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— Persistence of Homology — Afra Zomorodian (After Salvador Dali)

To MY PARENTS

On the left, a double-torus and a 1-cycle lie on a triangulated 2-manifold. There is a box-shaped
cell-complex above. An unknot hangs from the large branch of the sapless withering tree. Through
some exertion, the tree identifies itself as a maple by bearing a single green leaf. A deformed two-
sphere, a torus, and a nonbounding loop form a pile in the center. Near the horizon, a 2-manifold
is embedded by an associated height field. It divides itself into regions using the 1-cells of its
Morse-Smale complex.
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Preface

My goal in this book is to enable a non-specialist to grasp and participate
in current research in computational topology. Therefore, this book is not a
compilation of recent advances in the area. Rather, the book presents basic
mathematical concepts from a computer scientist’s point of view, focusing on
computational challenges and introducing algorithms and data structures when
appropriate. The book also incorporates several recent results from my doc-
toral dissertation and subsequent related results in computational topology.

The primary motivation for this book is the significance and utility of topo-
logical concepts in solving problems in computer science. These problems
arise naturally in computational geometry, graphics, robotics, structural biol-
ogy, and chemistry. Often, the questions themselves have been known and
considered by topologists. Unfortunately, there are many barriers to interac-
tion:

e Computer scientists do not know the language of topologists. Topology,
unlike geometry, is not a required subject in high school mathematics and is
almost never dealt with in undergraduate computer science. The axiomatic
nature of topology further compounds the problem as it generates cryptic
and esoteric terminology that makes the field unintelligible and inaccessible
to non-topologists.

e Topology can be very unintuitive and enigmatic and therefore can appear
very complicated and mystifying, often frightening away interested com-
puter scientists.

e Topology is a large field with many branches. Computer scientists often re-
quire only simple concepts from each branch. While there are certainly a
number of offerings in topology by mathematics departments, the focus of
these courses is often theoretical, concerned with deep questions and exis-
tential results.

Xi



xii Preface

Because of the relative dearth of interaction between topologists and computer
scientists, there are many opportunities for research. Many topological ques-
tions have large complexity: the best known bound, if any, may be exponential.
For example, I once attended a talk on an algorithm that ran in quadruply ex-
ponential time! Let me make this clear. It was

0 <2222n) .

And one may overhear topologists boasting that their software can now han-
dle 14 tetrahedra, not just 13. But better bounds may exist for specialized
questions, such as problems in low dimensions, where our interests chiefly lie.
We need better algorithms, parallel algorithms, approximation schemes, data
structures, and software to solve these problems within our lifetime (or the
lifetime of the universe.)

This book is based primarily on my dissertation, completed under the super-
vision of Herbert Edelsbrunner in 2001. Consequently, some chapters, such as
those in Part Three, have a thesis feel to them. I have also incorporated notes
from several graduate-level courses I have organized in the area: Introduction
to Computational Topology at Stanford University, California, during Fall 2002
and Winter 2004; and Topology for Computing at the Max-Planck-Institut fiir
Informatik, Saarbriicken, Germany, during Fall 2003.

The goal of this book is to make algorithmically minded individuals fluent in
the language of topology. Currently, most researchers in computational topol-
ogy have a mathematics background. My hope is to recruit more computer
scientists into this emerging field.

Stanford, California Al Z
June 2004
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Introduction

The focus of this book is capturing and understanding the topological prop-
erties of spaces. To do so, we use methods derived from exploring the re-
lationship between geometry and topology. In this chapter, I will motivate
this approach by explaining what spaces are, how they arise in many fields of
inquiry, and why we are interested in their properties. I will then introduce
new theoretical methods for rigorously analyzing topologies of spaces. These
methods are grounded in homology and Morse theory, and generalize to high-
dimensional spaces. In addition, the methods are robust and fast, and therefore
practical from a computational point of view. Having introduced the methods,
I end this chapter by discussing the organization of the rest of the book.

1.1 Spaces

Let us begin with a discussion of spaces. A space is a set of points as shown in
Figure 1.1(a). We cannot define what a set is, other than accepting it as a prim-
itive notion. Intuitively, we think of a set as a collection or conglomeration of
objects. In the case of a space, these objects are points, yet another primitive
notion in mathematics. The concept of a space is too weak to be interesting,
as it lacks structure. We make this notion slightly richer with the addition of
a topology. We shall see in Chapter 2 what a topology formally means. Here,
we think of a topology as the knowledge of the connectivity of a space: Each
point in the space knows which points are near it, that is, in its neighborhood.
In other words, we know how the space is connected. For example, in Fig-
ure 1.1(b), neighbor points are connected graphically by a path in the graph.
We call such a space a topological space. At first blush, the concept of a topo-
logical space may seem contrived, as we are very comfortable with the richer
metric spaces, as in Figure 1.1(c). We are introduced to the prototypical metric
space, the Euclidean space R?, in secondary school, and we often envision our
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(a) A space (b) A topological space (c) A metric space

Fig. 1.1. Spaces.

world as R3. A metric space has an associated metric, which enables us to
measure distances between points in that space and, in turn, implicitly define
their neighborhoods. Consequently, a metric provides a space with a topol-
ogy, and a metric space is a topological one. Topological spaces feel alien to
us because we are accustomed to having a metric. The spaces arise naturally,
however, in many fields.

Example 1.1 (graphics) We often model a real-world object as a set of ele-
ments, where the elements are triangles, arbitrary polygons, or B-splines.

Example 1.2 (geography) Planetary landscapes are modeled as elevations over
grids, or triangulations, in geographic information systems.

Example 1.3 (robotics) A robot must often plan a path in its world that con-
tains many obstacles. We are interested in efficiently capturing and represent-
ing the configuration space in which a robot may travel.

Example 1.4 (biology) A protein is a single chain of amino acids, which folds
into a globular structure. The Thermodynamics Hypothesis states that a protein
always folds into a state of minimum energy. To predict protein structure, we
would like to model the folding of a protein computationally. As such, the
protein folding problem becomes an optimization problem: We are looking for
a path to the global minimum in a very high-dimensional energy landscape.

All the spaces in the above examples are topological spaces. In fact, they
are metric spaces that derive their topology from their metrics. However, the
questions raised are often topological in nature, and we may solve them easier
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by focusing on the topology of the space, and not its geometry. I will refer to
topological spaces simply as spaces from this point onward.

1.2 Shapes of Spaces

We have seen that spaces arise in the process of solving many problems. Con-
sequently, we are interested in capturing and understanding the shapes of
spaces. This understanding is really in the form of classifications: We would
like to know how spaces agree and differ in shape in order to categorize them.
To do so, we need to identify intrinsic properties of spaces. We can try trans-
forming a space in some fixed way and observe the properties that do not
change. We call these properties the invariants of the space. Felix Klein
gave this famous definition for geometry in his Erlanger Programm address
in 1872. For example, Euclidean geometry refers to the study of invariants
under rigid motion in RY, e.g., moving a cube in space does not change its
geometry. Topology, on the other hand, studies invariants under continuous,
and continuously invertible, transformations. For example, we can mold and
stretch a play-doh ball into a filled cube by such transformations, but not into
a donut shape. Generally, we view and study geometric and topological prop-
erties separately.

1.2.1 Geometry

There are a variety of issues we may be concerned with regarding the geometry
of a space. We usually have a finite representation of a space for computation.
We could be interested in measuring the quality of our representation, trying to
improve the representation via modifications, and analyzing the effect of our
changes. Alternatively, we could attempt to reduce the size of the representa-
tion in order to make computations viable, without sacrificing the geometric
accuracy of the space.

Example 1.5 (decimation) The Stanford Dragon in Figure 1.2(a) consists of
871,414 triangles. Large meshes may not be appropriate for many applica-
tions involving real-time rendering. Having decimated the surface to 5% of its
original size (b), I show that the new surface approximates the original surface
quite well (c). The maximum distance between the new vertices and the orig-
inal surface is 0.08% of the length of the diagonal of the dragon’s bounding
box.
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(a) Stanford Dragon, rep- (b) Decimated to 5% of (c) Normalized distance
resented by a triangulated the number of triangles to original surface, in in-
surface creasing intensity

Fig. 1.2. Geometric simplification.

S n O-O

Fig. 1.3. The string on the left is cut into two pieces. The loop string on the right is cut
but still is in one piece.

1.2.2 Topology

While Klein’s unifying definition makes topology a form of geometry, we of-
ten differentiate between the two concepts. Recall that when we talk about
topology, we are interested in how spaces are connected. Topology concerns
itself with how things are connected, not how they look. Let’s start with a few
examples.

Example 1.6 (loops of string) Imagine we are given two pieces of strings.
We tie the ends of one of them, so it forms a loop. Are they connected the
same way, or differently? One way to find out is to cut both, as shown in Fig-
ure 1.3. When we cut each string, we are obviously changing its connectivity.
Since the result is different, they must have been connected differently to begin
with.

Example 1.7 (sphere and torus) Suppose you have a hollow ball (a sphere)
and the surface of a donut (a torus.) When you cut the sphere anywhere,
you get two pieces: the cap and the sphere with a hole, as shown in Fig-
ure 1.4(a). But there are ways you can cut the torus so that you only get one
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(a) No matter where we cut the sphere, we (b) If we’re careful, we can cut the torus
get two pieces and still leave it in one piece.

Fig. 1.4. Two pieces or one piece?

piece. Somehow, the torus is acting like our string loop and the sphere like the
untied string.

Example 1.8 (holding hands) Imagine you’re walking down a crowded street,
holding somebody’s hand. When you reach a telephone pole and have to walk
on opposite sides of the pole, you let go of the other person’s hand. Why?

Let’s look back to the first example. Before we cut the string, the two points
near the cut are near each other. We say that they are neighbors or in each
other’s neighborhoods. After the cut, the two points are no longer neighbors,
and their neighborhood has changed. This is the critical difference between
the untied string and the loop: The former has two ends. All the points in the
loop have two neighbors, one to their left and one to their right. But the untied
string has two points, each of whom has a single neighbor. This is why the two
strings have different connectivity. Note that this connectivity does not change
if we deform or stretch the strings (as if they are made of rubber.) As long as
we don’t cut them, the connectivity remains the same. Topology studies this
connectivity, a property that is intrinsic to the space itself.

In addition to studying the intrinsic properties of a space, topology is con-
cerned not only with how an object is connected (intrinsic topology), but how
it is placed within another space (extrinsic topology.) For example, suppose
we put a knot on a string and then tie its ends together. Clearly, the string has
the same connectivity as the loop we saw in Example 1.6. But no matter how
we move the string around, we cannot get rid of the knot (in topology terms,
we cannot unknot the knot into the unknot.) Or can we? Can we prove that we
cannot?

So, topological properties include having tunnels, as shown in Figure 1.5(a),
being knotted (b), and having components that are linked (c) and cannot be
taken apart. We seek computational methods to detect these properties. Topo-
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(a) Gramicidin A, a pro- (b) A knotted DNA (c) Five pairwise-linked
tein, with a tunnel tetrahedral skeletons

Fig. 1.5. Topological properties. (b) Reprinted with permission from S Wasserman et
al., SCIENCE, 229:171-174 (1985). © 1985 AAAS.

(a) Sampled point set (b) Recovered topology (c) Piece-wise linear sur-
from a surface face approximation

Fig. 1.6. Surface reconstruction.

logical questions arise frequently in many areas of computation. Tools de-
veloped in topology, however, have not been used to address these problems
traditionally.

Example 1.9 (surface reconstruction) Usually, a computer model is created
by sampling the surface of an object and creating a point set, as in Figure 1.6(a).
Surface reconstruction, a major area of research in computer graphics and
computational geometry, refers to the recovery of the lost topology (b) and,
in turn, geometry of a space. Once the connectivity is reestablished, the sur-
face is often represented by a piece-wise linear approximation (c).
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Fig. 1.7. Topological simplification.

As for geometry, we would also like to be able to simplify a space topolog-
ically, as in Figure 1.7. T have intentionally made the figures primitive com-
pared to the previous geometric figures to reflect the essential structure that
topology captures. To simplify topology, we need a measure of the importance
of topological attributes. I provide one such measure in this book.

1.2.3 Relationship

The geometry and topology of a space are fundamentally related, as they are
both properties of the same space. Geometric modifications, such as decima-
tion in Example 1.5, could alter the topology. Is the simplified dragon in Fig-
ure 1.2(c) connected the same way as the original? In this case, the answer is
yes, because the decimation algorithm excludes geometric modifications that
have topological impact. We have changed the geometry of the surface without
changing its topology.

When creating photo-realistic images, however, appearance is the dominant
issue, and changes in topology may not matter. We could, therefore, allow for
topological changes when simplifying the geometry. In other words, geometric
modifications are possible with, and without, induced changes in topology.
The reverse, however, is not true. We cannot eliminate the “hole” in the surface
of the donut (torus) to get a sphere in Figure 1.7 without changing the geometry
of the surface. We further examine the relationship between topology and
geometry by looking at contours of terrains.

Example 1.10 (contours) In Figure 1.8, I show a flooded terrain with the wa-
ter receding. The boundaries of the components that appear are the iso-lines or
contours of the terrain. Contour lines are used often in map drawings. Noise in
sampled data changes the geometry of a terrain, introducing small mountains
and lakes. In turn, this influences how contour lines appear and merge as the
water recedes.
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Fig. 1.8. Noah’s flood receding.

We may view the spaces shown in Figure 1.8 as a single growing space under-
going topological and geometric changes. The history of such a space, called
a filtration, is the primary object for this book. Note that the topology of the
iso-lines within this history is determined by the geometry of the terrain. Gen-
eralizing to a (d + 1)-dimensional surface, we see that there is a relationship
between the topology of d-dimensional level sets of a space and its geometry,
one dimension higher. This relationship is the subject of Morse theory, which
we will encounter in this book.

1.3 New Results

We will also examine some new results in the area of computational topol-
ogy. There are three main groups of theoretical results: persistence, Morse
complexes, and the linking number.

Persistence. Persistence is a new measure for topological attributes. We call
it persistence, as it ranks attributes by their life time in a filtration: their persis-
tence in being a feature in the face of growth. Using this definition, we look at
the following:
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Fig. 1.9. A Morse complex over a terrain.

e Persistence: efficient algorithms for computing persistence over arbitrary
coefficients.

o Topological Simplification: algorithms for simplifying topology, based on
persistence. The algorithms remove attributes in the order of increasing per-
sistence. At any moment, we call the removed attributes topological noise,
and the remaining ones topological features.

e Cycles and Manifolds: algorithms for computing representations. The per-
sistence algorithm tracks the subspaces that express nontrivial topological
attributes, in order to compute persistence. We show how to modify this
algorithm to identify these subspaces (cycles), as well as the subspaces that
eliminate them (manifolds.)

Morse complexes. A Morse complex gives a full analysis of the behavior
of flow over a space by partitioning the space into cells of uniform flow.
In the case of a two-dimensional surface, such as the terrain in Figure 1.8,
the Morse complex connects maxima (peaks) to minima (pits) through saddle
points (passes) via edges, partitioning the terrain into quadrangles, as shown
in Figure 1.9. Morse complexes are defined, however, only for smooth spaces.
In this book, we will see how to extend this definition to piece-wise linear sur-
faces, which are frequently used for computation. In addition, we will learn
how to construct hierarchies of Morse complexes.

o Morse complex: We give an algorithm for computing the Morse complex
by first constructing a complex whose combinatorial form matches that of
the Morse complex and then deriving the Morse complex via local trans-
formations. This construction reflects a paradigm we call the Simulation of
Differentiability.

e Hierarchy: We apply persistence to a filtration of the Morse complex to get
a hierarchy of increasingly coarser Morse complexes. This corresponds to



10 1 Introduction

modifying the geometry of the space in order to eliminate noise and simplify
the topology of the contours of the surface.

Linking number. The linking number is an integer invariant that measures the
separability of a pair of knots. We extend the definition of the linking number
to simplicial complexes. We then develop data structures and algorithms for
computing the linking numbers of the complexes in a filtration.

1.4 Organization

The rest of this book is divided into three parts: mathematics, algorithms, and
applications. Part One, Mathematics, contains background on algebra, geom-
etry, and topology, as well as the new theoretical contributions. In Chapter 2,
we describe the spaces we are interested in exploring, and how we examine
them by encoding their geometries in filtrations of complexes. Chapter 3 pro-
vides enough group theory background for the definition of homology groups
in Chapter 4. We also discuss other measures of topology and justify our choice
of homology. Switching to smooth manifolds, we review concepts from Morse
Theory in Chapter 5. In Chapter 6, we give the mathematics behind the new
results in this book.

Part Two, Algorithms, contains data structures and algorithms for the mathe-
matics presented in Part I. In each chapter, we motivate and present algorithms
and prove they are correct. In Chapter 7, we introduce algorithms for comput-
ing persistence: over Z; coefficients, arbitrary fields, and arbitrary principal
ideal domains. We then address topological simplification using persistence
in Chapter 8. In Chapter 9, we describe an algorithm for computing two-
dimensional Morse complexes. We end this part by showing how one may
compute linking numbers in Chapter 10.

Part Three, Applications, contains issues relating to the application of the
theory and algorithms presented in Parts I and II. To apply theoretical ideas
to real-world problems, we need implementations and software, which we
present in Chapter 11. We give empirical proof of the speed of the algo-
rithms through experiments with our implementations in Chapter 12. We de-
vote Chapter 13 to applications of the work in this book and future work.
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Mathematics
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Spaces and Filtrations

In this chapter, we describe the input to all of the algorithms described in this
book, and the process by which such input is generated. We begin by formaliz-
ing the kind of spaces that we are interested in exploring. Then, we introduce
the primary approach used for computing topology: growing a space incre-
mentally and analyzing the history of its growth. Naturally, the knowledge we
derive from this approach is only as meaningful as the growth process. So,
we let the geometry of our space dictate the growth model. In this fashion,
we encode geometry into an otherwise topological history. The geometry of
our space controls the placement of topological events within this history and,
consequently, the life-span of topological attributes. The main assumption of
this method is that longevity is equivalent to significance. This approach of
exploring the relationship between geometry and topology is not new. It is the
hallmark of Morse theory (Milnor, 1963), which we will study in more detail
in Chapter 5.

The rest of the chapter describes the process outlined in Figure 2.1. We begin
with a formal description of topological spaces. We then describe two types
of such spaces, manifolds and simplicial complexes, in the next two sections.

Weighted Point Sets ‘ Alpha Shapes

24 24) \ ,,,,,,,,,,,,,
Filtrations ' . '
@3 ~ Aleorthms |
Manifolds Sweep
2.2) (2.5)

Topological Spaces
2.1)

Fig. 2.1. Geometrically ordered filtrations: Topics are labeled with their sections.

13



14 2 Spaces and Filtrations

These spaces constitute our realm of interest. The latter is more general than
the former, and we represent the former with it. We also formalize the notion
of a growth history (filtration) within Section 2.3. Finally, we describe two
growth processes, alpha shapes and manifold sweeps, which are utilized to
spawn filtrations. These geometrically ordered filtrations provide the input to
the algorithms.

Topology and algebra are both axiomatic studies, necessitating a large num-
ber of definitions. My approach will be to start from the very primitive no-
tions, in order to refresh the reader’s memory. The titled definitions, however,
allow for quick skimming for the knowledgeable reader. My treatment follows
Bishop and Goldberg (1980) for point-set topology and Munkres (1984) for
algebraic topology. I also used Henle (1997) and McCarthy (1988) for refer-
ence and inspiration. I recommend de Berg et al. (1997) for background on
computational geometry. I will cite some seminal papers in defining concepts.

2.1 Topological Spaces

A topological space is a set of points who know who their neighbors are. Let’s
begin with the primitive notion of a set.

2.1.1 Sets and Functions

We cannot define a set formally, other than stating that a set is a well-defined
collection of objects. We also assume the following:

(i) Set S is made up of elements a € S.
(ii) There is only one empty set ().
(iii) We may describe a set by characterizing it ({x | P(x)}) or by enumerat-
ing elements ({1,2,3}). Here P is a predicate.
(iv) A set S is well defined if, for each object a, eithera € Sora ¢ S.

Note that “well defined” really refers to the definition of a set, rather than to
the set itself. |S| or card S is the size of the set. We may multiply sets in order
to get larger sets.

Definition 2.1 (Cartesian) The Cartesian product of sets S1,S,...,S, is the
set of all ordered n-tuples (a,as,...,a,), where a; € S;. The Cartesian prod-
uct is denoted by either S| X Sz X ... x S, or by [T, S;. The i-th Cartesian
coordinate function u;: T[i—, S; — S; is defined by

ui(ar,az,...,a,) = a;.
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Having described sets, we now define subsets.

Definition 2.2 (subsets) A set B is a subset of a set A, denoted BC A orA D B,
if every element of B is in A. B C A or A D B is generally used for B C A and
B # A. If A is any set, then A is the improper subset of A. Any other subset is
proper. If A is a set, we denote by 24, the power set of A, the collection of all
subsets of A, 24 = {B | B C A}.

We also have a couple of fundamental set operations.

Definition 2.3 (intersection, union) The intersection A N B of sets A and B
is the set consisting of those elements that belong to both A and B, that is,
ANB={x|x€Aandx € B}. The union A U B of sets A and B is the set
consisting of those elements that belong to A or B, thatis, A U B={x|x €
Aorx€B}.

We indicate a collection of sets by labeling them with subscripts from an index
set J, e.g., A with j € J. For example, we use (;c;A4; = (A, [ j € J} = {x]|
x€Ajforall j € J} for general intersection. The next definition summarizes
functions: maps that relate sets to sets.

Definition 2.4 (relations and functions) A relation ¢ between sets A and B
is a collection of ordered pairs (a,b) such that a € A and b € B. If (a,b) € o,
we often denote the relationship by a ~ b. A function or mapping ¢ from a set
A into a set B is a rule that assigns to each element a of A exactly one element
b of B. We say that ¢ maps a into b and that @ maps A into B. We denote this
by @(a) = b. The element b is the image of a under ¢. We show the map as
@: A — B. The set A is the domain of @, the set B is the codomain of ¢, and
the set im@ = @(A) = {@(a) | a € A} is the image of A under ¢. If ¢ and y
are functions with @ : A — B and y : B — C, then there is a natural function
mapping A into C, the composite function, consisting of ¢ followed by y. We
write Y(¢(a)) = ¢ and denote the composite function by yo¢. A function
from a set A into a set B is one to one (1-1) (injective) if each element B has at
most one element mapped into it, and it is onfo B (surjective) if each element
of B has at least one element of A mapped into it. If it is both, it is a bijection.
A bijection of a set onto itself is called a permutation.

A permutation of a finite set is usually specified by its action on the elements of
the set. For example, we may denote a permutation of the set {1,2,3,4,5,6}
by (6,5,2,4,3,1), where the notation states that the permutation maps 1 to
6,2 1to 5, 3 to 2, and so on. We may then obtain a new permutation by a
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transposition: switching the order of two neighboring elements. In our ex-
ample, (5,6,2,4,3,1) is a permutation that is one transposition away from
(6,5,2,4,3,1). We may place all permutations of a finite set in two sets.

Theorem 2.1 (parity) A permutation of a finite set can be expressed as either
an even or an odd number of transpositions, but not both. In the former case,
the permutation is even, in the latter, it is odd.

2.1.2 Topology

We endow a set with structure by using a topology to get a topological space.

Definition 2.5 (topology) A ropology on a set X is a subset T C 2% such that:

(a) If §1,8, €T, thenS; N S, eT.
(b) If{S;|jeJ} CT, then UjeyS; €T.
(c) 0,XeT.

The definition states implicitly that only finite intersections, and infinite unions,
of the open sets are open. A topology is simply a system of sets that describe
the connectivity of the set. These sets have names:

Definition 2.6 (open, closed sets) Let X be a set and T be a topology. S€ T
is an open set. The closed sets are X — S, where S € T.

A set may be only closed, only open, both open and closed, or neither. For
example, ) is both open and closed by definition. We combine a set with a
topology to get the spaces we are interested in.

Definition 2.7 (topological space) The pair (X,7) of a set X and a topology
T is a topological space.

We often use X as notation for a topological space X, with T being understood.
We next turn our attention to the individual sets.

Definition 2.8 (interior, closure, boundary) The interior A of set AC X is
the union of all open sets contained in A. The closure A of set A C X is the
intersection of all closed sets containing A. The boundary of a set A is 0A =
A-A.
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(@ACX b A (©A (d) 9A

Fig. 2.2. A set A C X and related sets.

In Figure 2.2, we see a set that is composed of a single point and an upside-
down teardrop shape. We also see its closure, interior, and boundary. There
are other equivalent ways of defining these concepts. For example, we may
think of the boundary of a set as the set of points all of whose neighborhoods
intersect both the set and its complement. Similarly, the closure of a set is the
minimum closed set that contains the set. Using open sets, we can now define
neighborhoods.

Definition 2.9 (neighborhoods) A neighborhood of x € X is any A C X such
that x € A. A basis of neighborhoods at x € X is a collection of neighborhoods
of x such that every neighborhood of x contains one of the basis neighborhoods.

We may define basis neighborhoods, and hence a topology, by means of a
metric.

Definition 2.10 (metric) A metric or distance function d : X x X — R is a
function satisfying the following axioms:

(a) Forallx,y € X, d(x,y) > 0 (positivity).

(b) If d(x,y) =0, then x = y (nondegeneracy).

(c) Forallx,y € X, d(x,y) = d(y,x) (symmetry).

(d) Forallx,y,z€ X, d(x,y)+d(y,z) > d(x,2) (the triangle inequality).

Definition 2.11 (open ball) The open ball B(x,r) with center x and radius r >
0 with respect to metric d is defined to be B(x,r) = {y | d(x,y) < r}.

We can show that open balls can serve as basis neighborhoods for a topology
of a set X with a metric.

Definition 2.12 (metric space) A set X with a metric function d is called a
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metric space. We give it the metric topology of d, where the set of open balls
defined using d serve as basis neighborhoods.

A metric space is a topological space. Most of the spaces we are interested
in are subsets of metric spaces, in fact, a particular type of metric spaces: the
Euclidean spaces. Recall the Cartesian coordinate functions u; from Defini-
tion 2.1.

Definition 2.13 (Euclidean space) The Cartesian product of n copies of R,
the set of real numbers, along with the Euclidean metric

n
d(x7y) = \/Z(MI(X) - ui(y))27
i=1
is the n-dimensional Euclidean space R".

We may induce a topology on subsets of metric spaces as follows. If A C X
with topology T, then we get the relative or induced topology T4 by defining

T, = {SNA|SeT}. 2.1

It is easy to verify that 74 is, indeed, a topology on A, upgrading A a to space
A.

Definition 2.14 (subspace) A subset A C X with topology Ty is a (topologi-
cal) subspace of X.

2.1.3 Homeomorphisms

We noted in Chapter 1 that topology is inherently a classification system.
Given the set of all topological spaces, we are interested in partitioning this
set into sets of spaces that are connected the same way. We formalize this
intuition next.

Definition 2.15 (partition) A partition of a set is a decomposition of the set
into subsets (cells) such that every element of the set is in one and only one of
the subsets.

Definition 2.16 (equivalence) Let S be a nonempty set and let ~ be a relation
between elements of S that satisfies the following properties for all a,b,c € S:

(a) (Reflexive) a ~ a.
(b) (Symmetric) If a ~ b, then b ~ a.
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(¢c) (Transitive) Ifa ~band b ~ ¢, thena ~ c.

Then, the relation ~ is an equivalence relation on S.

The following theorem allows us to derive a partition from an equivalence
relation. We omit the proof, as it is elementary.

Theorem 2.2 Let S be a nonempty set and let ~ be an equivalence relation
on S. Then, ~ yields a natural partition of S, where a={x € S |x~a}. a
represents the subset to which a belongs to. Each cell a is an equivalence
class.

We now define an equivalence relation on topological spaces.

Definition 2.17 (homeomorphism) A homeomorphism f: X — Y is a 1-1
onto function, such that both f, f~! are continuous. We say that X is homeo-
morphic to Y, X = Y, and that X and Y have the same topological type.

It is clear from Theorem 2.2 that homeomorphisms partition the class of topo-
logical spaces into equivalence classes of homeomorphic spaces. A fundamen-
tal problem in topology is characterizing these classes. We will see a coarser
classification system in Section 2.4, and we further examine this question in
Chapter 4, when we encounter yet another classification system, homology.

2.2 Manifolds

Manifolds are a type of topological spaces we are interested in. They cor-
respond well to the spaces we are most familiar with, the Euclidean spaces.
Intuitively, a manifold is a topological space that locally looks like R”. In
other words, each point admits a coordinate system, consisting of coordin-
ate functions on the points of the neighborhood, determining the topology of
the neighborhood. We use a homeomorphism to define a chart, as shown in
Figure 2.3. We also need two additional technical definitions before we may
define manifolds.

Definition 2.18 (chart) A chart at p € X is a function ¢ : U — R4, where
U C X is an open set containing p and ¢ is a homeomorphism onto an open
subset of RY. The dimension of the chart @ is d. The coordinate functions of
the chartare x' = u'o ¢:U — R, where u' : R" — R are the standard coordinates
on R4,
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Fig. 2.3. A chart at p € X. ¢ maps U C X containing p to U’ C RY. As ¢ is a homeo-
morphism, qf1 also exists and is continuous.

Definition 2.19 (Hausdorff) A topological space X is Hausdorf{f if, for every
x,y € X,x #y, there are neighborhoods U,V of x,y, respectively, such that
unv=i.

A metric space is always Hausdorff. Non-Hausdorff spaces are rare, but can
arise easily, when building spaces by attaching.

Definition 2.20 (separable) A topological space X is separable if it has a
countable basis of neighborhoods.

Finally, we can formally define a manifold.

Definition 2.21 (manifold) A separable Hausdorff space X is called a (topo-
logical) d-manifold if there is a d-dimensional chart at every point x € X, that
is, if x € X has a neighborhood homeomorphic to R”. It is called a d-manifold
with boundary if x € X has a neighborhood homeomorphic to R? or the Eu-
clidean half-space H? = {xe RY | x| > 0}. The boundary of X is the set of
points with neighborhood homeomorphic to H¢. The manifold has dimension
d.

Theorem 2.3 The boundary of a d-manifold with boundary is a (d — 1)-manifold
without boundary.

Figure 2.4 displays a 2-manifold and a 2-manifold with boundary. The mani-
folds shown are compact.

Definition 2.22 (compact) A covering of A C X is a family {C; | j € J} in 2%,
such that A C J¢; C;. An open covering is a covering consisting of open sets.
A subcovering of a covering {C; | j € J} is a covering {C; | k € K}, where
K CJ. A CXis compact if every open covering of A has a finite subcovering.
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Fig. 2.4. The sphere (left) is a 2-manifold. The torus with two holes (right) is a 2-
manifold with boundary. Its boundary is composed of the two circles.

Fig. 2.5. The cusp has finite area, but is not compact

{% Intuitively, you might think any finite area manifold is compact. How-
ever, a manifold can have finite area and not be compact, such as the
cusp in Figure 2.5.

We are interested in smooth manifolds.

Definition 2.23 (C*®) Let U,V C R? be open. A function f : U — R is smooth
or C* (continuous of order o) if f has partial derivatives of all orders and
types. A function @ : U — R¢ is a C*> map if all its components e’ 0@ : U — R
are C*>°. Two charts @ : U — RY,y: V — R€ are C*°-related if d = e and either
UNV=>0oreoy ! andyoe@ ! are C> maps. A C™ atlas is one for which
every pair of charts is C*°-related. A chart is admissible to a C*® atlas if it is
C*°-related to every chart in the atlas.

C*-related charts allow us to pass from one coordinate system to another
smoothly in the overlapping region, so we may extend our notions of curves,
functions, and differentials easily to manifolds.

Definition 2.24 (C*° manifold) A C*° manifold is a topological manifold to-
gether with all the admissible charts of some C*® atlas.

The manifolds in Figure 2.4 are also orientable.

Definition 2.25 (orientability) A pair of charts x' and y' is consistently ori-
ented if the Jacobian determinant det(dx’ /dy/) is positive whenever defined. A
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manifold M is orientable if there exists an atlas such that every pair of coordin-
ate systems in the atlas is consistently oriented. Such an atlas is consistently
oriented and determines an orientation on M. If a manifold is not orientable,
it is nonorientable.

In this book, we use the term “manifold” to denote a C°°-manifold. We are
mainly interested in two-dimensional manifolds, or surfaces, that arise as sub-
spaces of R3, with the induced topology. Equivalently, we are interested in
surfaces that are embedded in R3.

Definition 2.26 (embedding) An embedding f : X — Y is a map whose re-
striction to its image f(X) is a homeomorphism.

Most of our interaction with manifolds in our lives has been with embedded
manifolds in Euclidean spaces. Consequently, we always think of manifolds
in terms of an embedding. It is important to remember that a manifold exists
independently of any embedding: A sphere does not have to sit within R? to
be a sphere. This is, by far, the biggest shift in the view of the world required
by topology. Before we go on, let’s see an example of a nonembedding.

Example 2.1 Figure 2.1(a) shows an map F: R — R?, where
F(t) = (2cos(t —m/2),sin(2(t — m/2)).

F wraps R over the figure-eight over and over. Note that while the map is 1-1
locally, it is not 1-1 globally. Using the monotone function

g(t) =n+2tan"' (1)

in Figure 2.1(b), we first fit all of R into the interval (0,27) and then map it
using F' once again. We get the same image (figure-eight) but cover it only
once, making F 1-1. However, the graph of £ approaches the origin in the
limit, at both co and —oo. Any neighborhood of the origin within R? will
have four pieces of the graph within it and will not be homeomorphic to R.
Therefore, the map is not homeomorphic to its image and not an embedding.

?2 The maps shown in Figure 2.1 are both immersions. Immersions are

usually defined for smooth manifolds. If our original manifold X is
compact, nothing “nasty” can happen, and an immersion F : X — Y is simply
a local embedding. In other words, for any point p € X, there exists a neigh-
borhood U containing p such that F|y is an embedding. However, F need not
be an embedding within the neighborhood of F(p) in Y. That is, immersed
compact spaces may self-intersect.
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(@) F(1) (b) g(t) (©) F(1) =F(s(1))
Fig. 2.6. Mapping of R into R? with topological consequences.

2.3 Simplicial Complexes

In general, we are unable to represent surfaces precisely in a computer system,
because it has finite storage. Consequently, we sample and represent surfaces
with triangulations, as shown in Example 1.9. A triangulation is a simplicial
complex, a combinatorial space that can represent a space. With simplicial
complexes, we separate the topology of a space from its geometry, much like
the separation of syntax and semantics in logic.

2.3.1 Geometric Definition

We begin with a definition of simplicial complexes that seems to mix geometry
and topology. Combinations allow us to represent regions of space with very
few points.

Definition 2.27 (combinations) Let S = {po,p1,...,pr} CRY. A linear com-
bination is x = 2{»‘:0 Aipi, for some A; € R. An affine combination is a linear
combination with Zf?:o Ai = 1. A convex combination is a an affine combina-
tion with A; > 0, for all i. The set of all convex combinations is the convex
hull.

Definition 2.28 (independence) A set S is linearly (affinely) independent if
no point in S is a linear (affine) combination of the other points in S.

Definition 2.29 (k-simplex) A k-simplex is the convex hull of k + 1 affinely
independent points S = {vg,vy,...,v}. The points in S are the vertices of the
simplex.

A k-simplex is a k-dimensional subspace of RY, dimo = k. We show low-
dimensional simplices with their names in Figure 2.7.
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Fig. 2.7. k-simplices, for each 0 < k < 3.

Definition 2.30 (face, coface) Let © be a k-simplex defined by
S ={vo,v1,...,v}. A simplex T defined by T C S is a face of ¢ and has 6
as a coface. The relationship is denoted with 6 > tand T < 6. Note that 6 < &
and 6 > G.

A k-simplex has (IZLI) faces of dimension / and 25(:_1 (ﬁl‘) = 2%+ faces in
total. A simplex, therefore, is a large, but very uniform and simple combinato-
rial object. We attach simplices together to represent spaces.

Definition 2.31 (simplicial complex) A simplicial complex K is a finite set of
simplices such that

(a) ceK,t<o=1€K,;
(b) 0,600 cK=0Nno <o0,0.

The dimension of K is dimK = max{dimoc | 6 € K}. The vertices of K are the
zero-simplices in K. A simplex is principal if it has no proper coface in K.

Here, proper has the same definition as for sets. Simply put, a simplicial
complex is a collection of simplices that fit together nicely, as shown in Fig-
ure 2.8(a), as opposed to simplices in (b).

Example 2.2 (size of a simplex) As already mentioned, combinatorial topol-
ogy derives its power from counting. Now that we have a finite description of
a space, we can count easily. So, let’s use Figure 2.7 to count the number of
faces of a simplex. For example, an edge has two vertices and an edge as its
faces (recall that a simplex is a face of itself.) A tetrahedron has four vertices,
six edges, four triangles, and a tetrahedron as faces. These counts are summa-
rized in Table 2.1. What should the numbers be for a 4-simplex? The numbers
in the table may look really familiar to you. If we add a 1 to the left of each
row, we get Pascal’s triangle, as shown in Figure 2.9. Recall that Pascal’s tri-
angle encodes the binomial coefficients: the number of different combinations
of [ objects out of k objects or (]l‘) Here, we have k+ 1 points representing a
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(a) The middle triangle shares an edge with (b) In the middle, the triangle is missing

the triangle on the left and a vertex with the an edge. The simplices on the left and

triangle on the right. right intersect, but not along shared sim-
plices.

Fig. 2.8. A simplicial complex (a) and disallowed collections of simplices (b).

Table 2.1. Number of [-simplices in each k-simplex.

~

AW = o]
o b= ool
o= 0o o|w

O AW =O
0O\ W= O =

k-simplex, any [+ 1 of which defines an /-simplex. To make the relationship
complete, we define the empty set () as the (—1)-simplex. This simplex is part
of every simplex and allows us to add a column of 1’s to the left side of Ta-
ble 2.1 to get Pascal’s triangle. It also allows us to eliminate the underlined
part of Definition 2.31, as the empty set of part of both simplices for nonin-
tersecting simplices. To get the total size of a simplex, we sum each row of

Fig. 2.9. If we add a 1 to the left side of each row in Table 2.1, we get Pascal’s triangle.
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k+1
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k
3 (k+1) pYes
= \U+1

faces in total. A simplex, therefore, is a very large object. Mathematicians
often do not find it appropriate for “computation,” when computation is being
done by hand. Simplices are very uniform and simple in structure, however,
and therefore provide an ideal computational gadget for computers.

Pascal’s triangle. A k-simplex has ( ) faces of dimension / and

2.3.2 Abstract Definition

The definition of a simplex uses geometry in a fundamental way. It might seem,
therefore, that simplicial complexes have a geometric nature. It is possible to
define simplicial complexes without using any geometry. We will present this
definition next, as it displays the clear separation of topology and geometry
that makes simplicial complexes attractive to us.

Definition 2.32 (abstract simplicial complex) An abstract simplicial complex
is a set K, together with a collection S of subsets of K called (abstract) sim-
plices such that:

(a) Forallve K,{v} € S. We call the sets {v} the vertices of K.
(b) IftCoeS, thenteS.

When it is clear from the context what S is, we refer to K as a complex. We
say O is a k-simplex of dimension k if |6 =k+ 1. If 1 C o, T is a face of ¢ and
o is a coface of T.

Note that the definition allows for () as a (—1)-simplex. We now relate this
abstract set-theoretic definition to the geometric one by extracting the combi-
natorial structure of a simplicial complex.

Definition 2.33 (vertex scheme) Let K be a simplicial complex with vertices
V and let K be the collection of all subsets {vo,vy,...,v} of V such that the
vertices vo, v, ..., v span a simplex of K. The collection K is called the vertex
scheme of K.

The collection X is an abstract simplicial complex. It allows us to compare
simplicial complexes easily, using isomorphisms.

Definition 2.34 (isomorphism) Let K, K, be abstract simplicial complexes
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with vertex sets Vi, Vs, respectively. An isomorphism between Ki, K> is a bi-
jection @ : Vi — V,, such that the sets in K; and K, are the same under the
renaming of the vertices by ¢ and its inverse.

Theorem 2.4 Every abstract complex S is isomorphic to the vertex scheme of
some simplicial complex K. Two simplicial complexes are isomorphic iff their
vertex schemes are isomorphic as abstract simplicial complexes.

The proof is in Munkres (1984).

Definition 2.35 (geometric realization) If the abstract simplicial complex S
is isomorphic with the vertex scheme of the simplicial complex K, we call K
a geometric realization of S. It is uniquely determined up to an isomorphism,
linear on the simplices.

Having constructed a simplicial complex, we will divide it into topological
and geometric components. The former will be an abstract simplicial com-
plex, a purely combinatorial object that is easily stored and manipulated in a
computer system. The latter is a map of the vertices of the complex into the
space in which the complex is realized. Again, this map is finite, and it can be
approximated in a computer using a floating point representation. This repre-
sentation of a simplicial complex translates word for word into most common
file formats for storing surfaces.

Example 2.3 (Wavefront Object File) One standard format is the Object File
(OBJ) from Wavefront. This format first describes the map that places the ver-
tices in R?. A vertex with location (x,y,z) € R? gets the line “v xy z” in the file.
After specifying the map, the format describes a simplicial complex by only
listing its triangles, which are the principal simplices (see Definition 2.31). The
vertices are numbered according to their order in the file and numbered from
1. A triangle with vertices vy,vo,v3 is specified with line “f v; v, v3”. The
description in an OBJ file is often called a “triangle soup,” as the topology is
specified implicitly and must be extracted.

2.3.3 Subcomplexes

Recall that a simplex is the power set of its simplices. Similarly, a natural view
of a simplicial complex is that it is a special subset of the power set of all its
vertices. The subset is special because of the requirements in Definition 2.32.
Consider the small complex in Figure 2.11(a). The diagram (b) shows how the
simplices connect within the complex: It has a node for each simplex and an



28 2 Spaces and Filtrations

v -0.269616 0.228466 0.077226
v -0.358878 0.240631 0.044214
v -0.657287 0.527813 0.497524
v 0.186944 0.256855 0.318011
v -0.074047 0.212217 0.111664
f 19670 20463 20464

f 8936 8846 14300

f 4985 12950 15447

£ 4985 15447 15448

Fig. 2.10. Portions of an OBJ file specifying the surface of the Stanford Bunny.
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