels of involvement -- to advance such integration.
We have also wished to provide means to analyze and evaluate pedagogical
resources, and to make them more efficient, beyond the particular examples
described in this text.

We have done this by developing a theoretical framework for thinking
about innovative experiences of calculator integration, by finely analyzing
such experiences, and by providing evidence of their successes and their
limitations. We have sought to identify the processes which produced these
successes and the conditions which would allow them to be reproduced
more widely, and to show how certain limitations can be surmounted by
giving attention to phenomena which the education system tends to hide or
underestimate.

The necessity of studying the instruments constructed by
students

We have shown how students have quite rapidly adopted, first, scientific
calculators, then graphic, and finally symbolic, as tools for their
mathematical work. Analysis of their usage has brought to light phenomena
linked both to computational transposition and to individual processes of
adaptation to tools. The affordances and constraints of these tools play a
determining role in these processes of adaptation, but the observations
reported here show that this role is not always positive as regards processes
of conceptualization. The instrumental approach, which emphasizes the
instruments constructed by students, makes it possible to understand these
phenomena and to describe them precisely, distinguishing different types of
constraint and their influence on instrumental genesis. Instrumented action
can be described in terms of schemes, including operational invariants,
relating the observable competences of students to their conceptions:

an instrument consists of a part of the artifact and the schemes of
instrumented action through which a student accomplishes a given task;



Thus, conceptions, instrumented techniques and ‘customary’ paper-and-
pencil techniques are intimately connected. In a general way, techniques
play a fundamental role in teaching and learning, in terms of connecting
action and conceptualization. They are constitutive components in the
understanding of mathematical objects, and sources of new questions.
Taking account of instrumented techniques and of their interaction with
customary techniques is, then, one key to the integration of new tools. This
is not simple:

it is sometimes necessary to defer the use of certain ‘key-press’
instrumented techniques so as not to deprive students of techniques
involving exploration which play an important role in conceptualization;

an instrumented technique can be described and taught. However, the
studies reported here have shown that a technique taught does not
necessarily become a technique adopted;

the introduction of new instrumented techniques depends on the
development of new praxeologies, starting from new tasks requiring use of
these new techniques;

use of these techniques by students depends on their integration into the
strategies of the teacher, in terms of the tasks set for students and the
discourse used to present and justify corresponding techniques.

Giving institutional status to a coherent set of techniques, and providing
a theoretical discourse accompanying these techniques are necessary to
develop a reasoned instrumentation through using computational tools in the
classroom, coordinated with the systems of instruments already established.
Moreover, many examples presented in this book show how an instrumented
practice which is efficient and well regulated depends on substantial
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the processes of instrumental genesis have both individual and social
aspects;

an instrumented technique, the observable part of a scheme, allows the
action of a student to be described in terms of gestures;

there is a dialectical relation between gestures and operational invariants,
the operational invariants guiding gestures and gestures instituting
operational invariants.

Studying instrumented techniques consists of studying their pragmatic,
heuristic and epistemic functions. This calls for more precise analysis of
students’ actions and accompanying discourses over time, to identify
regularities in the carrying out of tasks and the justifying of gestures.

Techniques, understood as interfaces between action and
conceptualization



In the light of the work described in this book, we can bring out further
points which need to be taken into account in creating these new
praxeologies (whether or not they are accompanied by some evolution in
mathematical content). Even if programs of study and official guidance
make more and more frequent reference to tools, there is a clear lack of
attention within the institution of schooling to conditions for their viability.
An ecological approach provides some insight into these didactical
phenomena, capable of guiding changes linked to new environments. Thus,
the integration of CAS depends on creating a new type of relationship to
mathematics on the part of teachers and students:

in the past, the educational legitimacy of mathematics has been, at least
in the scientific streams of secondary schools, as much (if not more)
epistemic than pragmatic (since the teaching of mathematics aims more that
students learn to understand than to do). The legitimation of CAS assumes a
different balance between these, justifying the learning of an efficient
instrumented practice of mathematical computation;

in the past, the teaching of mathematics has valorized reasoning over
computation, algebraic computation over numeric, exact numeric calculation
over approximate. The introduction of CAS makes possible, but also
requires, a new equilibrium to be found;

the introduction of CAS makes it possible to bring to life mathematical
questions which are important but difficult to manage such as those
concerning the status of numbers or the sense of algebraic expressions;

finally, the introduction of CAS depends on establishing new
relationships between work involving a localization of attention (such as the
use of zooms or the observation of particular algebraic expressions) and
work involving critical reflection and generalization from particular
conditions.
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mathematical knowledge. Nevertheless, these new equilibria are not easy to
establish, for at least two reasons:

CAS considerably extend the field of possible actions for accomplishing
a given task (if one thinks, for example, of the number of zooms offered by
the graphing application, or of the number of commands available to solve
an equation). From this flows an explosion of techniques, which makes
much more difficult the usual cycle of discovering, making official and
routinizing techniques;

establishing theoretical discourses to accompany techniques is often
difficult when they depend on knowledge which is not easily accessible,
linked to the programs implemented in the machine.

A new kind of relationship to mathematics



Other factors play a part in explaining the marginal integration of
computational tools, in particular CAS, within mathematics teaching. They
concern the organization of curricula, from the point of view of the material
conditions of teaching, and of the evolution of programs of study and
official examinations:

the equipping of schools, and the accessibility of machines and software
to students and teachers, are, of course, conditions necessary for integration
into teaching practices (and equipment and accessibility are, at the moment,
very inadequate);

the creation of mathematical laboratories (CREM report: Kahane 2002)
would be quite useful from this point of view (although doubtless this would
require work to convince mathematics teachers, who generally consider that
the teaching of their subject does not contain an experimental dimension, in
contrast to the physical sciences:

it is necessary to introduce explicit objectives into programs of study
dealing with the knowledge (including know-how) likely to promote the
development of an algorithmic spirit on the part of students and to put
conditions in place for an experimental approach. New forms of working,
allowing groups of students to carry out interdisciplinary projects on a given
theme could provide opportunities to develop such an approach;

this integration needs to be accompanied by establishing new problems
and new methods of solution which put this knowledge and know-how to
work; Chevallard (1992) underlines the importance in this respect of didactic
exploitation scenarios involving the simulation of systems or processes;

it is necessary to incorporate the time necessary for the didactical
management of these objectives, because experience shows that
modification of praxeologies through contact with computational tools does
not necessarily result in a saving of time, contrary to a widespread way of
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These new relationships have already made an appearance in studies
reporting the integration of scientific calculators; they allow intelligent
calculation to be developed by students. In the same spirit, new programs of
study in primary schools place an emphasis on the coordination needed
between mental calculation, knowledge of the properties of mathematical
objects, and use of the tool for calculation. At another level, with symbolic
calculators, this intelligence can develop through coordinating elements of
algorithmics and programming on the one hand, and the use of
preprogrammed commands on the other. With ‘basic’ scientific calculators,
as with symbolic calculators, this is a matter of contributing to a reasoned
instrumentation of ever more complex tools.

New curricula



thinking: experimental approach, instrumented action, and theoretical
elaboration, through the formulation of hypotheses, can only be organized
over long-term study of a domain;

finally, this integration requires assessments containing items which
imply a more experimental approach to more open problems. Their solution
must call for the use of instrumented techniques and of a reasoned
instrumentation of artifacts. In this way, one could test, for example, the
capacity of students to interpret a response or non-response from an artifact,
to make a conjecture, to evaluate the relevance of a tool to a given situation,
to coordinate different applications of a CAS in order to validate an answer.

It has to be said that, at present, the institution of schooling has not yet
integrated into its examinations the kind of evolution that it specifies in its
programs of study. However, assessment plays an important role as a motor
for the development of professional practice; the proposals above aim to
encourage this. From this point of view, the frequent banning of calculators
in the early years of university study (whereas they are permitted at upper-
secondary level, and form a prescribed part of teacher training) creates a
most unfortunate break.
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The didactical implementation of CAS

We have shown through numerous examples how reasoned
instrumentation with these tools requires a basic knowledge on the part of
the teacher of underlying programming structures and of the algorithms
employed, and more generally, of the constraints and affordances of these
artifacts. The next stage consists of conceiving situations which exploit these
constraints and affordances and which aim to develop students’ reasoned
instrumentation in the course of the process of conceptualization. In effect,
numerous observations of the behavior of students, as described in this book,
provide evidence that this reasoned instrumentation does not arise of itself
and that situations must be thought out in order to support its development.
We have also provided evidence of a differentiation of instrumental genesis
in symbolic calculator environments: the more complex the tool, the greater
this differentiation seems to be. Thus, some guidance of instrumental genesis
is essential; it requires didactical management of the time and space of
study. Such reflection on didactical engineering, relative to the objectives of
teaching, considers, on the one hand, the didactical exploitation scenarios
proposed for the situations devised in conjunction with the instrumental
orchestrations underpinning each situation, to specify the didactic
configuration and the ways in which it can be exploited so as to orient the
instrumented action of students and the construction of systems of
instruments.



This book has brought out the fact that computational tools are rarely
considered by teachers as tools for mathematical work, in contrast to the
reactions found amongst students. Chapter 4 has also shown the great
variation in behavior amongst teachers. It seems as if, just as for students,
the more complex the environment, the greater the diversity of behavior
across teachers. This situation is easily explained by the competences
required on the part of the teacher: knowledge of mathematics and
computing necessary for an efficient instrumented practice, knowledge of
the constraints and affordances of these artifacts, the implementation of new
situations and, more specifically, of pieces of didactical engineering and
corresponding instrumental orchestrations. This implementation involves a
profound questioning of professional practices which, as shown, are linked
to the conceptions which teachers have of mathematics. Such an evolution
cannot be expected within a framework of continuing professional
development limited to courses lasting a few days. Consequently, the
integration of CAS, and more generally of other forms of ICT, calls for new
mechanisms of professional development which provide continuous long-
term support for teachers in their efforts at integration and which help them
make the critical transition to pedagogical action.

In the development of these mechanisms, the idea of conceiving usage
scenarios has proved particularly relevant; this idea acknowledges the
necessity of taking account of the pedagogical organization of a class and
the role of the teacher, as manifested in analysis of the logic of teacher-tutor
cooperation in using intelligent tutoring systems (Vivet 1991). Such an
approach aims at creating learning conditions in which technological
environments can provide spaces for discovery with flexible tutorial
assistance. The idea of building an evolving network of teachers to develop
usage scenarios for geometry software was introduced in the USA even
before the means fully existed (Allen & al 1994, 1996).

More recently, usage scenarios have been developed for teachers
wanting to produce teaching units integrating the version of Cabri-Geometry
implemented on the TI-92 calculator. These scenarios consist of the
presentation of a unit with its objectives, student materials, and supporting
notes for teachers to help put the unit into practice (Laborde 1999). A similar
training mechanism has been developed around units integrating a lesson
presentation, a usage scenario, and accounts of classroom explorations of
these units by teachers in training, aiming both to assist management of the
unit by the teacher and to promote collaborative work in the class around a
scientific debate (Guin, Delouget & Salles 2000). This approach to
organization has been extended through employing a distance platform to
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conduct collaborative workshops aimed at devising pedagogical resources,
and to provide continuous long-term support for integration by teachers
(Guin, Joab & Trouche 2003). Such pedagogical resources can be thought of
as instruments evolving within a community of practice (Wenger 1998). The
structure of these pedagogical resources was devised with the aim of
facilitating both their implementation in classrooms and their evolution in
response to teachers’ ideas and experiences. Providing the resources are not
too complex, it appears that this mechanism may help teachers to make the
transition to pedagogical action.

The necessity of multidisciplinary research within the
framework of the cognitive sciences

Integration of technological tools into teaching calls for a chain of
technical solidarities (Chevallard 1992), from programmer to teacher by
way of didactical engineer. This integration, and the collaborative work that
it assumes, constitutes a radical change in professional practice. Thus,
deeper reflection is needed on forms of working and communication likely
to support such an evolution. This requires multidisciplinary research within
the framework of the cognitive sciences: psychology and cognitive
ergonomics, communication, computing and informatics, sociology, and
subject didactics are all disciplines bearing on these problems. All the
research perspectives outlined above are important for the educational
community in relation to situations promoting reasoned instrumentation with
CAS, and the exploitation of these scenarios through didactical engineering
of instrumental orchestrations and associated usage scenarios.

The necessity of further exploration

In this work we have shown the difficulties but also the potentialities of
symbolic calculators and, more widely, of computer algebra systems in the
teaching of mathematics. At one level, of course, these studies relate to
particular explorations, employing specific technologies, carried out in
specific contexts, but they provide pointers to potentially important results
of much wider significance.

We would encourage a broadening, in several ways, of the empirical base
of studies of instrumentation. First, we welcome the appearance of studies
which use a conceptual framework drawing on ideas of instrumentation to
examine the role of dynamic geometry systems (DGS), particularly in
relation to the teaching of geometrical exploration and argumentation
(Laborde 2003; Mariotti 2002); these provide a very useful form of contrast
to studies examining the role of CAS in algebra and calculus. Equally, of
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course, many other tools lend themselves to analysis in these terms, again
providing further valuable contrasts for refining instrumentation theory.

Second, employing the language (and conceptual framework) of Dutch
realistic mathematics education, there would be great value, as Drijvers &
Gravemeijer suggest (Chapter 7), in studies which explicitly address
classroom situations in which the emphasis is on horizontal mathematization
in contrast to vertical, and with the aim of supporting progressive
mathematization rather than a more direct diffusion of canonical
mathematics. Switching to the language of French didactique, this might
also contribute to a fuller and tighter analysis, across a range of studies, of
how issues of instrumentation interact with the design of situations for
action, formulation, validation and institutionalization.

This relates to a further aspect of broadening. All but one of the studies
reported in this book have taken place wholly at secondary-school level, in
what may be (in some respects) distinctive institutional circumstances,
connected, for example, to regularities in the organization and ethos of such
schools. Earlier work (Ruthven & Chaplin 1997; Ruthven 2001) suggests
that developing a reasoned instrumentation of calculators within primary-
school mathematics may display both similarities and contrasts to the
secondary-school; the contrasts related (perhaps most directly) to a differing
curriculum rationale (emphasizing, for example, the making of connections
with students’ everyday and wider experience, and the building of broad
flexible competences), but also (more indirectly) to the rather different
backgrounds and identities of primary-school teachers. Perhaps, too, moving
beyond compulsory schooling, contrasting institutional circumstances mean
that issues of instrumentation play out rather differently in, say, technical-
vocational courses (with an emphasis on pragmatic over epistemic issues,
and stronger contextualization in specific workplace practices), compared to
university-scholarly mathematics courses (with locally framed curriculum
and assessment, and perhaps a stronger emphasis on formal/
structural/symbolic modes of argument over informal/analogic/graphic).

Finally, there is the intriguing question of what happens as teachers and
students gain access to machines offering not just multiple functionalities,
but real possibilities of interplay and integration between these
functionalities. Some of the symbolic calculators studied in this book
integrate a word-processor, spreadsheet, and dynamic geometry software,
with means of interconnecting calculators, and calculator with computer. It
is a reasonable hypothesis that these prefigure the scholastic tools of
tomorrow. This makes it even more important to conceptualize didactic
exploitations of those tools which support students in developing a
construction of such devices as coordinated systems of instruments. In terms
of researching and analyzing such usages, the work reported in this book is
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merely anticipatory. What we hope to have offered is a (tentative) system of
ideas capable of taking into account both the constraints and affordances of
future technological tools, and of helping to conceive appropriate
pedagogical resources. These are necessary preconditions for integrating this
wider and more efficient set of tools into new forms of teaching for effective
learning.

This area of research, then, needs to be pursued further. It offers exciting
prospects for informing and exploring new forms of integration of ICT by
teachers. We see innovation and research as mutually supportive
components of such development, calling for communication between
practitioners and researchers. We hope that this book contributes to such
work and encourages it further.
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