
http://www.cambridge.org/9780521836661

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

vi

This page intentionally left blank

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

CAMBRIDGE MONOGRAPHS ON
APPLIED AND COMPUTATIONAL
MATHEMATICS

Series Editors

P. G. CIARLET, A. ISERLES, R. V. KOHN, M. H. WRIGHT

16 Topology for Computing

i

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

The Cambrı̈dge Monographs on Applied and Computational Mathematics reflects the
crucial role of mathematical and computational techniques in contemporary science. The
series publishes expositions on all aspects of applicable and numerical mathematics, with
an emphasis on new developments in this fast-moving area of research.

State-of-the-art methods and algorithms as well as modern mathematical descriptions
of physical and mechanical ideas are presented in a manner suited to graduate research
students and professionals alike. Sound pedagogical presentation is a prerequisite. It is
intended that books in the series will serve to inform a new generation of researchers.

Also in this series:

1. A Practical Guide to Pseudospectral Methods, Bengt Fornberg

2. Dynamical Systems and Numerical Analysis, A. M. Stuart and A. R. Humphries

3. Level Set Methods and Fast Marching Methods, J. A. Sethian

4. The Numerical Solution of Integral Equations of the Second Kind, Kendall E.

Atkinson

5. Orthogonal Rational Functions, Adhemar Bultheel, Pablo González-Vera, Erik

Hendiksen, and Olav Njåstad

6. The Theory of Composites, Graeme W. Milton

7. Geometry and Topology for Mesh Generation, Herbert Edelsbrunner

8. Schwarz–Christoffel Mapping, Tofin A. Driscoll and Lloyd N. Trefethen

9. High-Order Methods for Incompressible Fluid Flow, M. O. Deville, P. F. Fischer,

and E. H. Mund

10. Practical Extrapolation Methods, Avram Sidi

11. Generalized Riemann Problems in Computational Fluid Dynamics, Matania

Ben-Artzi and Joseph Falcovitz

12. Radial Basis Functions: Theory and Implementations, Martin D. Buhmann

13. Iterative Krylov Methods for Large Linear Systems, Henk A. van der Vorst

14. Simulating Hamiltonian Dynamics, Ben Leimkuhler and Sebastian Reich

15. Collocation Methods for Volterra Integral and Related Functional Equations,

Hermann Brunner

ii

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

Topology for Computing

AFRA J. ZOMORODIAN

Stanford University

iii

  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , UK

First published in print format

- ----

- ----

© Afra J. Zomorodian 2005

Information on this title: www.cambridge.org/9780521836661

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)
eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521836661

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

— Persistence of Homology — Afra Zomorodian (After Salvador Dali)

To my parents

On the left, a double-torus and a 1-cycle lie on a triangulated 2-manifold. There is a box-shaped
cell-complex above. An unknot hangs from the large branch of the sapless withering tree. Through
some exertion, the tree identifies itself as a maple by bearing a single green leaf. A deformed two-
sphere, a torus, and a nonbounding loop form a pile in the center. Near the horizon, a 2-manifold
is embedded by an associated height field. It divides itself into regions using the 1-cells of its
Morse-Smale complex.

v

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

vi

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

Contents

Preface page xi
Acknowledgments xiii

1 Introduction 1
1.1 Spaces 1
1.2 Shapes of Spaces 3
1.3 New Results 8
1.4 Organization 10

Part One: Mathematics

2 Spaces and Filtrations 13
2.1 Topological Spaces 14
2.2 Manifolds 19
2.3 Simplicial Complexes 23
2.4 Alpha Shapes 32
2.5 Manifold Sweeps 37

3 Group Theory 41
3.1 Introduction to Groups 41
3.2 Characterizing Groups 47
3.3 Advanced Structures 53

4 Homology 60
4.1 Justification 60
4.2 Homology Groups 70
4.3 Arbitrary Coefficients 79

5 Morse Theory 83
5.1 Tangent Spaces 84
5.2 Derivatives and Morse Functions 85
5.3 Critical Points 86
5.4 Stable and Unstable Manifolds 88
5.5 Morse-Smale Complex 90

vii

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

viii Contents

6 New Results 94
6.1 Persistence 95
6.2 Hierarchical Morse-Smale Complexes 105
6.3 Linking Number 116

Part Two: Algorithms

7 The Persistence Algorithms 125
7.1 Marking Algorithm 125
7.2 Algorithm for Z2 128
7.3 Algorithm for Fields 136
7.4 Algorithm for PIDs 146

8 Topological Simplification 148
8.1 Motivation 148
8.2 Reordering Algorithms 150
8.3 Conflicts 153
8.4 Topology Maps 157

9 The Morse-Smale Complex Algorithm 161
9.1 Motivation 162
9.2 The Quasi Morse-Smale Complex Algorithm 162
9.3 Local Transformations 166
9.4 Algorithm 169

10 The Linking Number Algorithm 171
10.1 Motivation 171
10.2 Algorithm 172

Part Three: Applications

11 Software 183
11.1 Methodology 183
11.2 Organization 184
11.3 Development 186
11.4 Data Structures 190
11.5 CView 193

12 Experiments 198
12.1 Three-Dimensional Data 198
12.2 Algorithm for Z2 204
12.3 Algorithm for Fields 208
12.4 Topological Simplification 215
12.5 The Morse-Smale Complex Algorithm 217
12.6 The Linking Number Algorithm 220

13 Applications 223
13.1 Computational Structural Biology 223
13.2 Hierarchical Clustering 227

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

Contents ix

13.3 Denoising Density Functions 229
13.4 Surface Reconstruction 231
13.5 Shape Description 232
13.6 I/O Efficient Algorithms 233

Bibliography 235
Index 240

Color plates follow page 154

P1: KcS/JZP

CY521/Zomorodian-FM CY521/Zomorodian 0521836662 October 20, 2004 10:47

x

Preface

My goal in this book is to enable a non-specialist to grasp and participate
in current research in computational topology. Therefore, this book is not a
compilation of recent advances in the area. Rather, the book presents basic
mathematical concepts from a computer scientist’s point of view, focusing on
computational challenges and introducing algorithms and data structures when
appropriate. The book also incorporates several recent results from my doc-
toral dissertation and subsequent related results in computational topology.

The primary motivation for this book is the significance and utility of topo-
logical concepts in solving problems in computer science. These problems
arise naturally in computational geometry, graphics, robotics, structural biol-
ogy, and chemistry. Often, the questions themselves have been known and
considered by topologists. Unfortunately, there are many barriers to interac-
tion:

• Computer scientists do not know the language of topologists. Topology,
unlike geometry, is not a required subject in high school mathematics and is
almost never dealt with in undergraduate computer science. The axiomatic
nature of topology further compounds the problem as it generates cryptic
and esoteric terminology that makes the field unintelligible and inaccessible
to non-topologists.

• Topology can be very unintuitive and enigmatic and therefore can appear
very complicated and mystifying, often frightening away interested com-
puter scientists.

• Topology is a large field with many branches. Computer scientists often re-
quire only simple concepts from each branch. While there are certainly a
number of offerings in topology by mathematics departments, the focus of
these courses is often theoretical, concerned with deep questions and exis-
tential results.

xi

xii Preface

Because of the relative dearth of interaction between topologists and computer
scientists, there are many opportunities for research. Many topological ques-
tions have large complexity: the best known bound, if any, may be exponential.
For example, I once attended a talk on an algorithm that ran in quadruply ex-
ponential time! Let me make this clear. It was

O

(
2222n)

.

And one may overhear topologists boasting that their software can now han-
dle 14 tetrahedra, not just 13. But better bounds may exist for specialized
questions, such as problems in low dimensions, where our interests chiefly lie.
We need better algorithms, parallel algorithms, approximation schemes, data
structures, and software to solve these problems within our lifetime (or the
lifetime of the universe.)

This book is based primarily on my dissertation, completed under the super-
vision of Herbert Edelsbrunner in 2001. Consequently, some chapters, such as
those in Part Three, have a thesis feel to them. I have also incorporated notes
from several graduate-level courses I have organized in the area: Introduction
to Computational Topology at Stanford University, California, during Fall 2002
and Winter 2004; and Topology for Computing at the Max-Planck-Institut für
Informatik, Saarbrücken, Germany, during Fall 2003.

The goal of this book is to make algorithmically minded individuals fluent in
the language of topology. Currently, most researchers in computational topol-
ogy have a mathematics background. My hope is to recruit more computer
scientists into this emerging field.

Stanford, California A. J. Z.
June 2004

Acknowledgments

I am indebted to Persi Diaconis for the genesis of this book. He attended my
very first talk in the Stanford Mathematics Department, asked for a copy of my
thesis, and recommended it for publication. To have my work be recognized
by such a brilliant and extraordinary figure is an enormous honor for me. I
would like to thank Lauren Cowles for undertaking this project and coaching
me throughout the editing process and Elise Oranges for copyediting the text.

During my time at Stanford, I have collaborated primarily with Leonidas
Guibas and Gunnar Carlsson. Leo has been more than just a post-doctoral
supervisor, but a colleague, a mentor, and a friend. He is a successful aca-
demic who balances research, teaching, and the mentoring of students. He
guides a large animated research group that works on a manifold of significant
problems. And his impressive academic progeny testify to his care for their
success.

Eleven years after being a freshman in his “honors calculus,” I am fortu-
nate to have Gunnar as a colleague. Gunnar astounds me consistently with
his knowledge, humility, generosity, and kindness. I continue to rely on his
estimation, advice, and support.

I would also like to thank the members of Leo and Gunnar’s research groups
as well as the Stanford Graphics Laboratory, for inspired talks and invigorating
discussions. This book was partially written during a four-month stay at the
Max-Planck-Institut. I would like to thank Lutz Kettner and Kurt Mehlhorn
for their sponsorship, as well as for coaxing me into teaching a mini-course.

Finally, I would like to thank my research collaborators, whose work ap-
pears in this book: Gunnar Carlsson, Anne Collins, Herbert Edelsbrunner,
Leonidas Guibas, John Harer, and David Letscher. My research was sup-
ported, in part, by ARO under grant DAAG55-98-1-0177, by NSF under grants
CCR-00-86013 and DMS-0138456, and by NSF/DARPA under grant CARGO
0138456.

xiii

1

Introduction

The focus of this book is capturing and understanding the topological prop-
erties of spaces. To do so, we use methods derived from exploring the re-
lationship between geometry and topology. In this chapter, I will motivate
this approach by explaining what spaces are, how they arise in many fields of
inquiry, and why we are interested in their properties. I will then introduce
new theoretical methods for rigorously analyzing topologies of spaces. These
methods are grounded in homology and Morse theory, and generalize to high-
dimensional spaces. In addition, the methods are robust and fast, and therefore
practical from a computational point of view. Having introduced the methods,
I end this chapter by discussing the organization of the rest of the book.

1.1 Spaces

Let us begin with a discussion of spaces. A space is a set of points as shown in
Figure 1.1(a). We cannot define what a set is, other than accepting it as a prim-
itive notion. Intuitively, we think of a set as a collection or conglomeration of
objects. In the case of a space, these objects are points, yet another primitive
notion in mathematics. The concept of a space is too weak to be interesting,
as it lacks structure. We make this notion slightly richer with the addition of
a topology. We shall see in Chapter 2 what a topology formally means. Here,
we think of a topology as the knowledge of the connectivity of a space: Each
point in the space knows which points are near it, that is, in its neighborhood.
In other words, we know how the space is connected. For example, in Fig-
ure 1.1(b), neighbor points are connected graphically by a path in the graph.
We call such a space a topological space. At first blush, the concept of a topo-
logical space may seem contrived, as we are very comfortable with the richer
metric spaces, as in Figure 1.1(c). We are introduced to the prototypical metric
space, the Euclidean space Rd , in secondary school, and we often envision our

1

2 1 Introduction

(a) A space (b) A topological space

0 5 10

5

10

(c) A metric space

Fig. 1.1. Spaces.

world as R3. A metric space has an associated metric, which enables us to
measure distances between points in that space and, in turn, implicitly define
their neighborhoods. Consequently, a metric provides a space with a topol-
ogy, and a metric space is a topological one. Topological spaces feel alien to
us because we are accustomed to having a metric. The spaces arise naturally,
however, in many fields.

Example 1.1 (graphics) We often model a real-world object as a set of ele-
ments, where the elements are triangles, arbitrary polygons, or B-splines.

Example 1.2 (geography) Planetary landscapes are modeled as elevations over
grids, or triangulations, in geographic information systems.

Example 1.3 (robotics) A robot must often plan a path in its world that con-
tains many obstacles. We are interested in efficiently capturing and represent-
ing the configuration space in which a robot may travel.

Example 1.4 (biology) A protein is a single chain of amino acids, which folds
into a globular structure. The Thermodynamics Hypothesis states that a protein
always folds into a state of minimum energy. To predict protein structure, we
would like to model the folding of a protein computationally. As such, the
protein folding problem becomes an optimization problem: We are looking for
a path to the global minimum in a very high-dimensional energy landscape.

All the spaces in the above examples are topological spaces. In fact, they
are metric spaces that derive their topology from their metrics. However, the
questions raised are often topological in nature, and we may solve them easier

1.2 Shapes of Spaces 3

by focusing on the topology of the space, and not its geometry. I will refer to
topological spaces simply as spaces from this point onward.

1.2 Shapes of Spaces

We have seen that spaces arise in the process of solving many problems. Con-
sequently, we are interested in capturing and understanding the shapes of
spaces. This understanding is really in the form of classifications: We would
like to know how spaces agree and differ in shape in order to categorize them.
To do so, we need to identify intrinsic properties of spaces. We can try trans-
forming a space in some fixed way and observe the properties that do not
change. We call these properties the invariants of the space. Felix Klein
gave this famous definition for geometry in his Erlanger Programm address
in 1872. For example, Euclidean geometry refers to the study of invariants
under rigid motion in Rd , e.g., moving a cube in space does not change its
geometry. Topology, on the other hand, studies invariants under continuous,
and continuously invertible, transformations. For example, we can mold and
stretch a play-doh ball into a filled cube by such transformations, but not into
a donut shape. Generally, we view and study geometric and topological prop-
erties separately.

1.2.1 Geometry

There are a variety of issues we may be concerned with regarding the geometry
of a space. We usually have a finite representation of a space for computation.
We could be interested in measuring the quality of our representation, trying to
improve the representation via modifications, and analyzing the effect of our
changes. Alternatively, we could attempt to reduce the size of the representa-
tion in order to make computations viable, without sacrificing the geometric
accuracy of the space.

Example 1.5 (decimation) The Stanford Dragon in Figure 1.2(a) consists of
871,414 triangles. Large meshes may not be appropriate for many applica-
tions involving real-time rendering. Having decimated the surface to 5% of its
original size (b), I show that the new surface approximates the original surface
quite well (c). The maximum distance between the new vertices and the orig-
inal surface is 0.08% of the length of the diagonal of the dragon’s bounding
box.

4 1 Introduction

(a) Stanford Dragon, rep-
resented by a triangulated
surface

(b) Decimated to 5% of
the number of triangles

(c) Normalized distance
to original surface, in in-
creasing intensity

Fig. 1.2. Geometric simplification.

Fig. 1.3. The string on the left is cut into two pieces. The loop string on the right is cut
but still is in one piece.

1.2.2 Topology

While Klein’s unifying definition makes topology a form of geometry, we of-
ten differentiate between the two concepts. Recall that when we talk about
topology, we are interested in how spaces are connected. Topology concerns
itself with how things are connected, not how they look. Let’s start with a few
examples.

Example 1.6 (loops of string) Imagine we are given two pieces of strings.
We tie the ends of one of them, so it forms a loop. Are they connected the
same way, or differently? One way to find out is to cut both, as shown in Fig-
ure 1.3. When we cut each string, we are obviously changing its connectivity.
Since the result is different, they must have been connected differently to begin
with.

Example 1.7 (sphere and torus) Suppose you have a hollow ball (a sphere)
and the surface of a donut (a torus.) When you cut the sphere anywhere,
you get two pieces: the cap and the sphere with a hole, as shown in Fig-
ure 1.4(a). But there are ways you can cut the torus so that you only get one

1.2 Shapes of Spaces 5

(a) No matter where we cut the sphere, we
get two pieces

(b) If we’re careful, we can cut the torus
and still leave it in one piece.

Fig. 1.4. Two pieces or one piece?

piece. Somehow, the torus is acting like our string loop and the sphere like the
untied string.

Example 1.8 (holding hands) Imagine you’re walking down a crowded street,
holding somebody’s hand. When you reach a telephone pole and have to walk
on opposite sides of the pole, you let go of the other person’s hand. Why?

Let’s look back to the first example. Before we cut the string, the two points
near the cut are near each other. We say that they are neighbors or in each
other’s neighborhoods. After the cut, the two points are no longer neighbors,
and their neighborhood has changed. This is the critical difference between
the untied string and the loop: The former has two ends. All the points in the
loop have two neighbors, one to their left and one to their right. But the untied
string has two points, each of whom has a single neighbor. This is why the two
strings have different connectivity. Note that this connectivity does not change
if we deform or stretch the strings (as if they are made of rubber.) As long as
we don’t cut them, the connectivity remains the same. Topology studies this
connectivity, a property that is intrinsic to the space itself.

In addition to studying the intrinsic properties of a space, topology is con-
cerned not only with how an object is connected (intrinsic topology), but how
it is placed within another space (extrinsic topology.) For example, suppose
we put a knot on a string and then tie its ends together. Clearly, the string has
the same connectivity as the loop we saw in Example 1.6. But no matter how
we move the string around, we cannot get rid of the knot (in topology terms,
we cannot unknot the knot into the unknot.) Or can we? Can we prove that we
cannot?

So, topological properties include having tunnels, as shown in Figure 1.5(a),
being knotted (b), and having components that are linked (c) and cannot be
taken apart. We seek computational methods to detect these properties. Topo-

6 1 Introduction

(a) Gramicidin A, a pro-
tein, with a tunnel

(b) A knotted DNA (c) Five pairwise-linked
tetrahedral skeletons

Fig. 1.5. Topological properties. (b) Reprinted with permission from S Wasserman et
al., SCIENCE, 229:171–174 (1985). © 1985 AAAS.

(a) Sampled point set
from a surface

(b) Recovered topology (c) Piece-wise linear sur-
face approximation

Fig. 1.6. Surface reconstruction.

logical questions arise frequently in many areas of computation. Tools de-
veloped in topology, however, have not been used to address these problems
traditionally.

Example 1.9 (surface reconstruction) Usually, a computer model is created
by sampling the surface of an object and creating a point set, as in Figure 1.6(a).
Surface reconstruction, a major area of research in computer graphics and
computational geometry, refers to the recovery of the lost topology (b) and,
in turn, geometry of a space. Once the connectivity is reestablished, the sur-
face is often represented by a piece-wise linear approximation (c).

1.2 Shapes of Spaces 7

Fig. 1.7. Topological simplification.

As for geometry, we would also like to be able to simplify a space topolog-
ically, as in Figure 1.7. I have intentionally made the figures primitive com-
pared to the previous geometric figures to reflect the essential structure that
topology captures. To simplify topology, we need a measure of the importance
of topological attributes. I provide one such measure in this book.

1.2.3 Relationship

The geometry and topology of a space are fundamentally related, as they are
both properties of the same space. Geometric modifications, such as decima-
tion in Example 1.5, could alter the topology. Is the simplified dragon in Fig-
ure 1.2(c) connected the same way as the original? In this case, the answer is
yes, because the decimation algorithm excludes geometric modifications that
have topological impact. We have changed the geometry of the surface without
changing its topology.

When creating photo-realistic images, however, appearance is the dominant
issue, and changes in topology may not matter. We could, therefore, allow for
topological changes when simplifying the geometry. In other words, geometric
modifications are possible with, and without, induced changes in topology.
The reverse, however, is not true. We cannot eliminate the “hole” in the surface
of the donut (torus) to get a sphere in Figure 1.7 without changing the geometry
of the surface. We further examine the relationship between topology and
geometry by looking at contours of terrains.

Example 1.10 (contours) In Figure 1.8, I show a flooded terrain with the wa-
ter receding. The boundaries of the components that appear are the iso-lines or
contours of the terrain. Contour lines are used often in map drawings. Noise in
sampled data changes the geometry of a terrain, introducing small mountains
and lakes. In turn, this influences how contour lines appear and merge as the
water recedes.

8 1 Introduction

Fig. 1.8. Noah’s flood receding.

We may view the spaces shown in Figure 1.8 as a single growing space under-
going topological and geometric changes. The history of such a space, called
a filtration, is the primary object for this book. Note that the topology of the
iso-lines within this history is determined by the geometry of the terrain. Gen-
eralizing to a (d + 1)-dimensional surface, we see that there is a relationship
between the topology of d-dimensional level sets of a space and its geometry,
one dimension higher. This relationship is the subject of Morse theory, which
we will encounter in this book.

1.3 New Results

We will also examine some new results in the area of computational topol-
ogy. There are three main groups of theoretical results: persistence, Morse
complexes, and the linking number.

Persistence. Persistence is a new measure for topological attributes. We call
it persistence, as it ranks attributes by their life time in a filtration: their persis-
tence in being a feature in the face of growth. Using this definition, we look at
the following:

1.3 New Results 9

Fig. 1.9. A Morse complex over a terrain.

• Persistence: efficient algorithms for computing persistence over arbitrary
coefficients.

• Topological Simplification: algorithms for simplifying topology, based on
persistence. The algorithms remove attributes in the order of increasing per-
sistence. At any moment, we call the removed attributes topological noise,
and the remaining ones topological features.

• Cycles and Manifolds: algorithms for computing representations. The per-
sistence algorithm tracks the subspaces that express nontrivial topological
attributes, in order to compute persistence. We show how to modify this
algorithm to identify these subspaces (cycles), as well as the subspaces that
eliminate them (manifolds.)

Morse complexes. A Morse complex gives a full analysis of the behavior
of flow over a space by partitioning the space into cells of uniform flow.
In the case of a two-dimensional surface, such as the terrain in Figure 1.8,
the Morse complex connects maxima (peaks) to minima (pits) through saddle
points (passes) via edges, partitioning the terrain into quadrangles, as shown
in Figure 1.9. Morse complexes are defined, however, only for smooth spaces.
In this book, we will see how to extend this definition to piece-wise linear sur-
faces, which are frequently used for computation. In addition, we will learn
how to construct hierarchies of Morse complexes.

• Morse complex: We give an algorithm for computing the Morse complex
by first constructing a complex whose combinatorial form matches that of
the Morse complex and then deriving the Morse complex via local trans-
formations. This construction reflects a paradigm we call the Simulation of
Differentiability.

• Hierarchy: We apply persistence to a filtration of the Morse complex to get
a hierarchy of increasingly coarser Morse complexes. This corresponds to

10 1 Introduction

modifying the geometry of the space in order to eliminate noise and simplify
the topology of the contours of the surface.

Linking number. The linking number is an integer invariant that measures the
separability of a pair of knots. We extend the definition of the linking number
to simplicial complexes. We then develop data structures and algorithms for
computing the linking numbers of the complexes in a filtration.

1.4 Organization

The rest of this book is divided into three parts: mathematics, algorithms, and
applications. Part One, Mathematics, contains background on algebra, geom-
etry, and topology, as well as the new theoretical contributions. In Chapter 2,
we describe the spaces we are interested in exploring, and how we examine
them by encoding their geometries in filtrations of complexes. Chapter 3 pro-
vides enough group theory background for the definition of homology groups
in Chapter 4. We also discuss other measures of topology and justify our choice
of homology. Switching to smooth manifolds, we review concepts from Morse
Theory in Chapter 5. In Chapter 6, we give the mathematics behind the new
results in this book.

Part Two, Algorithms, contains data structures and algorithms for the mathe-
matics presented in Part I. In each chapter, we motivate and present algorithms
and prove they are correct. In Chapter 7, we introduce algorithms for comput-
ing persistence: over Z2 coefficients, arbitrary fields, and arbitrary principal
ideal domains. We then address topological simplification using persistence
in Chapter 8. In Chapter 9, we describe an algorithm for computing two-
dimensional Morse complexes. We end this part by showing how one may
compute linking numbers in Chapter 10.

Part Three, Applications, contains issues relating to the application of the
theory and algorithms presented in Parts I and II. To apply theoretical ideas
to real-world problems, we need implementations and software, which we
present in Chapter 11. We give empirical proof of the speed of the algo-
rithms through experiments with our implementations in Chapter 12. We de-
vote Chapter 13 to applications of the work in this book and future work.

Part One

Mathematics

2

Spaces and Filtrations

In this chapter, we describe the input to all of the algorithms described in this
book, and the process by which such input is generated. We begin by formaliz-
ing the kind of spaces that we are interested in exploring. Then, we introduce
the primary approach used for computing topology: growing a space incre-
mentally and analyzing the history of its growth. Naturally, the knowledge we
derive from this approach is only as meaningful as the growth process. So,
we let the geometry of our space dictate the growth model. In this fashion,
we encode geometry into an otherwise topological history. The geometry of
our space controls the placement of topological events within this history and,
consequently, the life-span of topological attributes. The main assumption of
this method is that longevity is equivalent to significance. This approach of
exploring the relationship between geometry and topology is not new. It is the
hallmark of Morse theory (Milnor, 1963), which we will study in more detail
in Chapter 5.

The rest of the chapter describes the process outlined in Figure 2.1. We begin
with a formal description of topological spaces. We then describe two types
of such spaces, manifolds and simplicial complexes, in the next two sections.

Weighted Point Sets
(2.4)

Alpha Shapes
(2.4)

Sweep
(2.5)

Algorithms

Topological Spaces
(2.1)

Filtrations
(2.3)

Manifolds
(2.2)

Fig. 2.1. Geometrically ordered filtrations: Topics are labeled with their sections.

13

14 2 Spaces and Filtrations

These spaces constitute our realm of interest. The latter is more general than
the former, and we represent the former with it. We also formalize the notion
of a growth history (filtration) within Section 2.3. Finally, we describe two
growth processes, alpha shapes and manifold sweeps, which are utilized to
spawn filtrations. These geometrically ordered filtrations provide the input to
the algorithms.

Topology and algebra are both axiomatic studies, necessitating a large num-
ber of definitions. My approach will be to start from the very primitive no-
tions, in order to refresh the reader’s memory. The titled definitions, however,
allow for quick skimming for the knowledgeable reader. My treatment follows
Bishop and Goldberg (1980) for point-set topology and Munkres (1984) for
algebraic topology. I also used Henle (1997) and McCarthy (1988) for refer-
ence and inspiration. I recommend de Berg et al. (1997) for background on
computational geometry. I will cite some seminal papers in defining concepts.

2.1 Topological Spaces

A topological space is a set of points who know who their neighbors are. Let’s
begin with the primitive notion of a set.

2.1.1 Sets and Functions

We cannot define a set formally, other than stating that a set is a well-defined
collection of objects. We also assume the following:

(i) Set S is made up of elements a ∈ S.
(ii) There is only one empty set ∅.

(iii) We may describe a set by characterizing it ({x | P(x)}) or by enumerat-
ing elements ({1,2,3}). Here P is a predicate.

(iv) A set S is well defined if, for each object a, either a ∈ S or a �∈ S.

Note that “well defined” really refers to the definition of a set, rather than to
the set itself. |S| or cardS is the size of the set. We may multiply sets in order
to get larger sets.

Definition 2.1 (Cartesian) The Cartesian product of sets S1,S2, . . . ,Sn is the
set of all ordered n-tuples (a1,a2, . . . ,an), where ai ∈ Si. The Cartesian prod-
uct is denoted by either S1 × S2 × . . .× Sn or by ∏n

i=1 Si. The i-th Cartesian
coordinate function ui : ∏n

i=1 Si → Si is defined by

ui(a1,a2, . . . ,an) = ai.

2.1 Topological Spaces 15

Having described sets, we now define subsets.

Definition 2.2 (subsets) A set B is a subset of a set A, denoted B⊆A or A⊇B,
if every element of B is in A. B ⊂ A or A ⊃ B is generally used for B ⊆ A and
B �= A. If A is any set, then A is the improper subset of A. Any other subset is
proper. If A is a set, we denote by 2A, the power set of A, the collection of all
subsets of A, 2A = {B | B ⊆ A}.

We also have a couple of fundamental set operations.

Definition 2.3 (intersection, union) The intersection A ∩ B of sets A and B
is the set consisting of those elements that belong to both A and B, that is,
A ∩ B = {x | x ∈ A and x ∈ B}. The union A ∪ B of sets A and B is the set
consisting of those elements that belong to A or B, that is, A ∪ B = {x | x ∈
A or x ∈ B}.

We indicate a collection of sets by labeling them with subscripts from an index
set J, e.g., A j with j ∈ J. For example, we use

⋂
j∈J A j =

⋂{A j | j ∈ J} = {x |
x ∈ A j for all j ∈ J} for general intersection. The next definition summarizes
functions: maps that relate sets to sets.

Definition 2.4 (relations and functions) A relation ϕ between sets A and B
is a collection of ordered pairs (a,b) such that a ∈ A and b ∈ B. If (a,b) ∈ ϕ,
we often denote the relationship by a ∼ b. A function or mapping ϕ from a set
A into a set B is a rule that assigns to each element a of A exactly one element
b of B. We say that ϕ maps a into b and that ϕ maps A into B. We denote this
by ϕ(a) = b. The element b is the image of a under ϕ. We show the map as
ϕ : A → B. The set A is the domain of ϕ, the set B is the codomain of ϕ, and
the set imϕ = ϕ(A) = {ϕ(a) | a ∈ A} is the image of A under ϕ. If ϕ and ψ
are functions with ϕ : A → B and ψ : B → C, then there is a natural function
mapping A into C, the composite function, consisting of ϕ followed by ψ. We
write ψ(ϕ(a)) = c and denote the composite function by ψ ◦ϕ. A function
from a set A into a set B is one to one (1-1) (injective) if each element B has at
most one element mapped into it, and it is onto B (surjective) if each element
of B has at least one element of A mapped into it. If it is both, it is a bijection.
A bijection of a set onto itself is called a permutation.

A permutation of a finite set is usually specified by its action on the elements of
the set. For example, we may denote a permutation of the set {1,2,3,4,5,6}
by (6,5,2,4,3,1), where the notation states that the permutation maps 1 to
6, 2 to 5, 3 to 2, and so on. We may then obtain a new permutation by a

16 2 Spaces and Filtrations

transposition: switching the order of two neighboring elements. In our ex-
ample, (5,6,2,4,3,1) is a permutation that is one transposition away from
(6,5,2,4,3,1). We may place all permutations of a finite set in two sets.

Theorem 2.1 (parity) A permutation of a finite set can be expressed as either
an even or an odd number of transpositions, but not both. In the former case,
the permutation is even; in the latter, it is odd.

2.1.2 Topology

We endow a set with structure by using a topology to get a topological space.

Definition 2.5 (topology) A topology on a set X is a subset T ⊆ 2X such that:

(a) If S1,S2 ∈ T , then S1 ∩ S2 ∈ T .

(b) If {SJ | j ∈ J} ⊆ T , then ∪ j∈JS j ∈ T .

(c) ∅,X ∈ T .

The definition states implicitly that only finite intersections, and infinite unions,
of the open sets are open. A topology is simply a system of sets that describe
the connectivity of the set. These sets have names:

Definition 2.6 (open, closed sets) Let X be a set and T be a topology. S ∈ T
is an open set. The closed sets are X −S, where S ∈ T .

A set may be only closed, only open, both open and closed, or neither. For
example, ∅ is both open and closed by definition. We combine a set with a
topology to get the spaces we are interested in.

Definition 2.7 (topological space) The pair (X ,T) of a set X and a topology
T is a topological space.

We often use X as notation for a topological space X , with T being understood.
We next turn our attention to the individual sets.

Definition 2.8 (interior, closure, boundary) The interior Å of set A ⊆ X is
the union of all open sets contained in A. The closure A of set A ⊆ X is the
intersection of all closed sets containing A. The boundary of a set A is ∂A =
A− Å.

2.1 Topological Spaces 17

(a) A ⊆ X (b) A (c) Å (d) ∂A

Fig. 2.2. A set A ⊆ X and related sets.

In Figure 2.2, we see a set that is composed of a single point and an upside-
down teardrop shape. We also see its closure, interior, and boundary. There
are other equivalent ways of defining these concepts. For example, we may
think of the boundary of a set as the set of points all of whose neighborhoods
intersect both the set and its complement. Similarly, the closure of a set is the
minimum closed set that contains the set. Using open sets, we can now define
neighborhoods.

Definition 2.9 (neighborhoods) A neighborhood of x ∈ X is any A ⊆ X such
that x ∈ Å. A basis of neighborhoods at x ∈ X is a collection of neighborhoods
of x such that every neighborhood of x contains one of the basis neighborhoods.

We may define basis neighborhoods, and hence a topology, by means of a
metric.

Definition 2.10 (metric) A metric or distance function d : X × X → R is a
function satisfying the following axioms:

(a) For all x,y ∈ X , d(x,y) ≥ 0 (positivity).
(b) If d(x,y) = 0, then x = y (nondegeneracy).
(c) For all x,y ∈ X , d(x,y) = d(y,x) (symmetry).
(d) For all x,y,z ∈ X , d(x,y)+d(y,z) ≥ d(x,z) (the triangle inequality).

Definition 2.11 (open ball) The open ball B(x,r) with center x and radius r >

0 with respect to metric d is defined to be B(x,r) = {y | d(x,y) < r}.

We can show that open balls can serve as basis neighborhoods for a topology
of a set X with a metric.

Definition 2.12 (metric space) A set X with a metric function d is called a

18 2 Spaces and Filtrations

metric space. We give it the metric topology of d, where the set of open balls
defined using d serve as basis neighborhoods.

A metric space is a topological space. Most of the spaces we are interested
in are subsets of metric spaces, in fact, a particular type of metric spaces: the
Euclidean spaces. Recall the Cartesian coordinate functions ui from Defini-
tion 2.1.

Definition 2.13 (Euclidean space) The Cartesian product of n copies of R,
the set of real numbers, along with the Euclidean metric

d(x,y) =

√
n

∑
i=1

(ui(x)−ui(y))2,

is the n-dimensional Euclidean space Rn.

We may induce a topology on subsets of metric spaces as follows. If A ⊆ X
with topology T , then we get the relative or induced topology TA by defining

TA = {S ∩ A | S ∈ T}. (2.1)

It is easy to verify that TA is, indeed, a topology on A, upgrading A a to space
A.

Definition 2.14 (subspace) A subset A ⊆ X with topology TA is a (topologi-
cal) subspace of X.

2.1.3 Homeomorphisms

We noted in Chapter 1 that topology is inherently a classification system.
Given the set of all topological spaces, we are interested in partitioning this
set into sets of spaces that are connected the same way. We formalize this
intuition next.

Definition 2.15 (partition) A partition of a set is a decomposition of the set
into subsets (cells) such that every element of the set is in one and only one of
the subsets.

Definition 2.16 (equivalence) Let S be a nonempty set and let ∼ be a relation
between elements of S that satisfies the following properties for all a,b,c ∈ S:

(a) (Reflexive) a ∼ a.
(b) (Symmetric) If a ∼ b, then b ∼ a.

2.2 Manifolds 19

(c) (Transitive) If a ∼ b and b ∼ c, then a ∼ c.

Then, the relation ∼ is an equivalence relation on S.

The following theorem allows us to derive a partition from an equivalence
relation. We omit the proof, as it is elementary.

Theorem 2.2 Let S be a nonempty set and let ∼ be an equivalence relation
on S. Then, ∼ yields a natural partition of S, where ā = {x ∈ S | x ∼ a}. ā
represents the subset to which a belongs to. Each cell ā is an equivalence
class.

We now define an equivalence relation on topological spaces.

Definition 2.17 (homeomorphism) A homeomorphism f : X → Y is a 1-1
onto function, such that both f , f−1 are continuous. We say that X is homeo-
morphic to Y, X ≈ Y, and that X and Y have the same topological type.

It is clear from Theorem 2.2 that homeomorphisms partition the class of topo-
logical spaces into equivalence classes of homeomorphic spaces. A fundamen-
tal problem in topology is characterizing these classes. We will see a coarser
classification system in Section 2.4, and we further examine this question in
Chapter 4, when we encounter yet another classification system, homology.

2.2 Manifolds

Manifolds are a type of topological spaces we are interested in. They cor-
respond well to the spaces we are most familiar with, the Euclidean spaces.
Intuitively, a manifold is a topological space that locally looks like Rn. In
other words, each point admits a coordinate system, consisting of coordin-
ate functions on the points of the neighborhood, determining the topology of
the neighborhood. We use a homeomorphism to define a chart, as shown in
Figure 2.3. We also need two additional technical definitions before we may
define manifolds.

Definition 2.18 (chart) A chart at p ∈ X is a function ϕ : U → Rd , where
U ⊆ X is an open set containing p and ϕ is a homeomorphism onto an open
subset of Rd . The dimension of the chart ϕ is d. The coordinate functions of
the chart are xi = ui◦ϕ :U →R, where ui : Rn →R are the standard coordinates
on Rd .

20 2 Spaces and Filtrations

p

p’

U

U’

ϕ

ϕ

X

−1

IR
d

Fig. 2.3. A chart at p ∈ X. ϕ maps U ⊂ X containing p to U ′ ⊆ Rd . As ϕ is a homeo-
morphism, ϕ−1 also exists and is continuous.

Definition 2.19 (Hausdorff) A topological space X is Hausdorff if, for every
x,y ∈ X ,x �= y, there are neighborhoods U,V of x,y, respectively, such that
U ∩ V = ∅.

A metric space is always Hausdorff. Non-Hausdorff spaces are rare, but can
arise easily, when building spaces by attaching.

Definition 2.20 (separable) A topological space X is separable if it has a
countable basis of neighborhoods.

Finally, we can formally define a manifold.

Definition 2.21 (manifold) A separable Hausdorff space X is called a (topo-
logical) d-manifold if there is a d-dimensional chart at every point x ∈ X, that
is, if x ∈ X has a neighborhood homeomorphic to Rn. It is called a d-manifold
with boundary if x ∈ X has a neighborhood homeomorphic to Rd or the Eu-
clidean half-space Hd = {x ∈ Rd | x1 ≥ 0}. The boundary of X is the set of
points with neighborhood homeomorphic to Hd . The manifold has dimension
d.

Theorem 2.3 The boundary of a d-manifold with boundary is a (d−1)-manifold
without boundary.

Figure 2.4 displays a 2-manifold and a 2-manifold with boundary. The mani-
folds shown are compact.

Definition 2.22 (compact) A covering of A ⊆ X is a family {Cj | j ∈ J} in 2X ,
such that A ⊆ ⋃

j∈J Cj. An open covering is a covering consisting of open sets.
A subcovering of a covering {Cj | j ∈ J} is a covering {Ck | k ∈ K}, where
K ⊆ J. A ⊆ X is compact if every open covering of A has a finite subcovering.

2.2 Manifolds 21

Fig. 2.4. The sphere (left) is a 2-manifold. The torus with two holes (right) is a 2-
manifold with boundary. Its boundary is composed of the two circles.

. . .

Fig. 2.5. The cusp has finite area, but is not compact

� Intuitively, you might think any finite area manifold is compact. How-
ever, a manifold can have finite area and not be compact, such as the

cusp in Figure 2.5.

We are interested in smooth manifolds.

Definition 2.23 (C∞) Let U,V ⊆Rd be open. A function f : U →R is smooth
or C∞ (continuous of order ∞) if f has partial derivatives of all orders and
types. A function ϕ : U → Re is a C∞ map if all its components ei ◦ϕ : U → R

are C∞. Two charts ϕ : U →Rd ,ψ : V →Re are C∞-related if d = e and either
U ∩ V = ∅ or ϕ◦ψ−1 and ψ◦ϕ−1 are C∞ maps. A C∞ atlas is one for which
every pair of charts is C∞-related. A chart is admissible to a C∞ atlas if it is
C∞-related to every chart in the atlas.

C∞-related charts allow us to pass from one coordinate system to another
smoothly in the overlapping region, so we may extend our notions of curves,
functions, and differentials easily to manifolds.

Definition 2.24 (C∞ manifold) A C∞ manifold is a topological manifold to-
gether with all the admissible charts of some C∞ atlas.

The manifolds in Figure 2.4 are also orientable.

Definition 2.25 (orientability) A pair of charts xi and yi is consistently ori-
ented if the Jacobian determinant det(∂xi/∂y j) is positive whenever defined. A

22 2 Spaces and Filtrations

manifold M is orientable if there exists an atlas such that every pair of coordin-
ate systems in the atlas is consistently oriented. Such an atlas is consistently
oriented and determines an orientation on M. If a manifold is not orientable,
it is nonorientable.

In this book, we use the term “manifold” to denote a C∞-manifold. We are
mainly interested in two-dimensional manifolds, or surfaces, that arise as sub-
spaces of R3, with the induced topology. Equivalently, we are interested in
surfaces that are embedded in R3.

Definition 2.26 (embedding) An embedding f : X → Y is a map whose re-
striction to its image f (X) is a homeomorphism.

Most of our interaction with manifolds in our lives has been with embedded
manifolds in Euclidean spaces. Consequently, we always think of manifolds
in terms of an embedding. It is important to remember that a manifold exists
independently of any embedding: A sphere does not have to sit within R3 to
be a sphere. This is, by far, the biggest shift in the view of the world required
by topology. Before we go on, let’s see an example of a nonembedding.

Example 2.1 Figure 2.1(a) shows an map F : R → R2, where

F(t) = (2cos(t −π/2),sin(2(t −π/2)).

F wraps R over the figure-eight over and over. Note that while the map is 1-1
locally, it is not 1-1 globally. Using the monotone function

g(t) = π+2tan−1(t)

in Figure 2.1(b), we first fit all of R into the interval (0,2π) and then map it
using F once again. We get the same image (figure-eight) but cover it only
once, making F̂ 1-1. However, the graph of F̂ approaches the origin in the
limit, at both ∞ and −∞. Any neighborhood of the origin within R2 will
have four pieces of the graph within it and will not be homeomorphic to R.
Therefore, the map is not homeomorphic to its image and not an embedding.

� The maps shown in Figure 2.1 are both immersions. Immersions are
usually defined for smooth manifolds. If our original manifold X is

compact, nothing “nasty” can happen, and an immersion F : X → Y is simply
a local embedding. In other words, for any point p ∈ X, there exists a neigh-
borhood U containing p such that F |U is an embedding. However, F need not
be an embedding within the neighborhood of F(p) in Y. That is, immersed
compact spaces may self-intersect.

2.3 Simplicial Complexes 23

-1

 0

 1

-2 0 2

(a) F(t)

0

π

2π

-40 -20 0 20 40

(b) g(t)

-1

 0

 1

-2 0 2

(c) F̂(t) = F(g(t))

Fig. 2.6. Mapping of R into R2 with topological consequences.

2.3 Simplicial Complexes

In general, we are unable to represent surfaces precisely in a computer system,
because it has finite storage. Consequently, we sample and represent surfaces
with triangulations, as shown in Example 1.9. A triangulation is a simplicial
complex, a combinatorial space that can represent a space. With simplicial
complexes, we separate the topology of a space from its geometry, much like
the separation of syntax and semantics in logic.

2.3.1 Geometric Definition

We begin with a definition of simplicial complexes that seems to mix geometry
and topology. Combinations allow us to represent regions of space with very
few points.

Definition 2.27 (combinations) Let S = {p0, p1, . . . , pk}⊆Rd . A linear com-
bination is x = ∑k

i=0 λi pi, for some λi ∈ R. An affine combination is a linear
combination with ∑k

i=0 λi = 1. A convex combination is a an affine combina-
tion with λi ≥ 0, for all i. The set of all convex combinations is the convex
hull.

Definition 2.28 (independence) A set S is linearly (affinely) independent if
no point in S is a linear (affine) combination of the other points in S.

Definition 2.29 (k-simplex) A k-simplex is the convex hull of k + 1 affinely
independent points S = {v0,v1, . . . ,vk}. The points in S are the vertices of the
simplex.

A k-simplex is a k-dimensional subspace of Rd , dimσ = k. We show low-
dimensional simplices with their names in Figure 2.7.

24 2 Spaces and Filtrations

a

vertex
{a}

a b

edge

a

b

c

a

b

d

c

triangle tetrahedron
{a, b} {a, b, c} {a, b, c, d}

Fig. 2.7. k-simplices, for each 0 ≤ k ≤ 3.

Definition 2.30 (face, coface) Let σ be a k-simplex defined by
S = {v0,v1, . . . ,vk}. A simplex τ defined by T ⊆ S is a face of σ and has σ
as a coface. The relationship is denoted with σ ≥ τ and τ ≤ σ. Note that σ ≤ σ
and σ ≥ σ.

A k-simplex has
(k+1

l+1

)
faces of dimension l and ∑k

l=−1

(k+1
l+1

)
= 2k+1 faces in

total. A simplex, therefore, is a large, but very uniform and simple combinato-
rial object. We attach simplices together to represent spaces.

Definition 2.31 (simplicial complex) A simplicial complex K is a finite set of
simplices such that

(a) σ ∈ K,τ ≤ σ ⇒ τ ∈ K;
(b) σ,σ′ ∈ K ⇒ σ ∩ σ′ ≤ σ,σ′.

The dimension of K is dimK = max{dimσ | σ ∈ K}. The vertices of K are the
zero-simplices in K. A simplex is principal if it has no proper coface in K.

Here, proper has the same definition as for sets. Simply put, a simplicial
complex is a collection of simplices that fit together nicely, as shown in Fig-
ure 2.8(a), as opposed to simplices in (b).

Example 2.2 (size of a simplex) As already mentioned, combinatorial topol-
ogy derives its power from counting. Now that we have a finite description of
a space, we can count easily. So, let’s use Figure 2.7 to count the number of
faces of a simplex. For example, an edge has two vertices and an edge as its
faces (recall that a simplex is a face of itself.) A tetrahedron has four vertices,
six edges, four triangles, and a tetrahedron as faces. These counts are summa-
rized in Table 2.1. What should the numbers be for a 4-simplex? The numbers
in the table may look really familiar to you. If we add a 1 to the left of each
row, we get Pascal’s triangle, as shown in Figure 2.9. Recall that Pascal’s tri-
angle encodes the binomial coefficients: the number of different combinations
of l objects out of k objects or

(k
l

)
. Here, we have k + 1 points representing a

2.3 Simplicial Complexes 25

(a) The middle triangle shares an edge with
the triangle on the left and a vertex with the
triangle on the right.

(b) In the middle, the triangle is missing
an edge. The simplices on the left and
right intersect, but not along shared sim-
plices.

Fig. 2.8. A simplicial complex (a) and disallowed collections of simplices (b).

Table 2.1. Number of l-simplices in each k-simplex.

k/l 0 1 2 3
0 1 0 0 0
1 2 1 0 0
2 3 3 1 0
3 4 6 4 1
4 ? ? ? ?

k-simplex, any l + 1 of which defines an l-simplex. To make the relationship
complete, we define the empty set ∅ as the (−1)-simplex. This simplex is part
of every simplex and allows us to add a column of 1’s to the left side of Ta-
ble 2.1 to get Pascal’s triangle. It also allows us to eliminate the underlined
part of Definition 2.31, as the empty set of part of both simplices for nonin-
tersecting simplices. To get the total size of a simplex, we sum each row of

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Fig. 2.9. If we add a 1 to the left side of each row in Table 2.1, we get Pascal’s triangle.

26 2 Spaces and Filtrations

Pascal’s triangle. A k-simplex has
(k+1

l+1

)
faces of dimension l and

k

∑
l=−1

(
k +1
l +1

)
= 2k+1

faces in total. A simplex, therefore, is a very large object. Mathematicians
often do not find it appropriate for “computation,” when computation is being
done by hand. Simplices are very uniform and simple in structure, however,
and therefore provide an ideal computational gadget for computers.

2.3.2 Abstract Definition

The definition of a simplex uses geometry in a fundamental way. It might seem,
therefore, that simplicial complexes have a geometric nature. It is possible to
define simplicial complexes without using any geometry. We will present this
definition next, as it displays the clear separation of topology and geometry
that makes simplicial complexes attractive to us.

Definition 2.32 (abstract simplicial complex) An abstract simplicial complex
is a set K, together with a collection S of subsets of K called (abstract) sim-
plices such that:

(a) For all v ∈ K,{v} ∈ S. We call the sets {v} the vertices of K.
(b) If τ ⊆ σ ∈ S, then τ ∈ S.

When it is clear from the context what S is, we refer to K as a complex. We
say σ is a k-simplex of dimension k if |σ| = k +1. If τ ⊆ σ, τ is a face of σ and
σ is a coface of τ.

Note that the definition allows for ∅ as a (−1)-simplex. We now relate this
abstract set-theoretic definition to the geometric one by extracting the combi-
natorial structure of a simplicial complex.

Definition 2.33 (vertex scheme) Let K be a simplicial complex with vertices
V and let K be the collection of all subsets {v0,v1, . . . ,vk} of V such that the
vertices v0,v1, . . . ,vk span a simplex of K. The collection K is called the vertex
scheme of K.

The collection K is an abstract simplicial complex. It allows us to compare
simplicial complexes easily, using isomorphisms.

Definition 2.34 (isomorphism) Let K1,K2 be abstract simplicial complexes

2.3 Simplicial Complexes 27

with vertex sets V1,V2, respectively. An isomorphism between K1,K2 is a bi-
jection ϕ : V1 → V2, such that the sets in K1 and K2 are the same under the
renaming of the vertices by ϕ and its inverse.

Theorem 2.4 Every abstract complex S is isomorphic to the vertex scheme of
some simplicial complex K. Two simplicial complexes are isomorphic iff their
vertex schemes are isomorphic as abstract simplicial complexes.

The proof is in Munkres (1984).

Definition 2.35 (geometric realization) If the abstract simplicial complex S
is isomorphic with the vertex scheme of the simplicial complex K, we call K
a geometric realization of S. It is uniquely determined up to an isomorphism,
linear on the simplices.

Having constructed a simplicial complex, we will divide it into topological
and geometric components. The former will be an abstract simplicial com-
plex, a purely combinatorial object that is easily stored and manipulated in a
computer system. The latter is a map of the vertices of the complex into the
space in which the complex is realized. Again, this map is finite, and it can be
approximated in a computer using a floating point representation. This repre-
sentation of a simplicial complex translates word for word into most common
file formats for storing surfaces.

Example 2.3 (Wavefront Object File) One standard format is the Object File
(OBJ) from Wavefront. This format first describes the map that places the ver-
tices in R3. A vertex with location (x,y,z)∈R3 gets the line “v x y z” in the file.
After specifying the map, the format describes a simplicial complex by only
listing its triangles, which are the principal simplices (see Definition 2.31). The
vertices are numbered according to their order in the file and numbered from
1. A triangle with vertices v1,v2,v3 is specified with line “f v1 v2 v3”. The
description in an OBJ file is often called a “triangle soup,” as the topology is
specified implicitly and must be extracted.

2.3.3 Subcomplexes

Recall that a simplex is the power set of its simplices. Similarly, a natural view
of a simplicial complex is that it is a special subset of the power set of all its
vertices. The subset is special because of the requirements in Definition 2.32.
Consider the small complex in Figure 2.11(a). The diagram (b) shows how the
simplices connect within the complex: It has a node for each simplex and an

28 2 Spaces and Filtrations

v -0.269616 0.228466 0.077226
v -0.358878 0.240631 0.044214
v -0.657287 0.527813 0.497524
v 0.186944 0.256855 0.318011
v -0.074047 0.212217 0.111664
...
f 19670 20463 20464
f 8936 8846 14300
f 4985 12950 15447
f 4985 15447 15448
...

Fig. 2.10. Portions of an OBJ file specifying the surface of the Stanford Bunny.

a

d

ec

b

(a) A small
complex

a b c

ac bc

φ

ab

abc

d e

decd

(b) Poset of the small complex, with prin-
cipal simplices marked

φ

φ

(c) An abstract poset:
The “water level” of
the poset is defined by
principal simplices

Fig. 2.11. Poset view of a simplicial complex.

edge indicating a face-coface relationship. The marked principal simplices are
the “peaks” of the diagram. This diagram is, in fact, a poset.

Definition 2.36 (poset) Let S be a finite set. A partial order is a binary re-
lation ≤ on S that is reflexive, antisymmetric, and transitive. That is for all
x,y,z ∈ S,

(a) x ≤ x,
(b) x ≤ y and y ≤ x implies x = y, and
(c) x ≤ y and y ≤ z implies x ≤ z.

A set with a partial order is a partially ordered set, or poset for short.

It is clear from the definition that the face relation on simplices is a partial
order. Therefore, the set of simplices with the face relation forms a poset. We
often abstractly imagine a poset as in Figure 2.11(c). The set is fat around

2.3 Simplicial Complexes 29

Fig. 2.12. Closure, star, and link of simplices.

its waist because the number of possible simplices
(n

k

)
is maximized for k ≈

n/2. The principal simplices form a level beneath which all simplices must be
included. Therefore, we may recover a simplicial complex by simply storing
its principal simplices, as in the case with triangulations in Example 2.3. This
view also gives us intuition for extensions of concepts in point-set theory to
simplicial complexes. A simplicial complex may be viewed as a closed set (it
is a closed point set, if it is geometrically realized).

Definition 2.37 (subcomplex, closure, link, star) A subcomplex is a simpli-
cial complex L ⊆ K. The smallest subcomplex containing a subset L ⊆ K is ts
closure, ClL = {τ ∈ K | τ ≤ σ ∈ L}. The star of L contains all of the cofaces
of L, StL = {σ ∈ K | σ ≥ τ ∈ L}. The link of L is the boundary of its star,
LkL = ClStL−St(ClL−{∅}).

Figure 2.12 demonstrates these concepts within the poset for our complex in
Figure 2.11. A subcomplex is the analog of a subset for a simplicial complex.
Given a set of simplices, we take all the simplices “below” the set within the
poset to get its closure (a), and all the simplices “above” the set to get its star

30 2 Spaces and Filtrations

~~

Fig. 2.13. The surface of a tetrahedron is a triangulation of a sphere, as its underlying
space is homeomorphic to the sphere.

(b). The face relation is the partial order that defines “above” and “below.”
Most of the time, the star of a set is an open set (viewed as a point set) and not
a simplicial complex. The star corresponds to the notion of a neighborhood for
a simplex and, like a neighborhood, it is open. The closure operation completes
the boundary of a set as before, making the star a simplicial complex (b). The
link operation gives us the boundary. In our example, Cl{c,e}−∅ = {c,e}, so
we remove the simplices from the light regions from those in the dark region
in (b) to get the link (c). Therefore, the link of c and e is the edge ab and the
vertex d. Check on Figure 2.11(a) to see if this matches your intuition of what
a boundary should be.

2.3.4 Triangulations

We will use simplicial complexes to represent manifolds.

Definition 2.38 (underlying space) The underlying space |K| of a simplicial
complex K is |K| = ∪σ∈Kσ.

Note that |K| is a topological space.

Definition 2.39 (triangulation) A triangulation of a topological space X is a
simplicial complex K such that |K| ≈ X.

For example, the boundary of a 3-simplex (tetrahedron) is homeomorphic to a
sphere and is a triangulation of the sphere, as shown in Figure 2.13.

� The term “triangulation” is used by different fields with different mean-
ings. For example, in computer graphics, the term most often refers to

“triangle soup” descriptions of surfaces. The finite element community of-
ten refers to triangle soups as a mesh, and may allow other elements, such
as quadrangles, as basic building blocks. In areas, three-dimensional meshes
composed of tetrahedra are called tetrahedralizations. Within topology, a tri-
angulation refers to complexes of any dimension, however.

2.3 Simplicial Complexes 31

vertex

a

edge

a b
c

a

b

tetrahedron

a

b

c

d

a [a, b]
triangle
[a, b, c] [a, b, c, d]

Fig. 2.14. k-simplices, 0 ≤ k ≤ 3. The orientation on the tetrahedron is shown on its
faces.

2.3.5 Orientability

Our earlier definition of orientability (Definition 2.25) depended on differen-
tiability. We now extend this definition to simplicial complexes, which are
not smooth. This extension further affirms that orientability is a topological
property not dependent on smoothness.

Definition 2.40 (orientation) Let K be a simplicial complex. An orientation
of a k-simplex σ ∈ K, σ = {v0,v1, . . . ,vk}, vi ∈ K, is an equivalence class of
orderings of the vertices of σ, where

(v0,v1, . . . ,vk) ∼ (vτ(0),vτ(1), . . . ,vτ(k)) (2.2)

are equivalent orderings if the parity of the permutation τ is even. We denote
an oriented simplex, a simplex with an equivalence class of orderings, by [σ].

Note that the concept of orientation derives from that fact that permutations
may be partitioned into two equivalence classes (if you have forgotten these
concepts, you should review Definitions 2.4 and 2.15.) Orientations may be
shown graphically using arrows, as shown in Figure 2.14. We may use oriented
simplices to define the concept of orientability to triangulated d-manifolds.

Definition 2.41 (orientability) Two k-simplices sharing a (k− 1)-face σ are
consistently oriented if they induce different orientations on σ. A triangulable
d-manifold is orientable if all d-simplices can be oriented consistently. Other-
wise, the d-manifold is nonorientable

Example 2.4 (rendering) The surface of a three-dimensional object is a 2-
manifold and may be modeled with a triangulation in a computer. In computer
graphics, these triangulations are rendered using light models that assign color
to each triangle according to how it is situated with respect to the lights in the
scene and the viewer. To do this, the model needs the normal for each triangle.

32 2 Spaces and Filtrations

But each triangle has two normals pointing in opposite directions. To get a
correct rendering, we need the normals to be consistently oriented.

2.3.6 Filtrations and Signatures

All the spaces explored in this book will be simplicial complexes. We will
explore them by building them incrementally, in such a way that all the subsets
generated are also complexes.

Definition 2.42 (subcomplex) A subcomplex of a simplicial complex K is a
simplicial complex L ⊆ K.

Definition 2.43 (filtration) A filtration of a complex K is a nested sequence
of subcomplexes, ∅ = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Km = K. We call a complex K
with a filtration a filtered complex.

Note that complex Ki+1 = Ki ∪̇ δi, where δi is a set of simplices. The sets
δi provide a partial order on the simplices of K. Most of the algorithms will
require a full ordering. One method to derive a full ordering is to sort each δi

according to increasing dimension, breaking all remaining ties arbitrarily.

Definition 2.44 (filtration ordering) A filtration ordering of a simplicial
complex K is a full ordering of its simplices, such that each prefix of the or-
dering is a subcomplex.

We will index the simplices in K by their rank in a filtration ordering. We
may also build a filtration of n + 1 complexes from a filtration ordering of n
simplices, σi,1 ≤ i ≤ n, by adding one simplex at a time. That is, K0 = ∅ and
for i > 0, Ki = {σ j | j ≤ i}.

The primary output of algorithms in this book will be a signature function,
associating a topologically significant value to each complex.

Definition 2.45 (signature) Let Ki be a filtration of m+1 complexes, and let
[m] denote the set {0,1,2, . . . ,m} of the complex indices. A signature function
is a map λ : [m] → R.

2.4 Alpha Shapes

We have now seen the types of spaces that will be examined in this book, as
well as their representation. What remains is the derivation of meaningful fil-
trations, encoding the geometry of the space in the ordering. In this section, we

2.4 Alpha Shapes 33

-1

 0

 1

 2

 3

 4

 0 2 4 6 8 10

E
ne

rg
y

(k
ca

l /
 m

ol
)

Separation (Angstroms)

Minimum Energy at 3.96 Angstroms

(a) The van der Waals force for two carbon
atoms, as modeled by the Leonard-Jones
potential function

(b) Gramicidin A, a protein, modeled as
the union of spheres with van der Waals
radii

Fig. 2.15. The van der Waals model for molecules.

will present a method for generating such filtrations due to Edelsbrunner, Kirk-
patrick, and Seidel (1983). The method has a natural affinity to space-filling
models of molecules. One such model is the van der Waals model (Creighton,
1984). The van der Waals force is a weak, but widespread force influencing
the structure of molecules. The force arises from the interaction between pairs
of atoms. It is extremely repulsive in the short range and weakly attractive in
the intermediate range, as shown in Figure 2.15(a) for two carbon atoms. Bi-
ologists have captured the repulsive nature of this force by modeling atoms as
spheres, as shown in Figure 2.15(b). The radii of atoms are defined to be half
the van der Waals contact distance, the distance at which the minimum energy
is achieved. In reality, atoms should be viewed as balls with fuzzy bound-
aries. Moreover, interactions of solvents with a molecule are often modeled by
growing and shrinking of the balls. Generalizing this model, we could grow
and shrink balls to capture all the possible shapes of a molecule. The alpha
shapes model formalizes this idea. For a full mathematical exposition of the
ideas discussed in this section, see Edelsbrunner (1995).

2.4.1 Dual Complex

We begin with the input to alpha shapes, a set of spherical balls.

Definition 2.46 (spherical balls) A spherical ball û = (u,U2)∈R3×R is de-
fined by its center u and square radius U2.

If U2 < 0, the radius is imaginary and so is the ball.

34 2 Spaces and Filtrations

u
v

w

Fig. 2.16. Union of nine disks, convex decomposition using Voronoï regions, and dual
complex.

Definition 2.47 (weighted square distance) The weighted square distance of
a point x from a ball û is πû(x) = ‖x−u‖2 −U2.

The weighted square distance of a point x has geometric meaning. It is the
square length of a line segment, tangent to the sphere, that has x as one endpoint
and the tangent point as its other endpoint. A point x ∈ R3 belongs to the ball
iff πû(x) ≤ 0, and it belongs to the bounding sphere iff πû(x) = 0. Given a
finite set of spherical balls S, we divide the space into regions.

Definition 2.48 (Voronoï region) The Voronoï region of û ∈ S is the set of
points for which û minimizes the weighted distance,

Vû = {x ∈ R3 | πû(x) ≤ πv̂(x),∀v̂ ∈ S}. (2.3)

The diagram of Voronoï regions, as defined above, has been called the power
diagram and weighted Voronoï diagram in the literature, to distinguish it from
the Voronoï diagram defined under the Euclidean metric for point sets by
Voronoï (1908). It is easy to show that the set of points equally far from two
weighted balls û, v̂ is a hyperplane defined by πû = πv̂. The Voronoï regions de-
compose the union of balls into convex cells of the form û ∩ Vû, as illustrated
in Figure 2.16 for two-dimensional balls or disks. Any two regions are either
disjoint or they overlap along a shared portion of their boundary. We assume
general position, where at most four Voronoï regions can have a nonempty
common intersection. This assumption is justified because of a computational
technique called simulation of simplicity that provides consistent symbolic per-
turbation of input that is not in general position (Edelsbrunner and Mücke,
1990). This technique is used in the alpha shapes software (Edelsbrunner and
Mücke, 1994) as well as in my implementations.

Let T ⊆ S have the property that its Voronoï regions have a nonempty com-
mon intersection. For example, in Figure 2.16, the regions with centers u,v,w
have a common intersection vertex, marked by a small filled circle. Consider

2.4 Alpha Shapes 35

X A

Fig. 2.17. The deformation retraction of a fat letter “A” onto a thin one, and finally to a
cycle.

the convex hull of the centers, in this case, the darker triangle uvw. Gen-
eral position implies that the convex hull is a k-dimensional simplex, where
k = |T |−1. We collect such simplices to construct the dual complex.

Definition 2.49 (dual complex) The dual complex K of S is the collection of
simplices

K =

{
conv{u | û ∈ T} | T ⊆ S,

⋂

û∈T

(û ∩ Vû) �= ∅
}

. (2.4)

The dual complex is a simplicial complex.

2.4.2 Homotopy

We digress briefly here to claim that the dual complex K captures the basic
topology of the union of balls S. In fact, K is a deformation retraction of⋃

S (Edelsbrunner, 1995).

Definition 2.50 (deformation retraction) A deformation retraction of a
space X onto a subspace A is a family of maps ft : X→A, t ∈ [0,1] such that f0

is the identity map, f1(X) = A, and ft |A is the identity map, for all t. The fam-
ily should be continuous, in the sense that the associated map X× [0,1] → X,
(x, t) �→ ft(x) is continuous.

In other words, starting from the original space X at time 0, we continuously
deform the space until it becomes the subspace A at time 1. We do this without
ever moving the subspace A in the process. In Figure 2.17, the space X is a
fat letter “A”, and its subspace A is a thin letter “A.” We retract the fat letter
onto the thin letter continuously to get a deformation retraction. Note that the
two spaces seem to be connected the same way but are of different dimensions.
We may continue this retraction until we get the cycle on the right. Once we
get the cycle, we are stuck. We cannot go further and retract the space into a
single point. A deformation retraction is a special case of a homotopy where
the requirement of the final space being a subspace is relaxed.

36 2 Spaces and Filtrations

Definition 2.51 (homotopy) A homotopy is a family of maps ft : X → Y, t ∈
[0,1], such that the associated map F : X× [0,1] → Y given by F(x, t) = ft(x)
is continuous. Then, f0, f1 : X → Y are homotopic via the homotopy ft . We
denote this as f0 � f1.

Suppose we have a retraction as in Definition 2.50. If we let i : A→X to be the
inclusion map, we have f1 ◦ i � 1 and i ◦ f1 � 1. This allows us to classify X

and its subspace A as having the same connectivity using the maps f1, i. This
is just a special case of homotopy equivalence.

Definition 2.52 (homotopy equivalence) A map f : X → Y is called a homo-
topy equivalence if there is a map g : Y → X such that f ◦g � 1 and g◦ f � 1.
Then, X and Y are homotopy equivalent and have the same homotopy type.
This fact is denoted as X � Y.

Earlier in this chapter, in Section 2.1.3, we saw an equivalence class based on
homeomorphisms. Homotopy is also an equivalence relation, but it does not
have the differentiating power of homeomorphisms: Two spaces with different
topological types could have the same homotopy type. As a weaker invariant,
homotopy is still quite useful, as homeomorphic spaces are homotopic.

Theorem 2.5 X ≈ Y ⇒ X � Y.

2.4.3 Alpha Complex

We have seen that the dual complex of a union of balls captures the union’s
topology. This is significant, because the dual complex is a simplicial complex,
a combinatorial object, while the union of balls is a space, described in a set-
theoretic fashion. Given a collection of balls S, the growth model for deriving
a filtration is to simply grow the balls. We have a choice here as to how fast
the growth should be. We choose the following growth model, as it allows for
efficient algorithms for its computation. For every real number α2 ∈ R, we
increase the square radius of a ball û by α2, giving us û(α) = (u,U2 +α2). We
denote the collection of expanded balls û(α) as S(α). If U2 = 0, then α is the
radius of û(α). If U2 +α2 < 0, then the ball û(α) is imaginary.

Definition 2.53 (alpha complex) For a set of spherical balls S, let S(α) =
{(u,U2 +α2) | (u,U2) ∈ S}. The α-complex K(α) of S is the dual complex of
S(α) (Edelsbrunner and Mücke, 1994).

2.5 Manifold Sweeps 37

K(−∞) is the empty set, K(0) = K, and K(∞) = D is the dual of the Voronoï
diagram, also known as the Delaunay triangulation of S (Delaunay, 1934). It is
easy to see that the Voronoï regions do not change and simplices are only added
as the balls are expanded. Therefore, K(α1)⊆K(α2) for α1 ≤α2. This implies
that the α-complex provides a filtration of the Delaunay triangulation of S.
This filtration gives a partial ordering on the simplices of K. For each simplex
σ ∈ D, there is a unique birth time α2(σ) such that σ ∈ K(α) iff α2 ≥ α2(σ).
We order the simplices such that α2(σ) < α2(τ) implies σ precedes τ in the
ordering. More than one simplex may be born at a time, and such cases may
arise even if S is in general position. For example, in Figure 2.16, edge uw is
born at the same moment as triangle uvw. As noted before, we may convert
this partial ordering into a total ordering easily. In fact, for α-shape filtrations,
we always do so, allowing only a single simplex to enter the complex at any
time.

In Figure 2.18, we show a few complexes in an alpha-complex filtration for
a small protein, Gramicidin A. We have seen this protein before, first modeled
as a molecular surface in Figure 1.5(a), and then as a van der Waals surface
in Figure 2.15(b). Note that the alpha-complex model has many additional
topological attributes at different times in the filtration. One of the main results
of this book is the identification of the significant topological features from
these attributes.

2.5 Manifold Sweeps

Alpha-shapes allow us to explore the shape of finite point sets and unions of
balls. In addition to such spaces, we are interested in exploring manifolds with
height functions. In Example 1.10, we saw how the geometry of a manifold
dictates the topology of its iso-lines. We use this example to motivate another
geometrically ordered filtration in this section, postponing theoretical justifi-
cation for it until we have been introduced to Morse Theory in Chapter 5.

Let K be a triangulation of a compact 2-manifold without boundary M. Let
h : M → R be a function that is linear on every triangle. The function is de-
fined, consequently, by its values at the vertices of K. We will assume that
h(u) �= h(v) for all vertices u �= v ∈ K. Again, simulation of simplicity is
the computational justification for this assumption (Edelsbrunner and Mücke,
1990). It is common to refer to h as the height function, because it matches
our intuition of a geographic landscape. One needs to be careful, however, not
to allow the intuition to limit one’s imagination, as h can be any continuous
function.

In a simplicial complex, the natural concept of a neighborhood of a vertex

38 2 Spaces and Filtrations

(a) 312 (b) 690 (c) 1,498 (d) 2,266 (e) 3,448

(f) 4,315 (g) 4,808 (h) 5,655 (i) 7,823 (j) 8,591

Fig. 2.18. Gramicidin A, a protein, modeled as a filtration of 8,591 α-complexes of
data set 1grm in Section 12.1. Ten complexes are shown with their indices.

u is the star, Stu, that consists of u together with the edges and triangles that
share u as a vertex. Since all vertices have different heights, each edge and
triangle has a unique lowest and a unique highest vertex. Following Banchoff
(1970), we use this to partition the simplices of the star into lower and upper
stars. Formally:

Definition 2.54 (upper, lower star) The lower star Stu and upper star Stu of
vertex u for a height function h are

Stu = {σ ∈ Stu | h(v) ≤ h(u),∀ vertices v ≤ σ}, (2.5)

Stu = {σ ∈ Stu | h(v) ≥ h(u),∀ vertices v ≤ σ}. (2.6)

These subsets of the star contain the simplices that have u as their highest or
their lowest vertex, respectively. As we shall see in Chapter 6, we may examine
the lower and upper stars of a vertex to determine if the vertex is a maximum,
a minimum, or a saddle point in a triangulated manifold. These points are
critical to our understanding of the topology of the iso-lines of a surface, as all
topological changes happen when they occur. For example, a maximum vertex
u is not the lowest vertex of any simplex, so Stu = {u} and Stu = Stu. A

2.5 Manifold Sweeps 39

(a) 20,714 (b) 41,428

(c) 62,142 (d) 82,856

(e) 103,570 (f) 124,284

Fig. 2.19. A filtration of the terrain of the Himalayas (data set Himalayas in Sec-
tion 12.5.) Six out of the 124,284 complexes are shown with their indices.

maximum also creates a new component of iso-lines if we sweep the manifold
from above, as in Figure 1.8.

We may partition K into a collection of either lower or upper stars, K =⋃̇
uStu =

⋃̇
uStu. Each partition gives us a filtration. Suppose we sort the

n vertices of K in order of increasing height to get the sequence u1,u2, . . .,

40 2 Spaces and Filtrations

un,h(ui) < h(u j), for all 1 ≤ i < j ≤ n. We then let Ki be the union of the first
i lower stars, Ki =

⋃
1≤ j≤i Stu j. Each simplex σ has an associated vertex ui,

and we call the height of that vertex the birth time h(σ) = h(ui) of σ. This def-
inition mimics the definition of birth times for alpha-shapes. The subcomplex
Ki of K consists of the i lowest vertices together with all edges and triangles
connecting them. Clearly, the sequence Ki defines a filtration of K. We may
define another filtration by sorting in decreasing order and using upper stars.
We show an example of such a filtration in Figure 2.19. Either filtration is geo-
metrically ordered and will provide us with filtration orderings and meaningful
topological results.

3

Group Theory

Having examined the structure of the input to our computations in the last
chapter, we now turn to developing the machinery we need for characterizing
the topology of spaces. Recall that we are interested in classification systems.
Group theory provides us with powerful tools to define equivalence relations
using homomorphisms and factor groups. In the next chapter, we shall utilize
these tools to define homology, a topological classification system. Unlike
homeomorphy and homotopy, homology is discrete by nature. As such, it is
the basis for my work.

The rest of this chapter is organized as follows. In Section 3.1, I will intro-
duce groups. I devote Section 3.2 to developing techniques for characterizing
a specific type of groups: finitely generated Abelian groups. In Section 3.3,
I examine advanced algebraic structures in order to generalize the result from
the previous section.

Abstract algebra is beautifully lucid by its axiomatic nature, capturing fa-
miliar concepts from arithmetic. The plethora of arcane terms, however, often
makes the field inscrutable to nonspecialists. My goal is to make the subject
thoroughly accessible by not leaving anything obscure. Consequently, there is
a lot of ground to cover in this chapter. My treatment is derived mostly from
the excellent introductory book on abstract algebra by Fraleigh (1989), which
also contains the proofs to most of the theorems stated in this chapter. I used
Dummit and Foote (1999) for the advanced topics.

3.1 Introduction to Groups

Abstract algebra is based on abstracting from algebra its core properties and
studying algebra in terms of those properties.

41

42 3 Group Theory

Table 3.1. A closed binary operation ∗, defined on the set {a,b,c}.

a b c

a b c b
b a c b
c c b a

3.1.1 Binary Operations

We begin by extending the concept of addition. For a review of sets, see Sec-
tion 2.1.1.

Definition 3.1 (binary operation) A binary operation ∗ on a set S is a rule
that assigns to each ordered pair (a,b) of elements of S some element in S.
It must assign a single element to each pair (otherwise it’s not defined or not
well-defined, for assigning zero or more than one elements, respectively), and
it must assign an element in S for the operation to be closed.

If S is finite, we may display a binary operation ∗ in a table listing the elements
of the set on the top and side of the table, and stating a ∗ b in row a, column
b of the table, as in Table 3.1. Note that the operation defined by that table
depends on the order of the pair, as a∗b �= b∗a.

Definition 3.2 (commutative) A binary operation ∗ on a set S is commutative
if a∗b = b∗a for all a,b ∈ S.

If S is finite, the table for a commutative binary operation is symmetric with
respect to the diagonal from the upper-left to the lower-right.

Definition 3.3 (associative) A binary operation ∗ on a set S is associative if
(a∗b)∗ c = a∗ (b∗ c) for all a,b,c ∈ S.

If a binary operation ∗ is associative, we may write unambiguous long expres-
sions without using parentheses.

3.1.2 Groups

The study of groups, as well as the need for new types of numbers, was moti-
vated by solving equations.

3.1 Introduction to Groups 43

Example 3.1 (solving equations) Suppose we were interested in solving the
following three equations:

1. 5+ x = 2
2. 2x = 3
3. x2 = −1.

The equations imply the need for negative integers Z−, rational numbers Q,
and complex numbers C, respectively. Recalling algebra from eighth grade, I
solve equation (1) above, listing the properties needed at each step.

5+ x = 2 Given
−5+(5+ x) = −5+2 Addition property of equality
(−5+5)+ x = −5+2 Associative property of addition

0+ x = −5+2 Inverse property of addition
x = −5+2 Identity property of addition
x = −3 Addition

The needed properties motivate the definition of a group.

Definition 3.4 (group) A group 〈G,∗〉 is a set G, together with a binary oper-
ation ∗ on G, such that the following axioms are satisfied:

(a) ∗ is associative.
(b) ∃e ∈ G such that e ∗ x = x ∗ e = x for all x ∈ G. The element e is an

identity element for ∗ on G.
(c) ∀a ∈ G,∃a′ ∈ G such that a′ ∗ a = a ∗ a′ = e. The element a′ is an

inverse of a with respect to the operation ∗.

If G is finite, the order of G is |G|. We often omit the operation and refer to G
as the group.

The identity and inverses are unique in a group. We may easily show, further-
more, that (a∗b)′ = b′ ∗a′, for all a,b ∈ G in group 〈G,∗〉.

Example 3.2 (groups) 〈Z,+〉, 〈R, ·〉, and 〈R,+〉 are all groups. Note that
only one operation is allowed for groups, so we choose either multiplication or
addition for integers, for example.

We are mainly interested in groups with commutative binary operations.

Definition 3.5 (Abelian) A group G is Abelian if its binary operation ∗ is
commutative.

44 3 Group Theory

Table 3.2. Structures for groups of size 2, 3, 4.

Z2 e a

e e a
a a e

Z3 e a b

e e a b
a a b e
b b e a

Z4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

V4 e a b c

e e a b c
a a e c b
b b c e a
c c b a e

a

(a) Humans have Z2 symmetry

a
c

b

(b) The letter “H” has V4 symmetry

Fig. 3.1. Two figures and their symmetry groups.

We usually borrow terminology from arithmetic for Abelian groups, using +
or juxtaposition for the operation, 0 or 1 to denote identity, and −a or a−1 for
inverses. It is easy to list the possible structures for small groups using the
following fact, derived from the definition of groups: Each element of a finite
group must appear once and only once in each row and column of its table.
Using this fact, Table 3.2 shows all possible structures for groups of size two,
three, and four. There are, in fact, three possible groups of size four, but only
two unique structures: We get the other one by renaming the elements.

Example 3.3 (symmetry groups) An application of group theory is the study
of symmetries of geometric figures. An isometry is a distance-preserving trans-
formation in a metric space. A symmetry is any isometry that leaves the object
as a whole unchanged. The symmetries of a figure form a group. A human,
abstracted in Figure 3.1(a) as a stick figure, has only two symmetries: the iden-
tity and reflection along the vertical line shown. It is immediate that a human’s

3.1 Introduction to Groups 45

(a) View of column

(b) Motif (c) Full design

Fig. 3.2. Tiled design from Masjid-e-Shah in Isfahan, Iran (a) repeats the prophet’s
name (b) to obtain a figure (c) with Z4 symmetry.

group of symmetry is Z2, as this is the only group with two elements. The let-
ter “H” in (b) has three different types of symmetries shown: reflections along
the horizontal and vertical axes, and rotation by 180 degrees. If we write down
the table corresponding to compositions of these symmetries, we get the group
V4, one of the two groups with four elements, as shown in Table 3.2.

Designers have used symmetries throughout history to decorate buildings.
Figure 3.2(a) shows a view of a column of Masjid-e-Shah, a mosque in Isfa-
han, Iran, that was completed in 1637. The design in the center of the photo
pictorializes the name of the prophet of Islam, Mohammad (b), as the motif in
a design (c). This figure is unchanged by rotations by multiples of 90 degrees.

46 3 Group Theory

Letting e,a,b,c be rotations by 0, 90, 180, and 270 degrees, respectively, and
writing down the table of compositions, we get Z4, the other group with four
elements in Table 3.2. That is, the design has Z4 symmetry.

3.1.3 Subgroups and Cosets

As for sets, we may try to understand groups by examining the building blocks
they are composed of. We begin by extending the concept of a subset to groups.

Definition 3.6 (induced operation) Let 〈G,∗〉 be a group and S ⊆ G. If S is
closed under ∗, then ∗ is the induced operation on S from G.

Definition 3.7 (subgroup) A subset H ⊆ G of group 〈G,∗〉 is a subgroup of
G if H is a group and is closed under ∗. The subgroup consisting of the iden-
tity element of G, {e} is the trivial subgroup of G. All other subgroups are
nontrivial.

We can identify subgroups easily, using the following theorem.

Theorem 3.1 (subgroups) H ⊆ G of a group 〈G,∗〉 is a subgroup of G iff:

(a) H is closed under ∗;
(b) the identity e of G is in H;
(c) for all a ∈ H, a−1 ∈ H.

Example 3.4 (subgroups) The only nontrivial proper subgroup of Z4 in Ta-
ble 3.2 is {0,2}. {0,3} is not a subgroup of Z4 as 3∗3 = 2 �∈ {0,3}, so the set
is not closed under the binary operation stated in the table.

Given a subgroup, we may partition a group into sets, all having the same size
as the subgroup. We shall see that if the group satisfies a certain property, we
may then regard each set as a single element of a group in a natural way.

Theorem 3.2 (cosets) Let H be a subgroup of G. Let the relation ∼L be de-
fined on G by: a ∼L b iff a−1b ∈ H. Let ∼R be defined by: a ∼R b iff ab−1 ∈ H.
Then ∼L and ∼R are both equivalence relations on G.

Note that a−1b ∈ H ⇒ a−1b = h ∈ H ⇒ b = ah. We use these relations to
define cosets.

Definition 3.8 (cosets) Let H be a subgroup of group G. For a ∈ G, the subset
aH = {ah | h ∈ H} of G is the left coset of H containing a and Ha = {ha | h ∈
H} is the right coset of H containing a.

3.2 Characterizing Groups 47

For an Abelian subgroup H of G, ah = ha,∀a ∈ G,h ∈ H, so the left and right
cosets match. We may easily show that every left coset and every right coset
has the same size by constructing a 1-1 map of H onto a left coset gH of H for
a fixed element g of G.

Example 3.5 (cosets) As we saw in Example 3.4, {0,2} is a subgroup of Z4.
The coset of 1 is 1 +{0,2} = {1,3}. The sets {0,2} and {1,3} exhaust all of
Z4. As Z4 is Abelian, the sets are both the left and right cosets.

3.2 Characterizing Groups

Having defined groups, a natural question that arises is to characterize groups:
How many “different” groups are there? This is yet another classification prob-
lem, and it is the fundamental question studied in group theory. Our goal in the
rest of this chapter is to fully understand the structure of certain finite groups
that are generated in our study of homology.

3.2.1 Structure-Relating Maps

Since we are interested in characterizing the structure of groups, we define
maps between groups to relate their structures.

Definition 3.9 (homomorphism) A map ϕ of a group G into a group G′ is a
homomorphism if ϕ(ab) = ϕ(a)ϕ(b) for all a,b ∈ G. For any groups G and
G′, there’s always at least one homomorphism ϕ : G → G′, namely, the trivial
homomorphism defined by ϕ(g) = e′ for all g ∈ G, where e′ is the identity in
G′.

Homomorphisms preserve the identity, inverses, and subgroups in the follow-
ing sense.

Theorem 3.3 (homomorphism) Let ϕ be a homomorphism of a group G into
a group G′.

(a) If e is the identity in G, then ϕ(e) is the identity e′ in G′.
(b) If a ∈ G, then ϕ(a−1) = ϕ(a)−1.

(c) If H is a subgroup of G, then ϕ(H) is a subgroup of G′.
(d) If K′ is a subgroup of G′, then ϕ−1(K′) is a subgroup of G.

Homomorphisms also define a special subgroup in their domain.

48 3 Group Theory

e’

G
ϕ

ker ϕ

G’

Fig. 3.3. A homomorphism ϕ : G → G′ and its kernel.

Definition 3.10 (kernel) Let ϕ : G → G′ be a homomorphism. The subgroup
ϕ−1({e′}) ⊆ G, consisting of all elements of G mapped by ϕ into the identity
e′ of G′, is the kernel of ϕ, denoted by kerϕ, as shown in Figure 3.3.

Note that kerϕ is a subgroup by an application of Theorem 3.3 to the fact that
{e′} is the trivial subgroup of G′. So, we may use it to partition G into cosets.

Theorem 3.4 (kernel cosets) Let ϕ : G → G′ be a homomorphism, and let
H = kerϕ. Let a ∈ G. Then the set

ϕ−1{ϕ(a)} = {x ∈ G | ϕ(x) = ϕ(a)}

is the left coset aH of H and is also the right coset Ha of H.

The two partitions of G into left cosets and right cosets of kerϕ are the same,
according to the theorem. There is a name for subgroups with this property.

Definition 3.11 (normal) A subgroup H of a group G is normal if its left and
right cosets coincide, that is, if gH = Hg for all g ∈ G.

All subgroups of an Abelian group are normal, as is the kernel of any homo-
morphism. A simple corollary follows from Theorem 3.4.

Corollary 3.1 A homomorphism ϕ : G → G′ is 1-1 iff kerϕ = {e}.

Analogs of injections, surjections, and bijections exist for maps between groups.
They have their own special names, however.

Definition 3.12 (mono-, epi-, iso-morphism) A 1-1 homomorphism is an
monomorphism. A homomorphism that is onto is an epimorphism. A homo-
morphism that is 1-1 and onto is an isomorphism. We use ∼= for isomorphisms.

3.2 Characterizing Groups 49

Isomorphisms between groups are like homeomorphisms between topologi-
cal spaces. We may use isomorphisms to define an equivalence relationship
between groups, formalizing our notion for similar structures for groups.

Theorem 3.5 Let G be any collection of groups. Then ∼= is an equivalence
relation on G.

All groups of order 4, for example, are isomorphic to one of the two 4 by 4
tables in Table 3.2, so the classification problem is fully solved for that order.
We need smarter techniques, however, to settle this question for higher orders.

3.2.2 Cyclic Groups

A method of understanding complex objects is to understand simple objects
first. Cyclic groups are simple groups that can be easily classified. We may
use cyclic groups as building blocks to form larger groups. On the other hand,
we may break larger groups into collections of cyclic groups. Cyclic groups
are fundamental to the understanding of Abelian groups.

Theorem 3.6 Let G be a group and let a ∈ G. Then, H = {an | n ∈ Z} is a
subgroup of G and is the smallest subgroup of G that contains a, that is, every
subgroup containing a contains H.

Definition 3.13 (cyclic group) The group H of Theorem 3.6 is the cyclic sub-
group of G generated by a and will be denoted by 〈a〉. If 〈a〉 is finite, then the
order of a is |〈a〉|. An element a of a group G generates G and is a generator
for G if 〈a〉 = G. A group G is cyclic if it has a generator.

For example, Z = 〈1〉 under addition and is therefore cyclic. We can also define
finite cyclic groups using a new binary operation.

Definition 3.14 (modulo) Let n be a fixed positive integer, and let h and k be
any integers. When h + k is divided by n, the remainder is the sum of h and k
modulo n.

Definition 3.15 (Zn) The set {0,1,2, . . . ,n− 1} is a cyclic group Zn of ele-
ments under addition modulo n.

As claimed earlier, we may fully classify cyclic groups using the following
theorem.

50 3 Group Theory

Theorem 3.7 (classification of cyclic groups) Any infinite cyclic group is iso-
morphic to Z under addition. Any finite cyclic group of order n is isomorphic
to Zn under addition modulo n.

Consequently, we may use Z and Zn as the prototypical cyclic groups.

3.2.3 Finitely Generated Abelian Groups

We may form larger groups using simple groups by multiplying them together,
forming the Cartesian product of their associated sets.

Theorem 3.8 (direct products) Let G1,G2, . . . ,Gn be groups. For
(a1,a2, . . . ,an) and (b1,b2, . . . ,bn) in ∏n

i=1 Gi, define
(a1,a2, . . . ,an)(b1,b2, . . . ,bn) to be (a1b1,a2b2, . . . ,anbn). Then,
∏n

i=1 Gi is a group, the direct product of the groups Gi, under this binary op-
eration.

We may also form groups by intersecting subgroups of a group.

Theorem 3.9 (intersection) The intersection of subgroups Hi of a group G for
i ∈ I is again a subgroup of G.

Let G be a group and let ai ∈ G for i ∈ I. There is at least one subgroup of G
containing all the elements ai, namely, G itself. Theorem 3.9 allows us to take
the intersection of all the subgroups of G containing all ai to obtain a subgroup
H of G. Clearly, H is the smallest subgroup containing all ai.

Definition 3.16 (finitely generated) Let G be a group and let ai ∈ G for i ∈ I.
The smallest subgroup of G containing {ai | i ∈ I} is the subgroup generated
by {ai | i ∈ I}. If this subgroup is all of G, then {ai | i ∈ I} generates G and the
ai are the generators of G. If there is a finite set {ai | i ∈ I} that generates G,
then G is finitely generated.

We are primarily interested in finitely generated Abelian groups. Fortunately,
these groups are fully classified by the following theorem.

Theorem 3.10 (fundamental theorem of finitely generated Abelian groups)
Every finitely generated Abelian group G is isomorphic to a direct product of
cyclic groups of the form

Z(p
r1
1) ×Z(p

r2
2) ×·· ·×Z(prn

n) ×Z×Z×·· ·×Z,

where the pi are primes, not necessarily distinct. The direct product is unique

3.2 Characterizing Groups 51

except for the possible arrangement of factors; that is, the number of factors
of Z is unique and the prime powers (pi)ri are unique.

Note how the product is composed of a number of infinite and finite cyclic
group factors. Intuitively, the infinite part captures those generators that are
“free” to generate as many elements as they wish. The finite or “torsion” part
captures generators with finite order.

Definition 3.17 (Betti numbers, torsion) The number of factors of Z in The-
orem 3.10 is the Betti number β(G) of G. The subscripts of the finite cyclic
factors are called the torsion coefficients of G.

3.2.4 Factor Groups

We saw in Theorem 3.4 how the left and right cosets defined by the kernel of
a homomorphism were the same. The cosets are also the same for any normal
subgroup H by definition. We would like to treat the cosets defined by H as
individual elements of another smaller group. To do so, we first derive a binary
operation from the group operation of G.

Theorem 3.11 Let H be a subgroup of a group G. Then, left coset multiplica-
tion is well defined by the equation (aH)(bH) = (ab)H, iff the left and right
cosets coincide.

The multiplication is well defined because it does not depend on the elements
a,b chosen from the cosets. Using left coset multiplication as a binary opera-
tion, we get new groups.

Corollary 3.2 Let H be a subgroup of G whose left and right cosets coin-
cide. Then, the cosets of H form a group G/H under the binary operation
(aH)(bH) = (ab)H.

Definition 3.18 (factor group) The group G/H in Corollary 3.2 is the factor
group (or quotient group) of G modulo H. The elements in the same coset of
H are said to be congruent modulo H.

We have already seen a factor group defined by the kernel of a homomorphism
ϕ. The factor group, namely G/(kerϕ), is naturally isomorphic to ϕ(G).

Theorem 3.12 (fundamental homomorphism) Let ϕ : G → G′ be a group
homomorphism with kernel H. Then ϕ(G) is a group and the map µ : G/H →

52 3 Group Theory

�

�
�

�
�

�
�

�
��� �

�
�

�
�

�
�

�
���

G/H

ϕ = µγ
ϕ(G)G

µ(gH) = ϕ(g)γ(g) = gH

Fig. 3.4. The fundamental homomorphism theorem. H = kerϕ, and µ is the natural
isomorphism, corresponding to homomorphism γ.

0 3

3 0

0 3

3 0

0 3

3 0

1 4 2 5

25

1 4

1 4

4 1

2 5

2 5

254 1

4 1

25

ZZ6 524130

0

3

4

2

5

1

*

Fig. 3.5. Z6/{0,3} is isomorphic to Z3.

ϕ(G) given by µ(gH) = ϕ(g) is an isomorphism. If γ : G → G/H is the homo-
morphism given by γ(g) = gH, then for each g ∈ G we have ϕ(g) = µγ(g). µ
is the natural or canonical isomorphism, and γ is the corresponding homomor-
phism.

The relationship between ϕ,µ and γ is shown in a commutative diagram in Fig-
ure 3.4. Homology characterizes topology using factor groups whose structure
is finitely Abelian. So, it is imperative to gain a full understanding of this
method before moving on.

Example 3.6 (factoring Z6) The cyclic group Z6, on the left, has {0,3} as a
subgroup. As Z6 is Abelian, {0,3} is normal, so we may factor Z6 using this
subgroup, getting the cosets {0,3}, {1,4}, and {2,5}. Figure 3.5 shows the
table for Z6, ordered and shaded according to the cosets. The shading pattern
gives rise to a smaller group, shown on the right, where each coset is collapsed
to a single element. Comparing this new group to the structures in Table 3.2,

3.3 Advanced Structures 53

ZZ6 0

0

5

2 4

2

4

0 2 4

1 3 5

2 4 0

4 0 2

1

3

531

3 5 1

5 1 3

531

3 5 1

5 1 3

42 0

4

0 2 4

0 2

*

Fig. 3.6. Z6/{0,2,4} is isomorphic to Z2.

we observe that it is isomorphic to Z3, the only group of order 3. Therefore,
Z6/{0,3} ∼= Z3. Moreover, {0,3} with binary operation +6 is isomorphic to
Z2, as one may see from the top left corner of the table for Z6. So, we have
Z6/Z2

∼= Z3. Similarly, Z6/Z3
∼= Z2, as shown in Figure 3.6.

� For a beginner, factor groups seem to be one of the hardest concepts in
group theory. Given a factor group G/H, the key idea to remember is

that each element of the factor group has the form aH: It is a set, a coset of H.
Now, we could represent each element of a factor group with a representative
from the coset. For example, the element 4 could represent the coset {1,4} for
factor group Z6/{0,3}. However, don’t forget that this element is congruent
to 1 modulo {0,3}.

3.3 Advanced Structures

In this section, we delve into advanced algebra by looking at increasingly rich
algebraic structures we will encounter in our study of homology. Our goal in
this section is to generalize Theorem 3.10, first to modules and then to graded
modules.

3.3.1 Free Abelian Groups

Recall that a finitely generated Abelian group is isomorphic to a product of
infinite and finite cyclic groups. In this section, we will characterize infinite
factors using the notion of free Abelian groups. As we will only deal with
Abelian groups, we will use + to denote the group operation and 0 for the
identity element. For n ∈ Z+,a ∈ G, we use na = a + a + · · ·+ a and −na =
(−a)+ (−a)+ · · ·+(−a) to denote the sum of n copies of a and its inverse,

54 3 Group Theory

respectively. Finally, 0a = 0, where the first 0 is in Z, and the second is in G.
It is important to realize that G is still a group with a single group operation,
addition, even though we use multiplication in our notation. We shall shift
our view later in defining modules and vector spaces. Let us start with two
equivalent conditions.

Theorem 3.13 Let X be a subset of a nonzero Abelian group G. The following
conditions on X are equivalent.

(a) Each nonzero element a in G can be uniquely expressed in the form
a = n1x1 +n2x2 + · · ·+nrxr for ni �= 0 in Z and distinct xi ∈ X.

(b) X generates G, and n1x1 +n2x2 + · · ·+nrxr = 0 for ni ∈ Z and xi ∈ X
iff n1 = n2 = · · · = nr = 0.

The conditions should remind the reader of linearly independent vectors. As
we will soon find out, this similarity is not accidental.

Definition 3.19 (free Abelian group) An Abelian group having a nonempty
generating set X satisfying the conditions in Theorem 3.13 is a free Abelian
group and X is a basis for the group.

We have already seen a free Abelian group: The finite direct product of the
group Z with itself is a free Abelian group with a natural basis. In fact, we
may use this group as a prototype.

Theorem 3.14 If G is a nonzero free Abelian group with a basis of r elements,
then G is isomorphic to Z×Z×·· ·×Z for r factors.

Furthermore, while we may form different bases for a free Abelian group, all
of them will have the same size.

Theorem 3.15 (rank) Let G be a nonzero free Abelian group with a finite ba-
sis. Then, every basis of G is finite and all bases have the same number of
elements, the rank of G, rankG = log2 |G/2G|.

Subgroups of free Abelian groups are simply smaller free Abelian groups.

Theorem 3.16 A subgroup K of a free Abelian group G with finite rank n
is a free Abelian group of rank s ≤ n. Furthermore, there exists a basis
{x1,x2, . . . ,xn} for G and d1,d2, . . . ,ds ∈ Z+, such that {d1x1,d2x2, . . . ,dsxs}
is a basis for K.

3.3 Advanced Structures 55

All subgroups K of a free Abelian group G are normal as it is Abelian. It is
clear from Theorem 3.16 that G/K is finitely generated: K eliminates gener-
ators xi of G when di = 1 and turns others into generators with finite order
di > 1. This statement extends to finitely generated groups, as their subgroups
are finitely generated and a similar factorization occurs. The corollary follows.

Corollary 3.3 Let G be a finitely generated Abelian group with free part of
rank n. Let K be a subgroup of G with free part of rank s ≤ n. Then, G/K is
finitely generated and its free part has rank n− s.

Example 3.7 (factoring finitely generated groups) Theorem 3.10 factors a
finitely generated Abelian group as the product of a free Abelian group and
a number of finite cyclic groups. Using Theorem 3.14, we may restate the
result of Theorem 3.10: Every finitely generated Abelian group G may be fac-
tored into a free Abelian group H and the product of finite cyclic groups T ,
G = H ×T . Then, G/T ∼= H ∼= Zβ, where β is the Betti number of G. T ∼= T
is often called the torsion subgroup of G, and it contains all generators with
finite orders.

3.3.2 Rings, Fields, Integral Domains, and Principal Ideal Domains

The concepts of bases and ranks are familiar to most readers from basic linear
algebra and vector spaces. There is, indeed, a direct connection, which we will
unveil next. We begin by allowing two binary operations for a set.

Definition 3.20 (ring (with unity)) A ring 〈R,+, ·〉 is a set R together with
two binary operations + and ·, which we call addition and multiplication, de-
fined on R such that the following axioms are satisfied:

(a) 〈R,+〉 is an Abelian group.
(b) Multiplication is associative.
(c) For a,b,c ∈ R, the left distributive law, a(b+ c) = (ab)+(ac), and the

right distributive law, (a+b)c = (ac)+(bc), hold.

A ring R with a multiplicative identity 1 such that 1x = x1 = x for all x ∈ R is
a ring with unity.

Definitions and concepts from groups naturally extend to rings, sometimes
with different names. Rather than defining them individually, I list the equiv-
alent concepts in Table 3.3. For example, a ring with a commutative multipli-
cation operation is called a commutative ring. Using this table, we now define
fields, the richest (most restrictive) structure we will encounter.

56 3 Group Theory

Table 3.3. Equivalent concepts for groups and rings.

groups rings

Abelian commutative
subgroup subring
normal ideal
cyclic principal

Definition 3.21 (field) A field F is a commutative ring with unity such that,
for all a ∈ F , there is an element a−1 such that aa−1 = a−1a = 1.

In other words, multiplicative inverses exist in fields. A sibling structure of a
field is an integral domain, where the elements do not necessarily have multi-
plicative inverses.

Definition 3.22 (integral domain) An integral domain D is a commutative
ring with unity such that, for all nonzero a,b ∈ D, ab �= 0.

An integral domain captures the properties of the set of integers in abstract
algebra, hence the name. Other concepts from the set of integers carry over as
well.

Definition 3.23 (unit, irreducible) An element u of an integral domain D is
a unit of D if u has a multiplicative inverse in D. A nonzero element p ∈ D
that is not a unit of D is an irreducible of D if in any factorization p = ab in D
either a or b is a unit.

So, the concept of primes in Z is generalized to the concept of irreducibles for
any integral domain. Fields and integral domains are very much related.

Theorem 3.17 Every field is an integral domain. Every finite integral domain
is a field.

Example 3.8 Z,Q,R,C are all rings under the operations of addition and mul-
tiplication. 〈Zn,+, ·n〉 is a ring where ·n is multiplication modulo n. Z is not
a field, because it does not have multiplicative inverses for its elements, but Z

is an integral domain. Q and R are fields, and therefore integral domains. Zp

is an integral domain if p is prime. As Zp is finite, Theorem 3.17 implies that
Z is also a field. If p is not a prime, Zp is not an integral domain, as it has
nonzero elements that divide zero. For example, 2 ·6 3 = 0 in Z6.

3.3 Advanced Structures 57

Another example of a ring we are familiar with is the set of all polynomials
with a single variable.

Definition 3.24 (polynomial) Let ring R to be commutative with unity. A
polynomial f (t) with coefficients in R is a formal sum ∑∞

i=0 aiti, where ai ∈ R
and t is the indeterminate. The set of all polynomials f (t) over R forms a
commutative ring R[t] with unity.

For rings, there exists an analog to cyclic Abelian groups, all of whose sub-
groups are normal and cyclic.

Definition 3.25 (PID) An integral domain D is a principal ideal domain (PID)
if every ideal in D is a principal ideal.

Example 3.9 R, Q, Z, Zp for p prime are all PIDs. Usually, R[t] is not a PID
for an arbitrary ring R. However, when R is a field, R[t] becomes a PID.

3.3.3 Modules, Vector Spaces, and Gradings

Recall the definition of a free Abelian group, where we used multiplication to
denote multiple additions. We may also view multiplication as an additional
external operation. This makes a free Abelian group a Z-module, as we mul-
tiply elements from the group by elements from the ring of integers. Indeed,
any Abelian group is a Z-module following this view.

Definition 3.26 (module) Let R be a ring. A (left) R-module consists of an
Abelian group M together with an operation of external multiplication of each
element of M by each element of R on the left such that, for all α,β ∈ M and
r,s ∈ R, the following conditions are satisfied:

(a) (rα) ∈ M.
(b) r(α+β) = rα+ rβ.
(c) (r + s)α = rα+ sα.
(d) (rs)α = r(sα).

We shall somewhat incorrectly speak of the R-module M. If R is a ring with
unity and 1α = α for all α ∈ M, then M is a unitary R-module. M is cyclic if
there exists α ∈ M such that M = {rα | r ∈ R}.

We may also extend the definition of finitely generated groups to modules,
following Definition 3.16. A module is very much like a vector space, with
which we are familiar from high school algebra.

58 3 Group Theory

Definition 3.27 (vector space) Let F be a field and V be an Abelian group. A
vector space over F is a unitary F-module, where V is the associated Abelian
group. The elements of F are called scalars and the elements of V are called
vectors. We often refer to V as the vector space.

We briefly quickly recall some familiar properties of vector spaces.

Theorem 3.18 (basis, dimension) If we can write any vector in a vector space
V as a linear combination of the vectors in a finite linearly independent subset
B = {αi | i ∈ I} of V , B forms a basis for V and V is finite-dimensional with
dimension |B|.

As for free Abelian groups, the dimension is invariant over the set of bases for
the vector space.

Our final new concept for this section is that of gradings. Given a ring, we
may be able to decompose the structure into a direct sum decomposition, such
that multiplication has a nice form with respect to this decomposition.

Definition 3.28 (graded ring) A graded ring is a ring 〈R,+,⊗〉
equipped with a direct sum decomposition of Abelian groups R ∼=

⊕
i Ri, i ∈Z,

so that multiplication is defined by bilinear pairings Rn ⊗ Rm → Rn+m. El-
ements in a single Ri are homogeneous and have degree i, dege = i, for all
e ∈ Ri.

If a module is defined over a graded ring as just defined, we may also seek a
similar decomposition for the module.

Definition 3.29 (graded module) A graded module M over a graded ring R
is a module equipped with a direct sum decomposition, M ∼=

⊕
i Mi, i ∈ Z, so

that the action of R on M is defined by bilinear pairings Rn ⊗Mm → Mn+m.

Our decomposition may be infinite in size. We will be interested, however, in
those gradings that are bounded from below.

Definition 3.30 (non-negatively graded) A graded ring (module) is non-
negatively graded if Ri = 0 (Mi = 0, respectively) for all i < 0.

Example 3.10 (standard grading) Let R[t] be the ring of polynomials with
indeterminate t. We may grade R[t] non-negatively with (tn) = tn ·R[t],n ≥ 0.
This is called the standard grading for R[t].

3.3 Advanced Structures 59

3.3.4 Structure Theorem

Building upon the concept of a group, we have defined a number of richer
structures. A natural question that arises is the classification of these structures.
The fundamental theorem (Theorem 3.10) gave a full description of finitely
generated Abelian groups in terms of a direct sum of cyclic groups. Amazingly,
the theorem generalizes to any PID or graded PID.

Theorem 3.19 (Structure Theorem) If D is a PID, then every
finitely generated D-module is isomorphic to a direct sum of cyclic D-modules.
That is, it decomposes uniquely into the form

Dβ ⊕
(

m⊕

i=1

D/diD

)
, (3.1)

for di ∈ D,β ∈ Z, such that di|di+1. Similarly, every graded module M over a
graded PID D decomposes uniquely into the form(

n⊕

i=1

ΣαiD

)
⊕

(
m⊕

j=1

Σγ j D/d jD

)
, (3.2)

where d j ∈ D are homogeneous elements so that d j|d j+1, αi,γ j ∈ Z, and Σα

denotes an α-shift upward in grading.

In both cases, the theorem decomposes the structures into free (left) and torsion
(right) parts. In the latter case, the torsional elements are also homogeneous.

� In the statement of the theorem, there is some new notation. For exam-
ple, we write the free part of the module with a a power notation. That

is, Dβ is the direct sum of β copies of D, where β is the Betti number for the
PID. The shift operator Σα simply moves an element in grading i to grading
i+α. Note that if D = Z, we get Theorem 3.10. If D = F , where F is a field,
then the D-module is a finite-dimensional vector space V over F , and we see
that V is isomorphic to a direct sum of vector spaces of dimension 1 over F .
These are two of the cases that will concern us in our discussion of homology
in the next chapter.

4

Homology

The goal of this chapter is to identify and describe a feasible combinatorial
method for computing topology. I use the word “feasible” in a computational
sense: We need a method that will provide us with fast implementable al-
gorithms. Our method of choice will be simplicial homology, which com-
plements our representation of spaces in simplicial form. Homology utilizes
finitely generated Abelian groups for describing the topology of spaces. For-
tunately, we fully understand the structure of these groups from Chapter 3.
We may now define homology easily, and even venture confidently into some
advanced topics.

But first, I need to justify the choice of homology, which is weaker than
both forms of topological classification we have seen earlier. I do so in the first
section of this chapter. I devote the next section to the definition of simplicial
homology, a quick history of the proof of its invariance, and the relationship
of homology and the Euler characteristic. In the final section, I examine the
Universal Coefficient Theorem in order to develop a faster procedure for com-
puting the topology of subcomplexes of R3.

I borrow heavily from Hatcher (2001) and Munkres (1984) for the content
of this chapter. I am also influenced by great introductory books in algebraic
topology, including Giblin (1981), Henle (1997), and, my first encounter with
the subject, Massey (1991).

4.1 Justification

The primary goal of topology is to classify spaces according to their connectiv-
ity. We have seen that there are different meanings of the word “connectivity,”
corresponding to finer and coarser levels of classifications. In this section, we
examine homeomorphy and homotopy and see how they are not suitable for
our purposes. In addition, we look at the powerful framework of categories

60

4.1 Justification 61

and functors. A classic functor, the fundamental group, motivates the defini-
tion of homology.

A common tool for differentiating between spaces is an invariant.

Definition 4.1 (invariant) A (topological) invariant is a map that assigns the
same object to spaces of the same topological type.

� Note that an invariant may assign the same object to spaces of different
topological types. In other words, an invariant need not be complete.

All that is required by the definition is that if the spaces have the same type,
they are mapped to the same object. Generally, this characteristic of invariants
implies their utility in contrapositives: If two spaces are assigned different
objects, they have different topological types. On the other hand, if two spaces
are assigned the same object, we usually cannot say anything about them. A
good invariant, however, will have enough differentiating power to be useful
through contrapositives.

Rather than classifying all topological spaces, we could focus on interesting
subsets of spaces with special structure. One such subset is the set of mani-
folds, as defined in Section 2.2. Here, we use a famous invariant, the Euler
characteristic, defined first for graphs by Euler.

Definition 4.2 (Euler characteristic) Let K be a simplicial complex and si =
card{σ ∈ K | dimσ = i}. The Euler characteristic χ(K) is

χ(K) =
dimK

∑
i=0

(−1)isi = ∑
σ∈K−{∅}

(−1)dimσ. (4.1)

While it is defined for a simplicial complex, the Euler characteristic is an in-
teger invariant for |K|, the underlying space of K. Given any triangulation of
a space M, we always will get the same integer, which we will call the Euler
characteristic of that space χ(M).

4.1.1 Surface Topology

One of the achievements of topology in the nineteenth century was the classi-
fication of all closed compact 2-manifolds using the Euler characteristic. We
examine this classification by first looking at a few basic 2-manifolds.

Definition 4.3 (basic 2-manifolds) Figure 4.1 gives the basic 2-manifolds us-
ing diagrams. We may also define the sphere geometrically by S2 = {x ∈ R3 |

62 4 Homology

v

v

v v

v

a a

b

b v

b

b

a a

v w

w

v

v

v

v

b

b

a a

Fig. 4.1. Diagrams (above) and corresponding surfaces. Identifying the boundary of
the disk on the left with point v gives us a sphere S2. Identifying the opposite edges of
the squares, as indicated by the arrows, gives us the torus T2, the real projective plane
RP2, and the Klein bottle K2, respectively, from left to right. The projective plane and
the Klein bottle are not embeddable in R3. Rather, we show Steiner’s Roman surface,
one of the famous immersions of the former and the standard immersion of the latter.

|x| = 1}. The torus (plural tori) T2 is the boundary of a donut. The real pro-
jective plane RP2 may be constructed also by identifying opposite (antipodal)
points on a sphere. S2 and T2 can exist in R3, as shown in Figures 1.7 and 2.4.
Both RP2 and the Klein bottle K2, however, cannot be realized in R3 without
self-intersections.

Example 4.1 (χ of basic 2-manifolds) Let’s calculate the Euler characteristic
for our basic 2-manifolds. Recall that the surface of a tetrahedron triangulates a
sphere, as shown in Figure 2.13. So, χ(S2) = 4−6+4 = 2. To compute the Eu-
ler characteristic of the other manifolds, we must build triangulations for them.
We simply triangulate the square used for the diagrams in Figure 4.1, as shown
in Figure 4.2. This triangulation gives us χ(T2) = 9− 18 + 27 = 0. We may
complete the table in Figure 4.2(b) in a similar fashion. As χ(T2) = χ(K2) = 0,
the Euler characteristic by itself is not powerful enough to differentiate be-
tween surfaces.

We may connect manifold to form larger manifolds that have complex connec-
tivity.

Definition 4.4 (connected sum) The connected sum of two n-manifolds

4.1 Justification 63

0

0 1 2 0

6 7 8 6

0 1 2

3 4 5 3

(a) A triangulation for the diagram of the
torus T2

2-Manifold χ
Sphere S2 2
Torus T2 0
Klein bottle K2 0
Projective plane RP2 1

(b) The Euler characteristics of our basic
2-manifolds

Fig. 4.2. A triangulation of the diagram of the torus T2

=#

Fig. 4.3. The connected sum of two tori is a genus 2 torus.

M1,M2 is

M1 # M2 = M1 − D̊n
1

⋃

∂D̊n
1=∂D̊n

2

M2 − D̊n
2, (4.2)

where Dn
1,D

n
2 are n-dimensional closed disks in M1,M2, respectively.

In other words, we cut out two disks and glue the manifolds together along the
boundary of those disks using a homeomorphism. In Figure 4.3, for example,
we connect two tori to form a sum with two handles. Suppose we form the
connected sum of two surfaces M1,M2 by removing a single triangle from each
and identifying the two boundaries. Clearly, the Euler characteristic should be
the sum of the Euler characteristics of the two surfaces minus 2 for the two
missing triangles. In fact, this is true for arbitrary shaped disks.

Theorem 4.1 For compact surfaces M1,M2,

χ(M1 # M2) = χ(M1)+χ(M2)−2.

64 4 Homology

For a compact surface M, let gM be the connected sum of g copies of M. If M

is a torus, we get a multi-donut surface, as shown in Figure 4.3.

Definition 4.5 (genus) The connected sum of g tori is called a surface with
genus g.

The genus refers to how many “holes” the donut surface has. We are now ready
to give a complete answer to the homeomorphism problem for closed compact
2-manifolds. Combining this theorem with the table in Figure 4.2(b), we get
the following.

Corollary 4.1 χ(gT2) = 2−2g and χ(gRP2) = 2−g.

We are now ready to fully classify all compact closed 2-manifolds as connected
sums, using the Euler characteristic and orientability.

Theorem 4.2 (homeomorphy of 2-manifolds) Closed compact surfaces M1

and M2 are homeomorphic, M1 ≈ M2, iff

(a) χ(M1) = χ(M2) and

(b) either both surfaces are orientable or both are nonorientable.

� Observe that the theorem is “if and only if.” We can easily compute the
Euler characteristic of any 2-manifold by triangulating it. Computing

orientability is also easy by orienting one triangle and “spreading” the orien-
tation throughout the manifold if it is orientable. Together, χ and orientability
tell us the genus of the surface if we apply Corollary 4.1 Therefore, we have a
full computational method for capturing the topology of 2-manifolds.

Our success in classifying all 2-manifolds up to topological type encourages
us to seek similar results for higher dimensional manifolds. Unfortunately,
Markov showed in 1958 that both the homeomorphism and the homotopy
problems are undecidable for n-manifolds, n ≥ 4: There exist no algorithms
for classifying manifolds according to topological or homotopy type (Markov,
1958). We will sketch his result in an extended example later this section.
Markov’s result leaves the homeomorphism problem unsettled for 3-manifolds.
Three-manifold topology is currently an active area in topology. Weeks (1985)
provides an accessible view, while Thurston (1997) and Fomenko and Matveev
(1997) furnish the theoretical and algorithmic results.

4.1 Justification 65

Table 4.1. Some categories and their morphisms.

category morphisms

sets arbitrary functions
groups homomorphisms
topological spaces continuous maps
topological spaces homotopy classes of maps

4.1.2 Functors

A more powerful technique for studying topological spaces is to form and
study algebraic images of them. This idea forms the crux of algebraic topology.
Usually, these “images” are groups, but richer structures such as rings and
modules also arise. Our hope is that, in the process of forming these images,
we retain enough detail to accurately reconstruct the shapes of spaces. As we
are interested in understanding how spaces are structurally related, we also
want maps between spaces to be converted into maps between the images. The
mechanism we use for forming these images is a functor. To use functors, we
need a concept called categories, which may be viewed as an abstraction of
abstractions.

Definition 4.6 (category) A category C consists of:

(a) a collection Ob(C) of objects;

(b) sets Mor(X ,Y) of morphisms for each pair X ,Y ∈ Ob(C); including a
distinguished identity morphism 1 = 1X ∈ Mor(X ,X) for each X .

(c) a composition of morphisms function ◦ : Mor(X ,Y)× Mor(Y,Z) →
Mor(X ,Z) for each triple X ,Y,Z ∈ Ob(C), satisfying f ◦1 = 1◦ f = f ,
and (f ◦g)◦h = f ◦ (g◦h).

We have already seen a few examples of categories in the previous chapter, as
listed in Table 4.1.

Definition 4.7 (functor) A (covariant) functor F from a category C to a cate-
gory D assigns to each object X ∈ C an object F(X)∈D and to each morphism
f ∈ Mor(X ,Y) a morphism F(f) ∈ Mor(F(X),F(Y)) such that F(1) = 1 and
F(f ◦g) = F(f)◦F(g).

Figure 4.4 gives an intuitive picture of a functor in action.

66 4 Homology

f

F(A)

F(f)

F

F(B)

BA

Fig. 4.4. A functor F creates images F(A),F(B) of not only the objects A,B in a cate-
gory, but also of maps between the objects, such as F(f).

4.1.3 The Fundamental Group

One of the simplest and most important functors in algebraic topology is the
fundamental group. We will examine it here briefly to see why it’s not a viable
option for the computation of topology. In addition, the fundamental group
motivates the definition of homology.

We saw in Section 2.4.2 that two maps are homotopic if one may be de-
formed continuously into another. The fundamental group is concerned with
homotopic maps on a surface, where these maps are paths and loops.

Definition 4.8 (fundamental group) A path in X is a continuous map f :
[0,1] → X. The equivalence class of a path f under the equivalence relation
of homotopy is [f]. Given two paths f ,g : [0,1] → X, the product path f ·g is
a path that traverses f and then g. The speed of traversal is doubled in order
for f ·g to be traversed in unit time. This product operation respects homotopy
classes. A loop is a path f with f (0) = f (1), i.e., a loop starts and ends at
the same basepoint. The fundamental group π1(X,x0) of X and x0 has the
homotopy classes of loops in X based at x0 as its elements and [f][g] = [f ·g]
as its binary operation.

Example 4.2 (π1(T2)) Figure 4.5 shows three loops on a torus. The loops on
the right are homotopic to each other and may be deformed to the basepoint
through the highlighted surface. The thick loop, however, goes around the neck
of the torus and may not be deformed to the basepoint, as it does not bound
any surface around the neck. Because a torus is connected, the basepoint may
be moved around, so we can omit it from our notation. The thick loop is one

4.1 Justification 67

Fig. 4.5. The thick loop goes around the neck of the torus and is not homotopic to the
other two loops, which are homotopic through the highlighted surface.

of the generators of π1(T2). The other generator goes around the width of the
torus. The two generators are not homotopic, and π1(T2) ∼= Z×Z, although
this result is not immediate.

Example 4.3 (Markov’s proof) The definition of the fundamental group en-
ables us to give a sketch of Markov’s proof of the undecidability of the home-
omorphism problem in dimensions greater than 4. In 1912, Dehn proposed the
following problem: Given two finitely presented groups, decide whether or not
they are isomorphic. In 1955, Adyan showed that, for any fixed group, Dehn’s
problem is undecidable. Markov knew that homeomorphic manifolds have the
same fundamental group. So, he described a procedure for building a mani-
fold whose fundamental group was related to a given finitely presented group.
In particular, its fundamental group would not be the trivial group unless the
manifold itself was contractible. In this fashion, Markov reduced the homeo-
morphism problem to the isomorphism of groups, proving its undecidability.

Markov uses group presentations in his proof, a method for specifying finitely
generated groups. We think of each generator of such a group as a letter in an
alphabet. Any symbol of the form an = aaaa · · ·a (a string of n ∈ Z a’s) is a
syllable and a finite string of syllables is a word. The empty word 1 does not
have any syllables. We modify words naturally using elementary contractions,
replacing aman by am+n. The torsional part of the group also gives us rela-
tions, equations of the form r = 1. For example, the cyclic group Z6 may be
presented by a single generator a and the relation a6 = 1. We use (a : a6) for
denoting this presentation of one generator and one relation.

Suppose we have a presentation of a group G : (a1, . . . ,an : r1, . . . ,rm) with
n generators and m relations. Markov maps each generator to an equivalence
class of homotopic loops in a 4-manifold. To do so, he attaches n handles to B4,
the four-dimensional closed ball, as shown in Figure 4.6. This base manifold
M is like the connected sum of n four-dimensional tori. The fundamental
group of this manifold, then, is generated by n generators, each of which is
represented by one of the handles. We name each handle, with one of the two

68 4 Homology

α
4

α
3

α
2

α
1

Fig. 4.6. A four-dimensional closed ball B4 with four handles, corresponding to gen-
erators α1 through α4 with the indicated directions. The loop corresponds to loop
α−1

1 α3α4α2.

directions, as a generator. The inverse of each generator is when we travel in
the opposite direction in each handle.

Having constructed a manifold with the appropriate generators, Markov next
considers the relations. Each relation states ri = 1, that is, the word ri is equiv-
alent to the identity element. Markov maps the relation ri into an equivalence
class of homotopic loops in M, as shown for the loop α−1

1 α3α4α2 in Fig-
ure 4.6. Any loop Ci associated to ri in M should be bounding and equivalent
to the trivial loop. To establish this, we begin by taking a tubular Ni neighbor-
hood of Ci. We make sure these neighborhoods do not intersect each other. We
carve Ni out of M to get M′, leaving a tunnel that represents the relation ri.

To turn Ci into the trivial loop, we need to “sew in” an appropriate disk
whose boundary is Ci, thereby turning Ci into a boundary. Each loop Ci is
homeomorphic to S1 by definition. When creating the neighborhoods Ni, we
place a copy of B3 at every point of Ci. This action corresponds to getting the
product of the two spaces.

Definition 4.9 (products of manifolds) The product of two topological spaces
consists of the Cartesian product of their sets, along with the product topology
that consists of the Cartesian product of their open sets.

Figure 4.7 displays three product spaces. This means that we may glue the
two spaces on the sides along their common boundaries, shown in the middle.
We follow this procedure to glue a disk along the first loop C1. According to
the definition, our tubular neighborhood is N1 ≈ S1 ×B3. Consequently, its
boundary is ∂N1 ≈ S1×S2, with the closed ball contributing the boundary. We
now use a trick we used in creating connected sums of 2-manifolds, as shown
in Figure 4.7, in lower dimensions. That is, we find another space whose
boundary is homeomorphic to ∂N1. We have ∂N1 ≈ S1 ×S2 ≈ ∂(B2 ×S2). So,

4.1 Justification 69

(a) S0 ×B2 (b) S0 ×S1 (c) B1 ×S1

Fig. 4.7. The two circles in (b) constitute the boundary of both disks in (a) and the
cylinder in (c). This fact allowed us to construct connected sums of 2-manifolds: we
carved out two disks (a) and connected a handle (c) on the boundary (b).

we glue the boundary of B2 ×S2 to the boundary left by N1 to get M1. Within
M1, the loop corresponding to relation r1 is retractable, because we just gave
it a disk through which it can contract to a point. So, by performing a Dehn
surgery, we have killed r1. But we have also killed several other relations too.
For example, in Figure 4.6, we have also killed α3α4α2α−1

1 . This is equivalent
to adding relations to the finitely presented group. We perform this surgery
on the other relations, arriving at Mm, a topological space whose fundamental
group has the relations of the presented group G as well as some others.

But now, we are done. By Adyan’s result, the isomorphism problem for any
fixed group is undecidable. In particular, we may pick the trivial group, the
fundamental group of the sphere. Given a group presentation, we build a man-
ifold Mm according to Markov’s directions. This manifold has a fundamental
group equivalent to the presented group with some additional relations. But
the presented group is isomorphic to the trivial group; the additional relations
do not change anything. Therefore, if we could decide whether Mm is homeo-
morphic to S4, we could decide whether the group is the trivial group. As the
latter problem is undecidable, so is the former problem.

The same proof works if we go back and replace all occurrences of “home-
omorphism” by “homotopy,” making the latter classification undecidable. It
also works for higher dimensional manifolds. Markov eventually extended his
undecidability proof to any “interesting property,” although this result is known
as Rice’s Theorem, as it was independently proven and published by Rice in
the West.

An English translation of the result (Markov, 1958) is available off my Web
site. He worked during the golden age of Soviet mathematics at the Steklov
Institute. Matiyasevich (1986) and Adyan and Makanin (1986) discuss the

70 4 Homology

Markov and Novikov schools of mathematics, respectively. Adyan (1955) is
only available in Russian, but one may substitute Rabin’s independent proof
(Rabin, 1958). For a history of undecidability theory, see Davis (1965).

The fundamental group is, in fact, one in a series of homotopy groups πn(X)
for a space X. The higher dimensional homotopy groups extend the notion of a
loop to n-dimensional cycles and capture the homotopy classes of these cycles.
The groups are useful only in contrapositive statements: πn(X) = πn(Y), for
all n, does not imply that X ≈ Y. We may still use these groups to differentiate
between spaces. We do not, however, on the following grounds:

1. The definition of the fundamental group is inherently noncombinato-
rial, as it depends on smooth maps and the topology of the space.

2. The higher dimensional homotopy groups are very complicated and
hard to compute. In particular, they are not directly computable from a
cell decomposition of a space, such as a simplicial decomposition.

3. Even if we were able to compute the homotopy groups, we may get
an infinite description of a space: Only a finite number of homotopy
groups may be nontrivial for an n-dimensional space. Infinite descrip-
tions are certainly not viable for computational purposes.

We would like a combinatorial computable functor that gives us a finite de-
scription of the topology of a space. Homology provides us with one such
functor.

4.2 Homology Groups

Homology groups may be regarded as an algebraization of the first layer of ge-
ometry in cell structures: how cells of dimension n attach to cells of dimension
n−1 (Hatcher, 2001). Mathematically, the homology groups have a less trans-
parent definition than the fundamental group, and require a lot of machinery
to be set up before any calculations. We focus on a weaker form of homology,
simplicial homology, that both satisfies our need for a combinatorial functor
and obviates the need for this machinery. Simplicial homology is defined only
for simplicial complexes, the spaces we are interested in. Like the Euler char-
acteristic, however, homology is an invariant of the underlying space of the
complex.

Homology groups, unlike the fundamental group, are Abelian. In fact, the
first homology group is precisely the Abelianization of the fundamental group.
We pay a price for the generality and computability of homology groups: Ho-
mology has less differentiating power than homotopy. Once again, however,

4.2 Homology Groups 71

homology respects homotopy classes and, therefore, classes of homeomorphic
spaces.

4.2.1 Chains and Cycles

To define homology groups, we need simplicial analogs of paths and loops.
Recalling free Abelian groups from Section 3.3.1, we create the chain group
of oriented simplices.

Definition 4.10 (chain group) The kth chain group of a simplicial complex
K is 〈Ck(K),+〉, the free Abelian group on the oriented k-simplices, where
[σ] = −[τ] if σ = τ and σ and τ have different orientations. An element of
Ck(K) is a k-chain, ∑q nq[σq],nq ∈ Z,σq ∈ K.

We often omit the complex in the notation. A simplicial complex has a chain
group in every dimension. As stated earlier, homology examines the connec-
tivity between two immediate dimensions. To do so, we define a structure-
relating map between chain groups.

Definition 4.11 (boundary homomorphism) Let K be a simplicial complex
and σ ∈ K, σ = [v0,v1, . . . ,vk]. The boundary homomorphism ∂k : Ck(K) →
Ck−1(K) is

∂kσ = ∑
i
(−1)i[v0,v1, . . . , v̂i, . . . ,vn], (4.3)

where v̂i indicates that vi is deleted from the sequence.

It is easy to check that ∂k is well defined, that is, ∂k is the same for every
ordering in the same orientation.

Example 4.4 (boundaries) Let us take the boundary of the oriented simplices
in Figure 2.14.

• ∂1[a,b] = b−a.

• ∂2[a,b,c] = [b,c]− [a,c]+ [a,b] = [b,c]+ [c,a]+ [a,b].
• ∂3[a,b,c,d] = [b,c,d]− [a,c,d]+ [a,b,d]− [a,b,c].

Note that the boundary operator orients the faces of an oriented simplex. In the
case of the triangle, this orientation corresponds to walking around the triangle
on the edges, according to the orientation of the triangle.

72 4 Homology

If we take the boundary of the boundary of the triangle, we get:

∂1∂2[a,b,c] = [c]− [b]− [c]+ [a]+ [b]− [a] = 0. (4.4)

This is intuitively correct: The boundary of a triangle is a cycle, and a cycle
does not have a boundary. In fact, this intuition generalizes to all dimensions.

Theorem 4.3 ∂k−1∂k = 0, for all k.

Proof The proof is elementary:

∂k−1∂k[v0,v1, . . . ,vk] = ∂k−1 ∑
i
(−1)i[v0,v1, . . . , v̂i, . . . ,vk]

= ∑
j<i

(−1)i(−1) j[v0, . . . , v̂ j, . . . , v̂i, . . . ,vk]

+∑
j>i

(−1)i(−1) j−1[v0, . . . , v̂i, . . . , v̂ j, . . . ,vk]

= 0,

as switching i and j in the second sum negates the first sum.

Using the boundary homomorphism, we have the following picture for an n-
dimensional complex K:

0 −→ Cn
∂n−→ Cn−1

∂n−1−→ . . . −→ C1
∂1−→ C0

∂0−→ 0, (4.5)

with ∂k∂k+1 = 0 for all k. Note that the sequence is augmented on the right by
a 0, with ∂0 = 0. On the left, Cn+1 = 0, as there are no (n+1)-simplices in K.
Such a sequence is called a chain complex. Chain complexes are common in
homology, but this is the only one we will see here. The images and kernels of
these maps are subgroups of Ck.

Theorem 4.4 im∂k+1 and ker∂k are free Abelian normal subgroups of Ck.
im∂k+1 is a normal subgroup of ker∂k.

Proof As in Section 3.2, both are subgroups by application of Theorem 3.3:
A homomorphism preserves subgroups Ck+1 and {0} ∈ Ck, respectively. As
Ck is Abelian, both groups are normal. By Theorem 3.16, both groups are free
Abelian. For the second statement, note that ∂k∂k+1 = 0 implies im∂k+1 ⊆
ker∂k. We have already seen this subset is a group. Let ∂k+1σ,∂k+1τ∈ im∂k+1.
Then, ∂k+1σ+∂k+1τ = ∂k+1(σ+τ)∈ im∂k+1, by the homomorphism property
of ∂. Therefore, the set is closed and is a subgroup by definition.

These subgroups are important enough to be named.

4.2 Homology Groups 73

Z1

C3 C2 C1

B1 B0

0 0 0 000

C0 Z= 0

Z 3

2B

2B

Z 2

Fig. 4.8. A chain complex for a three-dimensional complex.

z b z+b

Fig. 4.9. A nonbounding oriented 1-cycle z ∈ Zk,z �∈ Bk is added to an oriented 1-
boundary b ∈ Bk. The resulting cycle z + b is homotopic to z. The orientation on the
cycles is induced by the arrows.

Definition 4.12 (cycle, boundary) The kth cycle group is Zk = ker∂k. A chain
that is an element of Zk is a k-cycle. The kth boundary group is Bk = im∂k+1.
A chain that is an element of Bk is a k-boundary. We also call boundaries
bounding cycles and cycles not in Bk nonbounding cycles.

These names are self-explanatory: Bounding cycles bound higher dimensional
cycles, as otherwise they would not be in the image of the boundary homomor-
phism. We can think of them as “filled” cycles, as opposed to “empty” non-
bounding cycles. Figure 4.8 shows a chain complex for a three-dimensional
complex, along with the cycle and boundary subgroups.

4.2.2 Simplicial Homology

Chains and cycles are simplicial analogs of the maps called paths and loops in
the continuous domain. Following the construction of the fundamental group,
we now need a simplicial version of a homotopy to form equivalent classes of
cycles. Consider the sum of the nonbounding 1-cycle and a bounding 1-cycle
in Figure 4.9. The two cycles z,b have a shared boundary. The edges in the
shared boundary appear twice in the sum z + b with opposite signs, so they
are eliminated. The resulting cycle z + b is homotopic to z: We may slide the
shared portion of the cycles smoothly across the triangles that b bounds. But

74 4 Homology

Table 4.2. Homology of basic 2-manifolds.

2-manifold H0 H1 H2

sphere Z {0} Z

torus Z Z×Z Z

projective plane Z Z2 {0}
Klein bottle Z Z×Z2 {0}

such homotopies exist for any boundary b ∈ B1. Generalizing this argument
to all dimensions, we look for equivalent classes of z + Bk for a k-cycle. But
these are precisely the cosets of Bk in Zk by Definition 3.8. As Bk is normal in
Zk, the cosets form a group under coset addition.

Definition 4.13 (homology group) The kth homology group is

Hk = Zk/Bk = ker∂k/im∂k+1. (4.6)

If z1 = z2 +Bk,z1,z2 ∈ Zk, we say z1 and z2 are homologous and denote it with
z1 ∼ z2.

By Corollary 3.3, homology groups are finitely generated Abelian, as they are
factor groups of two free Abelian groups. Therefore, the fundamental theo-
rem of finitely generated Abelian groups (Theorem 3.10) applies. Homology
groups describe spaces through their Betti numbers and the torsion subgroups.

Definition 4.14 (kth Betti number) The kth Betti number βk of a simplicial
complex K is β(Hk), the rank of the free part of Hk.

By Corollary 3.3, βk = rankHk = rankZk − rankBk. The description given by
homology is finite, as an n-dimensional simplicial space has at most n + 1
nontrivial homology groups.

4.2.3 Understanding Homology

The description provided by homology groups may not be transparent at first.
In this section, we look at a few examples to gain an intuitive understanding
of what homology groups capture. Table 4.2 lists the homology groups of
our basic 2-manifolds shown in Figure 4.1. Because they are 2-manifolds, the
highest nontrivial homology group for any of them is H2. Torsion-free spaces
have homology that does not have a torsion subgroup, that is, terms that are

4.2 Homology Groups 75

v

v

v v

v

a a

b

b v

b

b

a a

v w

w

v

v

v

v

b

b

a a

Fig. 4.10. Diagrams for our basic 2-manifolds from Figure 4.1.

finite cyclic groups Zm. Most of the spaces we are interested are torsion-free.
In fact, any space that is a subcomplex of S3, the three-dimensional sphere,
is torsion-free. We deal with S3 as it is compact and does not create special
boundary cases that need to be resolved in algorithms. To avoid these difficul-
ties, we add a point at infinity and compactify R3 to get S3. This construction
mirrors that of the two-dimensional sphere in Figure 4.1. Algorithmically, the
one point compactification of R3 is easy, as we have a simplicial representation
of space.

So what does homology capture? For torsion-free spaces in three dimen-
sions, the Betti numbers (the number of Z terms in the description) have in-
tuitive meaning as a consequence of the Alexander duality. β0 measures the
number of components of the complex. β1 is the rank of a basis for the tunnels.
As H1 is free, it is a vector-space and β1 is its rank. β2 counts the number of
voids in the complex. Tunnels and voids exist in the complement of the com-
plex in S3. The distinction might seem tenuous, but this is merely because of
our familiarity with the terms. For example, the complex encloses a void, and
the void is the empty space enclosed by the complex.

Using this understanding, we may now examine Table 4.2. All four spaces
have a single component, so H0 = Z and β0 = 1. The sphere and the torus
enclose a void, so H2 = Z and β2 = 1. The nonorientable spaces, on the other
hand, are one-sided and cannot enclose any voids, so they have trivial homol-
ogy in dimension 2. To see what H1 captures, we look again at the diagrams for
the 2-manifolds, as shown in Figure 4.1 for convenience. We may, of course,
triangulate these diagrams to obtain abstract simplicial complexes for comput-
ing simplicial homology. For now, though, we assume that whatever curve we
draw on these manifolds could be “snapped” to some triangulation of the dia-
grams. To understand 1-cycles and torsion, we need to pay close attention to
the boundaries in the diagrams. Recall that a boundary is simply a cycle that
bounds. In each diagram, we have a boundary, simply, the boundary of the

76 4 Homology

diagram! The manner in which this boundary is labeled determines how the
space is connected, and therefore the homology of the space.

It is clear that any simple closed curve drawn on the disk for the sphere is a
boundary. Therefore, its homology is trivial in dimension 1. The torus has two
classes of nonbounding cycles. When we glue the edges marked “a”, edge “b”
becomes a nonbounding 1-cycle and forms a class with all 1-cycles that are
homologous to it. We get a different class of cycles when we glue the edges
marked “b.” Each class has a generator, and each generator is free to generate
as many different classes of homologous 1-cycles as it pleases. Therefore, the
homology of a torus in dimension 1 is Z×Z and β1 = 2.

There is a 1-boundary in the diagram, however: the boundary of the disk
that we are gluing. Going around this 1-boundary, we get the description
aba−1b−1. That is, the disk makes the cycle with this description a bound-
ary. Equivalently, the disk adds the relation aba−1b−1 = 1 to the presentation
of the group. But this relation is simply stating that the group is Abelian, and
we already knew that.

Continuing in this manner, we look at the boundary in the diagram for the
projective plane. Going around, we get the description abab. If we let c = ab,
the boundary is c2 and we get the definition of the cross-cap used in Conway’s
ZIP. The disk adds the relation c2 = 1 to the group presentation. In other words,
we have a cycle c in our manifold that is nonbounding but becomes bounding
when we go around it twice. If we try to generate all the different cycles from
this cycle, we just get two classes: the class of cycles homologous to c and
the class of boundaries. But any group with two elements is isomorphic to Z2,
hence the description of H1. You should convince yourself of the verity of the
description of H1 for the Klein bottle in a similar fashion.

4.2.4 Invariance

Like the Euler characteristic before it, we defined homology using simplicial
complexes. From the definition, it seems that homology is capturing extrin-
sic properties of our representation of a space. We are interested in intrinsic
properties of the space, however. We hope that any two different simplicial
complexes K and L with homeomorphic underlying spaces |K| ≈ |L| have the
same homology, the homology of the space itself. Poincaré stated this hope in
terms of “the principal conjecture” in 1904.

Conjecture 4.1 (Hauptvermutung) Any two triangulations of a topological
space have a common refinement.

4.2 Homology Groups 77

In other words, the two triangulations can be subdivided until they are the
same. This conjecture, like Fermat’s last lemma, is deceptively simple. Pa-
pakyriakopoulos (1943) verified the conjecture for polyhedra of dimension ≤ 2
and Moïse (1953) proved it for three-dimensional manifolds. Unfortunately,
the conjecture is false in higher dimensions for general spaces. Milnor (1961)
obtained a counterexample for dimensions 6 and greater using Lens spaces.
Kirby and Siebenmann (1969) produced manifold counterexamples in 1969.
The conjecture fails to show the invariance of homology (Ranicki, 1997).

To settle the question of topological invariance of homology, a more gen-
eral theory was introduced, that of singular homology. This theory is defined
using maps on general spaces, thereby eliminating the question of representa-
tion. Homology is axiomatized as a sequence of functors with specific prop-
erties. Much of the technical machinery required is for proving that singular
homology satisfies the axioms of a homology theory, and that simplicial ho-
mology is equivalent to singular homology. Mathematically speaking, this ma-
chinery makes homology less transparent than the fundamental group. Algo-
rithmically, however, simplicial homology is the ideal mechanism to compute
topology.

4.2.5 The Euler-Poincaré Formula

To end this section, we derive the invariance of the Euler characteristic (Def-
inition 4.2) from the invariance of homology. The machinery of homology is
intrinsically beautiful by itself. To catch a glimpse of this beauty, we scruti-
nize this relationship with a bit more algebra than we might otherwise need.
Recall that a simplicial complex K gives us a chain complex of finite length.
We denote it by C∗. We may now define the Euler characteristic of a chain
complex.

Definition 4.15 (Euler characteristic of chain complex)

χ(C∗) = ∑
i
(−1)i rank(Ci).

This definition is trivially equivalent to Definition 4.2 as k-simplices are the
generators of Ck, or rank(Ci) = si in that definition. So, χ(K) = χ(C∗(K)). If
Ci is finitely Abelian and not free, we mean by rank the rank of the free part
of the group, or its Betti number. We now denote the sequence of homology
functors as H∗ (Hatcher, 2001). Then, H∗(C∗) is another chain complex:

0 −→ Hn −→ Hn−1 −→ . . . −→ H1 −→ H0 −→ 0. (4.7)

78 4 Homology

ϕ3

ϕ1

ϕ1ker

ϕ2im imϕ1

ϕ2

ϕ0

0 0 0 0

A B C

=

0

Fig. 4.11. Groups in Lemma 4.1. ϕ2 is injective and ϕ1 is surjective.

The operators between the homology groups are induced by the boundary op-
erators: We map a homology class to the class of the boundary of one of its
members. The Euler characteristic of H∗(C∗), according to the new definition,
is simply ∑i(−1)i rank(Hi) = ∑i(−1)iβi. Surprisingly, the homology functor
preserves the Euler characteristic of a chain complex.

Theorem 4.5 (Euler-Poincaré) χ(C∗) = χ(H∗(C∗)).

The theorem states that ∑i(−1)isi = ∑i(−1)iβi for a simplicial complex K,
deriving the invariance of the Euler characteristic from the invariance of ho-
mology. To prove the theorem, we need a lemma.

Lemma 4.1 Let A,B,C be finitely generated Abelian groups related by the
sequence of maps ϕi:

0
ϕ3−→ A

ϕ2−→ B
ϕ1−→C

ϕ0−→ 0, (4.8)

where imϕi = kerϕi−1. Then, rankB = rankA+ rankC.

Proof The sequence is shown in Figure 4.11. First, we establish two facts.

(a) ϕ1 is surjective: imϕ1 = kerϕ0 = C.
(b) ϕ2 is injective: kerϕ2 = imϕ3 = {e}, so by Corollary 3.1, ϕ2 is 1-1.

By the fundamental homomorphism theorem (Theorem 3.10), (B/kerϕ1) ∼=
imϕ1. By fact (a), (B/kerϕ1) ∼= C. Corollary 3.3 gives rank(B/kerϕ1) =
rankB − rank(kerϕ1), so rankC = rankB − rank(kerϕ1). By fact (b), A ∼=
im(ϕ2) and rankA = rank(imϕ2). But imϕ2 = kerϕ1, so rankA = rank(kerϕ1).
Substituting, we get the desired result.

The sequence in the lemma has a name.

Definition 4.16 (short exact sequence) The sequence in Lemma 4.1 is a short
exact sequence.

4.3 Arbitrary Coefficients 79

We use the lemma to prove the Euler-Poincaré relation.

Proof [Euler-Poincaré] Consider the following sequences:

0
0−→ Zn

i−→ Cn
∂n−→ Bn−1

0−→ 0

0
0−→ Bn

i−→ Zn
ϕ−→ Hn

0−→ 0,

where 0 is the zero map, i is the inclusion map, and ϕ assigns to a cycle z ∈
Zn its homology class [z] ∈ Hn. Both sequences are short exact. Applying
Lemma 4.1, we get:

rankCn = rankZn + rankBn−1, (4.9)

rankZn = rankBn + rankHn. (4.10)

Substituting the second equation into the first, multiplying by (−1)n , and sum-
ming over n gives the theorem.

4.3 Arbitrary Coefficients

We spent a considerable amount of energy in Sections 3.3.3 and 3.3.4 extend-
ing the fundamental theorem of finitely generated Abelian groups to arbitrary
R-modules. We now take advantage of our effort to generate additional homol-
ogy groups rather quickly. Recall that any finitely generated group is also a Z-
module. In this view, we are multiplying elements of a homology group with
coefficients from the ring of integers. We may replace this ring with any PID
D, such as Z2, and the fundamental theorem of finitely generated D-modules
(Theorem 3.19) would give us a factorization of the homology groups in terms
of the module. This fact generates a large number of homology groups, for
which we need new notation.

Definition 4.17 (homology with coefficients) The kth homology group
with ring of coefficients D is Hk(K;D) = Zk(K;D)/Bk(K;D).

If we choose a field F as set of coefficients, the homology groups become
vector spaces with no torsion: Hk(K;F)∼= Fr, where r is the rank of the vector
space. A natural question is whether homology groups generated with differ-
ent coefficients are related. The Universal Coefficient Theorem for Homology
answers in the affirmative, relating all types of homology to Z homology. Be-
fore stating the theorem, we need to look at two new functors that the theorem
uses. I will not define these functors formally, as they are large and very inter-
esting topics by themselves. Rather, I aim here to state the properties of these
functors that allow us to understand the theorem and use it for computation.

80 4 Homology

Table 4.3. Rules for computing tensor and torsion products, given for general
Abelian groups G and certain type of groups: Zm and F (fields).

tensor ⊗ torsion ∗
G Z⊗G ∼= G Z∗G ∼= {0}
G Zn ⊗G ∼= G/nG Zn ∗G ∼= ker(G n→ G)

Zm Z⊗Zm ∼= Zm Z∗Zm ∼= {0}
Zm Zn ⊗Zm ∼= Z/dZ,d = gcd(n,m)) Zn ∗Zm ∼= Z/dZ,d = gcd(n,m))
F Z⊗F ∼= F Z∗F ∼= {0}
F Zn ⊗F ∼= {0} Zn ∗F ∼= {0}

The first functor we need is the tensor product, which maps two Abelian
groups to an Abelian group. The tensor product of Abelian groups A and B,
denoted A⊗B, is like the product A×B, except that all functions on A⊗B are
bilinear. The tensor is commutative, associative, and has distributive properties
with respect to group products. The distributive properties are easier to grasp
by thinking of direct products as direct sums, as is often the case when the
groups are Abelian. The universal theorem uses the tensor product to rename
the factors of a product.

The other functor we need is the torsion product, which also maps two
Abelian groups to an Abelian group. Intuitively, the torsion product of Abelian
groups A,B, denoted A ∗B, captures the torsion elements of A with respect to
B. The torsion functor is also commutative and has distributive properties. If
either A or B is torsion-free (that is, it is free), A ∗B = 0, the trivial group.
Table 4.3 gives rules for computing using the torsion and tensor products. The
rules look cryptic, but they match our intuition of these functors. For example,
note how the tensor product translates between Z and a group G. Along with
the distributive properties, we use the tensor product to translate between direct
products representing the structure of homology groups. We are now ready to
tackle the universal theorem.

Theorem 4.6 (universal coefficient) Let G be an Abelian. The following se-
quence is short exact:

0 −→ Hk(K)⊗G −→ Hk(K;G) −→ Hk−1(K)∗G −→ 0. (4.11)

Let us use the rules from Table 4.3 to see what the theorem states for the
following two cases: homology with coefficients in Zp, where p is prime, and

4.3 Arbitrary Coefficients 81

a field F . We know by Theorem 3.10 that

Hk(K) ∼= Zd1 ×Zd2 ×·· ·×Zdn ×Zβk , (4.12)

where di is the appropriate prime power and βk is the kth Betti number. We
would like to know how the ring of coefficients changes this result in Hk(K;Zp)
and Hk(K;F).

1. Case Hk(K;Zp): Applying the tensor with Zp and distributing over the
factors, we get

Hk(K)⊗Zp
∼= Zd1/pZd1 ×·· ·×Zdn/pZdn × (Zp)βk . (4.13)

On the right side of sequence (4.11), the torsion functor eliminates the
Z factors and modifies the torsion coefficients, giving us

Hk−1(K)∗Zp
∼= Zc1 ×Zc2 ×·· ·×Zcm , (4.14)

where ci are the corresponding gcd’s. In this case, the sequence splits
and we get:

Hk(K;Zp) ∼= (Hk(K)⊗Zp)× (Hk−1(K)∗Zp) (4.15)
∼= Zd1/pZd1 ×·· ·×Zdn/pZdn× (4.16)

Zc1 ×·· ·×Zcm × (Zp)βk .

Therefore, by using Zp as the ring of coefficients, we get the same Betti
numbers as before, but different torsion coefficients.

2. Case Hk(K;F): According to the rules, Hk−1(K) ∗F ∼= {0}, reducing
sequence (4.11) to

0 −→ Hk(K)⊗F
ϕ−→ Hk(K;F). −→ 0 (4.17)

Applying the facts in the proof of Lemma 4.1 shows that ϕ is both
injective and surjective. In other words, Hk(K)⊗F ∼= Hk(K;F). The
tensor product eliminates the torsion factors from Hk and renames the
Z factors, so Hk(K;F) ∼= Hk(K)⊗F ∼= Fβk . We lose the torsion and
get the same Betti numbers whenever we use a field of coefficients for
computation.

We restate our results in a corollary.

Corollary 4.2 Let p be a prime and F be a field. Then,

Hk(K;Zp) ∼= (Hk(K)⊗Zp)× (Hk−1(K)∗Zp), (4.18)

Hk(K;F) ∼= Fβk . (4.19)

82 4 Homology

While the results from the universal coefficient theorem are theoretically
beautiful, our motivation in examining them has a computational nature. We
have seen that some rings of coefficients, such as R, are unable to capture tor-
sion. If a space does not have torsion, then we may be able to craft faster algo-
rithms for computing topology by using such rings. The field of real numbers,
R, is not an option, because we do not have infinite precision on computers.
The field of rational numbers, Q, does not provide any advantage, as we will
need to represent each rational exactly with two integers. The simplest prin-
cipal ring, Z2, however, simplifies computation greatly. Here, the coefficients
are either 0 or 1, so there is no need for orienting simplices or maintaining
coefficients. A k-chain is simply a list of simplices, those with coefficient 1.
Each simplex is its own inverse, reducing the group operation to the symmetric
difference, where the sum of two k-chains c,d is c + d = (c ∪ d)− (c ∩ d).
Consequently, Z2 provides us with a best system for computing homology of
torsion-free spaces.

In fact, nearly all of the spaces in this book are torsion-free. The processes
described in Chapter 2 generate subcomplexes of R3. R3 is not compact and
creates special cases that need to be handled in algorithms. To avoid these
difficulties, we add a point at infinity and compactify R3 to get S3, the three-
dimensional sphere. This construction mirrors that of the two-dimensional
sphere in Definition 4.3. Algorithmically, the one point compactification of R3

is easy, as we have a simplicial representation of space. Subcomplexes of a
triangulation of S3 do not have torsion.

5

Morse Theory

In the last two chapters, we studied combinatorial methods for describing the
topology of a space. One reason for our interest in understanding topology
is topological simplification: removing topological “noise,” using a measure
that defines what “noise” is. But as we saw in Section 1.2.3, the geometry
and topology of a space are intricately related, and modifying one may modify
the other. We need to understand this relationship in order to develop intelli-
gent methods for topological simplification. Morse theory provides us with a
complete analysis of this relationship when the geometry of the space is given
by a function. The theory identifies points at which level-sets of the func-
tion undergo topological changes and relates these points via a complex. The
theory is defined, however, on smooth domains, requiring us to take a radical
departure from our combinatorial focus. We need these differential concepts
to guide our development of methods for nonsmooth domains. Our exposi-
tion of Morse theory, consequently, will not be as thorough and axiomatic as
the accounts in the last two chapters. Rather, we rely on the reader’s familiar-
ity with elementary calculus to focus on the concepts we need for analyzing
2-manifolds in R3.

We begin this chapter by extending some ideas from calculus to manifolds
in Sections 5.1 and 5.2. These ideas enable us to identify the critical points of a
manifold in Section 5.3. The critical points become the vertices of a complex.
We define this complex by first decomposing the manifold into regions associ-
ated with the critical points in Section 5.4. We then construct the complex in
Section 5.5 and look at a couple of examples.

Spivak and Well’s notes on Milnor’s lectures provide the basis for Morse
theory (Milnor, 1963). As an introduction to Riemannian manifolds, Morgan
(1998) is beautifully accessible. O’Neill (1997) and Boothby (1986) provide
good overviews of differential geometry and differential manifolds, respec-
tively. I also use Bruce and Giblin (1992) for inspiration.

83

84 5 Morse Theory

5.1 Tangent Spaces

In this chapter, we will generally assume that M is a smooth, compact, 2-
manifold without boundary, or a surface. We will also assume, for simplicity,
that the manifold is embedded in R3, that is, M⊂R3 without self-intersections.
The embedded manifold derives subspace topology and a metric from R3.
These assumptions are not necessary, however. The ideas presented in this
chapter generalize to higher dimensional abstract manifolds with Riemannian
metrics.

We begin by attaching tangent spaces to each point of a manifold. As al-
ways, we derive our notions about manifolds from the Euclidean spaces.

Definition 5.1 (Tp(R3)) A tangent vector vp to R3 consists of two points of
R3: its vector part v and its point of application p. The set Tp(R3) consists of
all tangent vectors to R3 at p and is called the tangent space of R3 at p.

Note that R3 has a different tangent space at every point. Each tangent space
is a vector space isomorphic to R3 itself. We may also attach a vector space to
each point of a manifold.

Definition 5.2 (Tp(M)) Let p be a point on M in R3. A tangent vector vp to
R3 at p is tangent to M at p if v is the velocity of some curve in M. The set
of all tangent vectors to M at p is called the tangent plane of M at p and is
denoted by Tp(M).

Recall from Chapter 2 that a 2-manifold is covered with a number of charts,
which map the neighborhood of a point to an open subset of R2. Each map is
a homeomorphism, and we may parameterize the manifold using the inverses
of these maps, which are often called patches.

Theorem 5.1 Let p ∈ M ⊂ R3, and let ϕ be a path in M such that
ϕ(u0,v0) = p. A tangent vector v to R3 at p is tangent to M iff v can be
written as a linear combination of ϕu(u0,v0) and ϕv(u0,v0).

In other words, the tangent plane at a point of the manifold is a two-dimensional
vector subspace of the tangent space Tp(R3), as shown in Figure 5.1. Based on
the properties of derivatives, the tangent plane Tp(M) is the best linear approx-
imation of the surface M near p. Given tangent planes, we may select vectors
at each point of the manifold to create a vector field.

Definition 5.3 (vector field) A vector field or flow on V is a function that as-
signs a vector vp ∈ Tp(M) to each point p ∈ M.

5.2 Derivatives and Morse Functions 85

pT (M)

M

pv

Fig. 5.1. The tangent plane Tp(M) to M at p with tangent vector v ∈ Tp(M).

5.2 Derivatives and Morse Functions

Intuitively, a tangent vector gives us a direction to move on a surface. If we
have a real-valued smooth function h defined on a manifold, we may ask how
h changes as we move in the direction specified by the tangent vector.

Definition 5.4 (derivative) Let vp ∈ Tp(M) and let h : M→R. The derivative
vp[h] of h with respect to vp is the common value of (d/dt)(h ◦ γ)(0), for all
curves γ ∈ M with initial velocity vp.

Here, we are using the Euclidean metric to measure the length of vp. This
definition is a generalization of the derivative of functions on R, except that
now we can travel in many different directions for different rates of changes.
The differential of a function captures all rates of change of h in all possible
directions on a surface. The possible directions are precisely vectors in Tp(M).

Definition 5.5 (differential) The differential dhp of h : M → R at p ∈ M is
a linear function on Tp(M) such that dhp(vp) = vp[h], for all tangent vectors
vp ∈ Tp(M).

We may view the differential as a machine that converts vector fields into real-
valued functions (O’Neill, 1997).

Given a function h and a surface M, we are interested in understanding the
geometry h gives our manifold. We travel in all directions, starting from a
point p, and note the rate of change. If there is no change in any direction, we
have a found a special point, critical to our understanding of the geometry.

Definition 5.6 (critical) A point p ∈ M is critical for map h : M → R if dhp

is the zero map. Otherwise, p is regular.

To further classify a critical point, we have to look at how the function’s deriva-
tive changes in each direction. The Hessian is a symmetric bilinear form on

86 5 Morse Theory

the tangent space Tp(M), measuring this change. Like the derivative, it is in-
dependent of the parameterization of the surface. We may state it explicitly,
however, given local coordinates on the manifold.

Definition 5.7 (Hessian) Let x,y be a patch on M at p. The Hessian of h :
M → R is

H(p) =

[
∂2h
∂x2 (p) ∂2h

∂y∂x (p)
∂2h
∂x∂y (p) ∂2h

∂y2 (p)

]
. (5.1)

The definition gives the Hessian in terms of the basis (∂
∂x (p), ∂

∂y (p)) for Tp(M).
We may classify the critical points of a manifold, and an associated real-valued
function, using the Hessian.

Definition 5.8 (degeneracy) A critical point p ∈ M is nondegenerate if the
Hessian is nonsingular at p, i.e., detH(p) �= 0. Otherwise, it is degenerate.

We are interested in functions that only give us nondegenerate critical points.

Definition 5.9 (Morse function) A smooth map h : M → R is a Morse func-
tion if all its critical points are nondegenerate.

Any twice differentiable function h may be unfolded to a Morse function. That
is, there is Morse a function that is as close to h as we would like it to be.
Sometimes, the definition of Morse functions also requires that the critical
values of h, that is—values h takes at its critical points—are distinct. We do
not need this requirement here.

5.3 Critical Points

We may, in fact, fully classify the critical points of a Morse function by the
geometry of their neighborhood. We do so for a 2-manifold in this section.

Lemma 5.1 (Morse lemma) It is possible to choose local coordinates x,y at
a critical point p ∈ M so that a Morse function h takes the form:

h(x,y) = ±x2 ± y2. (5.2)

Figure 5.2 shows the four possible graphs of h, near the critical point (0,0).
The existence of these neighborhoods means that the critical points are iso-
lated: They have neighborhoods that are free of critical points. Using the
Morse characterization, we name the critical points using an index.

5.3 Critical Points 87

(a) x2 + y2 (b) −x2 + y2

(c) x2 − y2 (d) −x2 − y2

Fig. 5.2. The neighborhood of a critical point (0,0) of index 0, 1, 1, and 2, from the
left, corresponding to the possible forms of h. (a) is a minimum, (b) and (c) are saddles,
and (d) is a maximum.

Definition 5.10 (index) The index i(p) of h at critical point p ∈ M is the num-
ber of minuses in Equation (5.2).

Equivalently, the index at p is the number of the negative eigenvalues of H(p).

Definition 5.11 (minimum, saddle, maximum) A critical point of index 0, 1,
or 2, is called a minimum, saddle, or maximum, respectively.

The Morse lemma states that the neighborhood of a critical point of a Morse
function cannot be more complicated than those in Figure 5.2. For example,
the neighborhood shown in Figure 5.3 is not possible. A point with this neigh-
borhood is often called a monkey saddle, as its geometry as a saddle allows for
a monkey’s tail.

88 5 Morse Theory

Fig. 5.3. The monkey saddle at (0,0) is a degenerate critical point.

5.4 Stable and Unstable Manifolds

The critical points of a Morse function are locations on a 2-manifold where the
function is stationary. To fully understand a Morse function, we need to extract
more structure. To do so, we first define a vector field called the gradient.

Definition 5.12 (gradient) Let γ be any curve passing through p, tangent to
vp ∈ Tp(M). The gradient ∇h of a Morse function h is

dγ
dt

·∇h =
d(h◦ γ)

dt
. (5.3)

In the general setting, the inner product above is replaced by an arbitrary
Riemannian metric (Boothby, 1986). The gradient is related naturally to the
derivative, as vp[h] = vp ·∇h(p). It is always possible to choose coordinates
(x,y) so that the tangent vectors ∂

∂x (p), ∂
∂y (p) are orthonormal with respect to

the chosen metric. For such coordinates, the gradient is given by the familiar
formula ∇h = (∂h

∂x (p), ∂h
∂y (p)).

The gradient of a Morse function h is a vector field on M. We integrate this
vector field, in order to decompose M into regions of uniform flow.

Definition 5.13 (integral line) An integral line γ : R → M is a maximal path
whose tangent vectors agree with the gradient, that is, ∂

∂s p(s) = ∇h(p(s)) for
all s ∈R. We call org p = lims→−∞ p(s) the origin and dest p = lims→+∞ p(s)
the destination of the path p.

Each integral line is open at both ends, and the limits at each end exist, as M

is compact. Note that a critical point is an integral line by itself.

5.4 Stable and Unstable Manifolds 89

Theorem 5.2 Integral lines have the following properties:

(a) Two integral lines are either disjoint or the same.

(b) The integral lines cover all of M.

(c) And the limits org p and dest p are critical points of h.

The properties follow from standard differential calculus.

Definition 5.14 (stable and unstable manifolds) The stable manifold S(p) and
the unstable manifold U(p) of a critical point p are defined as

S(p) = {p} ∪ {y ∈ M | y ∈ imγ,destγ = p}, (5.4)

U(p) = {p} ∪ {y ∈ M | y ∈ imγ,orgγ = p}, (5.5)

where imγ is the image of the path γ ∈ M.

Both sets of manifolds decompose M into open cells.

Definition 5.15 (open cell) An open d-cell σ is a space homeomorphic to Rd .

We can predict the dimension of the open cell associated to a critical point p.

Theorem 5.3 The stable manifold S(p) of a critical point p with index i = i(p)
is an open cell of dimension dimS(p) = i.

The unstable manifolds of h are the stable manifolds of −h as ∇(−h) =−∇h.
Therefore, the two types of manifolds have the same structural properties.
That is, the unstable manifolds of h are also open cells, but with dimension
dimU(p) = 2− i, where i is the index of a critical point. The closure of a
stable or unstable manifold, however, is not necessarily homeomorphic to a
closed ball. We see this in Figure 5.4, where a stable 2-cell is pinched at a
minimum.

By the properties in Theorem 5.2, the stable manifolds are pairwise disjoint
and decompose M into open cells. The cells form a complex, as the bound-
ary of every cell S(a) is a union of lower dimensional cells. We may view a
cellular complex as a generalization of a simplicial complex, where we allow
for arbitrarily shaped cells and relax restrictions on how they are connected to
each other.

The unstable manifolds similarly decompose M into a complex dual to the
complex of stable manifolds: For a,b ∈ M, dimS(a) = 2−dimU(a) and S(a)
is a face of S(b) iff U(b) is a face of U(a).

90 5 Morse Theory

Example 5.1 (manifolds) Figure 5.4 displays the stable and unstable mani-
folds of a sphere and a Morse function h. We show an uncompactified sphere:
The boundary of the terrain is a minimum at negative infinity. Note that the
stable manifold of a minimum and the unstable manifold of a maximum, are
the critical points themselves, respectively. On the other hand, both the unsta-
ble manifold of a minimum and the stable manifold of a maximum are 2-cells.
A saddle has 1-cells as both stable and unstable manifolds. Also, observe that
the stable manifolds of the saddles decompose M into the stable manifolds of
the maxima. The unstable manifolds provide such a decomposition for the
minima.

5.5 Morse-Smale Complex

We place one more restriction on Morse functions in order to be able to con-
struct Morse-Smale complexes.

Definition 5.16 (Morse-Smale) A Morse function is a Morse-Smale function
if the stable and unstable manifolds intersect only transversally.

In two dimensions, this means that stable and unstable 1-manifolds cross when
they intersect. Their crossing point is necessarily a saddle, since crossing at a
regular point would contradict property (a) in Theorem 5.2. Given a Morse-
Smale function h, we intersect the stable and unstable manifolds to obtain the
Morse-Smale complex.

Definition 5.17 (Morse-Smale complex) Connected components of sets
U(p) ∩ S(q) for all critical points p,q ∈ M are Morse-Smale cells. We refer
to the cells of dimension 0, 1, and 2 as vertices, arcs, and regions, respec-
tively. The collection of Morse-Smale cells form a complex, the Morse-Smale
complex.

Note that U(p) ∩ S(p) = {p}, and if p �= q, then U(p) ∩ S(q) is the set of
regular points r ∈ M that lie on integral lines γ with orgγ = p and destγ = q.
It is possible that the intersection of stable and unstable manifolds consists of
more than one component, as seen in Figure 5.5.

Example 5.2 (Morse-Smale complex) We continue with the manifold and
Morse function in Example 5.1. Figure 5.5 shows the Morse-Smale com-
plex we get by intersecting the stable and unstable manifolds displayed in Fig-
ure 5.4. Each vertex of the Morse-Smale complex is a critical point, each arc is

5.5 Morse-Smale Complex 91

(a) Stable

(b) Unstable

minimum saddle maximum

Fig. 5.4. The stable (a) and unstable (b) 1-manifolds, with dotted iso-lines h−1(c), for
constants c. In the diagrams, all the saddle points have height between all minima and
maxima. Regions of the 2-cells of maxima and minima are shown, including the critical
point, and bounded by the dotted iso-lines. The underlying manifold is S2, and the outer
2-cell in (b) corresponds to the minimum at negative infinity.

92 5 Morse Theory

minimum saddle maximum

Fig. 5.5. The Morse-Smale complex of Figure 5.4.

(a) A single cell on a gray-scale image (b) Graph of the cell

Fig. 5.6. The Morse-Smale complex of the graph of sin(x)+sin(y) is a tiling into copies
of the cell shown in (a), along with its reflections and rotations. Each cell has simple
geometry (b).

half of a stable or unstable 1-manifold of a saddle, and each region is a compo-
nent of the intersection of a stable 2-manifold of a maximum and an unstable
2-manifold of a minimum.

Example 5.3 (sin(x)+ sin(y)) Figure 5.6 shows a single cell of the Morse-
Smale complex for the graph of h(x,y) = sin(x) + sin(y). The cell is super-
imposed on a gray-scale image, mapping h(x,y) to an intensity value for pixel

5.5 Morse-Smale Complex 93

(x,y). The figure shows that each cell has simple geometry: The gradient
flows from the maximum to the minimum, after being attracted by the sad-
dles on each side. We saw the Morse-Smale complex for this function on a
triangulated domain in Figure 1.9.

6

New Results

This chapter concludes the first part of this book by introducing the nonalgo-
rithmic aspects of some of the recent results in computational topology. In
Chapter 1, we established the primary goal of this book: the computational
exploration of topological spaces. Having laid the mathematical foundation
required for this study in the previous four chapters, we now take steps toward
this goal through

• persistence;

• hierarchical Morse-Smale complexes;

• and the linking number for simplicial complexes.

The three sections of this chapter elaborate on these topics. In Section 6.1,
we introduce a new measure of importance for topological attributes called
persistence. Persistence is simple, immediate, and natural. Perhaps precisely
because of its naturalness, this concept is powerful and applicable in numer-
ous areas, as we shall see in Chapter 13. Primarily, persistence enables us
to simplify spaces topologically. The meaning of this simplification, how-
ever, changes according to context. For example, topological simplification of
Morse-Smale complexes corresponds to geometric smoothing of the associated
function. To apply persistence to sampled density functions, we extend Morse-
Smale complexes to piece-wise linear (PL) manifolds in Section 6.2. This
extension will allow us to construct hierarchical PL Morse-Smale complexes,
providing us with an intelligent method for noise reduction in sampled data.
Finally, in Section 6.3, we extend the linking number, a topological invariant
detecting entanglings, to simplicial complexes. Naturally, we care about the
computational aspects of these ideas and their applications. We dedicate Parts
Two and Three of this book to examining these concerns.

94

6.1 Persistence 95

6.1 Persistence

In this section, we introduce a new concept called persistence (Edelsbrun-
ner et al., 2002; Zomorodian and Carlsson, 2004). This notion may be placed
within the framework of spectral sequences, the by-product of a divide-and-
conquer method for computing homology (McCleary, 2000). We will show
how persistence arises out of our need for feature discernment in Section 6.1.1.
This discussion motivates the formulation of persistence in terms of homology
groups in Section 6.1.2. In order to better comprehend the meaning of persis-
tence, we visualize the theoretical definition in Section 6.1.3. We next briefly
discuss persistence in relation to spaces we are most interested in: subspaces
of R3. In the last section, we take a more algebraic view of persistent homol-
ogy using the advanced structures we discussed in Section 3.3. This view is
necessary for understanding the persistence algorithm for spaces of arbitrary
dimensions and arbitrary coefficient rings, as developed in Chapter 7. The
reader may skip this section safely, however, without any loss of understand-
ing of the algorithms for subspaces of R3.

6.1.1 Motivation

In Chapter 2, we examined an approach for exploring the topology of a space.
This approach used a geometrically grown filtration as the representation of
the space. In Chapter 4, we studied a combinatorial method for computing
topology using homology groups. Applying homology to filtrations, we get
some signature functions for a space.

Definition 6.1 (homology of filtration) Let Kl be a filtration of a space X.
Let Zl

k = Zk(Kl) and Bl
k = Bk(Kl) be the kth cycle and boundary group of Kl ,

respectively. The kth homology group of Kl is Hl
k = Zl

k/Bl
k. The kth Betti

number βl
k of Kl is the rank of Hl

k.

The kth Betti numbers describe the topology of a growing simplicial complex
by a sequence of integers. Our hope is that these numbers contain topological
information about the original space. Unfortunately, as Figure 6.1 illustrates,
our representation scheme generates a lot of additional topological attributes,
all of which are captured by homology. We cannot distinguish between the
features of the original space and the noise spawned by the representation. The
primary topological feature of the space in the figure is a single tunnel. The
graph of βl

k in Figure 6.1, however, gives up to 43 tunnels for complexes in
the filtration of this space. The evidence of the feature is buried in a heap of
topological noise. To be able to derive any meaningful information about a

96 6 New Results

Fig. 6.1. From a space (a) (van der Waals model of Gramicidin A) to its filtration (b),
to a signature function βl

1 (c). The evidence of the single tunnel in the middle of this
protein is engulfed by topological noise.

space from our combinatorial approach, we need a measure of significance for
the captured attributes. This measure would enable us to differentiate between
noise and features. One such measure is persistence.

6.1.2 Formulation

The main premise of persistence is that a significant topological attribute must
have a long life-time in a filtration: The attribute persists in being a feature of
the growing complex. Alternatively, we may call persistence space-time anal-
ysis or historical analysis, where the filtration is the history of the topological
and geometric changes the spaces undergo in time. Consequently, persistence

6.1 Persistence 97

may be defined only in terms of a filtration, and filtrations, as defined in Chap-
ter 2, are the primary input to all the algorithms in this book.

Recall that homology captures equivalent classes of cycles by factoring out
the boundary cycles. We wish to capture nonbounding cycles with long lives,
so we look for cycles that are nonbounding now and will not turn into bound-
aries in the near future, say for at least the next p complexes. These cycles
persist for p steps in time, so they are significant. Formally, we factor Kl’s
kth cycle group by the kth boundary group of Kl+p p complexes later in the
filtration.

Definition 6.2 (persistent homology) Let Kl be a filtration. The p-persistent
kth homology group of Kl is

Hl,p
k = Zl

k/(Bl+p
k ∩ Zl

k). (6.1)

The p-persistent kth Betti number βl,p
k of Kl is the rank of Hl,p

k .

This group is well defined because Bl+p
k ∩ Zl

k is the intersection of two sub-

groups of Cl+p
k and thus a group itself by Theorem 3.9. We may kill short-lived

attributes, the topological noise of the complex, by increasing p sufficiently.
The p-persistent homology groups may also be defined using injective homo-
morphisms between ordinary homology groups. If two cycles are homologous
in Kl , they also exist and are homologous in Kl+p. Consider the homomor-
phism ηl,p

k : Hl
k → Hl+p

k that maps a homology class into one that contains it.
The image of the homomorphism is isomorphic to the p-persistent homology
group of Kl , imηl,p

k � Hl,p
k .

Suppose a nonbounding k-cycle z is created at time i with the arrival of
simplex σ into the complex. The homology class of this cycle, [z], is an element
of Hi

k. Assume that the arrival of simplex τ at time j ≥ i turns a cycle z′ in [z]
into a boundary. That is, z′ ∈ B j

k. This event merges [z] with an older class of
cycles, decreasing the rank of the homology group. Equivalently, we may say
that [z] exists independently for all i ≤ q < j, that is, for j− i− 1 steps. The
half-open interval [i, j) is the life-time of this class in the filtration.

Definition 6.3 (persistence) Let z be a nonbounding k-cycle that is created at
time i by simplex σ, and let z′ ∼ z be a homologous k-cycle that is turned into a
boundary at time j by simplex τ. The persistence of z, and its homology class
[z], is j − i− 1. σ is the creator and τ is the destroyer of [z]. We say that τ
destroys z and the cycle class [z]. We also call a creator a positive simplex and
a destroyer a negative simplex. If a cycle class does not have a destroyer, its
persistence is ∞.

98 6 New Results

Often, a filtration has an associated map ρ : S(K) → R, which maps sim-
plices in the final complex to real numbers. In α-shapes, ρ is precisely α2,
the map we use to construct α-complex filtrations. For filtrations generated by
manifold sweeps, ρ is the associated function h. We may also define persis-
tence in terms of the birth times of the two simplices: ρ(σ j)−ρ(σi).

Definition 6.4 (time-based persistence) Let K be a simplicial complex and
let Kρ = {σi ∈ K | ρ(σi) ≤ ρ} be a filtration defined for an associated function
ρ : S(K) → R. Then for every real π ≥ 0, the π-persistent kth homology group
of Kρ is

Hρ,π
k = Zρ

k/(Bρ+π
k ∩ Zρ

k). (6.2)

The π-persistent kth Betti number βρ,π
k of Kρ is the rank of Hρ,π

k . The persis-
tence of a k-cycle, created at time ρi and destroyed at time ρ j, is ρ j −ρi.

Time-based persistence is useful in the context of iso-surfaces of density func-
tions. Index-based persistence is appropriate for alpha-complexes, as most
interesting activity occurs in a small range of α.

6.1.3 Visualization

Right now, it is not clear at all that we can actually associate distinct pairs of
simplices – creators and destroyers – to homology classes of cycles. The per-
sistence equation merely indicates the existence of the persistent Betti num-
bers. We will see that such pairs do exist, however, when we look at the persis-
tence algorithm in Chapter 7. In this section, I assume the existences of such
pairs for a visualization exercise that will further enhance our understanding of
persistence.

Suppose a space does not have any torsion. This implies that each bounding
k-cycle z in the final complex K is associated with a pair of simplices (σ,τ) that
create and destroy it at times i, j, respectively. We may visualize each such pair
on the index axis by a half-open interval [i, j), which we call the k-interval of
cycle z. A nonbounding cycle in K created at time i has the infinite k-interval
[i,∞). Intuitively, the graph of βl

k is composed of the amalgamation of these
intervals, as shown in Figure 6.2.

We now extend these intervals to two dimensions spanned by the index and
persistence axes. The k-interval of (σ,τ) is extended into a k-triangle spanned
by (i,0), (j,0), (i, j− i) in the index-persistence plane. The k-triangle is closed
along its vertical and horizontal edges and open along the diagonal connecting
(j,0) to (i, j− i). It represents the k-cycle z that is created by σ and is destroyed

6.1 Persistence 99

[

[
[

[[

[
[

[[

persistence

index

)

)

))
))

))

Fig. 6.2. Visualizing persistence as k-intervals and k-triangles. The k-triangle of the
infinite k-interval is not shown.

0

1000

2000

3000

4000

5000

6000

p

0 1000 2000
3000 4000

5000 6000
7000 8000

9000

l

0
1
2
3
4
5
6

log2(β1
l,p+1)

(a) Graph of log2(β
l,p
1 + 1), sampled onto an 80 by 80 grid (b) Top view of the

molecular surface

Fig. 6.3. The 1-triangles (a) of data set 1grm and weighted balls for protein Gramicidin
A (b). The single highly persistent 1-cycle represents the tunnel that is the primary
topological feature of this protein. The data set is introduced in Section 12.1.

by τ progressively earlier as we increase the persistence. It seems reasonable
that βl,p

k is the number of k-triangles that contain point (l, p), as each triangle
covers the region for which the cycle is nonbounding. We will validate this
claim, as well as the one involving k-intervals, in Chapter 7.

Example 6.1 (Gramicidin A) Figure 6.3(a) shows the overlapped 1-triangles
for the filtration of protein Gramicidin A (b). We saw the graph of βl,p

1 ear-
lier in Figure 6.1. That graph corresponds to the cross-section of this three-

100 6 New Results

dimensional plot at p = 0. The added dimension enables us to differentiate
between topological noise and features according to persistence. The single 1-
cycle with large persistence defines the tunnel through Gramicidin A, the only
one-dimensional topological feature of this protein. Any simplification process
that eliminates 1-cycles of persistence less than 2,688 succeeds in separating
this tunnel from the remaining topological attributes detected by homology.

Example 6.2 (index-based vs. time-based) Figure 6.4 displays the overlapped
0-triangles for the filtration of a terrain data set, computed by a manifold sweep
(see Section 2.5.)

The figure compares index-based and time-based persistence for this terrain
data set. The latter method seems appropriate, as it utilizes the sampled density
function (height) for making the noise-feature differentiation.

6.1.4 In R3

Recall from Section 4.2.3 that we are mostly interested in subcomplexes of
triangulations of compactified R3. Such complexes are composed of vertices,
edges, triangles, and tetrahedra, and they may only contain k-cycles, 0≤ k ≤ 2,
and no torsion. The simplices (σ,τ) that create and destroy k-cycles are k- and
(k + 1)-dimensional, respectively. For example, a 0-simplex or vertex always
creates a 0-cycle, as it has no faces. Therefore, a vertex is always positive.
The 0-cycle created by the vertex is destroyed by a negative 1-simplex or edge.
This argument may be extended to develop an algorithm for computing Betti
numbers of subcomplexes of S3 (Delfinado and Edelsbrunner, 1995). We will
describe this algorithm in Chapter 7 to motivate the persistence algorithm.

6.1.5 The Persistence Module

In this section, we take a different view of persistent homology in order to un-
derstand its structure (Zomorodian and Carlsson, 2004). Intuitively, the com-
putation of persistence requires compatible bases for Hi

k and Hi+p
k . It is not

clear when a succinct description is available for the compatible bases. We
begin this section by combining the homology of all the complexes in the fil-
tration into a single algebraic structure. We then establish a correspondence
that reveals a simple description over fields. We end this section by illustrating
the relationship of our view to the persistence equation (Equation (6.1)).

Definition 6.5 (persistence complex) A persistence complex C is a family of

6.1 Persistence 101

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

p

0
10000

20000
30000

40000
50000

60000
70000

l

0
1
2
3
4
5
6

log2(β1
l,p+1)

(a) Graph of log2(β
l,p
1 + 1)

0
100
200
300
400
500
600
700
800
900

π

-4000 -3000
-2000 -1000

0 1000 2000
3000 4000

5000

α

1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

log2(β1
α,π+1)

(b) Graph of log2(β
α,π
1 + 1)

Fig. 6.4. The 0-triangles of data set Iran, introduced in Section 12.5, for index-based
(a) and time-based (b) persistence.

102 6 New Results

chain complexes {C i
∗}i≥0 over R, together with chain maps f i : C i

∗ → C i+1
∗ , so

that we have the following diagram:

C0
∗

f 0

−→ C1
∗

f 1

−→ C2
∗

f 2

−→ ·· · .

Our filtered complex K with inclusion maps for the simplices becomes a per-
sistence complex. Below, we show a portion of a persistence complex with the
chain complexes expanded. The filtration index increases horizontally to the
right under the chain maps f i, and the dimension decreases vertically to the
bottom under the boundary operators ∂k.

∂3


 ∂3


 ∂3



C0

2
f 0

−−−−→ C1
2

f 1

−−−−→ C2
2

f 2

−−−−→ ·· ·

∂2


 ∂2


 ∂2



C0

1
f 0

−−−−→ C1
1

f 1

−−−−→ C2
1

f 2

−−−−→ ·· ·

∂1


 ∂1


 ∂1



C0

0
f 0

−−−−→ C1
0

f 1

−−−−→ C2
0

f 2

−−−−→ ·· ·

Definition 6.6 (persistence module) A persistence module M is a family of
R-modules Mi, together with homomorphisms ϕi : Mi → Mi+1.

For example, the homology of a persistence complex is a persistence module,
where ϕi simply maps a homology class to the one that contains it.

Definition 6.7 (finite type) A persistence complex {Ci
∗, f i} (persistence mod-

ule {Mi,ϕi}) is of finite type if each component complex (module) is a finitely
generated R-module and if the maps f i (ϕi, respectively) are isomorphisms for
i ≥ m for some integer m.

As our complex K is finite, it generates a persistence complex C of finite type
whose homology is a persistence module M of finite type.

Correspondence. Suppose we have a persistence module M = {Mi,ϕi}i≥0

over ring R. We now equip R[t] with the standard grading and define a graded
module over R[t] by

α(M) =
∞⊕

i=0

Mi,

6.1 Persistence 103

where the R-module structure is simply the sum of the structures on the indi-
vidual components and where the action of t is given by

t · (m0,m1,m2, . . .) = (0,ϕ0(m0),ϕ1(m1),ϕ2(m2), . . .).

That is, t simply shifts elements of the module up in the gradation.

Theorem 6.1 (structure of persistence) The correspondence α defines an
equivalence of categories between the category of persistence modules of fi-
nite type over R and the category of finitely generated non-negatively graded
modules over R[t].

Proof It is clear that α is functorial. We only need to construct a functor β that
carries finitely generated non-negatively graded k[t]-modules to persistence
modules of finite type. But this is readily done by sending the graded module
M =

⊕∞
i=0 Mi to the persistence module {Mi,ϕi}i≥0, where ϕi : Mi → Mi+1 is

multiplication by t. It is clear that αβ and βα are canonically isomorphic to
the corresponding identity functors on both sides. This proof is the Artin-Rees
theory in commutative algebra (Eisenbud, 1995).

Decomposition. The correspondence established by Theorem 6.1 shows that
there exists no simple classification of persistence modules over a ground ring,
such as Z, that is not a field. It is well known in commutative algebra that
the classification of modules over Z[t] is extremely complicated. While it is
possible to assign interesting invariants to Z[t]-modules, a simple classification
is not available, nor is it likely ever to be available.

On the other hand, the correspondence gives us a simple decomposition
when the ground ring is a field F . Here, the graded ring F [t] is a PID and
its only graded ideals are homogeneous of form (tn), so the structure of the
F [t]-module is described by sum (3.2) in Theorem 3.19:(

n⊕

i=1

ΣαiF [t]

)
⊕

(
m⊕

j=1

Σγ j F [t]/(tn j)

)
. (6.3)

We wish to parametrize the isomorphism classes of F [t]-modules by suitable
objects.

Definition 6.8 (P-interval) A P-interval is an ordered pair (i, j) with 0 ≤ i <

j ∈ Z∞ = Z∪{+∞}.

We associate a graded F [t]-module to a set S of P-intervals via a bijection

104 6 New Results

Q. We define Q(i, j) = ΣiF [t]/(t j−i) for P-interval (i, j). And, Q(i,+∞) =
ΣiF [t]. For a set of P-intervals S = {(i1, j1),(i2, j2) . . . ,(in, jn)}, we define

Q(S) =
n⊕

l=1

Q(il , jl).

Our correspondence may now be restated as follows.

Corollary 6.1 The correspondence S → Q(S) defines a bijection between the
finite sets of P-intervals and the finitely generated graded modules over the
graded ring F [t]. Consequently, the isomorphism classes of persistence mod-
ules of finite type over F are in bijective correspondence with the finite sets of
P-intervals.

Interpretation. Before proceeding any further, let us recap our work so far.
Recall that our input is a filtered complex K and we are interested in its kth
homology. In each dimension, the homology of complex Ki becomes a vector
space over a field, described fully by its rank βi

k. We need to choose com-
patible bases across the filtration in order to compute persistent homology for
the entire filtration. So, we form the persistence module corresponding to K,
a direct sum of these vector spaces. The structure theorem states that a basis
exists for this module that provides compatible bases for all the vector spaces.
In particular, each P-interval (i, j) describes a basis element for the homology
vector spaces starting at time i until time j − 1. This element is a k-cycle e
that is completed at time i, forming a new homology class. It also remains
nonbounding until time j, at which time it joins the boundary group B j

k. While
component homology groups are torsion-less, persistence appears as torsional
and free elements of the persistence module.

Our interpretation also allows us to ask when e + Bl
k is a basis element for

the persistent groups Hl,p
k . Recall Equation (6.1). As e �∈ Bl

k for all l < j,

we know that e �∈ Bl+p
k for l + p < j. Along with l ≥ i and p ≥ 0, the three

inequalities define a triangular region in the index-persistence plane, as shown
in Figure 6.5. The region gives us the values for which the k-cycle e is a
basis element for Hl,p

k . In other words, we have just shown a proof of why our
visualization in the last section was correct.

Theorem 6.2 Let T be the set of triangles defined by P-intervals for the k-
dimensional persistence module. The rank βl,p

k of Hl,p
k is the number of trian-

gles in T containing the point (l, p).

6.2 Hierarchical Morse-Smale Complexes 105

Fig. 6.5. The inequalities p ≥ 0, l ≥ i, and l + p < j define a triangular region in the
index-persistence plane. This region defines when the cycle is a basis element for the
homology vector space.

We give an alternate characterization of this theorem in Chapter 7 while devel-
oping the persistence algorithm. By this lemma, computing persistent homol-
ogy over a field is equivalent to finding the corresponding set of P-intervals.

6.2 Hierarchical Morse-Smale Complexes

We would like to use persistence to simplify the iso-lines of a 2-manifold and
an associated function. But persistence requires a suitably defined filtration.
In Chapter 2, we looked at filtrations generated by manifold sweeps. In this
section, we will see that the generated filtrations are appropriate for comput-
ing persistence and eliminating critical points combinatorially. To modify the
function, however, we need control over the geometry. The Morse-Smale com-
plex, defined in Chapter 5, provides us with the geometric description that we
need.

In practice, our function is sampled. This sampling introduces noise into
our data and provides the motivation for utilizing persistence for noise-feature
differentiation. No matter how dense the sampling, however, our theoretical
notions, based on smooth structures, are no longer valid. Triangulating the
2-manifold, we get a piece-wise linear (PL) function. The gradient of a PL
function is not continuous and does not generate the pair-wise disjoint integral
lines that are needed to define stable and unstable manifolds. To extend smooth
notions to PL manifolds, we use differential structures to guide our computa-
tions. We call this method the simulation of differentiability or SoD paradigm.
Using SoD, we first guarantee that the computed complexes have the same

106 6 New Results

structural form as those in the smooth case. We then achieve numerical accu-
racy by means of transformations that maintain this structural integrity. The
separation of combinatorial and numerical aspects of computation is similar to
many algorithms in computational geometry (de Berg et al., 1997). It is also
the hallmark of the SoD paradigm.

We show in this section how to extend the ideas from the last chapter to PL
manifolds. We will first motivate and define the quasi Morse-Smale complex
in Section 6.2.1. A quasi Morse-Smale complex has the same combinatorial
structure as the Morse-Smale complex. In Section 6.2.2, I discuss and resolve
the artifacts encountered in the PL domain. We then justify the filtrations de-
fined in Chapter 2 and relate them to the Morse-Smale complex. We end this
section by applying persistence to PL Morse-Smale complexes to get a hierar-
chy of progressively coarser Morse-Smale complexes.

6.2.1 Quasi Morse-Smale Complex

We begin by examining the structure of a Morse-Smale complex for a smooth,
compact, connected 2-manifold. For brevity, we will call the Morse-Smale
complex the MS complex. The following theorem establishes a fact implied by
the examples in Chapter 5.

Theorem 6.3 (quadrangle) Each region of the MS complex is a quadrangle
with vertices of index 0, 1, 2, 1, in this order around the region. The boundary
is possibly glued to itself along vertices and arcs.

Proof The vertices on the boundary of any region alternate between saddles
and other critical points, which, in turn, alternate between maxima and min-
ima. The shortest possible cyclic sequence of vertices around a boundary is
therefore 0, 1, 2, 1, a quadrangle. The argument below shows that longer se-
quences force a critical point in the interior of the region, a contradiction.

Take a region whose boundary cycle has length 4k for k ≥ 2 and glue two
copies of the region together along their boundary to form a sphere. Glue
each critical point to its copy, so saddles become regular points. Maxima and
minima remain as before. The Euler characteristic of the sphere is 2, and so
is the alternating sum of critical points, ∑a(−1)i(a). However, the number of
minima and maxima together is 2k > 2, which implies that there is at least one
saddle inside the region.

Intuitively, a quasi Morse-Smale complex (QMS complex, for short) is a com-
plex with the structural form of a MS complex, as described by Theorem 6.3.

6.2 Hierarchical Morse-Smale Complexes 107

The QMS complex is combinatorially a quadrangulation, with vertices at the
critical points of h and with edges that strictly ascend or descend as measured
by h. But it differs in that its edges may not necessarily be the edges of maxi-
mal ascent or descent.

Definition 6.9 (splitable) A subset of the vertices in a complex Q is indepen-
dent if no two are connected by an arc. The complex Q is splitable if we can
partition the vertices into three sets U,V,W and the arcs into two sets A,B, so
that

(a) U ∪ W and V are both independent;
(b) arcs in A have endpoints in U ∪ V ; and arcs in B have endpoints in

V ∪ W , and
(c) each vertex v ∈ V belongs to four arcs, which in a cyclic order around

v alternate between A and B.

We may then split Q (Q splits) into two complexes defined by U,A and W,B.

Not surprisingly, the MS complex is a splitable quadrangulation.

Theorem 6.4 The Morse-Smale complex splits.

Proof Following Definition 6.9: (a) U , V , and W are maxima, saddles, and
minima; (b) set A contains arcs connecting maxima to saddles and set B con-
tains arcs connecting minima to saddles; and (c) saddles have degree 4 and
alternate as required. The MS complex then splits into the complex of stable
manifolds and the complex of unstable manifolds.

A QMS complex splits like the MS complex but does not have the geomet-
ric characteristics of that complex. It is like the triangulation of a point set,
which has the same combinatorics as the Delaunay triangulation but fails the
geometric in-circle test (de Berg et al., 1997).

Definition 6.10 (quasi Morse-Smale complex) A splitable quadrangulation
is a splitable complex whose regions are quadrangles. A quasi Morse-Smale
complex (QMS complex) of a 2-manifold M and a function h is a splitable
quadrangulation whose vertices are the critical points of h and whose arcs are
monotone in h.

In Chapter 9, we will describe an algorithm for constructing a QMS com-
plex, as well as local transformations that transform the complex into the MS
complex.

108 6 New Results

(a) minimum (b) regular (c) saddle

(d) monkey (e) maximum

Fig. 6.6. Classifying vertices by their stars. The light-shaded lower wedges are con-
nected by white triangles to the dark-shaded upper wedges The dotted vertices and
dashed edges on the boundary do not belong to the open star.

6.2.2 Piece-Wise Linear Artifacts

As in the last chapter, we assume that we have a smooth, compact, connected
2-manifold M without boundary, embedded in R3. In this section, moreover,
we represent the manifold with a triangulation K. We also assume that function
h : M → R is linear on every triangle in K. The function is defined, therefore,
by its values at the vertices of K. It will be convenient to assume h(u) �= h(v)
for all vertices u �= v in K. We simulate simplicity to justify this assumption
computationally (Edelsbrunner and Mücke, 1990). In order to extend the con-
cept of MS complexes to the piece-wise linear domain, we need to look at the
artifacts created by the lack of smoothness in a triangulation.

Stars. We have already encountered the analog of a neighborhood of a vertex
in Section 2.5: the star of a vertex in Definition 2.54, as shown in Figure 6.6.
We also looked at the lower and upper stars of a vertex to define filtrations. We
may use these to classify a vertex as regular or critical.

Definition 6.11 (wedge) A wedge is a contiguous section of Stu that begins
and ends with an edge.

6.2 Hierarchical Morse-Smale Complexes 109

Fig. 6.7. A monkey saddle may be unfolded into two simple saddles in three different
ways.

In Figure 6.6, the lower star either contains the entire star or some number
k + 1 of wedges, and the same is true for the upper star. If Stu = Stu, then
k = −1 and u is a maximum. Symmetrically, if Stu = Stu, then k = −1 and u
is a minimum. Otherwise, u is regular if k = 0 and a saddle if k = 1. Unlike
the smooth case, monkey saddles and even more complicated configurations
are possible in triangulations.

Definition 6.12 (multiple saddle) A vertex u is a k-fold saddle or a saddle
with multiplicity k if Stu has k + 1 wedges. A 2-fold saddle is often called a
monkey saddle. For k ≥ 2, k-fold saddles are also called multiple saddles.

We can unfold a k-fold saddle into two saddles of multiplicity 1 ≤ i, j < k
with i + j = k by the following procedure. We split a wedge of Stu (through
a triangle, if necessary) and similarly split a nonadjacent wedge of Stu. The
new number of (lower and upper) wedges is 2(k+1)+2 = 2(i+1)+2(j+1),
as required. By repeating the process, we eventually arrive at k simple saddles.
The combinatorial process is ambiguous, but it is usually sufficient to pick
an arbitrary unfolding from the set of possibilities. There are three minimal
unfoldings for a monkey saddle, as shown in Figure 6.7.

Merging and forking. The definition of integral lines is inherently dependent
on the smoothness of the space. In their place, we construct monotonic curves
that never cross in K. Such curves can merge together and fork after a while.
Moreover, it is possible for two curves to alternate between merging and fork-
ing an arbitrary number of times. To resolve this, when two curves merge,
we will pretend that they maintain an infinitesimal separation, running side by
side without crossing. Figure 6.8 illustrates the two PL artifacts and the corre-
sponding simulated smooth resolution. As always, we will only simulate the
smooth resolution combinatorially.

110 6 New Results

(a) Merge (b) Smooth flow (c) Fork (d) Smooth flow

Fig. 6.8. Merging (a) and forking (c) PL curves and their corresponding smooth flow
pictures (b, d).

Fig. 6.9. Nontransversality: The unstable 1-manifold of the lower saddle approaches
the upper saddle.

Nontransversal intersections. Another artifact of PL domains is
nontransversal intersections. We illustrate this artifact via the standard ex-
ample in Morse theory: the height function over a torus, standing on its side.
The lowest and highest points of the inner ring are the only saddles, as shown
in Figure 6.9. Both the unstable 1-manifold of the lower saddle and the sta-
ble 1-manifold of the upper saddle follow the inner ring and overlap in two
open half-circles. The characteristic property of a nontransversal intersection
is that the unstable 1-manifold of one saddle approaches another saddle, and
vice versa. Generically, such nontransversal intersections do not happen. If
they do happen, an arbitrarily small perturbation of the height function suffices
to make the two 1-manifolds miss the other saddles and approach a maxi-
mum and a minimum without meeting each other. The PL counterpart of a
nontransversal intersection is an ascending or descending path that ends at a
saddle. Once again, we will simulate the generic case by extending the path
beyond the saddle.

6.2 Hierarchical Morse-Smale Complexes 111

6.2.3 Filtration

Having discussed the resolution of PL artifacts, we may now return to our
original goal of applying persistence to 2-manifolds. In Section 2.5, we intro-
duced two filtrations, constructed by sorting the vertices of K according to the
associated function h and taking the first j lower or upper stars, respectively.
Without loss of generality, we will focus on the filtration of lower stars, that is,
Ki =

⋃
1≤ j≤i Stu j. Our goal is to show this filtration is meaningful with respect

to persistence and the MS complex. To do so, we show a correspondence be-
tween the critical points of a triangulated 2-manifold and the persistence pairs
discussed in Section 6.1. As in that section, we will assume that such pairs
exist and that the underlying space is torsion-free.

Let us consider the topological changes that occur at time i in a filtration. As
|K| is a closed connected 2-manifold, only β0,β1,β2 are nonzero and β2 is at
most 1 during the manifold sweep. When vertex ui enters complex Ki, it brings
along its lower star Stui. As shown in Figure 6.6, the lower star consists of a
number of wedges. It is clear by induction that each wedge has one more edge
than it has triangles. Applying the Euler-Poincaré Theorem (Theorem 4.2.5)
to our 2-manifold, we get:

χ = v− e+ t = β0 −β1 +β2, (6.4)

where v,e, f are the number of vertices, edges, and triangles in the filtration,
respectively. Once we have unfolded the multiple saddles, vertex ui may be
one of the following types:

minimum: Stui = ui, so a minimum vertex is a new component and χi =
χi−1 +1. We know that βi

0 = βi−1
0 +1 because of the new component

and βi
1 = βi−1

1 and βi
2 = βi−1

2 , as there are no other simplices to create
such cycles. Substituting, we get χi = βi−1

0 +1+βi−1
1 +βi−1

2 = χi−1 +
1, as expected. So, a minimum creates a new 0-cycle and acts like a
positive vertex in the filtration of a complex. The negative simplex
that destroys this 0-cycle is added at a time j > i. Therefore, the
vertex is unpaired at time i.

regular: Stui is a single wedge, bringing in one more edge than triangles,
giving us χi = χi−1 + 1− 1 = χi−1. As Stui is nonempty, no new
component has been created and βi

0 = βi−1
0 . Stui is also nonempty,

no 2-cycle is created either, and βi
2 = βi−1

2 . Substituting into Equa-
tion (6.4), we get βi

1 = βi−1
1 . Therefore, no topological changes occur

at regular vertices. All the cycles created at time i are also destroyed
at time i. That is, the positive and negative simplices in Stui cancel
each other, leaving no unpaired simplices.

112 6 New Results

Table 6.1. Critical points, the unpaired simplex in their lower star, and the
induced topological change. The last is specified in C notation, where

βk++ ⇔ βi
k = βi−1

k +1, and βk– – is defined similarly.

critical unpaired action

minimum vertex β0++

saddle edge β0– – or β1++

maximum triangle β1– – or β2++

saddle: Stui has two wedges, bringing in two more edges than triangles. The
new vertex and two extra edges give us χi = χi−1 + 1− 2 = χi−1 −
1. A saddle does not create a new component, being connected in
two directions to the manifold through its lower star. If this saddle
connects two components, it destroys a 0-cycle and βi

0 = βi−1
0 − 1.

Otherwise, it creates a new 1-cycle and βi
1 = βi−1

1 +1. This means that
all the simplices in a saddle are paired, except for a single edge whose
sign corresponds to the action of the saddle. We have χi = χi−1 − 1
in either case.

maximum: Stui = Stui and has the same number of edges and triangles. So,
χi = χi−1 +1 for the single vertex. If the maximum is the global max-
imum, βi

2 = βi−1
2 +1 = 1. Otherwise, the lower star covers a 1-cycle

and βi
1 = βi−1

1 −1. As no new component is created, the positive ver-
tex is paired with a negative edge, leaving a single unpaired triangle
that is positive or negative, depending on the action of the maximum.
We have χi = χi−1 +1 in both cases.

Table 6.1 displays the association between critical points and simplices that
do not arrive at the same time with their persistence counterparts. We call a
critical point positive or negative, according to the sign of its associated un-
paired simplex. A 0-cycle is created by a positive minimum and destroyed by
a negative saddle. A 1-cycle is created by a positive saddle and destroyed by a
negative maximum. This association gives us persistence intervals for critical
points, as shown in Figure 6.10.

There is a natural relationship between these filtrations and the MS complex.
If we relax the definition of a filtration to include k-cells, then we may construct
a filtration of an MS complex for applying persistence. In this filtration, a
minimum is still a vertex, a saddle is represented by an arc (a path of edges),
and a maximum is represented by a region (a set of triangles). Once again,

6.2 Hierarchical Morse-Smale Complexes 113

h+ +++ − −

Fig. 6.10. Each critical point is either positive or negative. We use time-based persis-
tence to measure the life-time of critical points.

Fig. 6.11. The critical points of a section of data set Iran in Section 12.5. Minima
(pits), saddles (passes), and maxima (peaks) are in increasingly lighter shades of gray.
Damāvand, the highest peak in Iran, is visible over the Caspian sea in the northeast
corner. The Mesopotamian valley, in the southwest corner, is bordered by the Zagros
mountain range.

we get the same persistence intervals as above, since the MS complex captures
the critical points and their connectivity. The filtration of simplices is a refined
version of the filtration of the MS complex. Both filtrations contain geometry
in the ordering of their components. Persistence correctly identifies the critical
points through the unpaired simplices. In fact, this is precisely how we will
identify critical points for terrains in Chapter 9, as shown in Figure 6.11 for
the critical points of the data set Iran.

Finally, note that we may also use the filtration composed of upper stars
for computation. In this filtration, minima and maxima exchange roles, and
saddles change signs. The persistence of critical points remains unchanged,
however, as the same pairs of critical points define cycles.

6.2.4 Hierarchy

The length of the persistence intervals of critical points gives us a measure
of their importance. We use this measure to create a hierarchy of progres-

114 6 New Results

Fig. 6.12. From the left, the maximum and minimum approach and cancel each other
to form a degenerate critical point in the middle. This point is perturbed into a regular
point on the right.

Fig. 6.13. The intervals defined by critical point pairs are either disjoint or nested.

sively coarser MS complexes. Each step in the process cancels a pair of critical
points, and the sequence of cancellations is determined by the persistence of
the pairs.

Motivation. To simplify the discussion, consider first a generic one-
dimensional function h : R → R. Its critical points are minima and maxima
in an alternating sequence from left to right. In order to eliminate a maximum,
we locally modify h so that the maximum moves toward an adjacent minimum.
When the two points meet, they momentarily form a degenerate critical point
and then disappear, as illustrated in Figure 6.12. Clearly, only adjacent critical
points can be canceled, but adjacency is not sufficient unless we are willing
to modify f globally. Figure 6.13 shows that the persistence intervals of the
critical points are either disjoint or nested. We cancel pairs of critical points in
the order of increasing persistence. The nesting structure is unraveled in this
manner from inside out, the innermost pair being removed each time.

Simplification. We now return to function h over M. The critical points of h
can be eliminated in a similar manner by locally modifying the height function.
In the generic case, the critical points cancel in pairs of contiguous indices.

6.2 Hierarchical Morse-Smale Complexes 115

a bc

d

e

(a) Before

e

d

c

(b) After

Fig. 6.14. The cancellation of a and b deletes the arcs ad and ae and contracts the arcs
ca and ab. The contraction effectively extends the remaining arcs of b to c.

More precisely, positive minima cancel with negative saddles and positive sad-
dles cancel with negative maxima. We may simulate the cancellation process
combinatorially by removing critical points in pairs from the MS complex.
Figure 6.14 illustrates the operation for a minimum b paired with a saddle a.
The operation requires that ab be an arc in the complex. Let c be the other
minimum and d,e the two maxima connected to a. The operation deletes the
two ascending paths from a to d and e, and contracts the two descending paths
from a to b and c. In the symmetric case in which b is a maximum, the opera-
tion deletes the descending and contracts the ascending paths. The contraction
pulls a and b into the critical point c, which inherits the connections of b.

Definition 6.13 (cancellation) The combinatorial operation described above
and shown in Figure 6.14 for critical points a and b is the cancellation of a and
b.

Cancellation is the only operation needed in the construction of the hierarchy.
There are two special cases, namely, when d = e and when b = c, which cannot
occur at the same time. In the latter case, we prohibit the cancellation because
it would change the topology of the 2-manifold.

The sequence of cancellations is again in the order of increasing persistence.
In general, paired critical points may not be adjacent in the MS complex. The
theorem below shows, however, that they will be adjacent just before they are
canceled, even if the initial QMS complex Q is a poor approximation of the
MS complex.

Theorem 6.5 (adjacency) For every positive i, the i-th pair of critical points

116 6 New Results

ordered by persistence forms an arc in the complex obtained by canceling the
first i−1 pairs.

Proof Assume without loss of generality that the i-th pair consists of a negative
saddle a = u j+1 and a positive minimum z. Consider the component of K j that
contains z. One of the descending paths originating at a enters this component,
and because it cannot ascend, it eventually ends at some minimum b in the
same component. Either b = z, in which case we are done, or b has already
been paired with a saddle c �= a. In the latter case, c has height less than a;
it belongs to the same component of K j as b and z; and the pair b,c is one of
the first i−1 pairs of critical points. It follows that when b gets canceled, the
path from a to b gets extended to another minimum d, which again belongs to
the same component. Eventually, all minima in the component other than z are
canceled, implying that the initial path from a to b gets extended all the way to
z. The claim follows.

We may cancel pairs of critical points combinatorially without the need of
an MS complex, using the simplification algorithms given in Chapter 8. For
simplifying terrains, however, we would like to modify the geometry so that
critical points actually disappear. The MS complex provides us with the geo-
metric control we need for this modification.

6.3 Linking Number

In the last two sections, we described a measure for topological attributes and
showed how it may be applied to simplify a sampled density function. In
this section, we discuss another topological property: linking. Figure 6.15
shows the five linked tetrahedral skeletons we last saw in Chapter 1. Intuitively,
we say an object is linked if components of the object cannot be separated
from each other. In this section, we consider the linking number, a topological
invariant that detects linking. As before, we are interested in computing linking
in a filtration. To do so, we need to extend the definition of the linking number
to simplicial complexes.

The mathematical background needed for this section is rather brief, so I
present it here in the first two sections instead of placing it in a separate chap-
ter. My treatment follows Adams (1994), a highly readable introductory book,
as well as Rolfsen (1990), the classic textbook on knots and links. The last
section includes new results. I extend the linking number to graphs and define
a canonical basis for the set of homological 1-cycles in a simplicial complex.

6.3 Linking Number 117

Fig. 6.15. The skeletons of 5 regular tetrahedra defined by the 20 vertices of the regular
dodecahedron. The tetrahedra are linked pair-wise.

6.3.1 Knots and Links

We begin by examining a few basic definitions of knot theory.

Definition 6.14 (knot) A knot is an embedding of a circle in three-dimensional
Euclidean space, k : S1 → R3.

That is, k does not have self-intersections. As before, we define an equivalence
relation on knots in order to classify their topologies.

Definition 6.15 (knot equivalence) Two knots are equivalent if there is an
ambient isotopy that maps the first to the second.

In other words, we may deform a knot to an equivalent knot by a continuous
motion in R3 that does not cause intersections in the knot at any time.

Definition 6.16 (link) A link l is a collection of knots with disjoint images.

For example, the union of two circles whose projections onto a plane are dis-
joint is a link called the unlink.

Definition 6.17 (separable) A link is separable (splitable) if it can be contin-
uously deformed via an ambient isotopy so that one or more components can
be separated from the other components by a plane that itself does not intersect
any of the components.

The unlink is separable; linked knots are not. We often visualize a link l by
a link diagram, a the projection of a link onto a plane, such that the over- and
undercrossings of knots are presented clearly. Figure 6.16(a) is one commonly
used diagram of the Whitehead link. The knots in the figure are also oriented
arbitrarily. For a formal definition of a link diagram, see (Hass et al., 1999).

118 6 New Results

−1 +1

+1−1

(a) A link diagram for the Whitehead link

+1 −1

(b) Crossing label convention

Fig. 6.16. The Whitehead link (a) is labeled according to the convention (b) that the
crossing label is +1 if the rotation of the overpass by 90 degrees counter-clockwise
aligns its direction with the underpass, and −1 otherwise.

6.3.2 The Linking Number

As before, we may use invariants as tools for detecting whether a link is sep-
arable. Seifert first defined an integer link invariant, the linking number, in
1935 to detect link separability (Seifert, 1935). There are several equivalent
definitions for the linking number. I give the most accessible definition below
for intuition. Given a link diagram for a link l, we first choose orientations for
each knot in l. We then assign integer labels to each crossing between any pair
of knots k,k′, following the convention in Figure 6.16(b). Let λ(k,k′) of the
pair of knots to be one-half the sum of these labels. A standard argument using
Reidermeister moves shows that λ is an invariant for equivalent pairs of knots
up to sign.

Definition 6.18 (linking number) The linking number λ(l) of a link l is

λ(l) = ∑
k 	=k′∈l

|λ(k,k′)|, (6.5)

where λ(k,k′) is one-half the sum of labels on oriented knots k,k′ according to
the convention in Figure 6.16(b).

Note that λ(l) is independent of knot orientations. Also, the linking number
has the characteristic of invariants that it does not completely recognize link-
ing. The Whitehead link in Figure 6.16(a), for example, has linking number
zero but is not separable. If the linking number is nonzero, however, we know
that the link is not the unlink.

I will use an alternate definition for developing algorithms for computing
the linking number in Chapter 10. This definition is based on surfaces whose
boundaries are the knots in the link.

6.3 Linking Number 119

Fig. 6.17. The Hopf link and Seifert surfaces of its two unknots are shown on the left.
Clearly, λ = 1. The spanning surface for the cycle on the right is a Möbius strip and
therefore nonorientable.

Definition 6.19 (spanning, Seifert) A spanning surface for a knot k is an em-
bedded surface with boundary k. An orientable spanning surface is a Seifert
surface.

Figure 6.17 shows examples of spanning surfaces for the Hopf link and Möbius
strip. Since a Seifert surface is orientable, we may label its two sides as positive
and negative. Given a pair of oriented knots k,k′ and a Seifert surface s for k,
we label s by using the orientation of k. We then adjust k′ via a homotopy h
until it meets s in a finite number of points. Following along k′ according to
its orientation, we add +1 whenever k′ passes from the negative to the positive
side and −1 whenever k′ passes from the positive to the negative side. The
following theorem asserts that this sum is independent of our the choice of h
and s, and it is, in fact, the linking number.

Theorem 6.6 (Seifert surface) λ(k,k′) is the sum of the signed intersections
between k′ and any Seifert surface for k.

The proof is by the standard Seifert surface construction. If the spanning sur-
face is nonorientable, we can still count how many times we pass through the
surface, giving us the following weaker result.

Theorem 6.7 (spanning surface) λ(k,k′) (mod 2) is the parity of the num-
ber of times k′ passes through any spanning surface for k.

6.3.3 Graphs

In order to compute the linking number of a simplicial complex, we need to
first define what we mean by a knot in a complex. Not surprisingly, we decide
to use the homology cycles of a simplicial complex, as defined in Chapter 4.

120 6 New Results

(a) K800 (b) Graph of homology cycles in K800

Fig. 6.18. The homology cycles of the 800th complex K800 of a filtration for data set
1grm (a) form a graph (b). The darker negative edges form a spanning forest that
defines a canonical basis for the cycles.

These cycles form a graph within the simplicial complex, as shown in Fig-
ure 6.18. We need to extend the linking number to graphs, in order to use
the theorems in the last section in computing linking numbers for simplicial
complexes.

Let G = (V,E),E ⊆
(V

2

)
be a simple undirected graph in R3 with c com-

ponents G1, . . . ,Gc. A graph may be viewed as a vector space of cycles. For
example, the graph in Figure 6.18(b) has rank 35. Let z1, . . . ,zm be a fixed basis
for the cycles in G, where m = |E|−|V |+c is the rank of G. We then define the
linking number between two components of G to be λ(Gi,G j) = ∑ |λ(zp,zq)|
for all cycles zp,zq in Gi,G j, respectively. The linking number of G is then
defined by summing the total interactions between pairs of components.

Definition 6.20 (linking number of graphs) The linking number λ(G) of a
graph G is

λ(G) = ∑
i	= j

λ(Gi,G j),

where λ(Gi,G j) = ∑ |λ(zp,zq)| for ball basis cycles zp,zq in different compo-
nents Gi,G j, respectively.

The linking number is computed only between pairs of components following
Seifert’s original definition. Linked cycles within the same component may be
unlinked by a homotopy (Prasolov, 1995).

6.3 Linking Number 121

G1

G2

(a) Graph G = G1 ∪ G2

G

G

1

2

(b) λ(G) = 1

G

G1

2

(c) λ(G) = 2

Fig. 6.19. We get different λ(G) for graph G (a) depending on our choice of basis for
G2: two small cycles (b) or one large and one small cycle (c).

σ

Fig. 6.20. Solid negative edges combine to form a spanning tree. The dashed positive
edge σ creates a canonical cycle.

Figure 6.19 shows that the linking number for graphs is dependent on the
chosen basis. While it may seem that we want λ(G) = 1 in the figure, there is
no clear answer in general. We need a canonical basis for defining a canonical
linking number. The definition of the canonical basis is similar to the one used
for the fundamental group of a graph (Hatcher, 2001). Recall that persistence
marks simplices as positive or negative, depending on whether they create or
destroy cycles. Each negative edge connects two components. Therefore, the
set of all negative edges gives us a spanning forest of the complex, as shown
in Figures 6.20 and Figure 6.18(b). Every time a positive edge σ is added to
the complex, it creates a new cycle. We choose the unique cycle that contains
σ and no other positive edge as a new basis cycle.

Definition 6.21 (canonical) The unique cycle that contains a single positive
edge is a canonical cycle. The set of all canonical cycles is the canonical
basis.

122 6 New Results

We will use this basis for computation. In Chapter 7, we will modify the
persistence algorithm to compute canonical cycles and their spanning surfaces.
In Chapter 10, we look at data structures and algorithms for computing the
linking number of a filtration.

Part Two

Algorithms

7

The Persistence Algorithms

In this chapter, we look at algorithms for computing persistence. We begin by
reviewing an algorithm for computing Betti numbers by Delfinado and Edels-
brunner (1995) in Section 7.1. This algorithm works over subspaces of S3,
which do not have torsion. We utilize this algorithm for marking simplices as
positive or negative (recall Definition 6.3.) We also show how the algorithm
may be used to speed up the computation of persistence. In Section 7.2, we de-
velop the persistence algorithm over Z2 coefficients for subcomplexes of any
triangulation of S3.

To compute persistence over arbitrary fields, we need the alternate point of
view described in Section 6.1.5. Using this view, we extend and generalize the
persistence algorithm to arbitrary dimensions and ground fields in Section 7.3.
We do so by deriving the algorithm from the classic reduction scheme, illus-
trating that the algorithm derives its simple structure from the properties of the
underlying algebraic structures. While no simple description exists over non-
fields, we may still be interested in computing a single homology group over
an arbitrary PID. We give an algorithm in Section 7.4 for this purpose.

7.1 Marking Algorithm

In the first two sections of this chapter, we assume that the input spaces are
three-dimensional and torsion-free, as discussed in section 4.2.3. Consequently,
we use Z2 coefficients for computation. Recall from Section 4.3 that using
these coefficients greatly simplifies homology: The homology groups are vec-
tor spaces, a k-chain is simply the list of simplices with coefficients 1, each
simplex is its own inverse, and the group operation is symmetric difference, as
shown in Figure 7.1. The only nonzero Betti numbers to be computed are β0,
β1, and β2.

We also need a filtration ordering of the simplices (Definition 2.44). We use

125

126 7 The Persistence Algorithms

+

Fig. 7.1. Symmetric difference in dimensions one and two. We add two 1-cycles to get
a new 1-cycle. We add the surfaces that the cycles bound to get a spanning surface for
the new 1-cycle.

this total ordering to construct a filtration, where one, and only one, simplex is
added at each time step, that is, Ki = {σ j | 0≤ j ≤ i}, for 0≤ i < m. We use this
filtration for developing the persistence algorithm, as it simplifies discussion:
Simplex σi is added at time i, so its index is also its birth index. Figure 7.2
displays a small filtration of a complex with 18 simplices. This filtration will be
the primary example we will use for illustrations in this and the next chapters.
The filtration is small enough to be examined and understood in detail. This
filtration is also the smallest example with a structural property that makes
computing persistence difficult for 1-cycles. A good exercise is to see the
logic behind the pairs of simplices representing cycles, using the visualization
of the k-triangles in Figure 7.5.

The total ordering of simplices in a filtration permits a simple incremen-
tal algorithm for computing Betti numbers of all complexes in a filtration
(Delfinado and Edelsbrunner, 1995). Before running the algorithm, the Betti
number variables are set to the Betti numbers of the empty complex, that is,
β0 = β1 = β2 = 0. The algorithm is shown in Figure 7.3. The function returns
a list of three integers, denoted integer3. But how do we decide whether
a (k + 1)-simplex σi belongs to a (k + 1)-cycle in Ki? For k + 1 = 0, this is
trivial because every vertex belongs to a 0-cycle. For edges, we maintain the
connected components of the complex, each represented by its vertex set. An
edge belongs to a 1-cycle iff its two endpoints belong to the same component.
Triangles and tetrahedra are treated similarly, using the symmetry provided by
complementarity, duality, and time-reversal. We use these algorithms to mark
the simplices as positive or negative. Let posk = posl

k and negk = negl
k be

the number of positive and negative k-simplices in Kl . The correctness of the
incremental algorithm implies

βk = posk −negk+1, (7.1)

for 0 ≤ k ≤ 2. In words, the Betti number βk is the number of k-simplices that
create k-cycles minus the number of (k + 1)-simplices that destroy k-cycles.

7.1 Marking Algorithm 127

s

ut

6

v

w

sw −

s

ut

7

v

w

tw +

s

ut

8

v

w

uv −

s

ut

9

v

w

sv −

s

ut

10 su +

v

w

s

ut

11

v

w

uw +

s

ut

12 tu +

v

w

s

ut

13

v

w

tuw −

s

ut

14

v

w

suw −

s

ut

15 stu −

v

w

s

ut

16

v

w

suv − 17

s

ut

v

w

stw +

s s

t

s

ut

s

ut

s

ut

s

ut

543210 s + t + u + st −

v v

w

w +v +

Fig. 7.2. A small filtration of a tetrahedron with a flap. The lightly shaded simplex is
added at time time i. The simplices are named and marked according to persistence.

integer3 BETTI-NUMBERS () {
for i = 0 to m−1 {

k = dimσi −1;
if σi belongs to a (k +1)-cycle in Ki

βk+1 = βk+1 +1;
else

βk = βk −1;
}
return (β0,β1,β2);

}

Fig. 7.3. The function returns the Betti numbers of the last complex in the filtration.

Observe that Equation (7.1) is just a different way of writing

rankHk = rankZk − rankBk, (7.2)

which follows from Corollary 3.3. We also saw this equation in the proof of
the Euler-Poincaré Theorem (Theorem 4.5, Equation (4.10)). All Betti num-
bers are nonnegative so posk ≥ negk+1 for all l. We will see in the next section
that there exists a pairing between positive k-simplices and negative (k + 1)-

128 7 The Persistence Algorithms

simplices. This pairing is the key to understanding the persistence of non-
bounding cycles in homology groups.

7.2 Algorithm for Z2

In this section, we develop and present the persistence algorithm for Z2 coef-
ficients (Edelsbrunner et al., 2002). We begin with an abstract algorithm for
computing persistence. After showing its correctness, we complete the scheme
by describing a data structure and an algorithm for computing the persistence
pairings. We then extend the algorithm to compute a canonical basis for cycles
and analyze the running time of the algorithm.

7.2.1 Abstract Algorithm

The persistence computation takes the form of finding the pairs of simplices re-
sponsible for the creation and destruction of cycles. Once we have this pairing,
computing the persistent Betti numbers is trivial. Throughout this section, we
assume that the simplices have been marked using the algorithm from the last
section. The persistence algorithm may be extended to also mark simplices.
We will need this modification for computing persistence in arbitrary dimen-
sions, where the incremental algorithm of Delfinado and Edelsbrunner (1995)
is no longer viable. In three dimensions, however, the incremental algorithm
is fast, and we will use it for marking simplices.

Algorithm. To measure the life-time of a nonbounding cycle, we find when
the cycle’s homology class is created by a positive simplex and destroyed by
a negative simplex. To detect these events, we maintain a basis for Hk implic-
itly through simplex representatives. Initially, the basis for Hk is empty. For
each positive k-simplex σi, we first find a nonbounding k-cycle ci that con-
tains σi, but no other positive k-simplices. This is precisely a canonical cycle
(Definition 6.21).

Theorem 7.1 Canonical cycles exist.

Proof We use induction, as follows: Start with an arbitrary k-cycle that con-
tains σi and remove other positive k-simplices by adding their corresponding
k-cycles. This method succeeds because each added cycle contains only one
positive k-simplex by the inductive assumption.

7.2 Algorithm for Z2 129

list3 PAIR-SIMPLICES () {
L0 = L1 = L2 = ∅;
for j = 0 to m−1 {

k = dimσ j −1;
if σ j is negative {

(*) d = ∂k+1(σ j); i = y(d);
Lk = Lk ∪ {(σi,σ j)};

}
}
return (L0,L1,L2);

}

Fig. 7.4. The function returns three lists of paired simplices in the filtration.

After finding ci, we add the homology class of ci as a new element to the basis
of Hk. In short, the class ci + Bk is represented by ci, and ci, in turn, is repre-
sented by σi. For each negative (k +1)-simplex σ j, we find its corresponding
positive k-simplex σi and remove the homology class of σi from the basis. A
general homology class of Ki is a sum of basis classes,

d +Bk = ∑(cg +Bk)

= Bk +∑cg.

The chains d and ∑cg are homologous, that is, they belong to the same homol-
ogy class. Each cg is represented by a positive k-simplex σg, g < j, that is not
yet paired by the algorithm. The collection of positive k-simplices Γ = Γ(d)
is uniquely determined by d. The youngest simplex in Γ is the one with the
largest index, and we denote this index as y(d). The algorithm, as shown in
Figure 7.4, identifies σ j as the destroyer of the cycle class, created by σi. We
document this by appending (σi,σ j) to the list Lk.

Correctness. Assume for now that the algorithm just presented is correct.
This means that βl,p

k is the number of k-triangles that contain point (l, p), as in
Figure 7.5. Then, the persistent Betti numbers are nonincreasing along vertical
lines in the index-persistence plane. The same is true for lines in the diago-
nal direction and for all lines between the vertical and the diagonal directions.
This gives us the following corollary.

Corollary 7.1 (Monotonicity Corollary) βl,p
k ≤ βl′,p′

k whenever p′ ≤ p and
l ≤ l′ ≤ l +(p− p′).

130 7 The Persistence Algorithms

[

[
[

[[
[

[
[

s
0
t
1
u
2 3 4 5 6 7 8 9 10

su
11 12
tu
13 14 15

stu
16 17

v suv stwsuwtuwst sww tw uv sv uw

[[)

)

persistence

))
))

))

index

Fig. 7.5. The k-intervals and k-triangles for the filtration in Figure 7.2.

To prove the abstract algorithm’s correctness, we show that the pairs it pro-
duces are consistent with the persistent Betti numbers defined by the persis-
tence formulation (Equation (6.1)). In other words, the visualization in Fig-
ure 7.5 is valid.

Theorem 7.2 (k-triangle) βl,p
k is the number of k-triangles containing (l, p)

in the index-persistence plane.

Proof The proof proceeds by induction over p. For p = 0, the number of
k-triangles that contain (l,0) is equal to the number of k-intervals [i, j) that
contain l. This is equal to the number of left endpoints minus the number
of right endpoints that are smaller than or equal to l. Equivalently, it is the
number of positive k-simplices σi with i ≤ l minus the number of negative
(k+1)-simplices σ j with j ≤ l. But this is just a restatement of Equation (7.1),
which establishes the basis of the induction.

Consider (l, p) with p > 0 and assume inductively that the claim holds for
(l, p−1). The relevant simplex for the step from (l, p−1) to (l, p) is σl+p. The
persistent kth Betti number can either stay the same or decrease by 1. It will
decrease only if σl+p is a negative (k+1)-simplex, or equivalently, (l + p,0) is
the upper right corner of a k-triangle. Indeed, no other k-triangle can possibly
separate (l, p−1) and (l, p). This proves the claim if σl+p is a positive (k+1)-
simplex or a simplex of dimension different from k+1. Now suppose that σl+p

is a negative (k+1)-simplex and define the k-cycle d = ∂k+1(σl+p). There are
two cases, as shown in Figure 7.6.

7.2 Algorithm for Z2 131

p−1

< l l+pi > l

index

p

p+l

persistence

i l

Fig. 7.6. The light k-triangle corresponds to Case 1 and the dark one to Case 2.

1. Assume there is a k-cycle c in Kl homologous to d, that is, c ∈ d +
Bl+p−1

k . Then, c bounds neither in Kl nor in Kl+p−1, but it bounds in

Kl+p. It follows that βl,p
k = βl,p−1

k − 1. We need to show that the pair
(σi,σl+p) constructed by the algorithm satisfies i ≤ l, because only
in this case does the k-triangle of σl+p separate (l, p− 1) from (l, p).
Recall that σi is the youngest positive k-simplex in Γ(d). To reach
a contradiction suppose i > l. Then c is a nonbounding k-cycle also
in Ki, and because it is homologous to d, we have σi ∈ c. But this
contradicts c ⊆ Kl as σi �∈ Kl .

2. Assume there is no k-cycle in Kl homologous to d. Then Zl
k ∩ Bl+p−1

k =
Zl

k ∩ Bl+p
k , and hence βl,p

k = βl,p−1
k . We need to show that the pair

(σi,σl+p) constructed by the algorithm satisfies i > l, because only
in this case does the k-triangle of σl+p not separate (l, p − 1) from
(l, p). Our assumption above implies that at least one of the positive
k-simplices in Γ(d) was added after σl . Hence i = y(d) > l.

The theorem follows.

7.2.2 Cycle Search

Having proven the correctness of the abstract algorithm, we complete its de-
scription by specifying how to implement line (*) of the function
PAIR-SIMPLICES. We need to compute the index i of the youngest positive
k-simplex in Γ(d), where d = ∂k+1(σ j). We refer to this computation as a cy-
cle search for σ j. We will first describe the data structure, then explain cycle
search, prove its correctness, and analyze its running time.

Data structure. We use a linear array T [0..m−1], which acts similar to a hash
table (Cormen et al., 1994). Initially, T is empty. A pair (σi,σ j) identified

132 7 The Persistence Algorithms

14 1316

0 1 2 3 4 5 7 86 9 10 11 12 13 14 15 16 17
u suts st

3 689 15

v w sw tw uv sv uw suv stwtuw suw stutu

s t
s
u
s

v
u
w
s

tw su uw
su
tu
uw
tw

stw

Fig. 7.7. Hash table after running the algorithm on the filtration of Figure 7.2.

by the algorithm is stored in T [i] together with a list of positive simplices Λi

defining the cycle created by σi and destroyed by σ j. The simplices in that
list are not necessarily the same as the ones in Γ(d). All we guarantee is that
d is homologous to the sum of cycles represented by the simplices in the list
and that the list contains the youngest simplex in Γ(d), which is σi as above.
The correctness proof following the algorithm will show that this property is
sufficient for our purposes. The data structure is illustrated in Figure 7.7 for the
filtration in Figure7.2 at the end of the persistence computation. Each simplex
in the filtration has a slot in the hash table, but information is stored only in
the slots of the positive simplices. This information consists of the index j of
the matching negative simplex and a list of positive simplices defining a cycle.
Some cycles exist beyond the end of the filtration, in which case we use ∞ as
a substitute for j.

Algorithm. Suppose the algorithm arrives at index j in the filtration, and as-
sume σ j is a negative (k + 1)-simplex. Recall that Γ(d) is the set of positive
k-simplices that represent the homology class of d = ∂σ j in H j−1

k . We search
for the youngest k-simplex in Γ(d) by successively probing slots in T until we
find the right one. Specifically, we start with a set Λ equal to the set of positive
k-simplices in d, which is necessarily nonempty, and we let i = max(Λ) be the
index of the youngest member of Λ. We will see later that if T [i] is unoccupied,
then i = y(d). We can therefore end the search and store j and Λ in T [i]. If
T [i] is occupied, it contains a collection Λi representing a permanently stored
k-cycle. At this moment, the stored k-cycle is already a k-boundary. We add
Λ and Λi to get a new Λ representing a k-cycle, homologous to the old one,
and therefore also homologous to d. The function YOUNGEST in Figure 7.8
performs a cycle search for simplex σ j.

A collision is the event of probing an occupied slot of T . It triggers the
addition of Λ and Λi, which means we take the symmetric difference of the
two collections. For example, the first collision for the filtration of Figure 7.2

7.2 Algorithm for Z2 133

integer YOUNGEST (simplex σ j) {
Λ = {σ ∈ ∂k+1(σ j) | σ positive};
while (true) {

i = max(Λ);
if T [i] is unoccupied {

store j and Λ in T [i];
break;

}
Λ = Λ+Λi;

}
return i;

}

Fig. 7.8. The function returns the index of the youngest basis cycle used in the descrip-
tion of the boundary of σ j .

occurs for the negative edge sv. Initially, we have Λ = {s,v} and i equal to 4,
the index of v. T [4] is occupied and stores Λ4 = {u,v}. The sum of the two
0-cycles is Λ + Λ4 = {s,u}, which is the new set Λ. We now have i = 2, the
index of u. This time, T [2] is unoccupied and we store the index of sv and the
new set Λ in that slot.

Correctness. We will first show that cycle search always halts and then that
it halts with the correct simplex. Consider a collision at T [i]. The list Λi

stored in T [i] contains σi and possibly other positive k-simplices, all older
than σi. After adding Λ and Λi we get a new list Λ. This list is necessarily
nonempty, as otherwise d would bound. Furthermore, all simplices in Λ are
strictly older than σi. Therefore, the new i is smaller than the old one, which
implies that the search proceeds strictly from right to left in T . It necessarily
ends at an unoccupied slot T [g] of the hash table, for all other possibilities lead
to contradictions.

It takes more effort to prove that T [g] is the correct slot or, in other words,
that g = y(d), where d = ∂k+1(σ j) is the boundary of the negative (k + 1)-
simplex that triggered the search. Let e be the cycle defined by Λg. Since e
is obtained from d through adding bounding cycles, we know that e and d are
homologous in K j−1. A collision-free cycle is one where the youngest positive
simplex corresponds to an unoccupied slot in the hash table. Cycle search ends
whenever it reaches a collision-free cycle. For example, e is collision-free
because its youngest positive simplex is σg and T [g] is unoccupied before e
arrives.

134 7 The Persistence Algorithms

Theorem 7.3 (collision) Let e be a collision-free k-cycle in K j−1 homologous
to d. Then, the index of the youngest positive simplex in e is i = y(d).

Proof Let σg be the youngest positive simplex in e and f be the sum of the
basis cycles, homologous to d. By definition, f ’s youngest positive simplex is
σi, where i = y(d). This implies that there are no cycles homologous to d in
Ki−1 or earlier complexes; therefore g ≥ i. We show g ≤ i by contradiction.
If g > i, then e = f + c, where c bounds in K j−1. σg �∈ f implies σg ∈ c, and
as σg is the youngest in e, it is also the youngest in c. By assumption, T [g]
is unoccupied as e is collision-free. In other words, the cycle created by σg

is still a nonbounding cycle in K j−1. Hence this cycle cannot be c. Also, the
cycle cannot belong to c’s homology class at the time c becomes a boundary. It
follows that the negative (k +1)-simplex that converts c into a boundary pairs
with a positive k-simplex in c that is younger than σg, a contradiction. Hence
g = i.

The cycle search continues until it finds a collision-free cycle e homologous
to d, and the collision theorem implies that e has the correct youngest positive
simplex. This proves the correctness of the cycle search, and we may now
substitute i = YOUNGEST(σ j) for line (*) in function PAIR-SIMPLICES.

7.2.3 Analysis

Let us now examine the running time of the cycle search algorithm. Let d =
∂k+1(σ j) and let σi be the youngest positive k-simplex in Γ(d). The persistence
of the cycle created by σi and destroyed by σ j is pi = j− i−1. The search for
σi proceeds from right to left starting at T [j] and ending at T [i]. The number
of collisions is at most the number of positive k-simplices strictly between σi

and σ j, which is less than pi. A collision happens at T [g] only if σg already
forms a pair, which implies its k-interval [g,h) is contained inside [i, j). We use
the nesting property to prove by induction that the k-cycle defined by Λi is the
sum of fewer than pi boundaries of (k+1)-simplices. Hence, Λi contains fewer
than (k + 2)pi k-simplices, and similarly Λg contains fewer than (k + 2)pg <

(k +2)pi k-simplices. A collision requires adding the two lists and finding the
youngest in the new list. We do this by merging, which keeps the lists sorted
by age. A single collision takes time at most O(pi), and the entire search for
σi takes time at most O(p2

i). The total algorithm runs in time at most O(∑ p2
i),

which is at most O(m3). As we will see in Chapter 12, the algorithm is quite
fast in practice, as both the average number of collisions and the average length
of the simplex lists are small constants.

7.2 Algorithm for Z2 135

The running time of cycle search can be improved to almost constant for
dimensions k = 0 and k = 2 using a union-find data structure representing a
system of disjoint sets and supporting union and find operations (Cormen et al.,
1994). For k = 0, each set is the vertex set of a connected component. Each set
has exactly one yet unpaired vertex, namely the oldest one in the component.
We modify standard union-find implementations in such a way that this vertex
represents the set. Given a vertex, the find operation returns the representa-
tive of the set that contains this vertex. Given an edge whose endpoints lie in
different sets, the union operation merges the two sets into one. At the same
time, it pairs the edge with the younger of the two representatives and retains
the older one as the representative of the merged set.

In this modified algorithm, a cycle search is replaced by two find operations
possibly followed by a union operation. If we use union by rank and path
compression for find, the amortized time per operation is O(A−1(m)), where
A−1(m) is the notoriously slowly growing inverse of the Ackermann function
(Cormen et al., 1994). We may use symmetry to accelerate the cycle search for
2-cycles using the union-find data structure for a system of sets of tetrahedra
(Delfinado and Edelsbrunner, 1995). We cannot achieve the same acceleration
for 1-cycles using this method, however, as there can be multiple unpaired
positive edges at any time. The additional complication seems to require the
more cautious and therefore slower algorithm described above.

7.2.4 Canonization

The persistence algorithm halts when it finds the matching positive simplex
σi for a negative simplex σ j, often generating a cycle z with several positive
simplices. We have shown that even though this cycle is not canonical, the
algorithm computes the correct persistence pairs. In order to compute linking
numbers, however, we need to convert z into a canonical cycle. We do so by
eliminating all positive simplices in z except for σi. We call this process can-
onization (Edelsbrunner and Zomorodian, 2003). To canonize a cycle, we add
cycles associated with unnecessary positive simplices to z successively, until z
is composed of σi and some negative simplices, as shown in Figure 7.9 for 1-
cycles. Canonization amounts to replacing one homology basis element with
a linear combination of other elements in order to reach the unique canoni-
cal basis, defined in Section 6.3.3. A cycle undergoing canonization changes
homology classes, but the rank of the basis never changes.

For each canonical 1-cycle, we also need a spanning surface in order to com-
pute linking numbers. Again, we may compute such “surfaces” for cycles of
all dimensions by simply maintaining the spanning surfaces while computing

136 7 The Persistence Algorithms

σi

σj

Fig. 7.9. Canonization of 1-cycles. Starting from the boundary of the negative triangle
σ j , the persistence algorithm finds a matching positive edge σi by finding the dashed 1-
cycle. We modify this 1-cycle further to find the solid canonical 1-cycle and a spanning
surface.

the cycles. For a 0-cycle, the spanning manifold is a connected path of edges.
For a 2-cycle, the spanning manifold is the set of tetrahedra that fill the void.
We generalize this concept by the following definition.

Definition 7.1 (spanning manifold) A spanning manifold for a k-cycle is a
set of simplices whose sum has the cycle as its boundary.

Recall that, initially, a cycle representative is the boundary of a negative sim-
plex σ j. We use σ j as the initial spanning manifold for z. Every time we add
a cycle y to z in the persistence algorithm, we also add the surface y bounds
to the z’s surface. We continue this process through canonization to produce
both canonical cycles and their spanning manifolds. Here, we are using a cru-
cial property of α-complex filtrations: The final complex is always the Delau-
nay complex of the set of weighted points and does not contain any 1-cycles.
Therefore, all 1-cycles are eventually turned to boundaries and have spanning
manifolds.

7.3 Algorithm for Fields

In this section, we devise an algorithm for computing persistent homology over
an arbitrary field (Zomorodian and Carlsson, 2004). Given the theoretical de-
velopment of Section 6.1.5, our approach is rather simple: We simplify the
standard reduction algorithm using the properties of the persistence module.
Our arguments give an algorithm for computing the P-intervals for a filtered
complex directly over the field F , without the need for constructing the per-
sistence module. The algorithm is, in fact, a generalized version of the cycle
search algorithm shown in the previous section.

7.3 Algorithm for Fields 137

Ck

Bk−1

Zk−1

Ck−1
δk+1 δkCk+1

0 00

Z k

kB

Z k+1

k+1B

Fig. 7.10. A chain complex with its internals: chain, cycle, and boundary groups, and
their images under the boundary operators.

7.3.1 Reduction

The standard method for computing homology is the reduction algorithm. We
describe this method for integer coefficients as it is the more familiar ring. The
method extends to modules over arbitrary PIDs, however.

Recall the chain complex and its related groups, as shown in Figure 7.10 for
a complex in an arbitrary dimension. As Ck is free, the oriented k-simplices
form the standard basis for it. We represent the boundary operator ∂k : Ck →
Ck−1 relative to the standard bases of the chain groups as an integer matrix
Mk with entries in {−1,0,1}. The matrix Mk is called the standard matrix
representation of ∂k. It has mk columns and mk−1 rows (the number of k- and
(k− 1)-simplices, respectively.) The null-space of Mk corresponds to Zk and
its range-space to Bk−1, as manifested in Figure 7.10. The reduction algorithm
derives alternate bases for the chain groups, relative to which the matrix for ∂k

is diagonal. The algorithm utilizes the following elementary row operations
on Mk:

1. exchange row i and row j;

2. multiply row i by −1;

3. replace row i by (row i)+q(row j), where q is an integer and j �= i.

The algorithm also uses elementary column operations that are similarly de-
fined. Each column (row) operation corresponds to a change in the basis for
Ck (Ck−1). For example, if ei and e j are the ith and jth basis elements for
Ck, respectively, a column operation of type (3) amounts to replacing ei with
ei + qe j. A similar row operation on basis elements êi and ê j for Ck−1, how-
ever, replaces ê j by ê j − qêi. We shall make use of this fact in Section 7.3.3.
The algorithm systematically modifies the bases of Ck and Ck−1 using elemen-

138 7 The Persistence Algorithms

d

a b

c

2 cd, ad

d

a b

cd

a b

cd

a b

c

3 ac 4 abc 5 acd

a b

d

a b

c

1 c, d,a, b0 ab, bc

Fig. 7.11. A filtered complex with newly added simplices highlighted.

tary operations to reduce Mk to its (Smith) normal form:

M̃k =




b1 0
. . . 0

0 blk

0 0




,

where lk = rankMk = rankM̃k, bi ≥ 1, and bi|bi+1 for all 1 ≤ i < lk. The algo-
rithm can also compute corresponding bases {e j} and {êi} for Ck and Ck−1, re-
spectively, although this is unnecessary if a decomposition is all that is needed.
Computing the normal form in all dimensions, we get a full characterization of
Hk:

(i) The torsion coefficients of Hk−1 (di in Equation (3.1)) are precisely the
diagonal entries bi greater than 1.

(ii) {ei | lk +1 ≤ i ≤ mk} is a basis for Zk. Therefore, rankZk = mk − lk.

(iii) {biêi | 1≤ i≤ lk} is a basis for Bk−1. Equivalently, rankBk = rankMk+1 =
lk+1.

Combining (ii) and (iii), we have

βk = rankZk − rankBk = mk − lk − lk+1. (7.3)

Example 7.1 We illustrate the reduction method using the filtration in Fig-
ure 7.11. We use a smaller filtration than the one we used in the previous
section so the matrices are smaller. However, this example is more general as
we allow multiple simplices to be added at the same time. For this complex,

7.3 Algorithm for Fields 139

the standard matrix representation of ∂1 is

M1 =




ab bc cd ad ac
a −1 0 0 −1 −1
b 1 −1 0 0 0
c 0 1 −1 0 1
d 0 0 1 1 0


 ,

where we show the bases within the matrix. Reducing the matrix, we get the
normal form

M̃1 =




cd bc ab z1 z2

d − c 1 0 0 0 0
c−b 0 1 0 0 0
b−a 0 0 1 0 0

a 0 0 0 0 0


 ,

where z1 = ad − bc− cd − ab and z2 = ac− bc− ab form a basis for Z1 and
{d − c,c−b,b−a} is a basis for B0.

We may use a similar procedure to compute homology over graded PIDs.
A homogeneous basis is a basis of homogeneous elements. We begin by rep-
resenting ∂k relative to the standard basis of Ck (which is homogeneous) and
a homogeneous basis for Zk−1. Reducing to normal form, we read off the de-
scription provided by the direct sum (Equation (3.2)) using the new basis {ê j}
for Zk−1:

(i) Zero row i contributes a free term with shift αi = deg êi.
(ii) Row with diagonal term bi contributes a torsional term with homoge-

neous d j = b j and shift γ j = deg ê j.

The reduction algorithm requires O(m3) elementary operations, where m is
the number of simplices in K. The operations, however, must be performed in
exact integer arithmetic. This is problematic in practice, as the entries of the
intermediate matrices may become extremely large.

7.3.2 Derivation

We use the small filtration in Figure 7.11 as a running example and compute
over R, although any field will do. The persistence module corresponds to a
R[t]-module by the correspondence established in Theorem 3.19. Table 7.1
reviews the degrees of the simplices of our filtration as homogeneous elements
of this module.

Throughout this section, we use {e j} and {êi} to represent homogeneous

140 7 The Persistence Algorithms

Table 7.1. Degree of simplices of filtration in Figure 7.11

a b c d ab bc cd ad ac abc acd
0 0 1 1 1 1 2 2 3 4 5

bases for Ck and Ck−1, respectively. Relative to homogeneous bases, any rep-
resentation Mk of ∂k has the following basic property:

deg êi +degMk(i, j) = dege j, (7.4)

where Mk(i, j) denotes the element at location (i, j). We get

M1 =




ab bc cd ad ac
d 0 0 t t 0
c 0 1 t 0 t2

b t t 0 0 0
a t 0 0 t2 t3


 , (7.5)

for ∂1 in our example. The reader may verify Equation (7.4) using this example
for intuition, e.g., M1(4,4) = t2 as degad − dega = 2− 0 = 2, according to
Table 7.1.

Clearly, the standard bases for chain groups are homogeneous. We need to
represent ∂k : Ck → Ck−1 relative to the standard basis for Ck and a homoge-
neous basis for Zk−1. We then reduce the matrix and read off the description of
Hk according to our discussion in Section 7.3.1. We compute these represen-
tations inductively in dimension. The base case is trivial. As ∂0 ≡ 0, Z0 = C0

and the standard basis may be used for representing ∂1. Now, assume we have
a matrix representation Mk of ∂k relative to the standard basis {e j} for Ck and
a homogeneous basis {êi} for Zk−1. For induction, we need to compute a ho-
mogeneous basis for Zk and represent ∂k+1 relative to Ck+1 and the computed
basis. We begin by sorting basis êi in reverse degree order, as already done in
the matrix in Equation (7.5). We next transform Mk into the column-echelon
form M̃k, a lower staircase form shown in Figure 7.12 (Uhlig, 2002). The steps
have variable height, all landings have width equal to 1, and nonzero elements
may only occur beneath the staircase. A boxed value in the figure is a pivot
and a row (column) with a pivot is called a pivot row (column). From linear al-
gebra, we know that rankMk = rankBk−1 is the number of pivots in an echelon
form. The basis elements corresponding to nonpivot columns form the desired

7.3 Algorithm for Fields 141




∗ 0 0
∗ 0 · · ·

∗ ∗ 0
...

∗ ∗ 0 · · ·
∗ ∗ 0 · · · 0




Fig. 7.12. The column-echelon form. An ∗ indicates a nonzero values and the pivots
are boxed.

basis for Zk. In our example, we have

M̃1 =




cd bc ab z1 z2

d t 0 0 0 0

c t 1 0 0 0
b 0 t t 0 0
a 0 0 t 0 0


 , (7.6)

where z1 = ad − cd − t ·bc− t ·ab and z2 = ac− t2 ·bc− t2 ·ab form a homo-
geneous basis for Z1.

The procedure that arrives at the echelon form is Gaussian elimination on the
columns, utilizing elementary column operations of types (1, 3) only. Starting
with the left-most column, we eliminate nonzero entries occurring in pivot
rows in order of increasing row. To eliminate an entry, we use an elementary
column operation of type (3) that maintains the homogeneity of the basis and
matrix elements. We continue until we either arrive at a zero column or we
find a new pivot. If needed, we then perform a column exchange (type (1)) to
reorder the columns appropriately.

Theorem 7.4 (echelon form) The pivots in column-echelon form are the same
as the diagonal elements in normal form. Moreover, the degree of the basis
elements on pivot rows is the same in both forms.

Proof Because of our sort, the degree of row basis elements êi is monotonically
decreasing from the top row down. Within each fixed column j, dege j is a
constant c. By Equation (7.4), degMk(i, j) = c−deg êi. Therefore, the degree
of the elements in each column is monotonically increasing with row. We
may eliminate nonzero elements below pivots using row operations that do not
change the pivot elements or the degrees of the row basis elements. We then
place the matrix in diagonal form with row and column swaps.

The theorem states that if we are only interested in the degree of the basis

142 7 The Persistence Algorithms

Mk+1

= 0

ij

kM

xm mk−1 k m mxk k+1

j

i

Fig. 7.13. As ∂k∂k+1 = ∅, MkMk+1 = 0, and this is unchanged by elementary opera-
tions. When Mk is reduced to echelon form M̃k by column operations, the correspond-
ing row operations zero out rows in Mk+1 that correspond to pivot columns in M̃k.

elements, we may read them off from the echelon form directly. That is, we
may use the following corollary of the standard structure theorem to obtain the
description.

Corollary 7.2 Let M̃k be the column-echelon form for ∂k relative to bases {e j}
and {êi} for Ck and Zk−1, respectively. If row i has pivot M̃k(i, j) = tn, it
contributes Σdeg êiF [t]/tn to the description of Hk−1. Otherwise, it contributes
Σdeg êiF [t]. Equivalently, we get (deg êi,deg êi + n) and (deg êi,∞), respec-
tively, as P-intervals for Hk−1.

In our example, M̃1(1,1) = t in Equation (7.6). As degd = 1, the element
contributes Σ1R[t]/(t) or the P-interval (1,2) to the description of H0.

We now wish to represent ∂k+1 in terms of the basis we computed for Zk. We
begin with the standard matrix representation Mk+1 of ∂k+1. As ∂k∂k+1 = ∅,
MkMk+1 = 0, as shown in Figure 7.13. Furthermore, this relationship is un-
changed by elementary operations. Since the domain of ∂k is the codomain of
∂k+1, the elementary column operations we used to transform Mk into echelon
form M̃k give corresponding row operations on Mk+1. These row operations
zero out rows in Mk+1 that correspond to nonzero pivot columns in M̃k and give
a representation of ∂k+1 relative to the basis we just computed for Zk. This is
precisely what we are after. We can get it, however, with hardly any work.

Theorem 7.5 (basis change) To represent ∂k+1 relative to the standard basis
for Ck+1 and the basis computed for Zk, simply delete rows in Mk+1 that cor-
respond to pivot columns in M̃k.

Proof We only used elementary column operations of types (1,3) in our vari-
ant of Gaussian elimination. Only the latter changes values in the matrix.

7.3 Algorithm for Fields 143

Suppose we replace column i by (column i) + q(column j) in order to elim-
inate an element in a pivot row j, as shown in Figure 7.13. This operation
amounts to replacing column basis element ei by ei + qe j in Mk. To effect
the same replacement in the row basis for ∂k+1, we need to replace row j with
(row j)−q(row i). But row j is eventually zeroed-out, as shown in Figure 7.13,
and rows i is never changed by any such operation.

Therefore, we have no need for row operations. We simply eliminate rows
corresponding to pivot columns one dimension lower to get the desired repre-
sentation for ∂k+1 in terms of the basis for Zk. This completes the induction.
In our example, the standard matrix representation for ∂2 is

M2 =




abc acd
ac t t2

ad 0 t3

cd 0 t3

bc t3 0
ab t3 0




.

To get a representation in terms of C2 and the basis (z1,z2) for Z1 we computed
earlier, we simply eliminate the bottom three rows. These rows are associated
with pivots in M̃1, according to Equation (7.6). We get

M̌2 =


 abc acd

z2 t t2

z1 0 t3


 ,

where we have also replaced ad and ac with the corresponding basis elements
z1 = ad −bc− cd −ab and z2 = ac−bc−ab.

7.3.3 Algorithm

Our discussion gives us an algorithm for computing P-intervals of an F [t]-
module over field F . It turns out, however, that we can simulate the algorithm
over the field itself, without the need for computing the F [t]-module. Rather,
we use two significant observations from the derivation of the algorithm. First,
Theorem 7.4 guarantees that if we eliminate pivots in the order of decreasing
degree, we may read off the entire description from the echelon form and do
not need to reduce to normal form. And second, Theorem 7.5 tells us that
by simply noting the pivot columns in each dimension and eliminating the
corresponding rows in the next dimension, we get the required basis change.

Therefore, we only need column operations throughout our procedure and

144 7 The Persistence Algorithms

2 3 4 5 6 7 1098
abc acdadcdbcab

0 1
4 5 6 910

ad acb
−a

c
−b

d
−c

a b c d ac

Fig. 7.14. Data structure after running the algorithm on the filtration in Figure 7.11.
Marked simplices are in bold italic.

there is no need for a matrix representation. We represent the boundary oper-
ators as a set of boundary chains corresponding to the columns of the matrix.
Within this representation, column exchanges (type 1) have no meaning, and
the only operation we need is of type 3. Our data structure is an array T with a
slot for each simplex in the filtration, as shown in Figure 7.14 for our example.
Each simplex gets a slot in the table. For indexing, we need a full ordering of
the simplices, so we complete the partial order defined by the degree of a sim-
plex by sorting simplices according to dimension, breaking all remaining ties
arbitrarily (we did this implicitly in the matrix representation). We also need
the ability to mark simplices to indicate nonpivot columns. Rather than com-
puting homology in each dimension independently, we compute homology in
all dimensions incrementally and concurrently. The algorithm, as shown in
Figure 7.15, stores the list of P-intervals for Hk in Lk. When simplex σ j is
added, we check via the procedure REMOVEPIVOTROWS to see whether its
boundary chain d corresponds to a zero or pivot column. If the chain is empty,
it corresponds to a zero column and we mark σ j: Its column is a basis ele-
ment for Zk, and the corresponding row should not be eliminated in the next
dimension. Otherwise, the chain corresponds to a pivot column and the term
with the maximum index i = maxindexd is the pivot, according the procedure
described for the F [t]-module. We store index j and chain d representing the
column in T [i]. Applying Corollary 7.2, we get the P-interval (degσi,degσ j).
We continue until we exhaust the filtration. We then perform another pass
through the filtration in search of infinite P-intervals: marked simplices whose
slot is empty.

We give the function REMOVEPIVOTROWS in Figure 7.16. Initially, the
function computes the boundary chain d for the simplex. It then applies
Theorem 7.5, eliminating all terms involving unmarked simplices to get a rep-
resentation in terms of the basis for Zk−1. The rest of the procedure is Gaussian
elimination in the order of decreasing degree, as dictated by our discussion for
the F [t]-module. The term with the maximum index i = maxd is a potential

7.3 Algorithm for Fields 145

COMPUTEINTERVALS (K) {
for k = 0 to dim(K) Lk = ∅;
for j = 0 to m−1 {

d = REMOVEPIVOTROWS (σ j);
if (d = ∅) Mark σ j;
else {

i = maxindexd; k = dimσ j;
Store j and d in T [i];
Lk = Lk ∪ {(degσi,degσ j)}

}
}
for j = 0 to m−1 {

if σ j is marked and T [j] is empty {
k = dimσ j; Lk = Lk ∪ {(degσ j,∞)}

}
}

}

Fig. 7.15. Algorithm COMPUTEINTERVALS processes a complex of m simplices. It
stores the sets of P-intervals in dimension k in Lk.

chain REMOVEPIVOTROWS (σ) {
k = dimσ; d = ∂kσ;
Remove unmarked terms in d;
while (d �= ∅) {

i = maxindexd;
if T [i] is empty, break;
Let q be the coefficient of σi in T [i];
d = d −q−1T [i];

}
return d;

}

Fig. 7.16. Algorithm REMOVEPIVOTROWS first eliminates rows not marked (not cor-
responding to the basis for Zk−1) and then eliminates terms in pivot rows.

pivot. If T [i] is nonempty, a pivot already exists in that row, and we use the in-
verse of its coefficient to eliminate the row from our chain. Otherwise, we have
found a pivot and our chain is a pivot column. For our example filtration in Fig-
ure 7.14, the marked 0-simplices {a,b,c,d} and 1-simplices {ad,ac} generate
the P-intervals L0 = {(0,∞),(0,1),(1,1),(1,2)} and L1 = {(2,4),(3,5)}, re-
spectively.

146 7 The Persistence Algorithms

7.3.4 Discussion

From our derivation, it is clear that the algorithm has the same running time
as Gaussian elimination over fields. That is, it takes O(m3) in the worst case,
where m is the number of simplices in the filtration. The algorithm is very
simple, however, and represents the matrices efficiently. Having derived the
algorithm from the reduction scheme, we find the algorithm to have the same
structure as the persistence algorithm for Z2 coefficients. It is different in two
aspects:

1. It does its own marking, so it is independent of the Delfinado-
Edelsbrunner algorithm. Therefore, the algorithm is no longer restricted
to subcomplexes of a triangulation of S3, but can compute over arbi-
trary complexes in any dimension.

2. It allows for arbitrary fields as coefficients. This allows us to detect
low-order torsion by computing over different rings.

Most significantly, the approach in this section places the persistence algorithm
within the classical framework of algebraic topology.

7.4 Algorithm for PIDs

The correspondence we established in Section 6.1.5 eliminated any hope for
a simple classification of persistent groups over rings that are not fields. Nev-
ertheless, we may still be interested in their computation. In this section, we
give an algorithm to compute the persistent homology groups Hi,p

k of a filtered
complex K for a fixed i and p. The algorithm we provide computes persistent
homology over any PID D of coefficients by utilizing a reduction algorithm
over that ring.

To compute the persistent group, we need to obtain a description of the nu-
merator and denominator of the quotient group in Equation (6.1). We already
know how to characterize the numerator. We simply reduce the standard ma-
trix representation Mi

k of ∂i
k using the reduction algorithm. The denominator,

Bi,p
k = Bi+p

k ∩ Zi
k, plays the role of the boundary group in Equation (6.1). There-

fore, instead of reducing matrix Mi
k+1, we need to reduce an alternate matrix

Mi,p
k+1 that describes this boundary group. We obtain this matrix as follows:

(1) We reduce matrix Mi
k to its normal form and obtain a basis {z j} for Zi

k,
using fact (ii) in Section 7.3.1. We may merge this computation with
that of the numerator.

(2) We reduce matrix Mi+p
k+1 to its normal form and obtain a basis {bl} for

Bi+p
k using fact (iii) in Section 7.3.1.

7.4 Algorithm for PIDs 147

(3) Let N = [{bl} {z j}] = [B Z], that is, the columns of matrix N consist of
the basis elements from the bases we just computed, and B and Z are
the respective submatrices defined by the bases. We next reduce N to
normal form to find a basis {uq} for its null-space. As before, we obtain
this basis using fact (ii). Each uq = [αq ζq], where αq,ζq are vectors of
coefficients of {bl},{z j}, respectively. Note that Nuq = Bαq +Zζq = 0
by definition. In other words, element Bαq = −Zζq belongs to the
span of both bases. Therefore, both {Bαq} and {Zζq} are bases for
Bi,p

k = Bi+p
k ∩Zi

k. We form a matrix Mi,p
k+1 from either.

We now reduce Mi,p
k+1 to normal form and read off the torsion coefficients and

the rank of Bi,p
k . It is clear from the procedure that we are computing the

persistent groups correctly, giving us the following.

Theorem 7.6 For coefficients in any PID, persistent homology groups are
computable in the order of time and space of computing homology groups.

8

Topological Simplification

In Chapter 6, we motivated the definition of persistence by the need for intel-
ligent methods for topological simplification. In this chapter, we look at algo-
rithms for simplifying a space topologically, using persistence as a measure.
We begin by reviewing prior work and formalizing a notion of topological sim-
plification within the framework of filtrations in Section 8.1. We then look at
a simple algorithm for computing persistent Betti numbers, which motivates
the reordering algorithms for simplification in Section 8.2. There are conflicts,
however, between the goals established for simplification. We formalize these
conflicts, and discuss their resolution or diminution in Section 8.3. To view the
entire persistent history of a filtration, we develop color maps in Section 8.4.
We end this chapter with visualizations of simplified complexes.

8.1 Motivation

Topological issues arise in surface reconstruction and mesh optimization. Sur-
face reconstruction is, by itself, a topological question, but it is often addressed
with geometric methods. Consequently, fast ad-hoc heuristics for surface re-
construction usually give rise to defective surfaces, requiring hole-filling or
filtering as a post-processing step (Curless and Levoy, 1996; Turk and Levoy,
1994). Furthermore, surface modification methods such as decimation, refine-
ment, thickening, and smoothing may cause changes in the surface’s topology.
We gave an example of this connection in the discussion in Section 1.2.3 in
relation to surface decimation.

8.1.1 Prior Work

Topological questions have been mostly marginalized in the past. In the com-
puter graphics community, for example, where appearance is the paramount

148

8.1 Motivation 149

issue, the topological changes caused by a geometric simplification algorithm
are often touted as a feature of the algorithm (Garland and Heckbert, 1997;
Hoppe et al., 1993; Popović and Hoppe, 1997; Schroeder et al., 1992). Dey
et al. (1999) describe a topology-preserving decimation operation that disal-
lows topological changes all together. In general, however, geometrical con-
cerns override topological ones, and there is little control or understanding of
the resulting topological changes.

There has been little work, moreover, in the area of topological simplifica-
tion. Rossignac and Borrel (1993) use a global grid and simplify the topology
within grid elements. He et al. (1996) use low-pass filters for volume grid data
sets. Their work does not apply, however, to polygonal objects, unless they
are voxelized. El-Sana and Varshney (1998) approach simplification using α-
shape inspired ideas and convolution. Wood and Guskov (2001) eliminate
small tunnels by growing regions on a surface. None of the work considers the
problem using a theoretical foundation or a well-defined topological measure.

8.1.2 Approach and Goals

In this book, I advocate the approach of using persistence within the framework
of filtrations. The topological complexity of a filtration is reflected in its Betti
numbers. Consequently, I consider topological simplification to be a process
that decreases a space’s Betti numbers. If we view a filtration as a history of
a growing complex, simplification is a process that does not allow short-lived
cycles to ever exist. Simply put, a cycle cannot be born unless it has a long
life, and persistence controls the prerequisite life-time for existence. There are
two goals in the simplification process:

1. elimination of nonpersistent cycles,
2. and maintenance of the filtration.

As stated, it is not clear whether any conflicts exist between achieving the
above two goals.

The simplification process reorders the simplices in the filtration to elimi-
nate nonpersistent cycles. It is the entire history of a growing complex that is
being simplified, however, and not a single complex. Some may argue, there-
fore, that no simplification has taken place: The same simplices exist as before
in the filtration, but in a new order. This argument is based on notions from
geometric simplification, where simplices are removed and new ones are in-
troduced in a single complex. The argument is not valid, however, as the two
simplification processes are not analogous. The filtrations in this book exist
in a geometric context, and the order of simplices has meaning. For example,

150 8 Topological Simplification

s u su
t
st

tu

v
w
sw uv

tw tuw
suw stu stwsuvuwsv

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

[

[
[[

[

[
[

persistence

)

index

))
)

)

Fig. 8.1. The k-triangles that intersect the new axis at p = 2 have persistence 2 or larger.
The simplex pairs representing cycles of persistence less than 2 are boxed.

a topologically simplified filtration of a Morse complex specifies a sequence
of geometric modifications to the Morse complex. In other words, there is a
level of indirection between topological simplification and the meaning of that
simplification.

8.2 Reordering Algorithms

In this section, we present two reordering algorithms for simplification. These
algorithms are successful in simplifying a filtration in most cases. Conflicts
occur, however, between the goals of simplifying and maintaining a filtration.
We will discuss such conflicts in the next section and provide algorithms for
simplification in the presence of conflicts.

8.2.1 Persistent Betti Number Algorithm

We get inspiration for simplification methods through an algorithm for com-
puting persistent Betti numbers. By the k-triangle theorem (Theorem 7.2 in
Section 7.2.1), the p-persistent kth Betti number of Kl is the number βl,p

k of
k-triangles that contain the point (l, p) in the index-persistence plane. To com-
pute these numbers for a fixed p, we intersect the k-triangles with a horizontal
line at p. Figure 8.1 illustrates this operation by modifying Figure 7.5, the
k-triangles of our example filtration. The algorithm for p-persistent Betti num-
bers is similar to the function BETTI-NUMBERS given in Figure 7.3. We go
through the filtration from left to right and increase βp

k whenever we encounter

8.2 Reordering Algorithms 151

β 0

0 1 2 3 4 5 6 7 8 9

index
persistence 7

65
43

21
0

1

2

3

4

Fig. 8.2. Persistent 0-th Betti numbers of the first ten complexes in the filtration of
Figure 7.2 and for persistence up to 7.

the left endpoint of a k-interval longer than p. Similarly, we decrease βp
k when-

ever there is a right endpoint of a k-interval longer than p, p positions ahead
of us. Figure 8.2 shows the results of the algorithm applied to our example
filtration for k = 0.

8.2.2 Migration

The intersection of the k-triangles and the horizontal line at p is a collection of
half-open intervals. We interpret these intervals as k-intervals of a simplified
version of the original filtration. Our goal is to reorder the filtration so that this
interpretation is valid, that is, we wish to obtain a new filtration whose Betti
numbers are the p-persistent Betti numbers of the original filtration.

Definition 8.1 (persistent complexes) Let {Kl} be a filtration. Kl,p is the l-th
complex in a reordered filtration, where cycles with persistence less than p are
eliminated. We call Kl,p a p-persistent complex.

The algorithm for reordering is clear from Figure 8.1. For each pair (σi,σ j),
we move σ j to the left, closer or all the way to σi. The new position of σ j is
max{i, j− p}. If j− p ≤ i, then σi and σ j no longer form an interval as they
both occupy the same index in the new filtration.

There is a complication in the reordering algorithm that occurs whenever a
negative simplex attempts to move past one of its faces. To maintain the filtra-
tion ordering, we must move the face along with its coface. For example, if we
increase p to 4 in Figure 8.1, then stu will move to index 11 past its face tu at
index 12. Moving a face along with a simplex will not change any Betti num-
bers if the face represents a cycle whose persistence is less than p. At the time

152 8 Topological Simplification

[

[
[

[[
[[

[
[

s
0
t
1
u
2 3 4 5 6 7 8 9 10 11 12

tu
13 14 15

stu
16 17

v w suv stwsuwtuwuwsusvuvtwswst

[)

index

)

persistence

))
))

))

Fig. 8.3. Alternative visualization of the result of the function PAIR-SIMPLICES in
Section 7.2.1. The squares of s and stw are unbounded and not shown. The light
squares represent 0-cycles and the dark squares represent 1-cycles.

we move it, the face is already co-located with its matching negative simplex,
and the two cancel each other’s contributions. We may then grab the pair and
move it with the simplex, moving the pair (tu, tuw) with stu in our example.
For any moving simplex, however, we must also move all the necessary faces
and their matching negative simplices recursively. There is trouble if the face
of a moving negative simplex represents a cycle whose persistence is at least
p. For instance, when stu encounters the edge su, the triangle suv that is paired
with su has not yet reached su. There is a conflict between our two goals of
maintaining a filtration and reordering so the new Betti numbers are the old
p-persistent Betti numbers. We will postpone discussion on conflicts until the
next section.

8.2.3 Lazy Migration

Our motivation for formulating persistent homology in Equation (6.1) was to
eliminate cycles with low persistence. As a consequence of the formulation,
the life-time of every cycle is reduced regardless of its persistence, leading to
the creation of k-triangles. A possibly more intuitive goal would be to elimi-
nate cycles with low persistence without changing the life-time of cycles with
high persistence. In other words, we replace k-triangles by k-squares as illus-
trated in Figure 8.3. We may also define square Betti numbers, analogs to Betti
numbers, for a filtration.

Definition 8.2 (square Betti numbers) The p-persistent kth square Betti num-

8.3 Conflicts 153

0 1 2 3 4 5 6 7 8 9

index

76
54

32
1
0

1

2

3

4

persistence

γ 0

Fig. 8.4. Numbers γ0 for the first ten complexes in the filtration of Figure 7.2.

ber γl,p
k of Kl is the number of k-squares that contain the point (l, p) in the

index-persistence plane.

Figure 8.4 illustrates how these numbers change as we increase persistence
from p = 0 to 7. Note that we can easily read off persistent cycles from
the graph. We may also simplify complexes using γl,p

k by only collapsing k-
intervals of length at most p, leaving other k-intervals unchanged.

8.2.4 Others

Naturally, we do not have to stop with squares. We may replace the k-triangles
with any shape we wish, provided the shapes are meaningful. For example,
irregular shapes correspond to adaptive reordering, where we eliminate cycles
selectively. We may also reorder to the right instead of the left, moving the
positive simplex toward the negative simplex and getting k-triangles that are
the other half of k-squares. This reordering has meaning: Reordering to the
right corresponds to reordering the dual of our complex to the left. Persistence
pairs give us power over the topology of space. We may use this power to
simplify spaces differently, according to the application at hand.

8.3 Conflicts

In the last section, we saw that conflicts could exist between our two objectives
in simplification. In this section, we formalize and analyze the notion of con-
flicts. We then discuss two approaches for dealing with conflicts: resolution
and diminution.

154 8 Topological Simplification

σ g iσ σ h σ j

Fig. 8.5. Basic conflict configuration.

8.3.1 Definition

We begin by formalizing conflicts.

Definition 8.3 (conflict) A conflict occurs whenever there are pairs (σi,σ j)
and (σg,σh) with g < i < h < j, where σi is a face of σh, as shown in Figure
8.5.

There are
(4

2

)
possible types of conflicts, each identified by the pair

(dimσi,dimσh) of the dimensions of the main participants.

Definition 8.4 (conflict type) A conflict between simplex pairs (σi,σ j) and
(σg,σh) has type (dimσi,dimσh).

For example, the pairs (su,suv) and (tw,stu) in Figure 8.1 constitute a conflict
of type (1,2) and show that conflicts do occur. They are, however, rather rare,
as the experiments in Section 12.4 will demonstrate. This rarity stems partially
from the following fact.

Theorem 8.1 (conflict) All conflicts have type (1,2).

Proof Suppose a conflict exists in pairs (σi,σ j) and (σg,σh), where σi is a
vertex. When σh enters the filtration, it belongs to the same component as σg,
since σh completes a chain whose boundary includes σg. Vertex σi, one of
the vertices of σh, is unpaired and therefore represents the component of σh

and σg. Recall that any component is represented by its oldest vertex, which
implies that σi is older than all the vertices of σg. By the filtration property,
σi is older than σg, i.e., i < g, which contradicts the assumption that (σi,σ j)
and (σg,σh) form a conflict. This proves there are no conflicts of types (0,1),
(0,2), (0,3). By complementarity and duality, there are no conflicts of types
(1,3) and (2,3).

Difficulties in reordering may also arise indirectly because of the recursive
nature of any reordering algorithm. For example, moving a negative triangle
may require moving one of its edges. This edge holds on to its matching trian-
gle, which in turn grabs its needed faces. Some of these faces may be unpaired.

8.3 Conflicts 155

To capture this situation, we define recursive conflicts and call other conflicts
basic.

Definition 8.5 (recursive conflicts) A recursive conflict is a positive simplex
that is moved by a reordering process, when it is not co-located with its match-
ing negative simplex.

Note that the simplices in a basic conflict include a simplex that is a recursive
conflict. We may easily extend the conflict theorem for recursive conflicts.

Theorem 8.2 (recursive conflict) All recursive conflicts are edges.

Proof We have a situation as in Figure 8.5, except that σi is not necessarily a
face of σh. However, the moving simplices all belong to the same component
as σh: This is true for a face by definition, for a matching negative simplex by
the reason given in the proof above, and for all moving simplices by transitivity.
The theorem follows.

Basic and recursive conflicts exist in practice but are rather rare, as shown in
Section 12.4. When conflicts occur, we view filtration maintenance as invio-
lable and approximate our secondary goal, that of achieving the correct Betti
numbers. We may do so via two approaches:

(i) Resolution: We eliminate conflicts by refining the complex.
(ii) Diminution: We allow conflicts to exist and minimize their effects

through appropriate reordering algorithms.

In approach (i), we realize our goal of a reordered filtration with Betti num-
bers equivalent to the p-persistent Betti numbers of the original filtration. The
reordered filtration, however, is refined. In approach (ii), we approximate our
goal of the reordered filtration but maintain the same complex.

8.3.2 Resolution

We may resolve a conflict by subdivision. Suppose pairs (σi,σ j) and (σg,σh)
form a conflict. Then, σi,σg are edges; σ j,σh are triangles; and σi is a face
of σh. Let σi = bc and σh = abc as drawn in Figure 8.6. We resolve the
conflict by starring from the midpoint x of edge bc, subdividing all simplices
that share bc as a common face. We replace each subdivided k-simplex by one
(k−1)-simplex and two k-simplices. For computing persistence, the order of
the three new simplices is important. As shown in Figure 8.6, the order of
the edges bx,cx within the new filter is the opposite of the triangles acx,abx.

156 8 Topological Simplification

. . . .

. . . .

bc

x
bx
cx

. . . .

. . . . abc

ax
acx
abx

σg

σg

. . . .

σh

σh

before:

after:

b

c
a

b

c
a

starring
x

Fig. 8.6. The conflict exists between moving abc toward σg and keeping bc ahead of
abc. We subdivide edge bc and order the new simplices to resolve the conflict.

The persistence algorithm produces new pairs (x,bx) and (ax,acx) that have no
effect on Betti numbers. After acx enters, the complex is homotopy equivalent
to the old complex just before abc enters. The edge cx replaces bc and the
triangle abx replaces abc in the filter. Consequently, the algorithm produces
pairs (σg,abx) and (cx,σh). As cx is not a face of abx, we have removed the
conflict and preserved the Betti numbers of a refined filtration.

8.3.3 Diminution

Often times, simplices have structural meaning in a filtration, and conflicts
signal properties of the structure the simplices describe. We may not wish to
tamper with this structure through subdivision, as such action may not have
any meaning within our filtration. For example, in α complex filtrations, sim-
plices are ordered according to a particular growth model. The ordering of the
new simplices specified by subdivision in Figure 8.6 might not have a corre-
sponding set of balls that would generate the filtration under the growth model.

We may attempt to reduce the effect of conflicts on Betti numbers without
eliminating the conflicts. Recall that a simplex pair (σi,σ j) defines a k-cycle
that may be visualized by a k-triangle, as in Figure 8.1. Whenever σi occurs
in a conflict, we allow it to be dragged to a new location. This clearly changes
the Betti numbers of the reordered filtration, so they no longer match the p-
persistent Betti numbers of the original filtration. If we just follow the reorder-
ing algorithms from the last section, however, we may never destroy a cycle, as
in Figure 8.7(a). On the other hand, we may modify the reordering algorithms
to allow σ j to reach σi through the various schemes displayed graphically in
Figure 8.7(b–e). For example, we also allow σ j to move faster during reorder-
ing, whenever σi is moved. This method creates a pseudo-triangle with the

8.4 Topology Maps 157

+ −

p

l

(a) Naive

+ −

p

l

(b) Shift

+ −

p

l

(c) Wormhole

+ −

p

l

(d) Pseudo-triangle

+ −

p

l

(e) Sudden Death

Fig. 8.7. Reordering algorithms and regions of influence. We show the k-triangle in
each case for comparison. The regions are transparent filled polygons, and darker re-
gions correspond to areas of overlap.

same area as the cycle’s k-triangle, as shown in Figure 8.7(d). Therefore, this
algorithm allows each k-cycle to have the same effect on Betti numbers as it
would in the absence of conflicts, but at different times. As such, it seems to
be the ideal algorithm for reordering in the presence of conflicts.

8.4 Topology Maps

Before presenting the experiments, we introduce a powerful tool for visualiz-
ing the topology of a space. We have already seen that persistence is correctly
visualized as k-triangles in the index-persistence plane, as in Figure 8.1. In
general, we may only view the triangles in each dimension separately. For ex-
ample, we may look at the persistent Betti numbers of data set FAU as surfaces
in three dimensions, as shown in Figure 8.8. If the only nonzero Betti numbers
are β0, β1, and β2, we may use color to assemble a single image presenting
all the values at once. The space of all colors is three-dimensional and may
be parametrized by a three-dimensional coordinate system (Foley et al., 1996).
There are many such coordinate systems called color models. We use the CMY
color model, as described in Figure 8.9. This color model is appropriate as it is

158 8 Topological Simplification

 0
 2000

 4000
 6000

 8000
 10000

 12000
 14000

 16000
 18000

 20000

p

 0 5000 10000 15000 20000 25000 30000 35000 40000

l

 0
 2
 4
 6
 8

 10
 12

log2(β0
l,p+1)

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

p

0 5000 10000 15000
20000 25000

30000 35000
40000

l

0
1
2
3
4
5
6
7
8
9
10

log2(β1
l,p+1)

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

p

0 5000 10000 15000
20000 25000

30000 35000
40000

l

0
1
2
3
4
5
6
7

log2(β2
l,p+1)

Fig. 8.8. Graphs of log2(β
l,p
k + 1) for k = 0,1,2, respectively, for zeolite FAU. The

graphs are sampled onto an 80 by 80 grid.

subtractive, starting from white and ending with black. We use shades of cyan,
magenta, and yellow for representing values of β0, β1, and β2, respectively.
Given this system, we can now visualize the complete topological content of a
space in a single image. We call these images topology maps. Given a topol-
ogy map, we can immediately observe the salient topological features of the
associated space.

Example 8.1 (topology map of FAU) Figure 8.10 displays the topology maps
of FAU, corresponding to its Betti and square Betti numbers. The map of
FAU has six regions, clearly delineated by color. There is a seventh dark cyan
region in the top left corner, describing the arrival of all the vertices. We per-
ceive that persistent components are formed in the large cyan triangle: The

8.4 Topology Maps 159

vertices arrive, are connected into structures with tunnels (creating 1-cycles in
the blue triangle), completed into voids (creating 2-cycles in the green region),
and finally filled up with tetrahedra. In the second stage, these components are
connected to form a single structure with tunnels (magenta triangle) and form
voids again (yellow triangle), which are again filled.

Each point of a topology map (l, p) corresponds to a p-persistent complex
Kl,p. Consequently, these maps provide us with an powerful navigational tool
for software design. I use these maps in my topology visualization program,
CView, which I will describe in Chapter 11.

We end this chapter with a few visualizations of persistent complexes. We
claimed earlier that topology maps were useful for displaying the entire topo-
logical content of a space. We substantiate these structural predictions in Ex-
ample 8.1 by showing persistent complexes from the various regions of the
topology map of FAU in Figure 8.11. The Betti numbers of the complexes are
listed underneath them. We may also use the persistent algorithm to view cy-
cles and their manifolds in each complex. Figure 8.12 displays the eight voids
of a persistent complex for zeolite KFI. We will see more cycles and manifolds
in Chapter 10, when discussing the linking number algorithm.

160 8 Topological Simplification

Fig. 8.12. K24893,8137 of the filtration (top left corner) for zeolite KFI has β2 = 8. The
eight (noncanonical) voids are displayed inside the exterior edges of the complex.

9

The Morse-Smale Complex Algorithm

In Chapter 6, we presented an approach for constructing hierarchical Morse-
Smale complexes for 2-manifolds with an associated function. The approach
utilized Simulation of Differentiability (SoD) to construct a Morse-Smale com-
plex in two stages. In this chapter, we complete this description by specifying
algorithms for the two stages of SoD: computing quasi Morse-Smale complex
(QMS complex) and locally transforming this complex to the Morse-Smale
complex (MS complex). Figure 9.1 places the algorithms in this chapter within
the context of the approach taken.

Persistence

Smooth Definition

Hierarchy

2−Manifold Triangulation

Path Construction

Local Transformation

Quasi Morse−Smale Complex

Morse−Smale Complex

Simluation of Differentiability

Fig. 9.1. Approach for constructing hierarchical Morse-Smale complexes. This chapter
includes algorithms for the italicized steps.

161

162 9 The Morse-Smale Complex Algorithm

9.1 Motivation

Physical simulation problems often start with a space and measurements over
this space. If the measurements are scalar values, they are usually called height
functions. The functions can be arbitrary, however, and do not necessarily
measure height. In two dimensions, familiar examples include the intensity
values of an image and the elevation of a terrain, as parametrized by longitude
and latitude. Images are the input of the field of computer vision, where re-
searchers seek to understand the features of the image and eliminate the noise.
Terrains are used in geographic information systems (GIS) for modeling nat-
ural phenomena and planning urban developments. In three dimensions, we
have volume information, such as intensities produced by magnetic resonance
imaging (MRI), atmospheric measurements over the surface of Earth, and the
electron density over a crystallized molecule. Once again, the primary goal is
the derivation of structures that enhance our understanding of these measure-
ments.

Consider a geographic landscape modeled as a height function h : D → R

over a two-dimensional domain D. This landscape is often visualized by a
discrete set of iso-lines h−1(c) for constant height values c. A contour tree
partially captures the topology of these iso-lines, and it has been constructed
for the fast generation of iso-lines in the past (de Berg and van Kreveld, 1993;
van Kreveld et al., 1997). Recently, Carr et al. (2000) gave a simple and elegant
algorithm for computing contour trees in all dimensions. If h is differentiable,
we may define the gradient field consisting of vectors in the direction of the
steepest ascent. Researchers in visualization have studied this vector field for
some time (Bajaj et al., 1998; de Leeuw and van Liere, 1999; Tricoche et al.,
2000). The Morse-Smale complex captures the characteristics of this vector
field by decomposing the manifold into cells of uniform flow. As such, the
Morse-Smale complex represents a full analysis of the behavior of the vec-
tor field. Moreover, the Morse-Smale complex is a richer structure than the
contour tree, and we may extract the tree from the complex when needed.

9.2 The Quasi Morse-Smale Complex Algorithm

Given a triangulation K of a compact 2-manifold without boundary and a PL
function h, our goal is to compute the MS complex for a simulated unfolding
of h. In this section, we take the first step of computing a QMS complex of
h (see Section 6.2 for definitions). We limit ourselves to curves following the
edges of K. While the resulting complex is numerically inaccurate, our focus
is on capturing the structure of the MS complex, and this limitation gives us a

9.2 The Quasi Morse-Smale Complex Algorithm 163

fast algorithm. Recall that the QMS complex Q will have the critical points of
h as vertices and monotonic noncrossing paths as arcs. To resolve the merging
and forking of paths, we formulate a three-stage algorithm. In each stage, we
compute a complex whose arcs are noncrossing monotonic paths, guaranteeing
this property for the final complex.

9.2.1 Complex with Junctions

In the first stage, we draw paths by following edges in the triangulation. Even-
tually, these paths become the arcs of the QMS complex, in turn defining the
2-cells implicitly. Recall that we can classify the vertices using persistence.
Having classified them, we compute the wedges of their lower and upper stars,
and identify the steepest edge in each wedge. We then start k + 1 ascending
and k + 1 descending paths from every k-fold saddle. Each path begins in its
own wedge and follows a sequence of steepest edges until it hits

(a) a minimum or a maximum,

(b) a previously traced path at a regular point, or

(c) another saddle,

at which point the path ends. Case (a) corresponds to the generic case for
smooth height functions, Case (b) corresponds to a merging or forking, and
Case (c) is the PL counterpart of a nontransversal intersection between a stable
and an unstable 1-manifold. In Case (b), the regular point is special, so we call
it a junction.

Definition 9.1 (junction) A junction is a regular point where paths merge or
fork.

The key idea in this stage is to temporarily upgrade junctions to the status of
critical points, allowing them to be vertices of the complex being constructed.
Whenever Case (b) occurs, we either create a new junction by splitting a pre-
viously traced path or we increase the degree of a junction that has already
been created. Case (c) is the PL counterpart of a nontransversal intersection
between a stable and an unstable 1-manifold.

For my implementations, I utilize a quad edge data structure (Guibas and
Stolfi, 1985) to store the complex defined by the paths. The vertices of the
complex are the critical points and junctions, and the arcs are the pairwise
edge-disjoint paths connecting these vertices. I also use the data structure to
simulate the infinitesimal separation of the paths combinatorially.

164 9 The Morse-Smale Complex Algorithm

y

(a) A junction

y

(b) Duplication (c) Concatenation

Fig. 9.2. Paths ending at a junction (a) are extended by duplication (b) and concatena-
tion (c).

9.2.2 Extending Paths

In the second stage of the algorithm, we extend paths to remove junctions and
reduce the number of arcs per k-fold saddle to 2(k +1). The latter action cor-
responds to eliminating nontransversal intersections. Whenever we extend a
path, we route it along and infinitesimally close to an already existing path.
Again, this action is done combinatorially using the data structure: The actual
paths are geometrically the same for now. In extending paths, we may cre-
ate new paths ending at other junctions and saddles. Consequently, we wish
to process the vertices in a sequence that prevents cyclic dependencies. We
classify a path at a vertex as ascending or descending, relative to the original
saddle. Since ascending and descending paths are extended in opposite direc-
tions, we need two orderings, touching every vertex twice. It is convenient to
first duplicate ascending paths in the order of increasing height and then du-
plicate descending paths in the order of decreasing height. Then, all paths are
concatenated for extension. We discuss the routing procedures for junctions
and saddles next. In the figures that follow, we orient paths in the direction
they emanate from a saddle. The solid paths are ascending stable manifolds,
and the dashed paths are descending unstable manifolds.

Junctions. Figure 9.2(a) displays a neighborhood of a junction y. Consider the
junction y in Figure 9.2 on the left. By definition, y is a regular point with lower
and upper stars consisting of one wedge each. The first time we encounter y,
the path is traced right through the point. In each additional encounter, the
path ends at y, as y is now a junction. If the first path is ascending, then one
ascending path leaves y into the upper star, all other ascending paths approach y
from the lower star and all descending paths approach y from the upper star. We
show this case in Figure 9.2. Some of the paths may already have duplicates

9.2 The Quasi Morse-Smale Complex Algorithm 165

x

(a) A saddle

x

(b) Duplication

x

(c) Concatenation

Fig. 9.3. Paths that end at a saddle (a) are extended by duplication (b) and concatenation
(c).

because of other path extensions. We duplicate paths for all junctions using our
two orderings. Note that the new paths, shown in Figure 9.2(b), may include
duplicates spawned by junctions that occur before this vertex in an ordering.
Finally, we concatenate the resulting paths in pairs without creating crossings,
as shown in Figure 9.2(c).

Saddles. We next resolve Case (c), paths that have another saddle as an end
point. Consider the saddle x in Figure 9.3. We look at path extensions only
within one of the sectors between two cyclically contiguous steepest edges.
Within this sector, there may be ascending paths approaching x from within
the overlapping wedge of the lower star, and descending paths approaching x
from within the overlapping wedge of the upper star, as shown in Figure 9.3(a).
After path duplications (b), we concatenate the paths in pairs (c). Again, we
can concatenate without creating crossings. At the end of this process, our
complex has critical points as vertices and monotonic noncrossing paths from
saddles to minima or maxima as arcs.

Unfolding multiple saddles. In the third and last stage of the algorithm, we
unfold every k-fold saddle into k simple saddles. We saw in Section 6.12 that
such saddles may be unfolded by duplicating the saddle and paths ending at
the saddle. At this point, we have already eliminated Case (c) from above,
so we only have to consider the k + 1 ascending and k + 1 descending paths
that originate at the k-fold saddle. In each of the k − 1 steps, we duplicate
the saddle, one ascending path, and a nonadjacent descending path. In the
end, we have k saddles and 2(k +1)+2(k−1) = 4k paths, or four per saddle.
Figure 9.4 illustrates the operation by showing a possible unfolding of a 3-
fold saddle. The unfolding procedure does not create any path crossings in the
previous complex, which had no crossings.

166 9 The Morse-Smale Complex Algorithm

(a) A 3-fold saddle (b) Unfolding

Fig. 9.4. A 3-fold (monkey) saddle (a) is unfolded into three simple saddles (b).

Lemma 9.1 (quasi Morse-Smale complex) The algorithm computes a quasi
Morse-Smale for K.

Proof Let Q be the complex constructed by the algorithm. The vertices of Q
are the unfolded critical points of K, so they are minima, saddles, and maxima.
The paths are noncrossing, and stage two guarantees that the paths go from
saddles to minima or maxima. Therefore, Q is splitable. Moreover, the vertices
on the boundary of any region of Q alternate between saddles and other critical
points. The Quadrangle Lemma implies Q is a quadrangulation. Therefore, Q
is a splitable quadrangulation, or a QMS complex.

9.3 Local Transformations

Having computed the QMS complex, we now seek to transform it to the MS
complex. Recall that the QMS complex has the combinatorial form of the
MS complex, but its structure and geometry are different. To compute the
MS complex, we allow numerical tests to trigger local transformations that
maintain the form of the QMS complex. In this section, we will first describe
these transformations, and then describe the numerical condition that triggers
them.

9.3.1 Handle Slide

The local transformation we use is a handle slide, and it transforms one QMS
complex into another. The two quadrangulations differ only in their decompo-
sitions of a single octagon. In the first quadrangulation, the octagon consists
of a quadrangle abcd together with two adjacent quadrangles baDC and dcBA,
as shown in Figure 9.5. Let a and c be the two saddles of the quadrangle in the

9.3 Local Transformations 167

A d a D

cB b C

(a) Before

A d a D

cB b C

(b) After

Fig. 9.5. A handle slide. The octagon is the union of a row of three quadrangles.

(a) Before (b) After

Fig. 9.6. Edge-flip shown in superimposition of solid triangulation with its dashed dual
diagram. The maxima before and after the flip should be at the same location but are
moved for clarity of the illustration.

middle. We perform a slide by drawing an ascending path from a to B replac-
ing ab, and a descending path from c to D replacing cd. After the slide, the
octagon is decomposed into quadrangles DcBa in the middle and cDCb,aBAd
on its two sides.

It is possible to think of the better-known edge-flip in a two-dimensional
triangulation as the composition of two octagon slides. To explain this, Fig-
ure 9.6 superimposes a triangulation with its dual diagram, making sure that
only corresponding edges cross. The vertices of the triangulation correspond
to minima, the vertices of the dual diagram to maxima, and the crossing points
to saddles. When we flip an edge in the triangulation, we also reconnect the
five edges in the dual diagram that correspond to the five edges of the two tri-
angles sharing the flipped edge. The result of the edge-flip is thus the same
as that of two octagon slides, one for the lower left three quadrangles and the
other for the upper right three quadrangles in Figure 9.6.

168 9 The Morse-Smale Complex Algorithm

(a) Before (b) After

Fig. 9.7. The associated quadrangulation (thick edges) superimposed on an MS com-
plex, before and after a handle slide. The handle slide corresponds to a diagonal slide
inside the shaded hexagon in the coarser quadrangulation.

We may also relate a handle slide in an MS complex to a diagonal slide in
an associated quadrangulation (Negami, 1999). The quadrangulation has only
the maxima and minima of the terrain as vertices. We connect the maximum
and minimum of each quadrangle in the MS complex via an edge to construct
the quadrangulation, as shown for an example in Figure 9.7. A handle slide in
the MS complex alters the structure of the quadrangulation within the shaded
hexagon, consisting of two adjacent cells in the quadrangulation. The diagonal
of the hexagon slides clockwise and connects the next pair of opposite vertices
of the hexagon.

9.3.2 Steepest Ascent

To decide when to apply a handle slide to an octagon, we need a numerical
test. Our test will consist of checking whether a path starting from a saddle
will reach the same critical endpoint, if it were computed by following the
direction of locally steepest ascent. In other words, we check to see if the path
yields the same combinatorial structure. Such paths may go along an edge or
pass through a triangle of K. There are three cases as shown in Figure 9.8. In
the interior of a triangle, that steepest direction is unique and orthogonal to the
level lines. In the interior of an edge, there may be one or two locally steepest
directions. At a vertex there may be as many locally steepest directions as there
are triangles in the star.

We may compute the steepest direction numerically with small error, but er-
rors accumulate as the path traverses triangles. Alternatively, we can compute
the steepest direction exactly with constant bit-length arithmetic operations,

9.4 Algorithm 169

Fig. 9.8. The three cases of locally steepest ascent. The directions are orthogonal to
the dotted level lines.

but the bit-length needed for the points along the path grows as it traverses
more triangles. This phenomenon justifies the SoD approach to constructing
an MS complex. In this approach the computed complex has the same combi-
natorial form as the MS complex, and it is numerically as accurate as the local
rerouting operations used to control handle slides.

9.4 Algorithm

Having described the local transformation and the numerical test that triggers
it, we now present an algorithm for transforming the QMS complex to the MS
complex in this section. The algorithm applies handle slides to octagons in
the order of decreasing height. Here, the height of an octagon is the height of
the lower saddle of the middle quadrangle. This saddle is either a or c for the
octagon in Figure 9.5. Without loss of generally, let us assume here that it is
a. When we consider a, we may also assume that the arcs connecting higher
critical points are already correct. The iso-line at the height of a decomposes
the manifold into an upper and a lower region. Let Γ be the possibly pinched
component of the upper region that contains a. There are two cases, as shown
in Figure 9.9. In case (a), the higher critical points in Γ and their connecting
arcs bound one annulus, which is pinched at a. In case (b), they bound two
annuli, one on each side of a. The ascending path emanating from a is rerouted
within these annuli.

Let ab be the interior path of the octagon with height h(a), and let p be the
maximum we hit by rerouting the path. If p is the first maximum after b along
the arc boundary of the annulus, we may use a single handle slide to replace ab
by ap, as we do for the upper new path in Figure 9.9(a). Note that the slide is
possible only because ap crosses no arc ending at b. Any such arc would have

170 9 The Morse-Smale Complex Algorithm

a

b

b

pp

(a)

a

b

p

b=p

(b)

Fig. 9.9. The two cases in the algorithm. The iso-line is dotted, the annuli are shaded,
the arcs bounding the annuli are bold dashed, and the new paths emanating from a are
bold solid.

to be changed first, which we do by recursive application of the algorithm, as
for the lower new path in Figure 9.9(a).

It is also possible that p is more than one position removed from b, as for
the upper new path in Figure 9.9(b). In this case we perform several slides for
a, the first connecting a to the first maximum after b in the direction of p. Each
such slide may require recursive slides to clear the way, as before. Finally, it
is possible that the new path from a to p winds around the arc boundary of
the annulus several times, as does the lower new path in Figure 9.9(b). The
algorithm is the same as before.

The winding case shows that the number of slides cannot be bounded from
above in terms of the number of critical points. Instead, consider the crossings
between arcs of the initial QMS and the final MS complexes, and note that the
number of slides is at most some constant times the number of such crossings.

10

The Linking Number Algorithm

In Chapter 6, we discussed a topological invariant called the linking number
and extended this invariant to simplicial complexes. In this chapter, we provide
data structures and algorithms for computing the linking numbers of a filtra-
tion, using the canonical cycles and manifolds generated by the persistence
algorithm. After motivating this computation, we describe the data structures
and algorithms. We end this chapter by discussing an alternate definition of the
linking number that may be helpful in understanding the topology of molecular
structures.

10.1 Motivation

In the 1980s, it was shown that DNA, the molecular structure of the genetic
code of all living organisms, can become knotted during replication (Adams,
1994). This finding initiated interest in knot theory among biologists and
chemists for the detection, synthesis, and analysis of knotted molecules (Fla-
pan, 2000). The impetus for this research is that molecules with nontrivial
topological attributes often display exotic chemistry. Such attributes have been
observed in currently known proteins. Taylor recently discovered a figure-of-
eight knot in the structure of a plant protein by examining 3,440 proteins using
a computer program (Taylor, 2000). Moreover, chemical self-assembly units
are being used to create catenanes, chains of interlocking molecular rings,
and rotaxanes, cyclic molecules threaded by linear molecules. Researchers
are building nano-scale chemical switches and logic gates with these struc-
tures (Bissell et al., 1994; Collier et al., 1999). Eventually, chemical computer
memory systems could be built from these building blocks.

171

172 10 The Linking Number Algorithm

10.1.1 Prior work

Catenanes and rotaxanes are examples of nontrivial structural tanglings. The
focus of this chapter is on computing the linking number, the link invariant de-
fined in Section 6.3. Haken (1961) showed that important knotting and linking
problems are decidable in his seminal work on normal surfaces. His approach,
as reformulated by Jaco and Tollefson (1995), forms the basis of many cur-
rent knot detection algorithms. Hass et al. (1999) showed that these algorithms
take exponential time in the number of crossings in a knot diagram. They also
placed both the UNKNOTTING PROBLEM and the SPLITTING PROBLEM in NP,
the latter problem being the focus of this chapter. Generally, other approaches
to knot problems have unknown complexity bounds and are assumed to take
at least exponential time. As such, the state of the art in knot detection only
allows for very small data sets.

10.1.2 Approach

The approach in this chapter is to model molecules by filtrations of
α-complexes, and detect potential tanglings by computing the linking num-
bers of the filtration. The linking numbers constitute a signature function for
the filtration. This combinatorial approach makes the same fundamental as-
sumption as in Chapter 2 that α-complex filtrations capture the topology of a
molecular structure. Given a filtration, we will use the spanning surface defi-
nition of the linking number for its computation. Consequently, we need data
structures for the efficient enumeration of co-existing pairs of cycles in differ-
ent components. We also need an algorithm to compute the linking number of
a pair of such cycles.

10.2 Algorithm

In this section, we present data structures and algorithms for computing the
linking numbers of the complexes in a filtration. As we only use canonical
1-cycles for this computation, we will refer to them simply as cycles. As-
sume we have a filtration K1,K2, . . . ,Km as input. As simplices are added, the
complex undergoes topological changes that affect the linking number: New
components are created and merged together, and new nonbounding cycles are
created and eventually destroyed. A basis cycle z with persistence interval
[i, j) may only affect the linking numbers of complexes Ki,Ki+1, . . . ,K j−1 in
the filtration. Consequently, we only need to consider basis cycles z′ that exist
during some subinterval [u,v) ⊆ [i, j) in a different component than z’s.

10.2 Algorithm 173

for each p-linked pair zp,zq with interval [u,v) {
Compute λ = |λ(zp,zq)|;
Output (λ, [u,v));

}

Fig. 10.1. Linking number algorithm.

Definition 10.1 (potentially linked) A pair of canonical cycles z,z′ in dif-
ferent components, whose persistence intervals have a nonempty intersection
[u,v), are potentially linked (p-linked). The interval [u,v) is the p-linking inter-
val for this p-linked pair of cycles.

Focusing on p-linked pairs, we get an algorithm with three phases. In the first
phase, we compute all p-linked pairs of cycles. In the second phase, as shown
in Figure 10.1, we compute the linking numbers of such pairs. The third and
final phase is trivial. We simply aggregate the contributions from the pairs to
find the linking number signature for the filtration.

Two cycles zp,zq with persistence intervals [ip, jp), [iq, jq) co-exist during
[r,s) = [ip, jp)∩ [iq, jq). We need to know if these cycles also belong to dif-
ferent components during some subinterval [u,v) ⊆ [r,s). Let tp,q be the mini-
mum index in the filtration when zp and zq are in the same component. Then,
[u,v) = [r,s)∩ [0, tp,q). The cycles zp,zq are p-linked during [u,v) �= ∅. In
the remainder of this section, we first develop a data structure for computing
tp,q for any pair of cycles zp,zq. We then use this data structure to efficiently
enumerate all pairs of p-linked cycles. Finally, we examine an algorithm for
computing λ(zp,zq) for a p-linked pair of cycles zp,zq.

10.2.1 Component Tree

To compute tp,q, we need to have a history of the changes to the set of compo-
nents in a filtration. There are two types of simplices that can change this set.
Vertices create components and are therefore all positive. Negative edges con-
nect components. To record these changes, we construct a binary tree called
a component tree by maintaining a union-find data structure for components
(Cormen et al., 1994). The leaves of the component tree are the vertices of the
filtration. When a negative edge connects two components, we create an inter-
nal node for the component tree and connect the new node to the nodes repre-
senting these components, as shown in Figure 10.2. The component tree has
size O(n) for n vertices. We construct it in time O(nA−1(n)), where A−1(n) is
the inverse of the Ackermann’s function, encountered earlier in Section 7.2.3.

174 10 The Linking Number Algorithm

21 54

6

7

3

Fig. 10.2. The component tree has the complex vertices as leaves and negative edges
as internal nodes. During construction, the tree exists as a forest.

Fig. 10.3. The augmented union-find data structure places root nodes in the shaded
circular doubly linked list. Each root node stores all active canonical cycles in that
component in a doubly linked list, as shown for the darker component.

Having constructed the component tree, we find the time the two vertices w,x
are in the same component by finding their lowest common ancestor (lca) in
this tree. We may utilize the optimal method by Harel and Tarjan (1984) to
find the lca’s with O(n) preprocessing time and O(1) query time. Their method
uses bit operations. If such operations are not allowed, we may alternatively
use the method of van Leeuwen (1976) with the same preprocessing time and
O(log logn) query time.

10.2.2 Enumeration

Having constructed the component tree, we use a modified union-find data
structure to enumerate all pairs of p-linked cycles. We augment the data struc-
ture to allow for a quick listing of all existing canonical cycles in each compo-
nent in Ki. Our augmentation takes two forms: We put the roots of the disjoint
trees, representing components, into a circular doubly linked list. We also store
all existing cycles in each component in a doubly linked list at the root node of
the component, as shown in Figure 10.3. When components merge, the root x1

of one component becomes the parent of the root x2 of the other component.
We concatenate the lists stored at the x1,x2, store the resulting list at x1, and

10.2 Algorithm 175

(a) Self-intersection (b) Touching (c) Passing through

Fig. 10.4. A surface self-intersection viewed from its side (a). We cannot resolve it as
the surface touching (b) or passing through itself (c).

eliminate x2 from the circular list in O(1) time. When cycle zp is created at
time i, we first find zp’s component in time O(A−1(n)), using find operations.
Then, we store zp at the root of the component and keep a pointer to zp with
simplex σ j, which destroys zp. This implies that we may delete zp from the
data structure at time j in constant time.

The algorithm to enumerate p-linked cycles is incremental. We add and
delete cycles using the above operations from the union-find forest, as the cy-
cles are created and deleted in the filtration. When a cycle zp is created at time
i, we output all p-linked pairs in which zp participates. We start at the root that
now stores zp and walk around the circular list of roots. At each root x, we
query the component tree we constructed in the last subsection to find the time
t when the component of x merges with that of zp. Note that t = tp,q for all
cycles zq stored at x. Consequently, we can compute the p-linking interval for
each pair zp,zq, as described at the beginning of this section. If the filtration
contains P p-linked pairs, our algorithm takes time O(mA−1(n)+ P), as there
are at most m cycles in the filtration.

10.2.3 Orientation

In Section 7.2.4, we showed how one may compute spanning surfaces sp,sq for
cycles zp,zq, respectively. To compute the linking number using our lemma,
we need to orient either the pair sp,zq or zp,sq. Orienting a cycle is trivial:
We orient one edge and walk around to orient the cycle. If either surface has
no self-intersections, we may easily attempt to orient it by choosing an ori-
entation for an arbitrary triangle on the surface and spreading that orientation
throughout. The procedure either orients the surface or classifies it as nonori-
entable. We currently do not have an algorithm for orienting surfaces with
self-intersections. The main difficulty is distinguishing between two cases for a
self-intersection: a surface touching itself and passing through itself, as shown
in Figure 10.4.

176 10 The Linking Number Algorithm

+ + +

− − −

u
sp
+

Fig. 10.5. Edges uv ∈ Stu,u ∈ sp,v �∈ sp are marked + or − depending on where they
end relative to the oriented Seifert surface sp.

10.2.4 Computing λ

I now give an algorithm to compute λ(zp,zq) for a pair of p-linked cycles zp,zq,
completing the description of the algorithm in Figure 10.1. I assume that sp,zq

are already oriented for the remainder of this subsection. We begin by subdi-
viding the complex via a barycentric subdivision, connecting the centroid of
each triangle to its vertices and midpoints of its edges and subdividing the tri-
angles and tetrahedra accordingly. This subdivision guarantees that no edge uv
will have both ends on a Seifert surface unless it is entirely contained in that
surface. This approach mimics the construction of regular neighborhoods for
complexes (Giblin, 1981). For a vertex u∈ sp, the edge property guaranteed by
subdivision enables us to mark each edge uv ∈ Stu,v �∈ sp as positive or nega-
tive, depending on the location of v with respect to sp. Figure 10.5 illustrates
this marking for a vertex. After marking the edges, we walk once around zq,
starting at a vertex not on sp. If such a vertex does not exist, then λ(zp,zq) = 0.
Otherwise, we create a string Sp,q of + and − characters by noting the marking
of edges during our walk. Sp,q has even length as we start and end our walk on
a vertex not on sp, and each intersection of zq with sp produces a pair of char-
acters, as shown in Figure 10.6. If Sp,q is the empty string, zq never intersects
sp and λ(zp,zq) = 0. Otherwise, zq passes through sp for pairs +− and −+,
corresponding to zq piercing the positive or negative side of sp, respectively.
Scanning Sp,q from left to right in pairs, we add +1 for each occurrence of
−+, −1 for each +−, and 0 for each ++ or −−. Applying the Seifert surface
theorem (Theorem 6.6 in Section 6.3.2), we see that this sum is λ(zp,zq).

10.2.5 Computing λ mod 2

If neither of the spanning surfaces sp,sq of the two cycles zp,zq is Seifert, we
may still compute λ(zp,zq) mod 2 by a modified algorithm, provided one sur-

10.2 Algorithm 177

− −

+ ++ +

+ −

zqsp
+

v

Fig. 10.6. Starting at v, we walk on zq according to its orientation. Segments of zq that
intersect sp are shown, along with their contribution to Sp,q = “+++++−−−”. We
get λ(zp,zq) = −1.

− −

+ + − −

− + −

zq

sp
−

sp
+

v

Fig. 10.7. The bold flip curve is the border of s+
p and s−p , the portions of sp that are

oriented differently. Sp,q = “ + +−−− +−−− ”, so, counting all +’s, we get
λ(zp,zq) mod 2 = 3 mod 2 = 1.

face, say sp, has no self-intersections. We choose an orientation on sp locally
and extend it until all the stars of the original vertices are oriented. This orien-
tation will not be consistent globally, resulting in pairs of adjacent vertices in
sp with opposite orientations. We call the implicit boundary between vertices
with opposite orientations a flip curve, as shown in bold in Figure 10.7. When
a cycle segment crosses the flip curve, the orientation changes. Therefore, in
addition to noting marked edges, we add a + to the string Sp,q every time we
cross a flip line. To compute λ(zp,zq) mod 2, we only count +’s in Sp,q and
take the parity as our answer.

If sp is orientable, there are no flip curves on it. The contribution of cycle
segments to the string is the same as before: +− or −+ for segments that
pass through sp, and ++ and −− for segments that do not. By counting +’s,

178 10 The Linking Number Algorithm

only segments that pass through sp change the parity of the sum for λ. There-
fore, the algorithm computes λ mod 2 correctly for orientable surfaces. For
the orientable surface in Figure 10.6, for instance, we get λ(zp,zq) mod 2 =
5 mod 2 = 1, which is equivalent to the parity of the answer computed by the
previous algorithm.

Discussion. One remaining question is that of orienting surfaces with self-
intersections. Using the current methods, we may obtain a lower bound signa-
ture for λ by computing a mixed sum: We compute λ and λ mod 2 whenever
we can to obtain the approximation. It is also possible to develop other meth-
ods, including those based on the projection definition of the linking number.
Regardless of the approach taken, pairs of potentially linked cycles must be
first detected and enumerated. The algorithms and data structures in this chap-
ter provide the tools for such enumeration.

We end this chapter with visualizations of complexes, their cycles, and span-
ning surfaces in Figure 10.8.

10.2 Algorithm 179

Fig. 10.8. Complex K1123 of the filtration for data set 1grm (top) has 1 component and
34 basis cycles. Complex K8168 of 1hck has 2 components and 17 cycles. Complex
K90000 of TAO (bottom) has 1 component and 237 cycles. In each case, the spanning
surfaces are rendered transparently.

Part Three

Applications

11

Software

I devote this chapter to a brief description of the implementation of some of
the algorithms in Part Two. After discussing the programming methodology, I
give an overview of the organization of the code and sketch some of the fun-
damental data structures. Finally, I introduce a software program, CView, for
viewing persistent simplicial complexes, homology cycles and their manifolds,
and Morse complexes of grid data.

11.1 Methodology

Computer science solves problems by translating them into the language of
very fast machines. We could claim that fast programs are the primary goal
of this field. Fast software enables a user to quickly scrutinize a problem,
observe patterns, gather data, and conjecture. There are two components to
fast software: efficient data structures and algorithms, grounded in theory, and
lean implementations, tailored to computer architectures. Knuth observes that
“the best theory is inspired by practice, and the best practice is inspired by
theory (Knuth, 1996).” I apply this observation not only to my work in gen-
eral, but also to implementations in particular. The theory of practice in com-
puter science has provided numerous abstractions to tackle the complexity of
programming, from high-level languages, compilers, and interpreters, to the
recent advent of “patterns.” Most of these abstractions, however, depend on
extra levels of indirection, consume memory for the services they provide, and
yield bloated and slow programs. We can only realize the goal of fast software
by selective use of the theory of programming, constructing enough scaffold-
ing to manage complexity without sacrificing performance.

Consequently, I use ideas from Object-Oriented Programming (OOP)
(Meyer, 2000) and construct Abstract Data Types (ADTs) (Roberts, 1997).
Rather than implementing in an OOP language, I use the ANSI C program-

183

184 11 Software

ming language, which gives me great control over the design of a program,
yielding fast and lean programs. I simulate classes by using function pointers
and break walls of abstractions when it boosts performance. The code, how-
ever, is still divided into about 30, mostly independent, reentrant, functional
modules.

My design philosophy is also deeply affected by the UNIX approach to hav-
ing many utility programs instead of a large monolith. The interactive program
CView simply wraps a graphical interface on the utility programs using the
scripting language tcl and its interface library tk.

11.2 Organization

Having described the programming methodology, I give a brief description of
the organization of the code and the associated tools in this section.

11.2.1 Libraries and Packages

I use a number of existing libraries and program packages. To generate alpha-
shape filtrations, I utilize the alf library by Ernst Mücke. This library is
robust and relatively fast. Unfortunately, the code modules in the library are
neither independent nor reentrant, as globals abound. In addition, obfuscating
macros, as well as abuse of obscure features of C, make the code unreadable
and ANSI noncompliant. To limit these effects, my code interacts with the
alf library through a a single module, alphashape, which provides the
interface that my filtration module requires. My implementation of the quad
edge data structure follows Lischinski (1994) but is also affected by the origi-
nal implementation by Stolfi (Guibas and Stolfi, 1985).

11.2.2 New Code

In addition to using the existing libraries, I have written around 23,000 lines
of C and tcl for this project. About 15,000 lines are organized into 27 mod-
ules and 4 header-only files. Table 11.1 lists and describes the modules. The
header files define the boolean type, the simplex and Morse data structures, and
combine the linear algebra routines for convenience. Each module is tested in-
dependently, using an additional 3,500 lines of C.

11.2 Organization 185

Table 11.1. Code modules. The modules are grouped according to topic.
Each program, however, utilizes modules from all groups.

filtration filtration ADT
alphashape alpha-shape filtration
grid grid filtrationPERSISTENCE
unionfind union-find with representatives
cycles cycle search, cycles and manifolds
pbetti reordering algorithms and Betti numbers

quadedge quad-edge data structureMORSE
manifolds cell structure for Morse complexesCOMPLEX
paths using manifolds for Morse complexes

ufnc union find with no path compression
LINKING auguf augmented union find
NUMBER linknr λ computation

scan interval scanning

vector 3 and 4 dimensional vectorsLINEAR
matrix 3 by 3 and 4 by 4 matricesALGEBRA
quaternion quaternion routines

cview new tcl/tk routines
complex simplicial complex routines
light lightingCVIEW
camera scene and camera
color colors
trackball trackball interface

collision collision/list length data gathering
histogram histogram ADT

UTILITY utility memory allocation utilities
timer small timer ADT
times timing data gathering module

11.2.3 Tools

The modular code design allows me to easily craft programs for code devel-
opment, testing, timing, quantitative analysis, and automatic data generation.
Table 11.2 describes 25 of the tools I have developed to this day, using about
2,700 lines of C. The group of ESSENTIAL tools is used by CView for the
computation of persistent complexes and quasi Morse complexes.

186 11 Software

Table 11.2. Tools and their descriptions

mkcyc writes cycles and manifolds in .cyc
mgf writes grid filtration in .gf file

ESSENTIAL mkpath writes paths in .path file
mkprs writes persistence in .prs file
terrain topological maps, as in Figure 8.10

bettigraph graphs, as in Figure 8.8
funpgm function images, as in Figure 12.9(a)

PRESENTATION gridpgm grid images as in Figure 12.9(b–e)
morsegraph graphs of number of critical points
ppmdiff difference images in Figure 12.8

canonize canonization data in Table 12.9
conflict conflict data in Table 12.13
drawufnc PSTricks drawings of ufnc trees
gengrid random grids

UTILITIES gensurf synthetic surfaces
morse number of criticals in Table 12.15
pers persistence data in Table 12.8
reorder reordering data in Table 12.13
simplexnum simplex numbers, as in Table 12.1

filterlength experiment on filtrations
findtunnel experiment on data set 1grm
phistogram persistence histogramsEXPERIMENTAL
printfilter ASCII filtration table
scatterplot persistence experiment
trace persistence experiment

11.3 Development

My programming environment is comprised of GNU tools on a UNIX operat-
ing system, currently Solaris 8. I utilize gcc with the ansi and pedantic
options for strict ANSI compliance. I also use gdb for debugging and gprof
for profiling. Each module has its own version control system using RCS, as
it is developed and tested independently. Once a module is ready, I archive it
using ar and ship it to a shared library directory, where it is linked with all
current programs.

11.3.1 Testing

I have found that the best testing method for this project is the brute force
method. Whenever a filtration is modified (such as by reordering), it is thor-
oughly tested. Similarly, when a quasi Morse complex is computed, it is fully

11.3 Development 187

Filter:
4 Vertex (4+, 0-)
6 Edge (3+, 3-)
4 Triangle (1+, 3-)
1 Tetrahedron (0+, 1-)

--
Index Number TIndex Type What Link # Link Index Faces

--
0 0 1 Vertex (++) Not Linked
1 1 2 Vertex (++) 4 4
2 2 3 Vertex (++) 5 5
3 3 4 Vertex (++) 7 7
4 4 8 Edge (--) 1 1 (0 1)
5 5 3 Edge (--) 2 2 (1 2)
6 6 2 Edge (++) 10 10 (2 0)
7 7 10 Edge (--) 3 3 (3 2)
8 8 6 Edge (++) 11 11 (3 0)
9 9 7 Edge (++) 12 12 (1 3)

10 10 2 Triangle (--) 6 6 (4 5 6)
11 11 3 Triangle (--) 8 8 (8 7 6)
12 12 4 Triangle (--) 9 9 (9 5 7)
13 13 1 Triangle (++) 14 14 (4 9 8)
14 14 1 Tetrahedron (--) 13 13 (13 10 11 12)

Fig. 11.1. Output of printfilter for a tetrahedron data set. The program gives the
number of positive and negative simplices of each type and lists the simplices in the
filtration ordering. Each simplex has a unique cumulative index, as well as a unique
index for its type.

tested for structural integrity. I eliminate these tests from the final optimized
modules through C preprocessor directives.

Another powerful tool for testing is the printfilter tool I developed
early in the project. I show the output of printfilter for a small data set
containing the vertices of a tetrahedron in Figure 11.1. By simply printing two
filtrations and comparing the text using the standard UNIX utility, diff, I
was able to quickly find discrepancies and identify the problematic simplices.
I could then localize the problem within gdb and eliminate the bug. This
method enabled fast implementation and verification of the reordering algo-
rithms. Finally, because of the nature of the pairing algorithm, it is hard for an
implementation to be incorrect if it pairs simplices for a large data set without
encountering problems. Therefore, an easy method for testing implementa-
tions of the pairing algorithm was by simply using large data sets as input.

11.3.2 Optimization

I compile all modules with the O3 and funroll-loops optimization op-
tions of gcc. My testing paradigm allows me to completely redesign and
reimplement modules within the project. Each time, I use data from the previ-
ous implementation to verify the new code. I give a case study for persistence
computation in this section.

Figure 11.2 displays graphs of the running times of two different implemen-
tations of the persistence algorithm. These timings were done on my previous

188 11 Software

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07

T
im

e
(s

ec
on

ds
)

Number of Simplices

1
2
C

BSD

Fig. 11.2. Running time in seconds for computing persistence without union-find. Im-
plementations (1) and (2) are linked with mapmalloc, and (C) and (BSD) are linked
with malloc and bsdmalloc, respectively.

desktop computer, a Micron PC with a 233 MHz Pentium II processor and 128
MB RAM, running Solaris 8. As the graphs illustrate, the first implementation
(1) is relatively fast. For large data sets, however, the memory consumption
generates page faults and impairs the performance. For the second implemen-
tation, I reduced the size of the simplex data structure from 24 bytes to 16 bytes
and recomputed information that I no longer store. I also eliminated dynamic
memory allocation during the operation of symmetric difference, where lists
representing cycles are merged. Instead, I computed an upper bound on the
size of the lists and allocated several temporary arrays. The resulting imple-
mentation (2) is up to 26 times faster, as it consumes less memory and exhibits
better cache coherency.

Both implementations use the mapmalloc memory allocation library,
which is also used by the alpha-shapes software. Mücke seems to favor this
library because of the additional functionality it provides. My approach is to
minimize dynamic memory allocation with simple customized memory man-
agers within each module. As such, I do not require intelligent memory alloca-
tors. I experimented with alternate libraries: the standard C malloc and the
BSD UNIX bsdmallocmemory allocation libraries. Both libraries boost the
performance of the persistence algorithm by another factor of three, as shown

11.3 Development 189

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07

T
im

e
(s

ec
on

ds
)

Number of Simplices

1
2
C

BSD

Fig. 11.3. Running time in seconds for computing persistence with union-find. Im-
plementations (1) and (2) are linked with mapmalloc, and (C) and (BSD) are linked
malloc and bsdmalloc, respectively.

in Figure 11.2. In total, the fastest implementation is up to 135 times faster
than the initial implementation. If we do not need descriptions of homology
cycles and their manifolds, we may use union-find for computing persistence
pairs. The fastest implementation is up to 16 times faster than my initial im-
plementation, as shown in Figure 11.3.

My other ventures in optimization were not as successful as that of the per-
sistence algorithm. An alternate implementation of the filtration ADT that
encapsulated the data better by using a list ADT was 100 times slower than my
current implementation. I also implemented what I considered to be a clever
algorithm for finding the least common ancestor in a union-find tree. But the
implementation ran twice as slow as the simple two-traversal scheme. The ba-
sic lesson learned here is that caches play a significant role in the performance
of algorithms. The processor-memory performance gap has widened in recent
years (Hennessy and Patterson, 1989), making it even more critical to supply
the processor with the data it needs from fast local caches. Cache-coherent
algorithms perform much faster than sophisticated algorithms that exhibit ran-
dom memory access.

190 11 Software

typedef struct _simplexT {
struct _simplexT *next;
int cIndex;
int link;
int filterloc;

} simplexT;

Fig. 11.4. The simplex data structure

11.3.3 Portability

All the code presented in this chapter is portable. By ensuring strict compliance
with ANSI C, the libraries can easily be recompiled on other platforms. The
packages I use, such as OpenGL and tcl/tk, are all platform independent.
I have already compiled the programs on two different platforms successfully
without any difficulties or code changes.

11.4 Data Structures

In this section, I briefly discuss the fundamental data structures used in my
implementations. In Chapter 2, I introduced filtrations as the primary input to
all the algorithms in this thesis. Naturally, the fundamental data structures store
filtrations of simplices. Throughout this section, I assume slight familiarity
with the C language. The language is quite intuitive, however, to a reader who
is familiar with any programming language.

11.4.1 Filter

The primary data structure is filterT, and it stores both the filtration or-
dering and the filtration. Initially, we called a filtration ordering a filter. We
then realized that the name was not appropriate for the mathematical setting, as
“filter” already had an alternate meaning. I still use it for the implementations,
however, out of habit and convenience. To describe a filter, we must know
what a simplex is. Figure 11.4 displays the declaration of the structure for a
simplex. Before describing a simplex, let us first look at the filterT data
structure, as declared in Figure 11.5 A filter is like a virtual class, implemented
in C, with concrete classes of filtrations derived from it. A filter concerns itself
only with the pairing and reordering of the simplices. Topological and geo-
metrical functionalities are pushed down to the derived “classes” through the
topology pointer, function pointers not given in the figure, and the cIndex
field of simplices. A simplex also stores the index of its persistence match in

11.4 Data Structures 191

typedef enum {kAlphaShapeFilter, kGridFilter}
filterType;

typedef struct _filterT {
simplexT **structured;
simplexT **simplices;
simplexT *simplexArray;
int filterLen;
int numSimplices;
/* Topology */
void *topology;
/* Topology Function Pointers*/
/* Geometry Functionality */
filterType type;

} filterT;

Fig. 11.5. An excerpt of the filtration data structure filterT.

10

210

2

5
filterloc

link

cIndex

link

cIndex

next

filterloc

link

cIndex

next

43

simplices

next

3 −1

filterloc

link

filterloc

link

cIndex

next

filterloc

1 7 3 2 9 17

4−1 2 1

0

0

cIndex

0 1 1 1 2

structured

simplexArray

next

1 2
filterloc

link

cIndex

next

Fig. 11.6. A diagram of filterT for a small filtration.

its link field and its own current location in the filtration in its filterloc
field.

This design is very flexible, allowing different topological and geometric
representations for the filtered complex. The simplices are stored in the three
arrays: structured, simplices, and simplexArray. Figure 11.6
shows the filter for a small filtration. The filtration diagrammed has six sim-
plices, so numSimplices is six. The first two simplices arrive at time 0, the
next three at time 1, and the last at time 2. So, the filtration has filterLen
equal to 3. The structured filtration is laid flat in simplexArray, accord-
ing to the filtration ordering. Note that, as of now, the next pointers of the

192 11 Software

simplices in simplexArray are redundant, as the information they contain
is implicit in their order in the array and the pointers in structured. The
next pointers will be necessary for reordering the filtration, however. Also, if
only a single simplex enters at a time, structured is not necessary, so it is
not used.

A reordering algorithm changes the next pointers, as well as the point-
ers in simplices to derive a reordered filtration. The algorithm always
recovers the initial filtration before reordering. The recovery is through ac-
cessing structured, or assuming that a single simplex enters at each time
slot whenever structured is NULL.

Topology To compute persistence, filterT requires some topological func-
tionality from the derived ADTs. Recall from Section 7.2.1 that the persistence
algorithm searches for the youngest simplex in a list of positive simplices Γ.
Initially, Γ is a subset of the boundary of a negative simplex. To compute Γ, we
need a routine that gives us the faces of a simplex. We also need both the faces
and cofaces of a simplex for the union-find algorithm. To identify simplices,
the derived ADTs must assign a unique index to each simplex and store it in
the cIndex (connectivity index) field. Each derived ADT will use its own
scheme to compute this index.

Geometry To visualize persistent complexes, filterT also requires some
geometric functionality from the derived ADTs. There are two main routines:
an initialization procedure and a routine to draw a simplex. This design has the
drawback that rendering code is included in each derived ADT. However, the
design allows each type of filtration to optimize simplex rendering.

11.4.2 Alphashape

The alphashape filtration provides topological and geometric primitives for
filterT by using Mücke’s alf library. The module encapsulates the edge-
facet data structure and the filtration, as represented by the master list. The
simplices store an index into the master list in the cIndex field. The module
utilizes edge-facet primitives to quickly compute the faces and cofaces of a
simplex, when required.

To render simplices efficiently, alphashape takes advantage of the Vertex
Array functionality in OpenGL (Woo et al., 1997). The coordinates of vertices
are stored in a single array in the alf library. In its initialization routine, the
module activates the array through a glVertexPointer call and computes

11.5 CView 193

the triangle normals. To draw a simplex, the module first computes the sim-
plex’s vertices using the edge-facet data structure and then renders the simplex
through glArrayElement calls. This is the most efficient rendering method
for rendering simplices for the module data structures.

11.4.3 Grid

The grid module provides topological and geometric primitives for gridded
terrains. The module takes advantage of the uniform connectivity in grid struc-
tures and does not store triangulated grids explicitly. Rather, it uses a scheme
to assign unique indices to simplices, which they store in their cIndex fields.
The indexing scheme for a triangulated grid is rather simple, but the additional
vertex at negative infinity complicates matters by introducing special cases at
the boundary of the grid. The resulting complexity doubles the code size. In
hindsight, it is not obvious to me whether the savings in memory are worth the
additional code complexity and development time.

To render a simplex, the module creates the implicit simplices on the fly,
through glVertex3fv calls to OpenGL. Once again, the method represents
an efficient rendering method for the module.

11.4.4 Other Filtrations

It should be clear that the flexible design of the filterT data structure al-
lows for other topologies to be represented easily. In particular, I am interested
in computing Morse complexes for triangulated irregular networks (TINs)
which are often used to represent terrains. I am also interested in exploit-
ing other implementations of alpha-shapes that might offer better performance
than Mücke’s implementation. Regardless of the representation, the uniform
interface of filterT allows for new filtration types to be plugged in. Then,
we can compute persistence and reorder the filtration with the pbetti mod-
ule, and visualize the complexes with CView.

11.5 CView

In this section, I introduce a software program for viewing persistent com-
plexes and quasi Morse complexes called CView (pronounced “See View”) for
complex viewer. I use the graphics library OpenGL (Woo et al., 1997) for ren-
dering simplices. To call OpenGL routines within tcl, I employ Brian Paul
and Ben Bederson’s widget, Togl (Paul and Bederson, 2003). I am indebted

194 11 Software

Fig. 11.7. The CView main, map, and cycle windows, visualizing bearing.

to Brian Curless for sharing with me his code for plyview, from which I
learned a great deal.

CView is a tcl/tk script with extra commands for manipulating com-
plexes. The user may write additional scripts in tcl for generating data, im-
ages, and movies. Figure 11.7 shows the three main windows of CView.

11.5.1 Main Window

The main window of CView includes a menu bar, a canvas, four panels, and
a quit button. The menu bar consists of three menus: Complex, Tools, and
About. The Complex menu allows the user to load any type of supported
filtration by data set name. The Tools menu enables the user to activate and
deactivate the cycle window, toggle rendering the bounding box for the object,
or reset the view point. The About menu simply invokes a message box with
information about the program.

Currently, the user may load an alpha-shape or a grid filtration. CView then
checks for the required files and generates them if needed:

1. Filtration: If there is no filtration file for the data set, CView generates
and stores the filtration using utilities. For alpha-shape data sets, CView
employs delcx and mkalf (utilities from the alpha-shapes software).
For grid filtrations, CView utilizes mkgf.

11.5 CView 195

2. Persistence and Cycles: If persistence and cycle files do not exist, or
the filtration was just generated, CView uses mkcyc to compute and
store this information. mkcyc has an option to also store persistence
information.

3. Topological Maps: If the triangle and square topological maps are not
available, or the filtration was just generated, CView uses terrain to
generate these images.

Having generated the required information using the utility programs, CView
loads a complex and uses a run-time library to generate display lists for fast
rendering. I have taken great care to only regenerate display lists when needed.
However, all reordering, Betti number computation, and display list generation
is done on the fly. The object is rendered in the large canvas area that dominates
the main window. The user may zoom, translate, or rotate the object using the
mouse.

Panels. There are four panels in the main window for user selection and data
presentation:

• Simplices: This panel allows the user to select the rendered simplices. Sim-
plices are divided into three groups: singular, regular, and interior (Edels-
brunner and Mücke, 1994). A simplex is interior if it is not on the boundary
of the complex. Otherwise, it is singular, when none of its cofaces are
present in the complex, or regular. The program renders singular simplices
and regular triangles by default, as these are the only simplices that may be
observed.

• Reordering: The user may select the method of reordering from this panel.
The pseudo-triangle reordering algorithm is the default method, because of
the study in Section 12.4.1.

• Miscellaneous: The user may elect to see positive and negative simplices in
sea-green and magenta, respectively, using the “Mark?” checkbox. The user
may also select the last simplices added to be rendered in orange using the
“Last?” checkbox. The latter option is useful to view the effect of reordering
on a filtration, as in Figure 11.8(a).

• Data: This panel gives information about the current complex. It lists the
current complex index l and persistence p, along with the Betti number βl,p

or γl,p, depending on which topological map is selected in the map window.

196 11 Software

Fig. 11.8. Complex K4025,70852 of bearing.

11.5.2 Map Window

The map window is the primary navigation tool in CView. It displays either the
triangle or the square topological map, corresponding to the Betti and square
Betti numbers of the filtration. The user may use the radio buttons at the bottom
of the window to switch between the maps. The user may also select new
values for index l and persistence p by clicking on the map or, alternatively, by
using the scrollbars or even directly inputting the values in the shell window.
CView displays a cross-hair at the current point (l, p) on the topological map.

11.5.3 Cycle Window

The cycle window is available through the Tools menu from the main win-
dow. It allows visualization of cycles and their associated manifolds in any
dimension. The manifolds are visualized as transparent paths, membranes, or
volumes, as shown in Figure 11.8(b). Currently, CView visualizes noncanon-
ical cycles, as they are much smaller than canonical cycles (see Table 12.9 for
details). It is easy to add canonization, and I plan to add it as an option in the
interface. The user may either view a single cycle by using the scrollbar or all
cycles by using the “All?” checkbox. Naturally, the scrollbar is disabled when
the “All?” checkbox is selected.

11.5 CView 197

Fig. 11.9. CView Morse window.

11.5.4 Morse Window

Whenever a grid filtration is loaded into the program, CView computes the
quasi Morse complex and opens an additional window containing information
and control interface for the complex, as shown in Figure 11.9. The window
has three panels and a scrollbar:

• Data: This panel lists the number of Morse critical and regular points and
allows for user selection for visualization.

• Visualization: This panel enables the user to select visualization of critical
points and arcs. It also contains an “All?” button, similar to the one in the
CView cycle window.

• Simplification: This is an experimental panel for simplifying the surface
using persistence.

The Morse window showcases the flexibility of CView. As CView is a script, it
is easy to make modifications to the program and add features. The interested
user may design her own interfaces for the intended application. I plan to
include more tcl commands for manipulating complexes in the near future.

12

Experiments

In this chapter, we examine the feasibility of the algorithms in Part Two of
this book using the implementations described in the last chapter. To make
our experiments meaningful, we use real-world data from a variety of different
sources, in a variety of different sizes. We time each algorithm to examine
its running time behavior in practice. We also gather statistics on significant
structural information contained in the data, such as number of conflicts or
collisions in the persistence algorithm.

We begin by introducing the three-dimensional data for α-complex filtra-
tions in Section 12.1. This is the data we use for timings and experiments on
the persistent algorithm for Z2 coefficients in Section 12.2, topological simpli-
fication in Section 12.4, and the linking number algorithm in Section 12.6. We
introduce alternate data for the persistence algorithm for fields in Section 12.3
as well as the Morse-Smale complex algorithm in Section 12.5. When appro-
priate, we also discuss additional implementation details not included in the
last chapter.

12.1 Three-Dimensional Data

In Chapter 1, we motivated the study of topological spaces through a few di-
verse examples. It is appropriate, therefore, that the experimental data be from
disparate sources. We use data that range in scale from nanometers to cen-
timeters. The data will include proteins and inorganic molecules, resolved
molecular structures, designed synthetic molecules, acquired samples from
real world objects, and sampled mathematical functions. All data, however,
will be treated using the unified approach described in Chapter 2: The data are
weighted or unweighted points, generating α-complex filtrations for the study
of the spaces they describe.

198

12.1 Three-Dimensional Data 199

Table 12.1. Proteins data sets, identified with their PDB ID code. In order,
the proteins are: gramicidin A, sperm whale myoglobin, human CDC25b,

HIV-1 protease, and human cyclin-dependent kinase.

PDB # k-simplices
ID 0 1 2 3

total

1grm 318 2,322 3,978 1,973 8,591
1mbn 1,216 9,251 16,005 7,969 34,441
1qb0 1,417 10,743 18,586 9,259 40,005
1hiv 1,532 11,563 19,991 9,959 43,045
1hck 2,370 17,976 31,135 15,528 67,009

12.1.1 Proteins

Proteins are the fundamental building blocks and functional units of life forms.
A protein is a linear heteropolymer macromolecule composed of amino acids.
These amino acid residues connect by peptide bonds to form the backbone for
the protein. The rest of a residue hangs off the backbone, forming a side chain.
A protein generally folds into a globular structure because of the interaction
between the many forces on the backbone and side chains, including electro-
statics, van der Waals forces, hydrogen bonds between different residues, hy-
drophobic forces, and entropy (Creighton, 1984). A protein functions through
its shape, and consequently there is significant interest in discovering the prop-
erties of their shapes. Table 12.1 lists the proteins we explore in this book,
along with the size of their Delaunay triangulations. The proteins are taken
from the Protein Data Bank (Berman et al., 2000; RCSB, 2003), but we have
modified them by removing water molecules and ligands. There is consider-
able ambiguity in assigning radii to atoms. We use Jie Liang’s pdb2alf to
convert the proteins to weighted balls and the input to alpha-shapes. Finally,
a PDB file may have multiple models in the same file, and we use only one
model in each case.

We may visualize a protein with balls, representing atoms, and sticks, repre-
senting covalent bonds. In Figure 12.1(a), the pentagonal and hexagonal rings
of Tryptophan (an amino acid) are clearly visible as side chains of Gramicidin
A. However, researchers have developed alternate visualization techniques for
displaying the structure of proteins. The primary secondary structures exhib-
ited by proteins are helices called α-helices and sheet-like structures called β-
sheets. In Figure 12.1(b), we see the eight α-helices of the sperm whale myo-
globin as its secondary structure. The symmetric structure of the two chains

200 12 Experiments

(a) Gramicidin A, visual-
ized with balls and sticks

(b) Myoglobin, visualized
with ribbons

(c) The molecular sur-
face of CDC25b

(d) Cartoon of HIV-1 protease (e) The van der Waals model of the ki-
nase, colored according to residue

Fig. 12.1. Proteins in Table 12.1, visualized using the Protein Explorer (Martz, 2001).

of HIV-1 protease is manifest in its cartoon drawing in (d), where the arrows
orient the secondary structures. We may also also visualize the globular struc-
ture of proteins using the molecular surface (c) or the van der Waals model (e),
as before. These protein secondary structures, in turn, form tertiary and qua-
ternary structures, which are used by researchers to devise human-defined or
algorithmic classifications of proteins (Holm and Sander, 1995; Murzin et al.,
1995; Orengo et al., 1997) and construct hierarchies (CATH, 2003; FSSP,
2003; SCOP, 2003).

12.1.2 Zeolites

Zeolites are three-dimensional, microporous, crystalline solids. They occur
as natural minerals, but most are produced synthetically for commercial pur-

12.1 Three-Dimensional Data 201

Table 12.2. Zeolites, identified by their three-letter codes.

k-simplices
0 1 2 3

total

SOD 324 2,253 3,772 1,842 8191
LTA 1,296 8,471 14,168 6,992 30,927
FAU 1,296 9,588 16,420 8,127 35,431
KFI 1,296 9,760 16,788 8,323 36,167
BOG 1,296 11,401 20,098 9,992 42,787

Fig. 12.2. Zeolites in Table 12.2. A single complex in the filtration for a zeolite is
rendered.

poses (Zeolyst International, 2003). Zeolites contain regular frameworks of
aluminum and silicone atoms, bound together through shared oxygens atoms.
Outside this framework, zeolites have cavities and channels that can host cations
(positively charged ions), water, or other molecules. Consequently, zeolites
are very effective desiccants and can hold up to 25% of their weight in water.
Zeolites can also be shape-selective catalysts through their different pore and

202 12 Experiments

channel sizes, and are used as such for petroleum refining and synthetic fuel
and petrochemical production. The highest volume use for zeolites is, how-
ever, in detergents and water softeners, where they exchange sodium ions for
calcium and magnesium ions present in the water.

The topology of a zeolite clearly determines its function, so zeolites pro-
vide ideal spaces for explorations using the algorithms in this book. Table 12.2
lists the zeolites we have selected as data because of their topological proper-
ties. Zeolites are identified with mnemonic three-letter codes (IZA Structure
Comission, 2003). Figure 12.2 displays specific complexes from the filtrations
of the zeolites.

12.1.3 Surfaces

Surfaces constitute another type of space that we explore in this book. Real-
life objects are often sampled using input devices, such as a laser scanner.
The surfaces are then reconstructed using acquired and estimated connectivity
information (Curless and Levoy, 1996; Turk and Levoy, 1994). Recently, there
was a flurry of theoretical activity in this area by computational geometers,
starting with the Crust algorithm of Amenta and Bern (1999). Most surfaces
examine enclose large voids, and we may look for these voids as part of our
examination. Table 12.3 lists the surfaces we will use for my experiments. The
data set torus is synthetically generated by Ernst Mücke. The other surfaces
are from The Stanford 3D Scanning Repository (Stanford Graphics Laboratory,
2003). The surfaces are rather large, generating a lot of simplices in the full
Delaunay triangulation. So, we decimate them to the size given in the table. We
then discard the connectivity information and retain the coordinates as points.
Figure 12.3 displays renderings of the surfaces in Table 12.3.

12.1.4 Miscellaneous

In addition to the spaces already described, we use the data sets listed in Ta-
ble 12.4 for experiments. The data sets are as follows:

• hopf contains contains points regularly sampled along two linked circles.
The resulting filtration contains a complex that is a Hopf link.

• möbius contains regularly sampled points along the boundary of a Möbius
strip, which is a nonorientable 2-manifold with a single connected boundary,

• bearing is a nano-bearing, constructed from atoms, which we received from
Ralph Merkle.

12.1 Three-Dimensional Data 203

Table 12.3. Surface data. The numbers in the names of the Buddha and
dragon data sets indicate the decimation percentage.

k-simplices
0 1 2 3

total

torus 256 1,706 2,760 1,309 6,031
bunny 34,834 274,701 478,236 238,368 1,026,139
buddha10 54,262 438,134 766,893 383,020 1,642,309

dragon1 4,443 32,111 55,232 27,563 119,349
dragon10 43,714 348,645 609,345 304,413 1,306,117
dragon20 87,170 704,806 1,234,422 616,785 2,643,183

(a) Torus (b) Bunny

(c) Buddha (d) Dragon

Fig. 12.3. Original surfaces used to generate data sets in Table 12.3. We used Brian
Curless’s plyview for visualization.

204 12 Experiments

Table 12.4. Miscellaneous data.

k-simplices
0 1 2 3

total

hopf 100 1,752 3,240 1,587 6,679
möbius 100 2,809 5,331 2,621 10,861
bearing 2,881 24,993 44,042 21,929 93,845
TAO 7,774 60,675 105,710 52,808 226,967
bone 42,311 346,664 608,445 304,091 1,301,511

• TAO is a molecular tile composed of crossover DNA strands, which we
received from Thomas LaBean (LaBean et al., 2000). It is used for DNA-
based computation.

• bone is a sampled iso-surface of a cube of microscopic human bone. The
volume data were provided by Françoise Peyrin from CNRS CREATIS in
Lyon, and were issued from Synchrotron Radiation Microtomography from
the ID19 beamline at ESRF in Grenoble. Dominique Attali generated the
iso-surface that we sampled.

While bone is a surface data set, it does not have the characteristics of surfaces
introduced in the last section, as it does not enclose large volumes. We show
renderings of these data sets in Figure 12.4.

12.2 Algorithm for Z2

Having described the three-dimensional data, we now begin examining the
persistence algorithm over Z2 coefficients. While the algorithm has O(m3)
running time, we show that it is extremely fast in practice.

12.2.1 Timings

We only time and present the portion of the software that is directly related to
computing persistence. In particular, we do not time the construction of the
Delaunay complex or the α-shape filtration. All timings in this section were
done on a Sun Ultra-10 with a 440 MHz UltraSPARC IIi processor and 256
megabyte RAM, running Solaris 8. Table 12.5 distinguishes four steps in the
computation: marking simplices as positive or negative, and adding k-cycles
for k = 0,1,2. Recall that the computation of persistence can be accelerated
for k = 0,2 by using a union-find data structure. As the times show, this im-
provement subsumes adding 0- and 2-cycles in the marking process, shrinking

12.2 Algorithm for Z2 205

Fig. 12.4. Miscellaneous data used.

the time for these to steps to essentially nothing. Figure 12.5 graphs the total
time for the persistence algorithm, with and without the union-find speedup,
against the number of simplices in a filtration. The graph shows that the com-
putation time is essentially linear in the number of simplices in the filtration.
This is substantially faster than the cubic dependence proved in Section 7.2.3.
Of course, we need to distinguish worst-case analysis from average running
time. After accelerating with union-find, the slowest portion of the algorithm
adds 1-cycles, which is still O(m3) in the worst case.

12.2.2 Statistics

The cubic upper bound in Section 7.2.3 followed from the observation that the
k-cycle created by σi goes through fewer than pi collisions, and the length of
its list built up during these collisions is less than (k+2)pi. We may explain the
linear running time in Figure 12.5 by showing that the average number of col-

206 12 Experiments

Table 12.5. Running time in seconds for computing persistence pairs for the
data sets, sorted by their size.

add k-cycles totalsize mark
0 1 2 w/o UF w UF

torus 6,031 0.02 0.00 0.01 0.01 0.04 0.02
hopf 6,679 0.02 0.00 0.03 0.00 0.05 0.05
SOD 8,191 0.02 0.01 0.02 0.00 0.05 0.05
1grm 8,591 0.03 0.00 0.02 0.01 0.06 0.04
möbius 10,861 0.04 0.00 0.04 0.00 0.08 0.07
LTA 30,927 0.10 0.01 0.08 0.02 0.21 0.17
1mbn 34,441 0.11 0.01 0.10 0.02 0.24 0.21
FAU 35,431 0.12 0.01 0.10 0.02 0.25 0.22
KFI 36,167 0.11 0.01 0.09 0.02 0.23 0.21
1qb0 40,005 0.14 0.01 0.11 0.03 0.29 0.25
BOG 42,787 0.14 0.01 0.12 0.02 0.29 0.25
1hiv 43,045 0.14 0.01 0.12 0.03 0.30 0.27
1hck 66,993 0.24 0.01 0.19 0.05 0.49 0.43
bearing 93,845 0.35 0.02 0.28 0.07 0.72 0.62
dragon1 119,349 0.43 0.03 0.35 0.12 0.93 0.78
TAO 226,967 0.87 0.06 0.73 0.19 1.85 1.59
bunny 1,026,139 4.44 0.31 3.71 8.63 17.09 8.16
bone 1,301,511 6.04 0.40 4.77 1.33 12.54 10.81
dragon10 1,306,117 5.76 0.41 4.68 11.86 22.71 10.44
buddha10 1,642,309 7.64 0.53 6.53 4.64 19.34 14.11
dragon20 2,643,183 12.32 0.91 10.42 51.75 75.40 22.47

lisions and the average list length are both nearly constant, and much smaller
than the trivial upper bound of the length of the filtration. Tables 12.6 and
12.7 provide strong evidence for this argument. Table 12.7 does not include 0-
cycles, as every 0-cycle is represented by a list of length 2. Also, the algorithm
only needs to track the positive simplices, so the negative simplices are not
stored in the cycle lists, giving us memory and time savings. While the maxi-
mum number of collisions and list lengths can get quite high, the averages are
generally small numbers. In other words, the algorithm performs linearly on
all the data presented here. Recall that the number of collisions and the length
of lists is bounded from above by the persistence of cycles. Table 12.8 shows
that the average persistence is considerably larger than the average number of
collisions and list length, however.

Finally, Table 12.9 shows that canonical cycles and their spanning manifolds
are up to two orders of magnitude larger than the cycles in the noncanonical
basis computed by the persistence algorithm. We will only use canonization

12.2 Algorithm for Z2 207

 0.01

 0.1

 1

 10

 100

 1000 10000 100000 1e+06 1e+07

T
im

e
(s

ec
on

ds
)

Number of Simplices

w/o UF
w UF

Fig. 12.5. Graph of total computation time from Table 12.5, with and without union-
find.

when we need the full description of canonical cycles. For example, we will
need canonical 1-cycles for computing the linking number. For this descrip-
tion, the persistence algorithm must also store the negative simplices for the
cycle lists, increasing its memory usage and decreasing its performance. The
much larger canonical cycles consume a lot of storage, slowing down the al-
gorithm even further. We do not generate statistics for the five largest datasets
as their memory requirements eclipsed the computer’s memory by a few fold,
reducing the program to thrashing.

12.2.3 Discussion

The discrepancy between the worst-case time analysis and the experimental
results is naturally puzzling. Either the analysis is not tight or the input is not
representative of the space of all inputs. We know that the latter is certainly the
case: All the filtrations explored are simplicial complexes, but the persistence
algorithm will work on any abstract simplicial complex, even those that are not
geometrically realizable in R3. The relationship between the algorithm and the
reduction scheme discussed in Section 7.3, however, seems to imply that the
worst-case analysis is tight, as the normal form algorithm has time complexity
O(m3). The results of this section show, however, that the persistence algo-

208 12 Experiments

Table 12.6. Maximum and average number of collisions.

0-cycles 1-cycles 2-cycles
max avg max avg max avg

torus 18 0.73 29 0.32 21 0.59
hopf 25 0.49 50 0.06 2 0.00
SOD 9 0.97 18 0.41 44 0.64
1grm 12 0.53 31 0.19 91 0.13
möbius 80 0.95 49 0.05 0 0.00
LTA 12 0.96 26 0.37 72 0.56
1mbn 15 0.85 85 0.27 58 0.14
FAU 10 0.94 20 0.29 93 0.44
KFI 11 0.98 22 0.38 66 0.65
1qb0 15 0.86 73 0.26 47 0.17
BOG 16 0.91 32 0.51 37 0.40
1hiv 29 0.92 113 0.27 55 0.18
1hck 46 0.85 125 0.27 72 0.17
bearing 65 0.91 198 0.39 66 0.38
dragon1 25 0.88 60 0.14 2,837 0.16
TAO 13 0.61 207 0.32 26 0.19
bunny 182 0.96 306 0.28 53,869 0.23
bone 21 0.99 589 0.26 1462 0.15
dragon10 19 0.96 1,559 0.22 77,328 0.29
buddha10 20 1.01 1,073 0.19 33,325 0.14
dragon20 23 0.95 1,610 0.22 173,321 0.31

rithm is fast and efficient in practice. We may use the persistence algorithm as
a computational tool for discovering the topology of spaces.

12.3 Algorithm for Fields

In this section, we discuss experiments using an implementation of the per-
sistence algorithm for arbitrary fields. We look at two scenarios where the
Z2 algorithm would not be applicable, but where this algorithm succeeds in
providing information about a topological space.

12.3.1 Implementation

We have implemented the field algorithm for Zp for p a prime and Q coef-
ficients. Our implementation is in C and utilizes GNU MP, a multi-precision
library, for exact computation (Granlund, 2003). We have a separate imple-
mentation for coefficients in Z2 as the computation is greatly simplified in this
field. This implementation is exactly like the algorithm for Z2 discussed in the

12.3 Algorithm for Fields 209

Table 12.7. Maximum and average length of cycle lists, over all lists (avg),
and all final stored lists (avgf). Only the positive simplices are stored in the

lists.

1-cycles 2-cycles
max avg avgf max avg avgf

torus 18 2.58 2.39 10 2.74 1.94
hopf 2 2.00 2.00 3 1.94 1.94
SOD 28 2.80 2.33 22 3.76 2.03
1grm 10 2.46 2.22 104 4.75 2.07
möbius 2 1.99 2.00 1 1.96 1.96
LTA 93 3.37 2.53 28 6.07 1.97
1mbn 98 4.31 2.35 63 2.72 2.06
FAU 27 2.57 2.31 89 4.76 2.01
KFI 76 2.66 2.40 65 3.41 2.12
1qb0 171 5.24 2.44 39 2.81 2.07
BOG 55 4.08 2.51 24 2.93 2.05
1hiv 214 6.00 2.51 73 2.82 2.07
1hck 233 6.07 2.43 48 2.81 2.07
bearing 116 3.34 2.29 87 3.64 2.14
dragon1 156 3.06 2.41 666 46.49 2.05
TAO 119 3.85 2.21 15 2.26 2.02
bunny 419 2.91 2.34 12,478 1,426.26 2.05
bone 1,724 9.44 2.50 526 8.20 2.07
dragon10 2,849 13.33 2.44 10,712 1,541.47 2.05
buddha10 4,993 19.65 2.47 7,492 374.67 2.04
dragon20 5,973 36.17 2.46 21,293 3,326.70 2.04

Table 12.8. Maximum and average persistence of cycles.

0-cycles 1-cycles 2-cycles
max avg max avg max avg

torus 804 354.20 4,090 166.42 2,519 63.01
hopf 198 98.03 727 36.93 304 24.76
SOD 740 326.50 2,035 124.46 4,666 64.83
1grm 640 320.36 5,767 55.35 634 4.47
möbius 194 98.00 1,497 2.97 107 0.94
LTA 3,460 1,473.01 11,972 783.52 12,935 126.77
1mbn 2,784 654.60 20,573 402.59 5,115 56.95
FAU 18,604 1,699.46 8,263 390.24 8,218 71.75
KFI 3,033 1,342.35 21,867 664.98 8,988 284.68
1qb0 3,020 760.64 24,486 520.66 9,057 95.78
BOG 3,236 1,333.88 30,966 757.01 6,612 194.54
1hiv 8,377 834.70 30,249 584.29 9,965 114.95
1hck 9,574 1,296.33 45,285 906.12 14,159 151.04
bearing 12,760 3,029.22 84,911 3,498.73 26,959 990.82
dragon1 55,079 19,089.71 40,733 391.80 23,174 14.13
TAO 16,256 7,902.83 193,418 2,706.18 42,507 462.17
bunny 215,610 35,804.36 448,848 9,408.45 361,638 4.31
bone 452,958 59,383.77 1,087,293 5,264.04 234,117 393.92
dragon10 410,674 91,370.23 845,865 4,678.24 577,447 16.34
buddha10 913,353 95,620.32 1,209,948 3,828.92 366,388 45.22
dragon20 848,329 164,768.17 1,830,518 8,059.36 1,260,004 15.56

210 12 Experiments

Table 12.9. Time in seconds for canonizing 1-cycles and 2-cycles, along with
the average cycle length and spanning manifold size, before and after

canonization.

1-cycles 2-cycles
cycle len manifold size cycle len manifold sizetime

before after before after
time

before after before after

torus 0.01 4.36 11.34 1.55 45.85 0.01 6.85 34.68 2.94 36.56
hopf 0.02 4.06 52.03 1.06 62.57 0.01 5.00 14.37 1.00 10.44
SOD 0.02 4.89 15.86 2.18 41.25 0.01 6.36 18.48 2.28 16.16
1grm 0.02 4.26 14.05 1.38 51.38 0.01 5.24 18.52 1.17 15.87
möbius 0.03 4.14 28.97 1.14 62.10 0.01 5.00 17.42 1.00 24.42
LTA 0.16 4.91 24.94 1.98 111.64 0.05 5.84 24.44 1.63 18.79
1mbn 0.19 4.44 48.68 1.55 115.73 0.05 5.24 19.79 1.16 16.69
FAU 0.13 4.39 25.70 1.40 78.60 0.06 5.59 26.62 1.57 27.88
KFI 0.13 4.67 27.88 1.69 66.79 0.05 6.31 19.91 1.93 17.12
1qb0 0.28 4.50 60.56 1.63 141.52 0.05 5.29 20.24 1.20 16.71
BOG 0.23 5.67 25.68 3.21 112.71 0.07 5.78 22.43 1.51 22.56
1hiv 0.30 4.50 57.21 1.64 124.55 0.06 5.31 20.74 1.22 17.36
1hck 0.57 4.49 68.71 1.63 166.61 0.11 5.29 24.29 1.20 22.72
bearing 1.95 4.78 56.98 2.53 583.15 0.17 5.81 22.87 1.67 26.68
dragon1 1.01 4.21 43.23 1.25 226.23 0.55 5.17 48.40 1.19 66.81
TAO 1.69 4.46 40.94 1.81 160.72 0.35 5.31 22.35 1.21 21.24

Fig. 12.6. A wire-frame visualization of dataset K, an immersed triangulated Klein
bottle with 4000 triangles.

last section, when we do not use the union-find speedup. We use a 2.2 GHz
Pentium 4 Dell PC with 1 GB RAM running Red Hat Linux 7.3 for computing
the timings in this section.

12.3.2 Framework and Data

We have implemented a general framework for computing persistence com-
plexes from Morse functions defined over manifolds of arbitrary dimension.

12.3 Algorithm for Fields 211

Our framework takes a tuple (K, f) as input and produces a persistence com-
plex C(K, f) as output. K is a d-dimensional simplicial complex that triangu-
lates an underlying manifold. And f : vertK → R is a discrete function over
the vertices of K that we extend linearly over the remaining simplices of K.
The function f acts as the Morse function over the manifold, but it need not be
Morse for our purposes, as we perform symbolic perturbation to eliminate the
degeneracies. Frequently, our complex is augmented with a map ϕ : K → Rd

that immerses or embeds the manifold in Euclidean space. Our algorithm does
not require ϕ for computation, but ϕ is often provided as a discrete map over
the vertices of K and is extended linearly as before. For example, Figure 12.6
displays a triangulated Klein bottle immersed in R3.

To generate the dataset K, we sampled the following parametrization. Let
r = 4(1− cos(u))/2. Then,

x =
{

6cos(u)(1+ sin(u))+ r cos(u)cos(v), if u < π
6cos(u)(1+ sin(u))+ r cos(v+π), otherwise

y =
{

16sin(u)+ r sin(u)cos(v), if u < π
16sin(u), otherwise

z = r sin(v).

The underlying space for the other two data sets is the four-dimensional
space-time manifold. For each data set, we triangulate the convex hull of the
samples to get a triangulation. Each resulting complex, listed in Table 12.10, is
homeomorphic to a four-dimensional ball and has χ = 1. Data set E contains
the potential around electrostatic charges at each vertex. Data set J records
the supersonic flow velocity of a jet engine. We use these values as Morse
functions to generate the filtrations. We then compute persistence over Z2

coefficients to get the Betti numbers. For each data set, Table 12.10 gives the
number sk of k-simplices, as well as the Euler characteristic χ = ∑k(−1)ksk.
We use the Morse function to compute the excursion set filtration for each data
set. Table 12.11 gives information on the resulting filtrations.

12.3.3 Field Coefficients

With the generalized algorithm, we may compute the homology of the Klein
bottle over different coefficient fields. Here, we are interested only in the Betti
numbers of the final complex in the filtration for illustrative purposes. The
nonorientability of this surface is visible in Figure 12.6. The change in tri-
angle orientation at the parametrization boundary leads to a rendering artifact
where two sets of triangles are front-facing. In homology, the nonorientabil-

212 12 Experiments

Table 12.10. Data sets. K is the Klein bottle, shown in Figure 12.6. E is the
potential around electrostatic charges. J is supersonic jet flow.

number sk of k-simplices
0 1 2 3 4

χ

K 2,000 6,000 4,000 0 0 0
E 3,095 52,285 177,067 212,327 84,451 1
J 17,862 297,372 1,010,203 1,217,319 486,627 1

Table 12.11. Filtrations. The number of simplices in the filtration |K| = ∑i si,
the length of the filtration (number of distinct values of function f), time to
compute the filtration, and time to compute persistence over Z2 coefficients.

|K| len filt (s) pers (s)

K 12,000 1,020 0.03 < 0.01
E 529,225 3,013 3.17 5.00
J 3,029,383 256 24.13 50.23

ity manifests itself as a torsional 1-cycle c where 2c is a boundary (indeed, it
bounds the surface itself.) The homology groups over Z are

H0(K) = Z,

H1(K) = Z×Z2,

H2(K) = {0}.

Note that β1 = rankH1 = 1. We now use the “height function” as our Morse
function, f = z, to generate the filtration in Table 12.11. We then compute the
homology of data set K with field coefficients using our algorithm, as shown in
Table 12.12.

Over Z2, we get β1 = 2 as homology is unable to recognize the torsional
boundary 2c with coefficients 0 and 1. Instead, it observes an additional class
of homology 1-cycles. By the Euler-Poincaré relation, χ = ∑i βi, so we also
get a class of 2-cycles to compensate for the increase in β1. Therefore, Z2

homology misidentifies the Klein bottle as the torus. Over any other field,
however, homology turns the torsional cycle into a boundary, as the inverse
of 2 exists. In other words, while we cannot observe torsion in computing
homology over fields, we can deduce its existence by comparing our results

12.3 Algorithm for Fields 213

Table 12.12. Field coefficients. The Betti numbers of K computed over field F
and time for the persistence algorithm. We use a separate implementation for

Z2 coefficients.

F β0 β1 β2 time (s)

Z2 1 2 1 0.01

Z3 1 1 0 0.23
Z5 1 1 0 0.23

Z3203 1 1 0 0.23
Q 1 1 0 0.50

over different coefficient sets. Similarly, we can compare sets of P-intervals
from different computations to discover torsion in a persistence complex.

Note that our algorithm’s performance for this data set is about the same over
arbitrary finite fields, as the coefficients do not get large. The computation over
Q takes about twice as much time and space, since each rational is represented
as two integers in GNU MP.

12.3.4 Higher Dimensions

We now examine the performance of this algorithm in higher dimensions us-
ing the large-scale time-varying data. Again, we give the filtration sizes and
timings in Table 12.11. Figure 12.7(a) displays β2 for data set J. We observe
a large number of two-dimensional cycles (voids), as the co-dimension is 2.
Persistence allows us to do to decompose this graph into the set of P-intervals.
Although there are 730,692 P-intervals in dimension 2, most are empty as the
topological attribute is created and destroyed at the same function level. We
draw the 502 nonempty P-intervals in Figure 12.7(b). Note that the P-intervals
represent a compact and general shape descriptor for arbitrary spaces.

For the large data sets, we do not compute persistence over alternate fields
as the computation requires in excess of 2 GB of memory. In the case of
finite fields Zp, we may restrict the prime p to be less than the maximum size
of an integer. This is a reasonable restriction, as on most modern machines
with 32-bit integers, it implies p < 232. Given this restriction, any coefficient
will be less than p and representable as a 4-byte integer. The GNU MP exact
integer format, on the other hand, requires at least 16 bytes for representing
any integer.

214 12 Experiments

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

β 2
f

f

(a) Graph of β f
1

(b) The P-intervals

Fig. 12.7. The data set J defines function f , the flow velocity, over the four-dimensional
space-time manifold. We show the graph of f (top) and the 502 nonempty P-intervals
in dimension 2. The amalgamation of these intervals gives the graph.

12.4 Topological Simplification 215

12.4 Topological Simplification

In this section, we first present a case study of the five reordering algorithms
described in Chapter 8 and illustrated in Figure 8.7. We then provide experi-
mental evidence of the utility of the algorithms, as well as the rarity of basic
and recursive conflicts. We end this chapter with visualizations of persistent
complexes.

12.4.1 A Case Study

In this brief picturesque study, we show the effect of the reordering algorithms
in the presence of conflicts. Figure 12.8(a) displays the k-triangles of the data
set SOD. This zeolite does not contain any basic conflicts, but it does have 26
recursive conflicts. We are interested in the tip of the region of large overlap-
ping 1-triangles, shown in Figure 12.8(b). The rest of the figures in (c–l) show
how this area changes with the different reordering algorithms in Figure 8.7.
Note that the differences for the pseudo-triangle algorithm cancel, as each cy-
cle is given its due influence, given its persistence. Consequently, we will use
this algorithm as the default method for simplification.

12.4.2 Timings and Statistics

We have implemented all of the reordering algorithms for experimentation.
The algorithms have the basic structure and therefore take about the same
time. So, we only give the time taken for the Pseudo-triangle algorithm in
Table 12.13. All timings were done on a Sun Ultra-10 with a 440 MHz Ultra-
SPARC IIi processor and 256 megabyte RAM, running Solaris 8. Here, each
complex is reordered with p equal to the size of the filtration. Generally, the
reordering algorithms encounter the same number of conflicts, so we only list
the number of basic and recursive conflicts for the pseudo-triangle algorithm in
Table 12.13. The time taken for reordering correlates very well with the size of
the filtration, as all algorithms make a single pass through the filter. A simplex
may move multiple times during reordering, however, because of the recursive
nature of the algorithms. The number of recursive conflicts is one indication
of the complexity of the reordering. The table shows that the data sets with a
large number of recursive conflicts, namely BOG, bearing, TAO, and bone, all
have large reordering times.

216 12 Experiments

(a) SOD (b) Zoomed

(c) Naive (d) Difference (e) Shift (f) Difference

(g) Wormhole (h) Difference (i) Pseudo-
triangle

(j) Difference

(k) Sudden Death (l) Difference

Fig. 12.8. Reordering algorithms on SOD. (a) displays the k-triangles of SOD with the
region of interest boxed and zoomed in (b). (c–l) show the results of each reordering
algorithm and the image difference between these results and (b). The difference be-
tween images is shown in shades of gray. I have increased the saturation by 25% for
better viewing.

12.5 The Morse-Smale Complex Algorithm 217

Table 12.13. Time in seconds for the pseudo-triangle reordering algorithm,
as well as the number of basic and recursive conflicts.

conflictstime
basic recursive

torus 0.03 297 1,938
hopf 0.04 0 1
SOD 0.17 0 26
1grm 0.05 0 0
möbius 0.07 0 1
LTA 0.38 0 22
1mbn 0.34 0 9
FAU 0.28 1 2
KFI 0.52 0 20
1qb0 0.39 2 15
BOG 1.81 0 132
1hiv 0.52 1 21
1hck 0.83 0 15
bearing 3.34 22 219
dragon1 0.96 0 1
TAO 3.26 0 212
bunny 12.40 0 0
bone 51.82 1 188
dragon10 15.77 0 1
buddha10 18.47 0 10
dragon20 36.40 0 2

12.4.3 Discussion

The timings show that the reordering algorithms are fast and feasible. The data
also confirm the rarity of conflicts. Conflicts are structural in nature and may
be used as an additional measure of complexity of the connectivity of a space.
They arise when a topologically complicated region of space is coarsely trian-
gulated. This is the case for both small triangulations like the data set torusand
large triangulations of complex spaces like the data set bone. As we saw ear-
lier, conflicts may be eliminated by refining a complex. Fine triangulations
of topologically simple spaces, such as bunny or the dragon family, generally
have few, if any, conflicts.

12.5 The Morse-Smale Complex Algorithm

In this section, we present experimental results to support the practical via-
bility of the Morse-complex algorithm presented in Chapter 9. I have only

218 12 Experiments

Table 12.14. The four data sets. The second column gives the latitude and
longitude coordinates (in degrees) for the upper-left and lower-right corners

of the terrain. The south and west coordinates are negative.

coordinates grid size filt. length # simplices

Sine n/a 100 × 100 10,001 59,996
Iran (42, 42), (23, 65) 277 × 229 63,434 380,594
Himalayas (46, 66), (24, 105) 469 × 265 124,286 745,706
Andes (15, –87), (–58, –55) 385 × 877 337,646 2,025,866
North America (55, –127), (13, –61) 793 × 505 400,466 2,402,786

implemented the algorithms for constructing QMS complexes and computing
the persistence of the critical points. My implementation for the former uses a
different algorithm than the one presented in this chapter. The algorithm uses
edge tags to reroute paths using a single pass through the critical points.

12.5.1 Data

We use four rectangle sections of rectilinear 5-minute gridded elevation data of
Earth (National Geophysical Data Center, 1988) and one synthetic data sam-
pled from h(x,y) = sinx + siny for input. Table 12.14 gives the names and
sizes of the data sets. Each data set is a height function h : Z2 → R, assign-
ing a height value h(x,y) to each point of its domain. Consequently, we may
view the data sets as gray-scale images, mapping heights to pixel intensities,
as in Figure 12.9. In each case, we compactify the domain of the function, a
gridded rectangle, into a sphere by adding a dummy vertex at height minus in-
finity. We then triangulate the resulting mesh by adding diagonals to the square
cells. As a result, the 2-manifold that we use for experimentation is always S2.
The filtration is generated by a manifold sweep, as described in Section 2.5.
Therefore, each filtration has length equivalent to the number of vertices in the
manifold, which is one more than the size of the grid (because of the dummy
vertex). For example, Sine has a filtration of 100× 100 + 1 = 10,001 com-
plexes.

12.5.2 Timings and Statistics

We first compute a filtration of the sphere triangulation by a manifold sweep.
We then use the persistence algorithm to compute and classify the critical

12.5 The Morse-Smale Complex Algorithm 219

Fig. 12.9. The data sets in Table 12.14 rendered as gray-scale images. The intensity of
each pixel of the image corresponds to the relative height at that location.

Table 12.15. The number of critical points of the four triangulated spheres.
The # Mon column gives the number of 2-fold (monkey) saddles. Note that

#Min−#Sad−2#Mon+#Max = 2 in each case, as it should be.

Min # Sad # Mon # Max

Sine 10 24 0 16
Iran 1,302 2,786 27 1,540
Himalayas 2,132 4,452 51 2,424
Andes 20,855 38,326 1,820 21,113
North America 15,032 30,733 464 16,631

points using the procedure described in Section 6.2.3. Table 12.15 lists the
number of critical points of each type. As we start with grid data and add di-
agonals in a consistent manner, each vertex other than the dummy vertex has
degree 6. Therefore, monkey saddles are the only multiple saddles that may

220 12 Experiments

Table 12.16. Running times in seconds.

filtration persistence QMS

Sine 0.06 0.13 0.03
Iran 0.46 0.90 0.56
Himalayas 0.89 1.74 1.01
Andes 2.62 4.90 2.60
North America 3.28 5.84 5.26

occur in the data. In the current implementation, we use the persistence al-
gorithm, as described in Chapter 7. The data, however, are two-dimensional,
and we may alternatively compute persistence using two passes and no cycle
search. The second pass would use a union-find data structure and the dual of
the triangulation. However, Table 12.16 shows that the slower algorithm used
is quite fast, obviating the need for a specialized implementation. All timings
were done on a Sun Ultra-10 with a 440 MHz UltraSPARC IIi processor and
256 megabyte RAM, running Solaris 8. Therefore, we use the same library to
compute the persistence of both α-complex and grid filtration and construct-
ing the QMS complex. Table 12.16 also gives the time for constructing the
filtration and the QMS complex.

12.5.3 Discussion

We show the terrain of Iran along with its QMS complex in Figure 12.10. We
display the QMS complex of this data set only as it is small. Already, there is
too much detail that prevents us from seeing the features of the terrain. The
multitude of small mountains and lakes clutter the image, partitioning the ter-
rain into small regions. This image serves as a motivation for using persistence
and computing hierarchical MS complexes. The situation here is similar to our
failure to gain insights into the topology of spaces by simply computing their
Betti numbers in Chapter 6. Like homology, Morse theory is powerful enough
to capture the complete structure of the data. We need persistence as a mining
tool for uncovering nuggets of information in the resulting mountain of data
that is provided by the theory.

12.6 The Linking Number Algorithm

In this section, we present some experimental timing results and statistics on
the linking number algorithm. We also provide visualizations of basis cycles

12.6 The Linking Number Algorithm 221

(a) Terrain (b) QMS complex

Fig. 12.10. Iran’s Alburz mountain range borders the Caspian sea (top flat area), and
its Zagros mountain range shapes the Persian Gulf (left bottom).

in a filtration. All timings were done on a Sun Ultra-10 with a 440 MHz
UltraSPARC IIi processor and 256 megabyte RAM, running the Solaris 8.

12.6.1 Implementation

I have implemented all the algorithms in Chapter 10, except for the algorithm
for computing λ mod 2. My implementation differs from the exposition in
three ways. The implemented component tree is a standard union-find data
structure with the union by rank heuristic, but no path compression (Cormen
et al., 1994). Edges are tagged with the union time and the least common an-
cestor is found by two traversals up the tree. Although this structure has an
O(n logn) construction time and an O(logn) query time, it is very simple to
implement and extremely fast in practice. We also use a heuristic to reduce
the number of p-linked cycles by storing bounding boxes at the roots of the
augmented union-find data structure. Before enumerating p-linked cycles, we
check to see if the bounding box of the new cycle intersects with that of the
stored cycles. If not, the cycles cannot be linked, so there’s no need for enu-
meration. Finally, we only simulate the barycentric subdivision by storing a
direction with each edge.

12.6.2 Timings and Statistics

We use the molecular data from Section 12.1 for experimentation. To compute
linking, we first need to compute the canonical basis for each data set. Tables

222 12 Experiments

Table 12.17. Number of 1-cycles, time in seconds to construct the component
tree, and the computation time and number of p-linked pairs (alg), p-linked

pairs with intersecting bounding boxes (heur), and links.

time in seconds # pairs# cycles tree
alg heur links alg heur links

hopf 1,653 0.00 0.00 0.00 0.00 1 1 1
SOD 1,108 0.00 0.00 0.01 0.04 1,108 692 0
1grm 2,005 0.00 0.01 0.01 0.01 112 0 0
möbius 2,710 0.00 0.01 0.01 0.01 0 0 0
LTA 7,176 0.02 0.06 0.12 1.77 296,998 6,320 0
1mbn 8,036 0.01 0.04 0.04 0.04 522 107 0
FAU 8,293 0.01 0.12 0.07 0.07 1,255,396 34 0
KFI 8,465 0.01 0.05 0.04 0.33 87,956 25,251 0
1qb0 9,327 0.01 0.04 0.05 0.05 765 84 0
BOG 10,106 0.01 0.05 0.04 0.08 170,338 305 0
1hiv 10,032 0.02 0.04 0.05 0.15 8,709 8,426 0
1hck 15,603 0.03 0.08 0.09 0.24 12,338 11,244 0
TAO 52,902 0.12 0.38 0.42 6.83 98,543 4,455 0

12.5 and 12.9 in Section 12.2 give the time to compute and canonize 1-cycles.
Table 12.17 gives timings and statistics for the linking algorithm. The table
shows that the component tree and augmented trees are very fast in practice. It
also shows that the bounding box heuristic for reducing the number of p-linked
pairs increases the computation time negligibly, if at all. The heuristic is quite
successful, moreover, in reducing the number of pairs we have to check for
linkage, eliminating 99.8% of the candidates for data set BOG. The differences
in total time of computation reflect the basic structure of the data sets, as well
as their sizes. TAO has a large computation time, for instance, as the average
size of the p-linked surfaces is approximately 266.88 triangles, compared to
about 1.88 triangles for data set 1hck.

Discussion. The experiments demonstrate the feasibility of the algorithms for
fast computation of linking. The experiments fail to detect any links in the
protein data, however. This is to be expected, as a protein consists of a single
component, the primary structure of a protein being a single polypeptide chain
of amino acids. Links, on the other hand, exist in different components by defi-
nition. Proteins may have “links” on their backbone, resulting from disulphide
bonds between different residues. We need other techniques to intelligently
detect such links.

13

Applications

In this chapter, we sample some of the potential applications of topology to
problems in disparate scientific domains. Some of these questions motivated
the theoretical concepts in this book to begin with, so it is reasonable to scruti-
nize the applicability of the work by revisiting the questions. I am not an expert
in any of these domains. Rather, my objective is to demonstrate the utility of
the theory, algorithms, and software by giving a few illustrative examples. My
hope is that researchers in the fields will find these examples instructive and
inspiring, and utilize the tools I have developed for scientific inquiry. Applied
work is an on-going process by nature, so I present both current and future
work in this chapter, including nonapplied future directions.

13.1 Computational Structural Biology

The field of computational structural biology explores the structural properties
of molecules using combinatorial and numerical algorithms on computers. The
initial impetus for the work in this book was understanding the topologies of
proteins through homology. In this section, I look at three applications of
my work to structural biology: feature detection, knot detection, and structure
determination.

13.1.1 Topological Feature Detection

In Chapter 6, the small protein gramicidin A motivated our study of persis-
tence, as we were incapable of differentiating between noise and feature in the
data captured by homology. The primary topological structure of this protein is
a single tunnel. Figure 13.2 illustrates the speed with which one may identify
this tunnel using persistent homology. A glance at the topology map of the data
set 1grm in Figure 13.1 tells the user that there is a single persistent 1-cycle.

223

224 13 Applications

Fig. 13.1. Topology map of gramicidin A (1grm) with cross-hair at (1016,4768).

(a) K1016,4768 (top) (b) K1016,4768 (side) (c) 1-cycle and surface
in 1-skeleton

Fig. 13.2. Detecting the topological feature of 1grm using CView. The user selects
complex (1016,4768) (a,b) and visualizes the complex’s single tunnel (c).

After clicking in the cycle’s k-triangle, the user may view the complex from
different viewpoints, as shown in Figure 13.2(a,b), and examine the 1-cycle
and its spanning surface within the 1-skeleton of the persistent complex (c).

Not all molecular structures are as simple as this protein. The Zeolite BOG,
for example, has a richer topology map, as shown in Figure 13.3. Observe
that the structure features two groups of highly persistent 1-cycles. Again, the
user may select to keep both groups of 1-cycles by choosing a point in the
appropriate triangular region, as shown in Figure 13.4(a,b). The two sets of
tunnels interact to produce a basis of 44 1-cycles. The user may elect to discard
the set of 12 1-cycles by increasing persistence, as shown in Figure 13.4(c).
The 8 longer-living tunnels (d), however, survive.

Zeolites are crystalline solids with very regular frameworks. This regularity
of structure translates to simplicity of topology maps. Proteins, on the other

13.1 Computational Structural Biology 225

Fig. 13.3. Topology map of BOG

(a) K4385,15000

(view 1)
(b) K4385,15000

(view 2)
(c) K4385,21000

(view 1)
(d) K4385,21000

(view 2)

Fig. 13.4. Two views of persistent complexes with index 4385. Increasing persistence
from 15,000 to 21,000, we eliminate the first group of tunnels and preserve the second.

hand, do not exhibit regular structure in general. Their topology maps are
not simple as a consequence. Figure 13.5 shows the topology map of 1hck,
as well as the graph of its persistent β1 numbers. We can no longer identify
the features immediately, as p-persistent cycles exist for almost every value of
p. We were able to distinguish between noise and feature for BOG because
there were groups of 1-cycles with persistence significantly higher than the
other 1-cycles. These groups are easily recognizable in the histogram of the
persistence of 1-cycles for BOG in Figure 13.6(a). We cannot perceive the
same grouping in the histogram for 1hck (b), however. Persistence, in other
words, is not a silver bullet. Rather, it is yet another tool for exploring the
complex structure of proteins.

The examples above all use index-based persistence. Alternatively, one may
examine structures using time-based persistence (see Section 6.1 for defini-
tions). Currently, I have implemented algorithms for computing time-based
persistent Betti numbers.

226 13 Applications

(a) Topology map

0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

p

0
10000

20000
30000

40000
50000

60000
70000

l

0
1
2
3
4
5
6
7
8
9
10

log2(β1
l,p+1)

(b) Graph of log2(β
l,p
1 + 1)

Fig. 13.5. The persistent Betti numbers of 1hck.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000 35000

lo
g 2

(N
um

be
r o

f C
yc

le
s

+
1)

Persistence

(a) BOG

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

lo
g 2

(N
um

be
r o

f C
yc

le
s

+
1)

Persistence

(b) 1hck

Fig. 13.6. Persistence histograms. BOG ’s histogram (a) shows some grouping, but
1hck ’s (b) does not.

13.1.2 Knotting

We also wish to detect whether proteins are knotted or have linking in their
structures. I have already described algorithms for detecting linking in Chap-
ter 10. The linking number algorithms give us a signature function for a pro-
tein. We may also look for alternate signature functions for describing the
topology of a protein. The approach here is to exploit the fast combinatorial
representation to compute other knot and link invariants. Future directions in-
clude computing polynomial invariants, such as the Alexander polynomial for
detecting knots (Adams, 1994).

13.2 Hierarchical Clustering 227

13.1.3 Structure Determination

One method used for determining the architecture of a protein is X-Ray crys-
tallography (Rhodes, 2000). After forming a high-quality crystal of a protein,
we analyze the diffraction pattern produced by X-irradiation to generate an
electron density map. The sequence of amino acids in the protein must be
known independently. We then fit the atoms of the residues into the computed
electron density map via a series of refinements. The result is a set of Cartesian
coordinates for every non-hydrogen atom in the molecule.

Usually, we use these coordinates, augmented with van der Waals radii, to
produce filtrations for proteins, the input to the algorithms in this book. We
wish to use persistence also as a tool for refining the resolved protein. We
guide modifications to the structure of the protein and the radii of the atoms
by using persistent complexes. We then produce a synthetic electronic density
map for the new coordinates and radii, and compare it to the original density
map.

We may also construct three-dimensional MS complexes of the electron-
density data for denoising using persistence. I will discuss general denoising
of density functions in Section 13.3.

13.2 Hierarchical Clustering

In Chapter 2, we looked at α-shapes as a method for describing the connectiv-
ity of a space. As we increase α, the centers of the balls in our data sets are
connected via edges and triangles. We may view the connections as a hierar-
chical clustering mechanism. Persistence adds another dimension to α-shapes,
giving us a two-parameter family of shapes for describing the clustering of
point sets.

Edelsbrunner and Mücke (1994) first noted the possibility of using α-shapes
as a method for studying the distribution of galaxies in our universe. Dykster-
house (1992) took initial steps in this direction. Persistence gives us additional
tools for examining the clustering of galaxies in the universe. Figure 13.7
displays a simulated data set due to Marc Dyksterhouse. Each of the 1,717
vertices represents a galaxy and is a component (0-cycle) of the complex. The
figure also displays the manifolds of the 0-cycles: the path through which
galaxies will be connected in the future. We may use this information to con-
struct a hierarchical description of the galaxies. In addition, we can examine
the persistent topological features of the filtration of the universe. Voids, for
example, correspond to empty areas of space.

Another instance of using persistence for hierarchical clustering is to clas-

228 13 Applications

Fig. 13.7. A simulated universe, its 0-cycles, and manifolds.

1

4

16

64

256

1024

4096

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

β 0
l,p

l

Fig. 13.8. Graph of βl,p
0 projected on the (l,β0) plane for new data set 1mct : Trypsin

complexed with inhibitor from bitter.

sify proteins according to their hydrophobic surfaces. Here, we sample hy-
drophobic points along the surface of a protein. We then compute an α-
complex filtration from these points and examine the persistent components.
Figure 13.8 shows the graph of the β0 for this data set. The graph is projected

13.3 Denoising Density Functions 229

onto the (l,β0) plane, with the p axis coming out of the page. There are clear
groups of persistent components, indicated by the horizontal lines across the
graph. We hope to compare and contrast proteins using the graphs generated
by this procedure. This idea is due to Thomas LaBean, from the Department
of Computer Science at Duke University.

13.3 Denoising Density Functions

The second large class of applications of this work is denoising density func-
tions. We use hierarchical MS complexes to eliminate noise in sampled data
intelligently, changing the topology of the level-sets of the space by smooth-
ing the geometry. In this section, I briefly describe future directions for such
applications.

13.3.1 Terrain Simplification

In Chapter 9, I described algorithms for constructing the MS complex in two
dimensions. I also provided evidence of the feasibility of this approach by
implementing the algorithm for computing QMS complexes. My immediate
plans are to complete this implementation. A hierarchy of two-dimensional
MS complexes of a terrain gives us control over the level of detail in the rep-
resentation. We may partition an increasingly smoother terrain into increas-
ingly larger regions of uniform flow using the arcs of the MS complexes. Re-
searchers may use this hierarchy to model natural phenomenon using multi-
level adaptive refinement algorithms (O’Callaghan and Mark, 1984). Inter-
estingly, eliminating minima using persistent MS complexes corresponds to
filling watersheds (lakes) incrementally (Jenson and Domingue, 1988). Water-
sheds need to be filled for computing water flow on terrains.

13.3.2 Iso-Surface Denoising

In three dimensions, volume data give rise to two-dimensional level sets or
iso-surfaces. As before, inherent limitations of the data acquisition devices
add noise to the data. The noise is often manifested as tiny bubbles near the
main component of the iso-surface, as shown in Figure 13.9. It is trivial to
compute a filtration of a volume grid by tetrahedralizing the volume and us-
ing a three-dimensional manifold sweep. We need a three-dimensional MS
complex, however, to modify the density values in a sensible fashion. A three-
dimensional MS complex is more complicated than its two-dimensional coun-
terpart, however, and is much harder to compute. Furthermore, it is not clear

230 13 Applications

(a) Volume data (b) Level set 700 (c) Level set
1,100

(d) Level set
1,400

Fig. 13.9. A 63 by 63 by 92 density volume and three level sets. The data are from
the Visible Human Project (National Library of Medicine, 2003) and are rendered with
Kitware’s VolView.

that a simplification algorithm, such as the one presented in Section 6.2.4, will
be always successful. There are, therefore, many interesting challenges in this
area for future research.

13.3.3 Time-Varying Data

Often, we are interested in data varying with time. For example, the wind
velocity on Earth, measured through time, describes a time-varying function
on a two-manifold, the sphere. We may view time as another dimension
of space, converting d-dimensional time-varying data to (d + 1)-dimensional
data. We then denoise the data through time by constructing a hierarchy of
(d + 1)-dimensional MS complexes. For the example above, we will need
three-dimensional MS complexes. Four-dimensional data also arise in prac-
tice. For instance, researchers are currently simulating solid propellant rockets
(Heath and Dick, 2000). The temperature, pressure, and velocity are computed
for a time-interval at every point inside the rocket. Viewing time as space,
we obtain a four-dimensional data set for which we need a four-dimensional
MS complex. Once again, generalizing the MS complex to higher dimensions
seems to be a rich avenue for future research.

13.3.4 Medial Axis Simplification

In two dimensions, the medial axis is the locus of all centers of circles inside
a closed planar 1-manifold that touch the boundary of the manifold in two or
more points (Blum, 1967). The medial axis has been used heavily as a de-

13.4 Surface Reconstruction 231

(a) (b)

Fig. 13.10. The dashed medial axis of the solid polygon (a) is ill-conditioned as a small
perturbation changes the resulting axis dramatically (b).

scriptor of shapes for pattern recognition, solid modeling, mesh generation,
and pocket machining. This descriptor, however, is ill-conditioned, as a small
perturbation in the data changes the description radically. I illustrate the sen-
sitivity of the medial axis with an example in Figure 13.10. By restating the
problem in terms of persistence, we may be able to denoise the data and, in
turn, simplify the medial axis, obtaining a robust description of the data.

We can extend the definition of the medial axis to n-dimensional manifolds
by using n-dimensional spheres, instead of circles. The definition remains
sensitive to noise in all dimensions and therefore still requires a method for
simplification.

13.4 Surface Reconstruction

Another direction for future work is using persistence for surface reconstruc-
tion. I introduced this problem as an example of a topological question in
Chapter 1. We may employ the control persistence gives us over the topology
of a space to reconstruct surfaces from sampled points.

Figure 13.11 shows a single-click reconstruction of the bunny surface. Note
that I selected a complex with a tunnel. The bunny was not sampled on its base
across the two black felts it rests on, as a laser range-finder scanner was used
for acquiring the samples. A good reconstruction, therefore, has two holes or
a single tunnel. Such knowledge, however, is not always available.

I believe that a successful reconstruction algorithm must be interactive, it-
erative, and adaptive. Abstractly, we wish to identify a coordinate (l, p) such
that the complex Kl,p contains a reconstruction of the point set. We may enrich
the solution space by computing radii for the points. For example, we can es-
timate the local curvature at each point, assigning the inverse curvature as the
radius of the point. We then recompute the filtration with the new radii. Sta-

232 13 Applications

Fig. 13.11. Surface reconstruction with CView. The selected coordinates on the topol-
ogy map (a) give a good approximation (b).

tistical analysis of persistence values can give us candidate persistence cutoffs.
We use these values to simplify the complex in each dimension independently.
Persistence may also guide modifications to the computed radii, giving us a
multi-stage refinement algorithm.

13.5 Shape Description

In Section 12.3, we saw that persistence intervals could be used as a compact
and general shape descriptor for a space. We are motivated, therefore, to ex-
plore shape classification with persistent homology. Homology used in this
manner, however, is a crude invariant. It cannot distinguish between circles
and ovals, between circles and rectangles, or even between Euclidean spaces
of different dimensions. Further, it cannot identify singular points, such as cor-
ners, edges, or cone points, as their neighborhoods are homeomorphic to each
other. A solution to this apparent weakness of homology is to apply it not to a
space X itself, but rather to spaces constructed out of X using tangential infor-
mation about X as a subset of Rn (Carlsson et al., 2004). For example, the line
in Figure 13.12 has a tangent complex with two components. The “V” shape,
on the other hand, has a singular point, resulting in a tangent complex with four
components. In practice, we wish to obtain information about a shape when we
only have a finite set of samples from that shape. We are faced, therefore, with
the additional difficulty of recovering the underlying shape topology, as well
as approximating the tangential spaces that we define (Colllins et al., 2004).

13.6 I/O Efficient Algorithms 233

x L

−η

+η

x0

ξ

(a) Line

O

y x

(b) V

Fig. 13.12. The line (a) has a tangent complex with two components. The “V” space
(b) has a tangent complex with four components.

13.6 I/O Efficient Algorithms

Most of the applications I have described so far in this chapter are only practi-
cal if the algorithms can process massive amounts of data. In recent years,
advances in computer technology and acquisition devices have made high-
resolution data available to the scientific community. For instance, the Digital
Michelangelo Project at Stanford University sampled the statue David using a
0.25-millimeter laser scanner. The reconstructed surface consists of more than
two billion triangles (Levoy et al., 2000). Similarly, detailed terrain data for
much of the earth’s surface is publicly available at a 10-meter resolution from
the U.S. Geological Survey. At this scale, data sets for even small portions
of the planet will be at least hundreds of megabytes in size. Internal memory
algorithms are often unable to handle such massive data, even when executing
on fast machines with large memories. It becomes critical, therefore, to design
I/O efficient external memory algorithms to analyze massive data (Arge et al.,
2000).

Bibliography

C. C. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory
of Knots. W. H. Freeman and Company, New York, 1994.

S. I. Adyan. The algorithmic unsolvability of problems concerning recognition of certain
properties of groups. In Doklady Academy Nauk SSSR, volume 103, pages
533–535. Soviet Academy of Sciences, 1955.

S. I. Adyan and G. S. Makanin. Investigations on algorithmic questions of algebra. In
Proceedings of the Steklov Institute of Mathematics, volume 3, pages 209–219,
1986.

N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput.
Geom., 22:481–504, 1999.

L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-based
terrains. In Proc. Workshop Algor. Engin. Exper., 2000.

C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology for
structural enhancement. In Proc. 9th Ann. IEEE Conf. Visualization, pages 18–23,
1998.

T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. Am.
Math. Monthly, 77:475–485, 1970.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research, 28:
235–242, 2000.

R. L. Bishop and S. I. Goldberg. Tensor Analysis on Manifolds. Dover Publications,
Inc., New York, 1980.

R. A. Bissell, E. Córdova, A. E. Kaifer, and J. F. Stoddart. A checmically and
electrochemically switchable molecular shuttle. Nature, 369:133–137, 1994.

A. Blum. A transformation for extracting new descriptors of shape. In Proc. Symp.
Models for Perception of Speech and Visual Form, pages 362–380, 1967.

W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry.
Academic Press, San Diego, CA, second edition, 1986.

J. W. Bruce and P. J. Giblin. Curves and Singularities. Cambridge University Press,
New York, second edition, 1992.

G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas. Persistence barcodes for shapes,
2004. To be published in Proc. Symp. Geom. Process.

H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In Proc.
11th Ann. Sympos. Discrete Alg., pages 918–926, 2000.

CATH. Protein structure classification, 2003. http://www.biochem.ucl.ac.uk/bsm/cath/.
C. P. Collier, E. W. Wong, Belohradský, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S.

235

236 13 Bibliography

Williams, and J. R. Heath. Electronically configurable moleculear-based logic
gates. Science, 285:391–394, 1999.

A. Colllins, A. Zomorodian, G. Carlsson, and L. Guibas. A barcode shape descriptor for
curve point cloud data, 2004. To be published in Proc. Symp. Point-Based Graph.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1994.

T. E. Creighton. Proteins. Structures and Molecular Principles. Freeman, New York,
1984.

B. Curless and M. Levoy. A volumetric method for building complex models from range
images. In SIGGRAPH 96 Conference Proceedings, pages 303–312, 1996.

M. Davis. The Undecidable. Raven Press Books, LTD., Hewlett, NY, 1965.
M. de Berg and M. van Kreveld. Trekking in the alps without freezing and getting tired.

In Proc. 1st Europ. Sympos. Alg, pages 121–132, 1993.
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer-Verlag, New York, 1997.
W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc.

10th Ann. IEEE Conf. Visualization, pages 349–354, 1999.
B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i

Estestvennyka Nauk, 7:793–800, 1934.
C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti numbers of

simplicial complexes on the 3-sphere. Comput. Aided Geom. Design, 12:771–784,
1995.

T. K. Dey, H. Edelsbrunner, G. Guha, and D. V. Nekhayev. Topology preserving edge
contraction. Publ. Inst. Math. (Beograd) (N.S.), 66:23–45, 1999.

D. Dummit and R. Foote. Abstract Algebra. John Wiley & Sons, Inc., New York, 1999.
M. D. Dyksterhouse. An alpha-shape view of our universe. Master’s thesis, University

of Illinois at Urbana-Champaign, Urbana, IL, 1992.
H. Edelsbrunner. The union of balls and its dual shape. Discrete Comput. Geom., 13:

415–440, 1995.
H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for

piecewise linear 2-manifolds. Discrete Comput. Geom., 30:87–107, 2003.
H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points in the

plane. IEEE Trans. Inform. Theory, IT–29:551–559, 1983.
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and

simplification. Discrete Comput. Geom., 28:511–533, 2002.
H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms. ACM Trans. Graphics, 9:66–104, 1990.
H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans.

Graphics, 13:43–72, 1994.
H. Edelsbrunner and A. Zomorodian. Computing linking numbers in a filtration.

Homology, Homotopy and Applications, 5(2):19–37, 2003.
D. Eisenbud. Commutative Algebra with a View Toward Algebraic Theory. Springer,

New York, 1995.
J. El-Sana and A. Varshney. Topology simplification for polygonal virtual environments.

IEEE Trans. Visualization Comput. Graphics, 4:133–144, 1998.
E. Flapan. When Topology Meets Chemistry : A Topological Look at Molecular

Chirality. Cambridge University Press, New York, 2000.
J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips. Computer

Graphics: Principles and Practice. Addison Wesley, Reading, MA, second edition,
1996.

A. T. Fomenko and S. V. Matveev. Algorithmic and Computer Methods for

Bibliography 237

Three-Manifolds. Kluwer Academic Publishers, New York, 1997.
J. B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, Reading, MA,

fourth edition, 1989.
FSSP. Fold classification based on structure-structure alignment of proteins, 2003.

http://www2.ebi.ac.uk/dali/fssp/.
M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In

SIGGRAPH 97 Conference Proceedings, pages 209–216, 1997.
P. J. Giblin. Graphs, Surfaces, and Homology. Chapman and Hall, New York, second

edition, 1981.
T. Granlund. The GNU multiple precision arithmetic library, 2003.

http://www.swox.com/gmp.
L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams. ACM Trans. Graph., 4:74–123, 1985.
W. Haken. Theorie der Normalflächen. Acta Math., 105:245–375, 1961.
D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM

J. Comput., 13:338–355, 1984.
J. Hass, J. C. Lagarias, and N. Pippenger. The computational complexity of knot and

link problems. J. ACM, 46:185–211, 1999.
A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, UK, 2001.
T. He, L. Hong, A. Varshney, and S. Wang. Controlled topology simplification. IEEE

Trans. Vis. Comput. Graph., 2(2):171–184, June 1996.
M. T. Heath and W. A. Dick. Virtual prototyping of solid propellant rockets. Comput.

Sci. Engr., 2:21–32, March–April 2000.
M. Henle. A Combinatorial Introduction to Topology. Dover Publications, Inc., New

York, 1997.
J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers, Inc., San Francisco, CA, second edition, 1989.
L. Holm and C. Sander. Mapping the protein universe. Science, 273:595–602, 1995.
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization.

In SIGGRAPH 93 Conference Proceedings, pages 19–26, 1993.
IZA Structure Comission. Database of zeolite structures, 2003.

http://www.iza-structure.org.
W. Jaco and J. L. Tollefson. Algorithms for the complete decomposition of a closed

3-manifold. Illinois J. Math., 39:358–406, 1995.
S. Jenson and J. Domingue. Extracting topographic structure from digital elevation data

for geographic information system analysis. Photogrammetric Engineering and
Remote Sensing, 54(11):1593–1600, 1988.

R. Kirby and L. Siebenmann. On the triangulation of manifolds and the
Hauptvermutung. Bull. Amer. Math. Soc., 75:742–749, 1969.

D. E. Knuth. Theory and practice, IV. In Selected Papers on Computer Science. CSLI
Publications, Stanford, CA, 1996.

T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman.
Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. J. Am. Chem. Soc., 122:1848–1860, 2000.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital Michelangelo
project: 3D scanning of large statues. In SIGGRAPH 00 Conference Proceedings,
pages 131–144, 2000.

D. Lischinski. Incremental Delaunay triangulation. In P. Heckbert, editor, Graphics
Gems IV, pages 47–59. Academic Press, Boston, MA, 1994.

A. A. Markov. Insolubility of the problem of homeomorphy. In Proc. Int. Congress of

238 13 Bibliography

Math., pages 14–21. Cambridge University Press, 1958.
E. Martz. Protein Explorer 1.80b, 2001. http://www.proteinexplorer.org.
W. S. Massey. A Basic Course in Algebraic Topology. Springer-Verlag, New York, 1991.
Y. V. Matiyasevich. Investigations on some algorithmic problems in algebra and number

theory. In Proceedings of the Steklov Institute of Mathematics, pages 227–253,
1986.

G. McCarthy. Topology: An Introduction with Application to Topological Groups. Dover
Publications, Inc., New York, 1988.

J. McCleary. User’s Guide to Spectral Sequences. Cambridge University Press,
Cambridge, UK, second edition, 2000.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, Upper Saddle River,
NJ, second edition, 2000.

J. Milnor. Two complexes which are homeomorphic but combinatorially distinct. Ann.
of Maths., 74:575–590, 1961.

J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
E. Moïse. Affine structures in 3-manifolds. Ann. of Maths., 58:458–480, 1953.
F. Morgan. Riemannian Geometry: A Beginner’s Guide. A K Peters, Ltd., Wellesley,

MA, 1998.
J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Reading, MA, 1984.
A. G. Murzin, S. E. Brenner, and C. Hubbard, T. Chothia. SCOP: A structural

classification of proteins database for the investigation of sequences and structures.
J. Mol. Biol., pages 536–540, 1995.

National Geophysical Data Center. Ngdc 5-minute gridded elevation data selection,
1988. http://www.ngdc.noaa.gov/mgg/global/seltopo.html.

National Library of Medicine. The visible human project, 2003.
http://www.nlm.nih.gov/research/visible/.

S. Negami. Diagonal flips of triangulations on surfaces, a survey. Yokohama Math. J.,
47:1–40, 1999.

J. F. O’Callaghan and D. M. Mark. The extraction of drainage networks from digital
elevation data. Computer Vision, Graphics and Image Processing, 28, 1984.

B. O’Neill. Elementary Differential Geometry. Academic Press, San Diego, CA, second
edition, 1997.

C. Orengo, A. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton.
CATH—a hierarchic classification of protein domain structures. Structure, 5(8):
1093–1108, 1997.

C. Papakyriakopoulos. A new proof of the invariance of the homology group of a
complex. Bull. Soc. Math. Grèce, 22:1–154, 1943.

B. Paul and B. Bederson. Togl: a Tk OpenGL widget, 2003. http://togl.sourceforge.net/.
J. Popović and H. Hoppe. Progressive simplicial complexes. In SIGGRAPH 97

Conference Proceedings, pages 217–224, 1997.
V. V. Prasolov. Intuitive Topology. American Mathematical Society, Providence, RI,

1995.
M. O. Rabin. Recursive unsolvability of group theoretic problems. In Annals of

Mathematics, volume 67, pages 172–194. American Mathematical Society, 1958.
A. A. Ranicki, editor. The Hauptvermutung Book. Kluwer Academic Publishers, New

York, 1997.
RCSB. Protein data bank, 2003. http://www.rcsb.org/pdb/.
G. Rhodes. Crystallography Made Crystal Clear. Academic Press, New York, 2000.
E. S. Roberts. Programming Abstractions in C. Addison-Wesley, Reading, MA, 1997.
D. Rolfsen. Knots and Links. Publish or Perish, Inc., Houston, TX, 1990.

Bibliography 239

J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering. Modeling
in Computer Graphics, pages 455–465, June–July 1993.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes. In
SIGGRAPH 92 Conference Proceedings, pages 65–70, 1992.

SCOP. Structural classification of proteins, 2003. http://scop.berkeley.edu/.
H. Seifert. Über das Geschlecht von Knoten. Math. Annalen, 110:571–592, 1935.
Stanford Graphics Laboratory. The Stanford 3D Scanning Repository, 2003.

http://www-graphics.stanford.edu/data/3Dscanrep/.
W. R. Taylor. A deeply knotted protein structure and how it might fold. Nature, 406:

916–919, 2000.
W. P. Thurston. Three-Dimensional Geometry and Topology, Volume 1. Princeton

University Press, New Jersey, 1997.
X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D

vector fields. In Proc. 11th Ann. IEEE Conf. Visualization, pages 359–366, 2000.
G. Turk and M. Levoy. Zippered polygon meshes from range images. In SIGGRAPH 94

Conference Proceedings, pages 311–318, 1994.
F. Uhlig. Transform Linear Algebra. Prentice Hall, Upper Saddle River, NJ, 2002.
M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees

and small seed sets for iso-surface traversal. In Proc. 13th Ann. Sympos. Comput.
Geom., pages 212–220, 1997.

J. van Leeuwen. Finding lowest common ancestors in less than logarithmic time.
Unpublished report, 1976.

G. Voronoï. Nouvelle applications des paramètres continues à la théorie des formes
quadratique. J. Reine Angew. Math., 133 and 134:97–178 and 198–287, 1908.

S. Wasserman, J. Dungan, and N. Cozzarelli. Discovery of a predicted DNA knot
substantiates a model for site-specific recombination. Science, 229:171–174, 1985.

J. R. Weeks. The Shape of Space. Marcel Dekker, Inc., New York, 1985.
M. Woo, J. Neider, and T. Davis. OpenGL programming guide. Addison-Wesley

Developers Press, Reading, MA, 1997.
Z. Wood and I. Guskov. Topological noise removal. In Proceedings of Graphics

Interface, pages 19–26, 2001.
Zeolyst International. Zeolite FAQ, 2003. http://www.zeolyst.com/html/faq.html.
A. Zomorodian and G. Carlsson. Computing topological persistence, 2004. To be

published in Proc. 20th Ann. ACM Sympos. Comput. Geom.

Index

/, 51
∩,∪, 15
∇, 88
≈, 19
�, 36
≤,≥, 24, 28
∼, 18, 74
⊂,⊃, 15
1-1, 15

Abelian, 43
abstract simplicial complex, see simplicial

complex, abstract
adjacency theorem, 115
affine combination, 23
Alexander duality, 75
alpha complex, 36
associative, 42
atlas, 21

basis change theorem, 142
basis of neighborhoods, 17
Betti number, 51, 74, 97
β, see Betti number
bijective, 15
binary operation, 42
boundary, 72

group, see group, boundary
homomorphism, 71
manifold, 20
set, 16

cancellation, 115
canonical, 121, 128
Cartesian, 14
category, 65
cell complex, 89
chain complex, 72
chain group, see group, chain
chart, 19

χ, see Euler characteristic
C∞, 21
closed set, 16
closure, 16, 29
CMY color model, 157
codomain, 15
coface, 24
collision theorem, 133
column-echelon form, 140
combination, 23
commutative, 42
compact, 20
component tree, 172
composite function, 15
conflict, 153
connected sum, 62
convex combination, 23
convex hull, 23
coordinate function

Cartesian, 14
chart, 20

coset, 46
coset multiplication, 51
covering, 20
critical, 85
cycle, 72
cycle group, see group, cycle
cyclic group, 49

deformation retraction, 35
degenerate, 86
Dehn surgery, 69
derivative, 85
diagonal slide, 166
differential, 85
dimension

chart, 20
manifold, 20
simplicial complex, 24
vector space, 58

240

Index 241

direct product, 50
distance function, 17
domain, 15
dual complex, 35

echelon form theorem, 141
edge-flip, 166
elementary operations, 137
embedding, 22
epimorphism, 48
equivalence

class, 19
knot, 117
relation, 18

Euclidean metric, 18
Euclidean space, see space, Euclidean
Euler characteristic

chain complex, 77
simplicial complex, 61

Euler-Poincaré, 77

face, 24
factor group, 51
field, 56
filtered complex, 32
filtration, 32

alpha complex, 37
manifold sweep, 40

finite type, 102
finitely generated, 50
forking, 109
free Abelian group, 54
function, 15–16
functor, 65
fundamental group, see group, fundamental
fundamental theorem of finitely generated

Abelian groups, 50

generator, 49
genus, 64
geometric realization, 27
graded ring and module, 58
gradient, 88
group, 43

boundary, 72
chain, 71
cycle, 72
Fundamental, 66
homology, 73
homotopy, 70
presentation, 67
symmetry, 44

handle, 63
handle slide, 165
Hauptvermutung, 76
Hausdorff, 20

Hessian, 86
homeomorphism, 19
homogeneous, 58
homologous, 74
homology

2-manifolds, 74
coefficients, 79
group, see group, homology
persistent, 97
Z2, 82

homomorphism, 47
homotopy, 36

equivalence, 36
group, see group, homotopy

image, 15
immersion, 22
improper subset, 15
independent, 23, 107
index, 87
induced operation, 46
induced topology, 18
injective, 15
integral domain, 56
integral line, 88
interior, 16
intersection, 15
invariant, 61
irreducible, 56
isomorphism

groups, 48
simplicial complexes, 26

junction, 162

k-triangle theorem, 104, 130
kernel (ker), 48
Klein bottle, 61
knot, 117

linear combination, 23
link, 29, 117
link diagram, 117
linking number

graph, 120
link, 118

loop, 66

manifold, 19–23
connected sum, 62
product, 68
smooth, 21
topological, 20

maximum, 87
merging, 109
metric, 17
metric space, see space, metric

242 Index

minimum, 87
module, 57
modulo, 49
monomorphism, 48
morphism, 65
Morse, 86
Morse-Smale, 90
multiple saddle, 109

neighborhood, 17
nontransversality, 110

one point compactification, 75
one to one, 15
open d-cell, 89
open ball, 17
open set, 16
order, 43
orientable

simplicial complex, 31
smooth manifold, 21

orientation, 31

p-persistent complex, 151
parity, 16
partition, 18
path, 66
permutation, 15
persistence, 97

complex, 100
module, 102

polynomial, 57
poset, 28
potentially linked (p-linked), 171
power diagram, 34
power set, 15
principal, 24
principal ideal domain (PID), 57
projective plane, 61
proper subset, 15

quadrangle theorem, 106
quasi Morse-Smale (QMS) complex, 107

R[t], 57
rank, 54
reduction, 137
regular, 85
relation, 15
relative topology, 18
ring, 55

saddle, 87
scalar, 58
Seifert surface, 118
separable

link, 117

space, 20
sets, 14–15
short exact sequence, 78
signature, 32
simplex

abstract, 26
geometric, 23
positive/negative, 97

simplicial complex, 23–32
abstract, 26
Euler characteristic, 61
filtered, 32
geometric, 24
orientable, 31
subcomplex, 29

Smith normal form, 137
smooth manifold, see manifold, smooth
space

Euclidean, 18
metric, 17
subspace, 18
tangent, 84
topological, 16

spanning manifold, 135
spanning surface, 118
sphere, 61
spherical ball, 33
splitable, 107
splitable quadrangulation, 107
square Betti numbers, 152
stable manifold, 89
standard basis, 137
standard grading, 58
star, 29, 38
structure theorem, 59
subcomplex, see simplicial complex,

subcomplex
subgroup, 46

normal, 48
torsion, 55
trivial, 46

subset, 15
subspace, see space, subspace
surjective, 15

tangent plane, 84
tangent space, vector, 84
topological manifold, see manifold,

topological
topological space, see space, topological
topological type, 19
topology, 16–18
topology map, 157
torsion coefficient, 51, 81, 138
torus, 61, 110, 200
triangulation, 30
tunnel, 75

Index 243

underlying space, 30
unfolding, 164
union, 15
unit, 56
universal coefficient theorem, 80
unlink, 117
unstable manifold, 89

vector field, 84
vector space, 58
vertex scheme, 26
void, 75
Voronoï, 34

wedge, 108
weighted square distance, 33
well defined, 42

Zn, 49

	000001.pdf
	000002.pdf
	000003.pdf
	000004.pdf
	000005.pdf
	000006.pdf
	000007.pdf
	000008.pdf
	000009.pdf
	000010.pdf
	000011.pdf
	000012.pdf
	000013.pdf
	000014.pdf
	000015.pdf
	000016.pdf
	000017.pdf
	000018.pdf
	000019.pdf
	000020.pdf
	000021.pdf
	000022.pdf
	000023.pdf
	000024.pdf
	000025.pdf
	000026.pdf
	000027.pdf
	000028.pdf
	000029.pdf
	000030.pdf
	000031.pdf
	000032.pdf
	000033.pdf
	000034.pdf
	000035.pdf
	000036.pdf
	000037.pdf
	000038.pdf
	000039.pdf
	000040.pdf
	000041.pdf
	000042.pdf
	000043.pdf
	000044.pdf
	000045.pdf
	000046.pdf
	000047.pdf
	000048.pdf
	000049.pdf
	000050.pdf
	000051.pdf
	000052.pdf
	000053.pdf
	000054.pdf
	000055.pdf
	000056.pdf
	000057.pdf
	000058.pdf
	000059.pdf
	000060.pdf
	000061.pdf
	000062.pdf
	000063.pdf
	000064.pdf
	000065.pdf
	000066.pdf
	000067.pdf
	000068.pdf
	000069.pdf
	000070.pdf
	000071.pdf
	000072.pdf
	000073.pdf
	000074.pdf
	000075.pdf
	000076.pdf
	000077.pdf
	000078.pdf
	000079.pdf
	000080.pdf
	000081.pdf
	000082.pdf
	000083.pdf
	000084.pdf
	000085.pdf
	000086.pdf
	000087.pdf
	000088.pdf
	000089.pdf
	000090.pdf
	000091.pdf
	000092.pdf
	000093.pdf
	000094.pdf
	000095.pdf
	000096.pdf
	000097.pdf
	000098.pdf
	000099.pdf
	000100.pdf
	000101.pdf
	000102.pdf
	000103.pdf
	000104.pdf
	000105.pdf
	000106.pdf
	000107.pdf
	000108.pdf
	000109.pdf
	000110.pdf
	000111.pdf
	000112.pdf
	000113.pdf
	000114.pdf
	000115.pdf
	000116.pdf
	000117.pdf
	000118.pdf
	000119.pdf
	000120.pdf
	000121.pdf
	000122.pdf
	000123.pdf
	000124.pdf
	000125.pdf
	000126.pdf
	000127.pdf
	000128.pdf
	000129.pdf
	000130.pdf
	000131.pdf
	000132.pdf
	000133.pdf
	000134.pdf
	000135.pdf
	000136.pdf
	000137.pdf
	000138.pdf
	000139.pdf
	000140.pdf
	000141.pdf
	000142.pdf
	000143.pdf
	000144.pdf
	000145.pdf
	000146.pdf
	000147.pdf
	000148.pdf
	000149.pdf
	000150.pdf
	000151.pdf
	000152.pdf
	000153.pdf
	000154.pdf
	000155.pdf
	000156.pdf
	000157.pdf
	000158.pdf
	000159.pdf
	000160.pdf
	000161.pdf
	000162.pdf
	000163.pdf
	000164.pdf
	000165.pdf
	000166.pdf
	000167.pdf
	000168.pdf
	000169.pdf
	000170.pdf
	000171.pdf
	000172.pdf
	000173.pdf
	000174.pdf
	000175.pdf
	000176.pdf
	000177.pdf
	000178.pdf
	000179.pdf
	000180.pdf
	000181.pdf
	000182.pdf
	000183.pdf
	000184.pdf
	000185.pdf
	000186.pdf
	000187.pdf
	000188.pdf
	000189.pdf
	000190.pdf
	000191.pdf
	000192.pdf
	000193.pdf
	000194.pdf
	000195.pdf
	000196.pdf
	000197.pdf
	000198.pdf
	000199.pdf
	000200.pdf
	000201.pdf
	000202.pdf
	000203.pdf
	000204.pdf
	000205.pdf
	000206.pdf
	000207.pdf
	000208.pdf
	000209.pdf
	000210.pdf
	000211.pdf
	000212.pdf
	000213.pdf
	000214.pdf
	000215.pdf
	000216.pdf
	000217.pdf
	000218.pdf
	000219.pdf
	000220.pdf
	000221.pdf
	000222.pdf
	000223.pdf
	000224.pdf
	000225.pdf
	000226.pdf
	000227.pdf
	000228.pdf
	000229.pdf
	000230.pdf
	000231.pdf
	000232.pdf
	000233.pdf
	000234.pdf
	000235.pdf
	000236.pdf
	000237.pdf
	000238.pdf
	000239.pdf
	000240.pdf
	000241.pdf
	000242.pdf
	000243.pdf
	000244.pdf
	000245.pdf
	000246.pdf
	000247.pdf
	000248.pdf
	000249.pdf
	000250.pdf
	000251.pdf
	000252.pdf
	000253.pdf
	000254.pdf
	000255.pdf
	000256.pdf
	000257.pdf
	000258.pdf
	000259.pdf

		2005-01-13T12:13:28+0800
	TeAM YYePG
	I attest to the accuracy and integrity of this document

