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Preface

This main purpose of this book is to present the basic theory of well-posed
linear systems in a form which makes it available to a larger audience, thereby
opening up the possibility of applying it to a wider range of problems. Up to
now the theory has existed in a distributed form, scattered between different
papers with different (and often noncompatible) notation. For many years this
has forced authors in the field (myself included) to start each paper with a long
background section to first bring the reader up to date with the existing theory.
Hopefully, the existence of this monograph will make it possible to dispense
with this in future.

My personal history in the field of abstract systems theory is rather short but
intensive. It started in about 1995 when I wanted to understand the true nature
of the solution of the quadratic cost minimization problem for a linear Volterra
integral equation. It soon became apparent that the most appropriate setting
was not the one familiar to me which has classically been used in the field of
Volterra integral equations (as presented in, e.g., Gripenberg et al. [1990]). It
also became clear that the solution was not tied to the class of Volterra integral
equations, but that it could be formulated in a much more general framework.
From this simple observation I gradually plunged deeper and deeper into the
theory of well-posed (and even non-well-posed) linear systems.

One of the first major decisions that I had to make when I began to write
this monograph was how much of the existing theory to include. Because of
the nonhomogeneous background of the existing theory (several strains have
been developing in parallel independently of each other), it is clear that it is
impossible to write a monograph which will be fully accepted by every worker
in the field. I have therefore largely allowed my personal taste to influence the
final result, meaning that results which lie closer to my own research interests
are included to a greater extent than others. It is also true that results which
blend more easily into the general theory have had a greater chance of being
included than those which are of a more specialist nature. Generally speaking,

Xi



xii Preface

instead of borrowing results directly from various sources I have reinterpreted
and reformulated many existing results into a coherent setting and, above all,
using a coherent notation.

The original motivation for writing this book was to develop the background
which is needed for an appropriate understanding of the quadratic cost mini-
mization problem (and its indefinite minimax version). However, due to page
and time limitations, I have not yet been able to include any optimal control in
this volume (only the background needed to attack optimal control problems).
The book on optimal control still remains to be written.

Not only was it difficult to decide exactly what parts of the existing theory
to include, but also in which form it should be included. One such decision
was whether to work in a Hilbert space or in a Banach space setting. Optimal
control is typically done in Hilbert spaces. On the other hand, in the basic theory
it does not matter if we are working in a Hilbert space or a Banach space (the
technical differences are minimal, compared to the general level of difficulty of
the theory). Moreover, there are several interesting applications which require
the use of Banach spaces. For example, the natural norm in population dynamics
is often the L'-norm (representing the total mass), parabolic equations have a
well-developed LP-theory with p # 2, and in nonlinear equations it is often
more convenient to use L>-norms than L?-norms. The natural decision was to
present the basic theory in an arbitrary Banach space, but to specialize to Hilbert
spaces whenever this additional structure was important. As a consequence of
this decision, the present monograph contains the first comprehensive treatment
of a well-posed linear system in a setting where the input and output signals are
continuous (as opposed to belonging to some L”-space) but do not have any
further differentiability properties (such as belonging to some Sobolev spaces).
(More precisely, they are continuous apart from possible jump discontinuities.)

The first version of the manuscript was devoted exclusively to well-posed
problems, and the main part of the book still deals with problems that are well
posed. However, especially in H*°-optimal control, one naturally runs into non-
well-posed problems, and this is also true in circuit theory in the impedance
and transmission settings. The final incident that convinced me that I also had
to include some classes of non-well-posed systems in this monograph was my
discovery in 2002 that every passive impedance system which satisfies a certain
algebraic condition can be represented by a (possibly non-well-posed) system
node. System nodes are a central part of the theory of well-posed systems, and
the well-posedness property is not always essential. My decision not to stay
strictly within the class of well-posed systems had the consequence that this
monograph is also the the first comprehensive treatment of (possibly non-well-
posed) systems generated by arbitrary system nodes.



Preface xiii

The last three chapters of this book have a slightly different flavor from the
earlier chapters. There the general Banach space setting is replaced by a stan-
dard Hilbert space setting, and connections are explored between well-posed
linear systems, Fourier analysis, and operator theory. In particular, the admissi-
bility of scalar control and observation operators for contraction semigroups is
characterized by means of the Carleson measure theorem, and systems theory
interpretations are given of the basic dilation and model theory for contractions
and continuous-time contraction semigroups in Hilbert spaces.

It took me approximately six years to write this monograph. The work has
primarily been carried out at the Mathematics Institute of Abo Akademi, which
has offered me excellent working conditions and facilities. The Academy of
Finland has supported me by relieving me of teaching duties for a total of two
years, and without this support I would not have been able to complete the
manuscript in this amount of time.

Iam grateful to several students and colleagues for helping me find errors and
misprints in the manuscript, most particularly Mikael Kurula, Jarmo Malinen
and Kalle Mikkola.

Above all T am grateful to my wife Marjatta for her understanding and
patience while I wrote this book.



Notation

W

Ok

+& 18 +

ro

I+ 4+

Sl 8] Bl 8| al al al al

+

%II =

A, B, C, D

Basic sets and symbols

The complex plane.
c*-—{zecmww}andﬁ-—{zecmzzw}_
{ZGCI‘Rz<w}andC ={zeC| %z <w}
(C+ —(C*and(C =C,.
C :=CjandC :=C,.
={ze©|mz>r}andﬁ+- zeCllzl =r).
_={ZG(C|Ehz<r}andD ={zeC|l|z| <r}.
1D>+:=D1+andﬁ _]D>1

= (0, 00) and R = [0, 00).
R~ :=(—00,0)and R := (—00, 0].
The unit circle in the complex plane.
The real line R where the pointst +m7T,m = 0, &1, £2, ...
are identified.
The set of all integers.

={0,1,2,...}and Z™ := {—1, -2, -3, ...}.
ji=+—1L
The number zero, or the zero vector in a vector space, or the
zero operator, or the zero-dimensional vector space {0}.
The number one and also the identity operator on any set.

Operators and related symbols

In connection with an L”|Reg-well-posed linear system or an
operator node, A is usually the main operator, B the control
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Notation XV

operator, C the observation operator and D a feedthrough
operator. See Chapters 3 and 4.

The observation/feedthrough operator of an L”|Reg-well-
posed linear system or an operator node. See Definition 4.7.2.
The semigroup, input map, output map, and input/output map
of an L?|Reg-well-posed linear system, respectively. See Def-
initions 2.2.1 and 2.2.3.

The transfer function of an L?|Reg-well-posed linear system
or an operator node. See Definitions 4.6.1 and 4.7 .4.

The set of bounded linear operators from U into Y or from
U into itself, respectively.

The Cayley and Laguerre transforms. See Definition 12.3.2.
The bilateral time shift operator t’u(s) := u(t + s) (this is
a left-shift when ¢ > 0 and a right-shift when ¢ < 0). See
Example 2.5.3 for some additional shift operators.

The time compression or dilation operator (v, u)(s) := u(rs).
Here A > 0.

(myu)(s) :=u(s) if s € J and (wyu)(s) :=0if s ¢ J. Here
JCR.

T4 1= T[0,00) aNd T_ = TT(—00,0).

The time reflection operator about zero: (Au)(s) := u(—s)
(in the L?-case) or (Su)(s) := lim,_; u(¢) (in the Reg-case).
See Definition 3.5.12.

The time reflection operator about the point 4. See Lemma
6.1.8.

The discrete-time bilateral left-shift operator (ow); := w1,
where u = {uy }rcz. See Section 12.1 for the definitions of o
and o_.

(), ;= uy ifk € J and (mu), :=0ifk ¢ J.Here J C Z
and u = {uy }yez.

w4 =7y and T_ 1= 7y

The weak limit in a Banach space. Thus w-lim,,_, - X, = x in
X iff lim,,_, o x*x,, = x*x for all x* € X*. See Section 3.5.
In a Banach space setting x*x := (x, x*) is the continuous
linear functional x* evaluated at x. In a Hilbert space setting
this is the inner product of x and x*. See Section 3.5.
E':={x*e X*| (x,x*) = 0forall x € E}. This is the an-
nihilator of £ C X. See Lemma 9.6.4.

LF :={x e X | (x,x*) = 0forall x* € F}. This is the pre-
annihilator of F' C X*. See Lemma 9.6.4. In the reflexive
case L F = F1, and in the nonreflexive case 1 F = F1 N X.
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A*
A>0
A>0
D(A)
R (A)
N (A)
rank(A)
dim(X)
p(A)

o(A)
ap(A)
o,(A)
o.(A)

wy
T1, TIC

A&B, C&D

SRS

=

Notation

The (anti-linear) dual of the operator A. See Section 3.5.

A is (self-adjoint and) positive definite.

A > € for some € > 0, hence A is invertible.

The domain of the (unbounded) operator A.

The range of the operator A.

The null space (kernel) of the operator A.

The rank of the operator A.

The dimension of the space X.

The resolvent set of A (see Definition 3.2.7). The resolvent
set is always open.

The spectrum of A (see Definition 3.2.7). The spectrum is
always closed.

The point spectrum of A, or equivalently, the set of eigenval-
ues of A (see Definition 3.2.7).

The residual spectrum of A (see Definition 3.2.7).

The continuous spectrum of A (see Definition 3.2.7).

The growth bound of the semigroup 2. See Definition 2.5.6.
T I stands for the set of all time-invariant, and TIC stands for
the set of all time-invariant and causal operators. See Defini-
tion 2.6.2 for details.

A&B stands for an operator (typically unbounded) whose
domain D (A& B) is a subspace of the cross-product [5] of
two Banach spaces X and U, and whose values lie in a third
Banach space Z. If D (A&B) splits into D (A&B) = X +
U; where X; C X and U; C U, then A&B can be written in
block matrix form as A&B = [A B], where A = A&Bx,
and B = A&B|y,. We alternatively write these identities in
the form Ax = A&B[g] and Bu = A&B[g], interpreting
D (A& B) as the cross-product of X and Uj.

Special Banach spaces

Frequently the input space of the system.

Frequently the state space of the system.

Frequently the output space of the system.

Spaces constructed from the state space X with the help of the
generator of a semigroup 2. In particular, X is the domain
of the semigroup generator. See Section 3.6.

X = (X"), = (X_n)*. See Remark 3.6.1.

X = X + X, means that the Banach space X is the direct
sum of X and X», i.e., both X and X, are closed subspaces
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BC
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of X, and every x € X has a unique representation of the form
X = x1 + x» where x; € X; and x, € X,.

X = X & X, means that the Hilbert space X is the or-
thogonal direct sum of the Hilbert spaces X; and X», i.e.,
X =X1 —i—Xz&IlXm J_Xz.

The cross-product of the two Banach spaces X and Y. Thus,

[F1=[81+[7]

Special functions

The characteristic function of the set /.

The Heaviside function: 1, = yg+. Thus (1,)(¢) = 1 forz >
Oand (1)) =0fort <O.

The Beta function (see (5.3.1)).

The Gamma function (see (3.9.7)).

en(t) = e forw, t € R.

The natural logarithm.

Function spaces

Functions of type V (= L?, BC, etc.) on the interval / C R
with range in U.

Functions which are locally of type V, i.e., they are defined
on J C R with range in U and they belong to V(K; U) for
every bounded subinterval K C J.

Functions in V(J; U) with bounded support.

Functions in Vj,.(J; U) whose support is bounded to the left.
Functions in Vioc(J; U) whose support is bounded to the right.
Functions in V(J; U) vanishing at +00. See also the special
cases listed below.

The set of functions u for which (t — e *'u(t)) € V(J; U).
See also the special cases listed below.

The set of functions u € Vio(R; U) which satisfy w_u €
Vo(R™3U).

The set of T -periodic functions of type V on R. The norm in
this space is the V-norm over one arbitrary interval of length
T.

Bounded continuous functions; sup-norm.

Functions in BC that tend to zero at =00.

Functions u for which (r = e “'u(t)) € BC.
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BCw,loc(R; U)
BCy,,
BCO,w,loc(R; U)
BUC

BUC"

C
Cl’l

COO

L?, 1<p<o0
LOO
Ly

LP
w locUR U)

LS v
0 , IOC(R U)

wn-p
Reg
Reg,

Reg,,
Rng,loc(R; U)

RegO,w
RegO,w,loc(]R; U)
n

Reg

L?|Reg

Notation

Functions u € C(R; U) which satisfy m_u € BC,(R™; U).
Functions u for which (t — e *"u(t)) € BC,.

Functions u € C(R; U) which satisfy 7_u € BCy ,(R™; U).
Bounded uniformly continuous functions; sup-norm.
Functions which together with their n first derivatives belong
to BUC. See Definition 3.2.2.

Continuous functions. The same space as BCjqc.

n times continuously differentiable functions. The same
space as BCY .

Infinitely many times differentiable functions. The same
space as BCYY

loc*

Strongly measurable functions with norm { [|u(z)|? dt } e
Strongly measurable functions with norm ess sup|u(t)|.

Ly =L7if 1 < p < oo, and LY consists of those u € L™
which vanish at 00, i.e., lim;_, 5 €sS sup‘s|2,|u(s)| =0.
Functions u for which (¢t — e ®'u(t)) € L?.

Functions u € L{;C(]R U) which satisfy m_u € LE(R™; U).
Functions u for which (f > e™“'u(t)) € L{.

Functions u € L (R; U) whichsatisfy 7_u € L ,(R™; U).
Functions which together with their n first (diystribution)
derivatives belong to L?. See Definition 3.2.2.

Bounded right-continuous functions which have a left hand
limit at each finite point.

Functions in Reg which tend to zero at +ooc.

The set of functions u for which (t — e ' u(z)) € Reg.

The set of functions u € Reg,,.(R; U) which satisfy m_u €
Reg,(R~; U).

The set of functions u for which (t = e~*“'u(r)) € Reg,.
Functions u € Reg,(R;U) which satisfy mw_ue
Regy ,(R7;U).

Functions which together with their » first derivatives belong
to Reg. See Definition 3.2.2.

This stands for either L? or Reg, whichever is appropriate.



1

Introduction and overview

We first introduce the reader to the notions of a system node and an L”-well-
posed linear system with 1 < p < oo, and continue with an overview of the
rest of the book.

1.1 Introduction

There are three common ways to describe a finite-dimensional linear time-
invariant system in continuous time:

(i) the system can be described in the time domain as an input/output map
from an input signal u into an output signal y;

(ii) the system can be described in the frequency domain by means of a
transfer function 5, i.e., if &z and ¥ are the Laplace transforms of the
input u respectively the output y, then y = Dii in some right half-plane;

(iii) the system can be described in state space form in terms of a set of first
order linear differential equations (involving matrices A, B, C, and D of
appropriate sizes)

x(t) = Ax(t) + Bu(1),
y(t) = Cx(t) + Du(t), t >0, (1.1.1)
x(0) = xo.

In (i)-(iii) the input signal u takes its values in the input space U and the
output signal y takes its values in the output space Y, both of which are
finite-dimensional real or complex vector spaces (i.e., R* or C* for some
k=1,2,3,...), and the state x(¢) in (iii) takes its values in the state space
X (another finite-dimensional vector space).

All of the three descriptions mentioned above are important, but we shall
regard the third one, the state space description, as the most fundamental



2 Introduction and overview

one. From a state space description it is fairly easy to get both an input/
output description and a transfer function description. The converse statement
is more difficult (but equally important): to what extent is it true that an input/
output description or a transfer function description can be converted into a
state space description? (Various answers to this question will be given below.)

The same three types of descriptions are used for infinite-dimensional lin-
ear time-invariant systems in continuous time. The main difference is that we
encounter certain technical difficulties which complicate the formulation. As a
result, there is not just one general infinite-dimensional theory, but a collection
of competing theories that partially overlap each other (and which become
more or less equivalent when specialized to the finite-dimensional case). In this
book we shall concentrate on two quite general settings: the case of a system
which is either well-posed in an L?-setting (for some p € [1, oo]) or (more
generally), it has a differential description resembling (1.1.1), i.e., it is induced
by a system node.

In order to give a definition of a system node we begin by combining the
four matrices A, B, C, and D into one single block matrix § = [ 4 5], which
we call the node of the system, and rewrite (1.1.1) in the form

x| J[x@® B
[y(l)}_s[u(t)] t20, x(0)=x. (1.1.2)

For a moment, let us ignore the original matrices A, B, C, and D, and simply
regard S as a linear operator mapping [ ¥ ] into [ ¥ ] (recall that we denoted the
input space by U, the state space by X, and the output space by Y). If U, X and
Y are all finite-dimensional, then S is necessarily bounded, but this need not
be true if U, X, or Y is infinite-dimensional. The natural infinite-dimensional
extension of (1.1.1) is to replace (1.1.1) by (1.1.2) and to allow S to be an
unbounded linear operator with some additional properties. These properties
are chosen in such a way that (1.1.2) generates some reasonable family of
trajectories, i.e., for some appropriate class of initial states xo € X and input
functions u the equation (1.1.2) should have a well-defined state trajectory x(¢)
(defined for all# > 0) and a well-defined output function y. The set of additional
properties that we shall use in this work is the following.

Definition 1.1.1 We take U, X, and Y to be Banach spaces (sometimes Hilbert
spaces), and call S a system node if it satisfies the following four conditions:'

(i) S is a closed (possibly unbounded) operator mapping D (S) C [ & ] into

[¥]:

! 1t follows from Lemma 4.7.7 that this definition is equivalent to the definition of a system node
given in 4.7.2.
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(>ii) if we split S into S = [g’y( ] in accordance with the splitting of the range
space [ § | (Sx is the ‘top row” of S and Sy is the ‘bottom row’), then Sx
is closed (with D (Sx) = D (S));

(iii) the operator A defined by Ax = Sy [§ ] with domain D (A) = {x € X |
[6] € D (S)} is the generator of a strongly continuous semigroup on X;

(iv) for every u € U there is some x € X such that [} ] € D ().

It turns out that when these additional conditions hold, then (1.1.2) has
trajectories of the following type. We use the operators Sy and Sy defined in
(ii) to split (1.1.2) into

x(r)=sx[zm, 120, x(0)=x,

(1.1.3)
=5 "D, >0
YO=>rlun) =7

If (i)—~(iv) hold, then for each xg € X and u € C%([0, 00); U) such that [ ¢, ] €
D (S), there is a unique function x € C'([0, 0o); X) (called a state trajectory)
satisfying x(0) = xo, [ 1) | € D($). 1 = 0, and £() = Sy [ 1) |- ¢ = 0. 1 we

u(t) |

define the output y € C([0, 00);Y) by y(t) = Sy [ig;], t > 0, then the three
functions u, x, and y satisfy (1.1.2) (this result is a slightly simplified version
of Lemma 4.7.8).

Another consequences of conditions (i)—(iv) above is that it is almost (but
not quite) possible to split a system node S into S = [é g] as in the finite-
dimensional case. If X is finite-dimensional, then the operator A in (iii) will
be bounded, and this forces the full system node S to be bounded, with
D)= [5] Trivially, in this case S can be decomposed into four bounded
operators S = [é g]. If X is infinite-dimensional, then a partial decomposi-
tion still exists. The operator A in this partial decomposition corresponds to an
extension Ay of the semigroup generator A in (iii).>This extension is defined
on all of X, and it maps X into a larger ‘extrapolation space’ X_; which con-
tains X as a dense subspace. There is also a control operator B which maps
U into X_;, and the operator Sy defined in (ii) (the ‘top row’ of X) is the
restriction to D (S) of the operator [Ax B] which maps [ # ] into X_;. (Fur-
thermore, D (S) = {[+] € [&] | [Aix B][%] € X}.) Thus, Sx always has a
decomposition (after an appropriate extension of its domain and also an ex-
tension of the range space). The ‘bottom row’ Sy is more problematic, due to
the fact that it is not always possible to embed Y as a dense subspace in some
larger space Y_; (for example, Y may be finite-dimensional). It is still true,

2 We shall also refer to A as the main operator of the system node.
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however, that it is possible to define an observation operator C with domain
D(C)=D(A) by Cx = Sy [8], x € D(A). The feedthrough operator D in
the finite-dimensional decomposition A = [é g] need not always exist, and it
need not be unique. However, this lack of a unique well-defined feedthrough
operator is largely compensated by the fact that every system node has a transfer
function, defined on the resolvent set of the operator A in (iii). See Section 4.7 for
details.?

The other main setting that we shall use (and after which this book has
been named) is the L?-well-posed setting with 1 < p < oo. This setting can be
introduced in two different ways. One way is to first introduce a system node
of the type described above, and then add the requirement that for all # > 0, the
final state x(t) and the restriction of y to the interval [0, t) depend continuously
on xg and the restriction of u to [0, t). This added requirement will give us an
LP-well-posed linear system if we use the X-norm for x¢ and x(#), the norm in
L?([0, t); U) for u, and the norm in L?([0, t); Y) for y.* (See Theorem 4.7.13
for details.)

However, it is also possible to proceed in a different way (as we do in
Chapter 2) and to introduce the notion of an L”-well-posed linear system without
any reference to a system node. In this approach we look directly at the mapping
from the initial state xo and the input function (restricted to the interval [0, t))
to the final state x(¢) and the output function y (also restricted to the interval
[0, 1)). Assuming the same type of continuous dependence as we did above, the
relationship between these four objects can be written in the form (we denote
the restrictions of # and y to some interval [s, ¢) by 7, »u, respectively s 1 y)

AL | B
[x(t)}: R |:x0 ] £ 0,
To,ny ¢ | Df | LTo.nu
for some families of bounded linear operator 2, : X — X, B{: L”([0,1); U)—
X, ¢ X — LP([0,1);Y),and ©f: LP([0,1);U) — LP([0,1);Y). If these
families correspond to the trajectories of some system node (as described ear-
lier), then they necessarily satisfy some algebraic conditions, with can be stated

without any reference to the system node itself. Maybe the simplest way to list
these algebraic conditions is to look at a slightly extended version of (1.1.2)

3 Another common way of constructing a system node is the following. Take any semigroup
generator A in X, and extend it to an operator Ay € B(X;X_1). Let B € B(U; X_1) and
C € B(X1;U) be arbitrary, where X is D (A) with the graph norm. Finally, fix the value of the
transfer function to be a given operator in B(U; Y) at some arbitrary point in p(A), and use
Lemma 4.7.6 to construct the corresponding system node.

4 Here we could just as well have replaced the interval [0, ¢) by (0, ¢) or [0, ¢]. However, we shall
later consider functions which are defined pointwise everywhere (as opposed to almost
everywhere), and then it is most convenient to use half-open intervals of the type [s, 1), s < t.
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where the initial time zero has been replaced by a general initial time s, namely

x| J[x® B
[y(t)] =3 [u(z)] 1zs, x(9)=x, (1.1.4)

and to also look at the corresponding maps from x, and 7, yu to x(¢) and 7, 1)y
which we denote by

[ x(1) :| AL | B |: X ]
= , s<t.
5,0y CD! | LTTsnU

These two-parameter families of bounded linear operators 21, B, ¢’ and D’
have the properties listed below. In this list of properties we denote the left-shift
operator by

(t'u)(s) = u +s), —00 < §,1 < 00,
and the identity operator by 1.

Algebraic conditions 1.1.2 The operator families A%, B!, €, and D satisfy

5
28] [L]o
alo | |olo]

AL | B [ BT[s.0)
¢ | D | 5.0 €5 | s, D5 Ts,0)

(iii) Foralls <tandh € R,

[21212\‘321’;1_ [ % | Bt }

t+h t+h —h gt —heyt L h
AL rhet | g

the following conditions:

(i) Forallt € R,

(ii) Foralls <'t,

s+h |

@iv) Foralls <r <t,

[91;\%;}_[ A | B+ AB] }

¢ D | e e | D 4+ B+ D

All of these conditions have natural interpretations (see Sections 2.1 and 2.2
for details): (i) is an initial condition, (ii) says that the system is causal, (iii)

5 By Theorem 2.2.14, these algebraic conditions are equivalent to those listed in Definition 2.2.1.
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says that the system is time-invariant, and (iv) gives a formula for how to patch
two solutions together, the first of which is defined on [s, ] and the second on
[, t], and with the initial state of the second solution equal to the final state
of the first solution at the ‘switching time’ r. For example, if we take a closer
look at the family 21!, then (iii) says that ! = ;™" for all s <1, (i) says that
2[8 = 1, and (iv) says that Qlf) = ng%lf)—r for all 0 < r < t. This means that the
family 2, is simply a semigroup (it is the semigroup generated by the operator
A of the corresponding system node).

Not only are the conditions (i)—(iv) above necessary for the family [i{: gi
to be generated by a system node S through the equation (1.1.4), but théy are
sufficient as well (when combined with the appropriate continuity assumptions).
This will be shown in Chapters 3 and 4 (out of which the former deals exclusively
with semigroups). However, it is possible to develop a fairly rich theory by
simply appealing to the algebraic conditions (i)—(iv) above (and appropriate
continuity conditions), without any reference to the corresponding system node.
Among other things, every LP-well-posed linear system has a finite growth
bound, identical to the growth bound of its semigroup 2. See Chapter 2 for
details.

Most of the remainder of the book deals with extensions of various notions
known from the theory of finite-dimensional systems to the setting of L”-
well-posed linear systems, and even to systems generated by arbitrary system
nodes. Some of the extensions are straightforward, others are more compli-
cated, and some finite-dimensional results are simply not true in an infinite-
dimensional setting. Conversely, many of the infinite-dimensional results that
we present do not have any finite-dimensional counterparts, in the sense that
these statements become trivial if the state space is finite-dimensional. In many
places the case p = oo is treated in a slightly different way from the case
p < 00, and the class of L*-well-posed linear systems is often replaced by
another class of systems, the Reg-well-posed class, which allows functions to
be evaluated everywhere (recall that functions in L are defined only almost
everywhere), and which restricts the set of permitted discontinuities to jump
discontinuities.

The last three chapters have a slightly different flavor from the others. We
replace the general Banach space setting which has been used up to now by
a standard Hilbert space setting, and explore some connections between well-
posed linear systems, Fourier analysis, and operator theory. In particular, in
Section 10.3 we establish the standard connection between the class of bounded
time-invariant causal operators on L? and the set of bounded analytic functions
on the right half-plane, and in Sections 10.5-10.7 the admissibility and bound-
edness of scalar control and observation operators for contraction semigroups
are characterized by means of the Carleson measure theorem. Chapter 11 has
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a distinct operator theory flavor. It contains among others a systems theory
interpretation of the basic dilation and model theory for continuous-time con-
traction semigroups on Hilbert spaces.

Chapter 12 contains a short introduction to discrete-time systems (and it
also contains a section on continuous-time systems). Some auxiliary results
have been collected in the appendix.

After this rough description of what this book is all about, let us also tell the
reader what this book is not about, and give some indications of where to look
for these missing results.

There are a number of examples of L”-well-posed linear system given in
this book, but these are primarily of a mathematical nature, and they are not the
true physical examples given in terms of partial differential equations which
are found in books on mathematical physics. There are two reasons for this
lack of physical examples. One of them is the lack of space and time. The
present book is quite large, and any addition of such examples would require
a significant amount of additional space. It would also require another year or
two or three to complete the manuscript. The other reason is that the two recent
volumes Lasiecka and Triggiani (2000a, b) contain an excellent collection of
examples of partial differential equations modeling various physical systems.
By Theorem 5.7.3(iii), most of the examples in the first volume dealing with
parabolic problems are Reg-well-posed. Many of the examples in the second
volume dealing with hyperbolic problems are L2-well-posed. Almost all the
examples in Lasiecka and Triggiani (2000a, b) are generated by system nodes.
(The emphasis of these two volumes is quite different from the emphasis of
this book. They deal with optimal control, whereas we take a more general
approach, focusing more on input/output properties, transfer functions, coprime
fractions, realizations, passive and conservative systems, discrete time systems,
model theory, etc.)

Our original main motivation for introducing the class of systems generated
by arbitrary system nodes was that this class is a very natural setting for a
study of impedance passive systems. Such systems need not be well-posed,
but under rather weak assumptions they are generated by system nodes. The
decision not to include a formal discussion of impedance passive systems in this
book was not easy. Once more this decision was dictated partly by the lack of
space and time, and partly by the fact that there is another recently discovered
setting which may be even more suitable for this class of systems, namely the
continuous time analogue of the state/signal systems introduced in Arov and
Staffans (2004, see also Ball and Staffans 2003). Impedance passive systems
are discussed in the spirit of this book in Staffans (2002a, b, c).

Another obvious omission (already mentioned above) is the lack of results
concerning quadratic optimal control. This omission may seem even more
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strange in light of the fact that the original motivation for writing this book
was to present a general theory that could be used in the study of optimal con-
trol problems (of definite and indefinite type). However, also this omission has
two valid reasons. The first one is the same as we mentioned above, i.e., lack of
space and time. The other reason is even more fundamental: the theory of opti-
mal control is at this very moment subject to very active research, and it has not
yet reached the needed maturity to be written down in the form of a monograph.
We are here thinking about a general theory in the spirit of this book. There do,
of course, exist quite mature theories for various subclasses of systems. One
such class is the one which assumes that the system is of the ‘classical’ form
(1.1.1), where A is the generator of a strongly continuous semigroup and the
operators B, C, and D are bounded. This class is thoroughly investigated in
Curtain and Zwart (1995). Systems of this type are easy to deal with (hence,
they have a significant pedagogical value), but they are too limited to cover
many of the interesting boundary control systems encountered in mathematical
physics. (For example, the models developed in Sections 11.6 and 11.7 have
bounded B, C, and D only in very special cases.) Other more general (hence
less complete) theories are found in, e.g., Lions (1971), Curtain and Pritchard
(1978), Bensoussan et al. (1992), Fattorini (1999), and Lasiecka and Triggiani
(20002, b). Quadratic optimal control results in the setting of L?-well-posed
linear systems are found in Mikkola (2002), Staffans (1997, 1998a, b, c, d),
Weiss (2003), and Weiss and Weiss (1997).

There is a significant overlap between some parts of this book and certain
books which deal with ‘abstract system theory’, such as Fuhrmann (1981)
and Feintuch and Saeks (1982), or with operator theory, such as Lax and
Phillips (1967), Sz.-Nagy and Foias (1970), Brodskii (1971), LivSic (1973),
and Nikol’skif (1986). In particular, Chapter 11 can be regarded as a natural
continuous-time analogue of one of the central parts of Sz.-Nagy and Foiag
(1970, rewritten in the language of L2-well-posed linear systems).

1.2 Overview of chapters 2-13

Chapter 2 In this chapter we develop the basic theory of L?-well-posed lin-
ear systems starting from a set of algebraic conditions which is equivalent to
1.1.2. We first simplify the algebraic conditions 1.1.2 by using a part of those
conditions to replace the original two-parameter families 2, B!, ¢!, and D/,
introduced in Section 1.1 by a semigroup 2, ¢ > 0, and three other operators,
the input map B = B° __, the output map € = €, and the input/output map
D = D> . The resulting algebraic conditions that 2, 95, €, and © have to sat-
isfy are listed in 2.1.3 and again in Definition 2.2.1. The connection between the



1.2 Overview of chapters 2—13 9

quadruple 2, *B, €, and ® and the original four operator families 2, 8%, €', and
D! is explained informally in Section 2.1 and more formally in Definition 2.2.6
and Theorem 2.2.14. Thus, we may either interpret an L”-well-posed linear

system as a quadruple X = [%% ], or as a two-parameter family of operators

= [Qé,’ g,l_' ], where s represents the initial time and ¢ the final time.

In the case where p = oo we often require the system to be Reg-well-posed
instead of L*>°-well-posed. Here Reg stands for the class of regulated functions
(which is described in more detail in Section A.1). By a regulated function
we mean a function which is locally bounded, right-continuous, and which
has a left-hand limit at each finite point. The natural norm in this space is the
L*°-norm (i.e., the sup-norm). In this connection we introduce the following
terminology (see Definition 2.2.4). By an L?|Reg-well-posed linear system we
mean a system which is either Reg-well-posed or L”-well-posed for some p,
1 < p < o0, and by a well-posed linear system we mean a system which is
either Reg-well-posed or LP-well-posed for some p, 1 < p < oo. Thus, the
LP-case with p = oo is included in the former class but not in the latter. The
reason for this distinction is that not all results that we present are true for L>°-
well-posed systems. Whenever we write L”|Reg we mean either L? or Reg,
whichever is appropriate at the moment.

In our original definition of the operators 8 and © we restrict their domains
to consist of those input functions which are locally in L”|Reg with values in
U, and whose supports are bounded to the left. The original range spaces of
¢ and © consist of output functions which are locally in L”|Reg with values
in Y. However, as we show in Theorem 2.5.4, every L?|Reg-well-posed linear
system has a finite exponential growth bound (equal to the growth bound of
its semigroup). This fact enables us to extend the operators B and ® to a
larger domain, and to confine the ranges of € and © to a smaller space. More
precisely, we are able to relax the original requirement that the support of the
input function should be bounded to the left, replacing it by the requirement
that the input function should belong to some exponentially weighted L”|Reg-
space. We are also able to show that the ranges of € and © lie in an exponentially
weighted L”|Reg-space (the exponential weight is the same in both cases, and
it is related to the growth bound of the system). In later discussions we most of
the time use these extended/confined versions of B, &, and .

As part of the proof of the fact that every L”|Reg-well-posed linear system
has a finite growth bound we show in Section 2.4 that every such system can
be interpreted as a discrete-time system X = [ 2= | with infinite-dimensional

clp
input and output spaces, and with bounded operators A, B, C, and ID. More pre-

cisely, [é g] = [gég g(‘% ] the discrete-time input space is L”|Reg([0, T); U),

and the output space is L”|Reg([0, T);Y), for some T > 0. We achieve
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this by regarding L”|Reg([0, 00); U) as an infinite product of the spaces
LP|Reg([kT, (k + 1)T);U),k =0,1,2,...,and treating L”|Reg([0, c0); Y) in
a similar manner.

In Section 2.6 we show that a linear time-invariant causal operator which
maps LP|Reg,.([0, 00); U) into LP|Reg,..([0, 00); U) can be interpreted as
the input/output map of some LP|Reg-well-posed linear system if and only
if it is exponentially bounded. In Section 2.7 we show how to re-interpret an
LP-well-posed linear system with p < 0o as a strongly continuous semigroup
in a suitable (infinite-dimensional) state space. This construction explains the
connection between a well-posed linear system and the semigroups occurring
in scattering theory studied in, e.g., Lax and Phillips (1967).

Chapter 3 Here we develop the basic theory of Cy (i.e., strongly continuous)
semigroups and groups. The treatment resembles the one found in most text-
books on semigroup theory (such as Pazy (1983)), but we put more emphasis
on certain aspects of the theory than what is usually done. The generator of a
Cy semigroup and its resolvent are introduced in Section 3.2, and the celebrated
Hille—Yosida generating theorem is stated and proved in Section 3.4, together
with theorems characterizing generators of contraction semigroups. The pri-
mary examples are shift semigroups in (exponentially weighted) L”-spaces.
Dual semigroups are studied in Section 3.5, both in the reflexive case and the
nonreflexive case (in the latter case the dual semigroup is defined on a closed
subspace of the dual of the original state space). Here we also explain the duality
concept which we use throughout the whole book: in spite of the fact that most
of the time we work in a Banach space instead of a Hilbert space setting, we
still use the conjugate-linear dual rather than the standard linear dual (to make
the passage from the Banach space to the Hilbert space setting as smooth as
possible).

The first slightly nonstandard result in Chapter 3 is the introduction in Sec-
tion 3.6 of “Sobolev spaces” with positive and negative index induced by a
semigroup generator A, or more generally, by an unbounded densely defined
operator A with a nonempty resolvent set.® If we denote the original state space
by X = Xy, then this is a family of spaces

e CXh Xy cXc XX,

where each embedding is continuous and dense, and (¢ — A) maps X ;. one-
to-one onto X; for all o in the resolvent set of A and all j > 0. A similar
statement is true for j < 0: the only difference is that we first have to extend A

6 In the Russian tradition these spaces are known as spaces with a ‘positive norm’ respectively
‘negative norm’. Spaces with positive index are sometimes referred to as ‘interpolation spaces,’
and those with negative index as ‘extrapolation spaces’.
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to an operator Ay ,, mapping X, into X; (such an extension always exists
and it is unique). We shall refer to this family as the family of rigged spaces
induced by A. The most important of these spaces with positive index is X,
which is the domain of A equipped with (for example) the graph norm. The
most important of these spaces with negative index is X _, which will contain
the range of the control operator induced by a system node whose semigroup
generator is the operator A above.

Standard resolvent and multiplicative approximations of the semigroup are
presented in Section 3.7. We then turn to a study of the nonhomogeneous Cauchy
problem, i.e., the question of the existence of solutions of the nonhomogeneous
differential equation

x() = Ax(1) + f(0), r=s,

1.2.1
x(s) = x;. ( )

More generally, we often replace A by the extended operator Ay , in the
equation above, or by A|x, for some other j < —1. We show that under fairly
mild assumptions on the forcing function f in (1.2.1) the solution produced by
the variation of constant formula

(1) = A + / A £(v) dv. (12.2)

is indeed a more or less classical solution of (1.2.1), provided we work in a
rigged space X ; with a sufficiently negative value of j (most of the time it will
suffice to take j = —1).

In Section 3.9 we develop a symbolic calculus for semigroup generators.
This calculus enables us to introduce rigged spaces X, of fractional order
o € R. The same calculus is also needed in Section 3.10, where we de-
velop the theory of analytic semigroups (whose generators are sectorial op-
erators). The spectrum determined growth property, i.e., the question of to
what extent the growth bound of a semigroup can be determined from the
spectrum of its generator, is studied in some detail in Section 3.11. We then
take a closer look at the Laplace transform, and present some additional sym-
bolic calculus for Laplace transforms. This leads eventually to frequency do-
main descriptions of the shift semigroups that we originally introduced in the
time domain. Finally, we study invariant and reducing subspaces of semi-
groups and their generators, together with two different kinds of spectral
projections.

Chapter 4 In Chapter 2 we developed the theory of L”|Reg-well-posed linear
systems starting from a set of algebraic conditions equivalent to 1.1.2 com-
bined with appropriate continuity conditions. Here we replace these algebraic
conditions by a set of differential/algebraic conditions, i.e., we try to recover
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as much as possible of the system (1.1.1) that we used to motivate the al-
gebraic conditions (1.1.2) in the first place. We begin by proving in Section
4.2 the existence of a control operator B mapping the input space U into the
extrapolation space X_;. This operator is called bounded if R (B) C X. In
the next section we give conditions under which the state trajectory x(¢) of a
LP|Reg-well-posed linear system is a solution of the non homogeneous Cauchy
problem

x(t) = Ajxx(t) + Bu(t), t>s, (12.3)

x(s) = x;.
Here the values in the first of these equations (including x(¢)) lie in X_, and
A\|x is the extension of the semigroup generator A to an operator which maps
the original state space X into X_;. Under suitable additional smoothness as-
sumptions x will be continuously differentiable in X (rather than differentiable
almost everywhere in X_;), but it will not, in general, be possible to replace
A|x by Ain (1.2.3) (i.e., it need not be true that x(¢) € D (A) = X;). The re-
sults of this section depend heavily on the corresponding results for the non
homogeneous Cauchy problem proved in Chapter 3.

The existence of an observation operator C mapping the interpolation space
X into the output space Y is established in Section 4.4. This operator is called
bounded if it can be extended to a bounded linear operator from X into Y.

The question of how to define a feedthrough operator, i.e., how to find an
operator corresponding to the operator D in (1.1.1), is more complicated. (This
question is the main theme of Chapter 5.) Two cases where this question has a
simple solution are discussed in Section 4.5: one is the case where the control
operator is bounded, and the other is the case where the observation operator is
bounded.

In Section 4.6 we prove that every L”|Reg-well-posed linear system has an
analytic transfer function. It is operator-valued, with values in B(U; Y) (where
U is the input space and Y is the output space). Originally it is defined on a
right half-plane whose left boundary is determined by the growth bound of the
system, but it is later extended to the whole resolvent set of the main operator. In
this section we also prove the existence of a system node of the type described
in Definition 1.1.1. Here we introduce a slightly different notation compared to
the one in (1.1.3): we denote the ‘top row’ of S by A& B instead of S, and the
‘bottom row’ of S by C&D instead of Sy. The reason for this notation is that
intuitively A& B can be regarded as a combination of two operators A and B
which cannot be completely separated from each other, and analogously, C& D
can intuitively be regarded as a combination of two other operators C and D
which cannot either be completely separated from each other. We call C&D
the combined observation/feedthrough operator. Actually, the splitting of A& B
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into two independent operators is always possible in the sense that A& B is the
restriction of the operator [A| X B] (which maps [5] continuously into X_;)
toits domain D (A&B) =D (S) = {[;] € [5] | Axx + Bu € X}.Thus, this
separation is based on the fact that the domain of A& B can be extended to all
of [5] at the expense of also extending the range space from X to X_;. The
question to what extent C& D can be split into two operators C and D is more
difficult, and it is discussed in Chapter 5.

Motivated by the preceding result we proceed in Section 4.7 to study linear
systems which are not necessarily L?”|Reg-well-posed, but which still have a dy-
namics which is determined by a system node. In passing we introduce the even
more general class of operator nodes, which differs from the class of system
nodes in the sense that the operator A in Definition 1.1.1 must still be densely
defined and have a non-empty resolvent set, but it need not generate a semi-
group. Itis still true that every operator node has a main operator A € B(X1; X)
(i.e., the operator A in Definition 1.1.1), a control operator B € B(U; X_;), an
observation operator C € B(X;;Y), and an analytic transfer function defined
on the resolvent set of A.

The system nodes of some of our earlier examples of L”|Reg-well-posed
linear systems are computed in Section 4.8, including the system nodes of the
delay line and of the Lax—Phillips semigroup presented in Section 2.7. Diagonal
and normal systems are studied in Section 4.9.

Finally, in Section 4.10 it is shown how one can ‘peel off’ the inessential
parts of the input and output spaces, namely the null space of the control op-
erator and a direct complement to the range of the observation operator. These
subspaces are of less interest in the sense that with respect to these subspaces
the system acts like a static system rather than a more general dynamic system
(asystem is static if the output is simply the input multiplied by a fixed bounded
linear operator; thus, it has no memory, and it does not need a state space). The
same section also contains a different type of additive decomposition: to any
pair of reducing subspaces of the semigroup generator, one of which is con-
tained in its domain, it is possible to construct two independent subsystems in
such a way that the original system is the parallel connection of two separate
subsystems.

Chapter 5 In this chapter we take a closer look at the existence of a feedthrough
operator, i.e., an operator D € B(U;Y) corresponding to the operator D in
(1.1.1). We begin by defining a compatible system. This is a system whose
combined observation/feedthrough operator C& D (this is the same operator
which was denoted by Sy in Definition 1.1.1) can be split into two independent
operators Cw and D in the following sense. There exists a Banach space W,
X C W C X, and two operators Cy € B(W;Y) and D € B(U;Y) such that
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C&D is the restriction of [Cjy D] to its domain D (C&D) = D (S). We warn
the reader that neither is the space W unique, nor are the operators Cy and D
corresponding to a particular space W unique (except in the case where X is
dense in W).” Note that this splitting of C&D differs from the corresponding
splitting of A& B described earlier in the sense that the operators Cw and D
have the same range space Y as the original observation/feedthrough operator.?
Also note that C)y is an extension of the original observation operator C,
whose domain is X; C W. There is a minimal space W, which we denote by
(X 4+ BU);. This is the sum of X; and the range of (o — A\x)‘lB, where « is
an arbitrary number in p(A). Often it is enough to work in this smallest possible
space W, but sometimes it may be more convenient to use a larger space W
(for example, in the case where X is not dense in (X + BU);, or in the regular
case which will be introduced shortly). One of the most interesting results in
Section 5.1 (only recently discovered) says that most L”|Reg-well-posed linear
systems are compatible. In particular, this is true whenever the input space U
and the state space X are Hilbert spaces.

Section 5.2 deals with boundary control systems. These are systems (not
necessarily well-posed) whose control operator B is strictly unbounded in the
sense that R (B) N X = 0. It turns out that every boundary control system is
compatible, and that it is possible to choose the operator D in a compatible
splitting of C&D in an arbitrary way. (The most common choice is to take
D =0)

As a preparation for the next major subject treated in Chapter 5 we study
various approximations of the identity operator acting on the state space in
Section 5.3. By using these approximations and summability methods we extend
the observation operator of an LP|Reg-well-posed linear system X to a larger
domain in Section 5.4. Apart from using different summability methods we
also distinguish between limits in the weak, the strong, or the uniform operator
topology. The system X is called regular if this extension of the observation
operator is a compatible extension of the type described above, i.e., together
with some operator D € B(U;Y) it provides us with a compatible splitting of
the combined observation/feedthrough operator C& D. In this case it is possible
to develop some explicit formulas for the operator D. Maybe the simplest of
these formulas is the one which says that if we denote the transfer function of
X by 5, then D = limy_, 4 5(0{) (here « is real, and the limit is taken in the
weak, strong, or uniform sense). It turns out that all L'-well-posed systems are
weakly regular, and they are even strongly regular whenever their state space

7 However, D is determined uniquely by C iw, and Cw is determined uniquely by D.
8 This is important, e.g., in the case where X is infinite-dimensional but Y is finite-dimensional,
in which case Y does not have any nontrivial extension in which Y is dense.
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is reflexive (see Theorem 5.6.6 and Lemma 5.7.1(ii)). All L*°-well-posed and
Reg-well-posed systems are strongly regular (see Lemma 5.7.1(i)). The standard
delay line is uniformly regular (with D = 0), and so are all typical L”-well-
posed systems whose semigroup is analytic. Roughly speaking, in order for an
L?|Reg-well-posed linear system not to be regular both the control operator B
and the observation operator C must be ‘maximally unbounded’ [see Weiss
and Curtain (1999, Proposition 4.2) or Mikkola (2002) for details].

Chapter 6 Here we introduce various transformations that can be applied to
an L7”|Reg-well-posed linear system or to a system or operator node. Some
of these transformations produce systems which evolve in the backward time
direction. We call these systems anti-causal, and describe their basic proper-
ties in Section 6.1. A closely related notion is the time-inversion discussed in
Section 6.4. By this we mean the reversal of the direction of time. The time-
inverse of a (causal) L?|Reg-well-posed linear system or system node is always
an anti-causal LP|Reg-well-posed linear system or system node. However, it is
sometimes possible to alternatively interpret the new system as a causal system,
of the same type as the original one. This is equivalent to saying that the original
causal system has an alternative interpretation as an anti-causal system. This
will be the case if and only if the system semigroup can be extended to a group,
and (only) in this case we shall call the original system time-invertible. Com-
patibility is always preserved under time-inversion, but none of the different
types of regularity (weak, strong, or uniform) need be preserved.

In Section 6.2 we present the dual of an L”-well-posed linear system with
p < oo in the case where the input space U, the output space Y, and the state
space X are reflexive. This dual can be defined in two different ways which
are time-inversions of each other: the causal dual evolves in the forward time
direction, and the anti-causal dual evolves in the backward time direction.
Both of these are L7-well-posed with 1/p+1/g =1 (g = oo if p =1). We
also present the dual of a system or operator node S. Here the causal dual is
simply the (unbounded) adjoint of S, whereas the anti-causal dual is the adjoint
of S with an additional change of sign (due to the change of the direction of
time).

In the rest of this chapter we discuss three different types of inversions which
can be carried out under suitable additional assumptions on the system, namely
Sflow-inversion, time-inversion, and time-flow-inversion. We have already de-
scribed time-inversion above. Flow-inversion is introduced in Section 6.3. It
amounts to interchanging the input with the output, so that the old input be-
comes the new output, and the old output becomes the new input. For this to
be possible the original system must satisfy some additional requirements. A
well-posed linear system (recall that we by this mean an L”-well-posed linear



16 Introduction and overview

system with p < oo or a Reg-well-posed linear system) has a well-posed flow-
inverse if and only if the input/output map has a locally bounded inverse. In this
case we call the system flow-invertible (in the well-posed sense). Also system
and operator nodes can be flow-inverted under suitable algebraic assumptions
described in Theorems 6.3.10 and 6.3.13. Under some mild conditions, compat-
ibility and strong regularity are preserved in flow-inversion.” Weak regularity
is not always preserved, but uniform regularity is.

Time-flow-inversion is studied in Section 6.5. It amounts to performing
both the preceding inversions at the same time. If the original system is flow-
invertible and the flow-inverted system is time-invertible, then we get the
time-flow-inverted system by carrying out these two inversions in sequence.
A similar statement is true if the original system is time-invertible and the
time-inverted system is flow-invertible. However, a system may be time-flow-
invertible even if it is neither flow-invertible nor time-invertible. The exact
condition for time-flow-invertibility in the well-posed case is that the block op-

t 1

erator matrix [ 26 g] ] introduced in Section 1.1 should have a bounded inverse
for some (hence, for all) # > 0. For example, all conservative scattering systems
(defined in Chapter 11) are time-flow-invertible. It is an interesting fact that the
conditions for flow-invertibility, time-invertibility, and time-flow-invertibility
are all independent of each other in the sense that any one of these conditions
may hold for a given system but not the other two, or any two may hold but not
the third (and there are systems where none of these or all of these hold).

Finally, in Section 6.6 we study partial flow-inversion. In ordinary flow-
inversion we exchange the roles of the full input and the full output, but in
partial flow-inversion we only interchange a part of the input with a part of the
output, and keep the remaining parts of the input and output intact. This transfor-
mation is known under different names in different fields: people in H* control
theory call this a chain scattering transformation, and in the Russian tradition a
particular case is known under the name Potapov—Ginzburg transformation. The
technical difference between this transformation and the original flow-inversion
is not very big, and it can be applied to a wider range of problems. In particular,
the output feedback which we shall discuss in the next chapter can be regarded
as a special case of partial-flow-inversion (and the converse is true, also).

Chapter 7 This chapter deals with feedback, which is one of the most central
notions in control theory. The most basic version is output feedback discussed
in Section 7.1. In output feedback the behavior of the system is modified by
adding a term Ky to the input, where y is the output and K is a bounded linear

9 At the moment there are no counter-examples known where strong regularity would not be
preserved.
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operator from the output space Y to the input space U. As we mentioned above,
output feedback can be regarded as a special case of partial flow-inversion,
which was discussed in Section 6.6, and it would be possible to prove all the
results in Section 7.1 by appealing to the corresponding results in Section 6.6.
However, since feedback is of such great importance in its own right, we give
independent proofs of most of the central results (the proofs are slightly modified
versions of those given in Section 6.6). In particular, an operator K € B(Y; U)
is called an admissible feedback operator for a well-posed linear system with
input space U, output space Y, and input/output map ® if the operator 1 — K®
has a locally bounded inverse (or, equivalently, 1 —® K has a locally bounded
inverse); in this case the addition of K times the output to the input leads to
another well-posed liner system, which we refer to as the closed-loop system.
Some alternative feedback configurations which are essentially equivalent to
the basic output feedback are presented in Section 7.2.

From this simple notion of output feedback it is possible to derive some
more advanced versions by first adding an input or an output to the system, and
then using the new input or output as a part of a feedback loop. The case where
we add another output which we feed back into the original input is called state
feedback, and the case where we add another input to which we feed back the
original output is called output injection. Both of these schemes are discussed
in Section 7.3.

Up to now we have in this chapter only dealt with the well-posed case. In
Section 7.4 we first investigate how the different types of feedback described
above affect the corresponding system nodes, and then we use the resulting
formulas to define generalized feedback which can be applied also to non-well-
posed systems induced by system nodes. This type of feedback is defined in
terms of operations involving only the original system node, feedback operators,
and extensions of the original system node corresponding to the addition of new
inputs and outputs. To save some space we do not give independent proofs of
most of the results of this section, but instead reduce the statements to the
corresponding ones in Section 6.6.

In Section 7.5 we investigate to what extent compatibility and regularity are
preserved under feedback (the results are analogous to those for flow-inversion).
As shown in Section 7.6, output feedback commutes with the duality transfor-
mation (but state feedback becomes output injection under the duality transform,
since the duality transform turns inputs into outputs and conversely). Some spe-
cific feedback examples are given in Section 7.7, with a special emphasis on
the preservation of compatibility.

Chapter 8 So far we have not said much about the stability of a system (only
well-posedness, which amounts to local boundedness). Chapter 8 is devoted to
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stability and various versions of stabilizability. In our interpretation, stability
implies well-posedness, so here we only discuss well-posed systems. '”

By the stability of a system we mean that the maps from the initial state and
the input function to the final state and the output are not just locally bounded
(which amounts to well-posedness), but that they are globally bounded. In other
words, in the L?-case, an arbitrary initial state xy and an arbitrary input function
in LP([0, 00); U) should resultin a bounded trajectory x(¢), ¢ > 0, and an output
in L?([0, 00); Y). The system is weakly or strongly stable if, in addition, the
state x(¢) tends weakly or strongly to zero as t — c0.!! As shown in Section 8.1,
to some extent the stability of the system is reflected in its frequency domain
behavior. In particular, the transfer function is defined in the full open right-half
plane. Exponential stability means that the system has a negative growth rate.

A (possibly unstable) system is stabilizable if it is possible to make it stable
through the use of some state feedback. It is detectable if it is possible to
make it stable through the use of some output injection. (Thus, every stable
system is both stabilizable and detectable.) When we add adjectives such as
‘exponentially,” ‘weakly,” or ‘strongly’ we mean that the resulting system has
the indicated additional stability property. A particularly important case is the
one where the system is both stabilizable and detectable, and each type of
feedback stabilizes not only the original system, but the extended system which
we get by adding the new input and the new output (thus, it is required that
the state feedback also stabilizes the new input used for the output injection,
and conversely). We refer to this situation by saying that the system is jointly
stabilizable and detectable.

A very important fact is that the transfer function of every jointly stabilizable
and detectable system has a doubly coprime factorization, and that this factor-
ization can be computed directly from a jointly stabilizing and detecting state
feedback and output injection pair. This is explained in Section 8.3, together
with the basic definitions of coprimeness and coprime fractions. Both time do-
main and frequency domain versions are included. We interpret coprimeness
throughout in the strongest possible sense, i.e., in order for two operators to be
coprime we require that the corresponding Bezout identity has a solution.

In applications it can be very important that a particular input/output map (or
its transfer function) has a doubly coprime factorization, but it is often irrelevant

10 We regret the fact that we have not been able to include a treatment of the important case
where the original system is non-well-posed, but can be made well-posed by appropriate
feedback. The reason for this omission is simply the lack of space and time. Most of the
necessary tools are found in Chapters 6 and 7.

11 In the Reg-well-posed case we add the requirements that the input function and output function
should also tend to zero at infinity. The same condition with the standard limit replaced by an
essential limit is used in the L™ case as well.
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how one arrives at this factorization. The existence of a doubly coprime factor-
ization is a pure input/output property which can be stated without any reference
to an underlying system. Moreover, it is easy to construct examples of systems
which are not jointly stabilizable and detectable, but whose input/output map
still has doubly coprime factorizations. We address this question in Section 8.4,
where we introduce the notions of coprime stabilizability and detectability. We
call a state feedback right coprime stabilizing if the closed-loop system corre-
sponding to this feedback is stable and produces a right coprime factorization of
the input/output map. Analogously, an output injection is left coprime detecting
if the closed-loop system corresponding to this feedback is stable and produces
a left coprime factorization of the input/output map.

The last theme in this chapter is the dynamic stabilization presented in Sec-
tion 8.5. Here we show that every well-posed jointly stabilizable and detectable
system can be stabilized by means of a dynamic controller, i.e., we show that
there is another well-posed linear system (called the controller) such that the
interconnection of these two systems produces a stable system. We also present
the standard Youla parametrization of all stabilizing controllers.

Chapter 9 By a realization of a given time-invariant causal map ® we mean a
(often well-posed) linear system whose input/output map is ®. In this chapter
we study the basic properties of these realizations. For simplicity we stick to
the L?|Reg-well-posed case. We begin by defining what we mean by a minimal
realization: this is a realization which is both controllable and observable.
Controllability means that the range of the input map (the map denoted by
B above) is dense in the state space, and observability means that the output
map (the map denoted by € above) is injective. As shown in Section 9.2, any
two L”|Reg-well-posed realizations of the same input/output map are pseudo-
similar to each other. This means roughly that there is a closed linear operator
whose domain is a dense subspace of one of the two state spaces, its range is
a dense subspace of the other state space, it is injective, and it intertwines the
corresponding operators of the two systems. Such a pseudo-similarity is not
unique, but there is one which is maximal and another which is minimal (in the
sense of graph inclusions). There are many properties which are not preserved
by a pseudo-similarity, such as the spectrum of the main operator, but pseudo-
similarities are still quite useful in certain situations (for example, in Section
9.5 and Chapter 11).

In Section 9.3 we show how to construct a realization of a given input/output
map from a factorization of its Hankel operator.

The notions of controllability and observability that we have defined above
are often referred to as approximate controllability or observability. Some other
notions of controllability and observability (such as exact, or null in finite time,



20 Introduction and overview

or exact in infinite time, or final state observable) are presented in Section 9.4,
and the relationships between these different notions are explained. In particular,
it is shown that every controllable L”-well-posed linear system with p < oo
whose input map B and output map € are (globally) bounded can be turned into
a system which is exactly controllable in infinite time by replacing the original
state space by a subspace with a stronger norm. If it is instead observable, then
it can be turned into a system which is exactly observable in infinite time by
completing the original state space with respect to a norm which is weaker
than the original one. Of course, if it is minimal, then both of these statements
apply.

Input normalized, output normalized, and balanced realizations are presented
in Section 9.5. A minimal realization is input normalized if the input map ‘B
becomes an isometry after its null space has been factored out. It is output nor-
malized if the output map € is an isometry. These definitions apply to the general
LP-well-posed case in a Banach space setting. In the Hilbert space setting with
p = 2 aminimal system is input normalized if its controllability gramian B5*
is the identity operator, and it is output normalized if its observability gramian
¢*C is the identity operator. We construct a (Hankel) balanced realization by
interpolating half-way between these two extreme cases (in the Hilbert space
case with p = 2 and a bounded input/output map). This realization is charac-
terized by the fact that its controllability and observability gramians coincide.
All of these realizations (input normalized, output normalized, or balanced) are
unique up to a unitary similarity transformation in the state space. The balanced
realization is always strongly stable together with its dual.

A number of methods to test the controllability or observability of a system in
frequency domain terms are given in Section 9.6, and some further time domain
test are given in Section 9.10. In Section 9.7 we discuss modal controllability
and observability, i.e., we investigate to what extent it is possible to control
or observe different parts of the spectrum of the main operator (the semigroup
generator). We say a few words about spectral minimality in Section 9.8. This
is the question about to what extent it is possible to construct a realization
with a main operator whose spectrum essentially coincides with the points of
singularities of the transfer function. A complete answer to this question is not
known at this moment (and it may never be).

Some comments on to what extent controllability and observability are pre-
served under various transformations of the system (including feedback and
duality) are given in Sections 9.9 and 9.10.

Chapter 10 In Chapter 4 we saw that every L?|Reg-well-posed linear system
has a control operator B mapping the input space U into the extrapolation
space X_j, and also an observation operator C mapping the domain X of the
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semigroup generator into the output space. Here we shall study the converse
question: given a semigroup generator A and an operator B or C of the type
described above, when can B or C be interpreted as the control operator, re-
spectively, observation operator of an L”|Reg-well-posed linear system whose
main operator is A? We call B or C admissible whenever the answer to this
question is positive. It is called stable if, in addition, the corresponding input or
output map is bounded. The input map ‘B of the system is determined uniquely
by A and B, and the output map € is determined uniquely by A and C. Note
that in this formulation there is no coupling between B and C, i.e., they need
not be the control and observation operators of the same L?|Reg-well-posed
linear system. If they are, then we call them jointly admissible. In this case they
do not only determine (together with A) the input map ‘B and the output map
¢ of the system uniquely, but also the input/output map ©, up to an arbitrary
static constant (i.e., an undetermined feedthrough term in B(U; Y)).

After some preliminaries presented in Section 10.1 we proceed to show
in Section 10.2 that the two questions about the admissibility of a control,
respectively, observation operator are dual to each other.

In Sections 10.3-10.7 we restrict our focus to the L2-well-posed Hilbert
space case. We begin by showing in Section 10.3 that there is a one-to-one cor-
respondence between the space TIC(U; Y) of all time-invariant causal contin-
uous operators mapping L2(R*; U) into L2(R*; Y) and the space of frequency
domain multiplication operators with a symbol in H*°(U; Y) (the space of all
B(U; Y)-valued bounded analytic function on the open right-half plane CT).
The correspondence between the time and frequency domain operators is the
same as before, i.e, the frequency domain multiplier is the transfer function of
the time-domain operator. However, in the new setting we can from the bound-
edness of the transfer function conclude that the corresponding time-domain
operator is bounded as well (which is not true in the general L”|Reg-well-posed
Banach space case). Here we also state and prove the well-known fact that, in
the L2-well-posed Hilbert space case, the Laplace transform maps L>(R*; U)
one-to-one onto H>(C*; U). A related result is that an output map € is bounded
from X to L?(R™;Y) if and only if the function A — C(A — A)~'x belongs to
H*(C*;Y) for each x € X. The analogous dual result for input maps is also
valid.

An input map B is bounded on L?(R~, U) if and only if the controllability
gramian *BB* is abounded operator on X, and an output map € is bounded from
X into L>(R*, Y) if and only if the observability gramian ¢*€ is a bounded
operator on X (here we require U, X, and Y to be Hilbert spaces, and we
identify them with their own duals). These two operators on the state space X
can be characterized in several different ways, as shown in Section 10.4. Among
others, they are the solutions of the controllability, respectively, observability
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Lyapunov equations. This gives us an alternative way of testing the admissibility
and stability of control and observation operators.

There are some special admissibility and stability tests that can be applied
in the Hilbert space case with one-dimensional input and output cases. These
tests require the semigroup of the system to be a contraction semigroup (after a
possible exponential rescaling). To present these results we need the notion of
a Carleson measure over the closed right half-plane C". The most basic results
about such measures are presented in Section 10.5. By using these results we are
able to give necessary and sufficient conditions for the admissibility and stabil-
ity of control and observation operators with scalar input, respectively, output
spaces in the case where the system semigroup is diagonal or normal (see Section
10.6; by a diagonal semigroup we mean a semigroup whose generator is normal
and has a complete set of eigenvectors). The same result can be extended to the
more general case of a contraction semigroup, and this is done in Section 10.7.

Finally, in Section 10.8 we return to the general Banach space L”-well-posed
case with p < oo and give some necessary and sufficient conditions for the
admissibility and stability of a control or observation operator in terms of con-
ditions on the corresponding Lax—Phillips semigroup introduced in Section 2.7.

Chapter 11 In this chapter we study passive and conservative systems in a
scattering setting, and we assume throughout that the input space U, the state
space X, and the output space Y are Hilbert spaces. Intuitively, passivity means
that the system has no internal energy sources, and conservativity means that
neither the system itself nor the dual system has any energy sources or sinks.
We begin by presenting the basic results for passive systems in Section 11.1.
A system node S is (scattering) passive if the trajectories of this system node
satisfy the energy inequality (here u is the input, x the state, and y the output)

t t
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This inequality is stronger than the corresponding well-posedness inequality
(where the right-hand side is multiplied by a finite positive constant M(t)),
so every (scattering) passive system is L>-well-posed. The same inequality
implies that the system is stable (in the sense that we attached to this word in
Chapter 4). It is even true that the semigroup 2l is a contraction semigroup,
and that the other system operators ‘B, €, and © are contractions. A system is
passive if and only if the dual system is passive, and this is true if and only if
the L>-version of the corresponding Lax—Phillips semigroup is a contraction
semigroup. It is easy to formulate conditions directly on a system node in order
for the corresponding system to be passive; see Theorem 11.1.5. To each passive
system there corresponds a number of deficiency operators, which measure how
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much 2, B, €, and © differ from isometries or co-isometries. Many properties
of the system can be expressed in terms of these deficiency operators.

We end Section 11.1 with a decomposition of an arbitrary passive system
into three independent subsystems. The semigroup of the first subsystem is
unitary, and there is no interaction between the state space and the surrounding
world (the control and observation operators are zero, and this part of the state
space is both uncontrollable and unobservable). We shall refer to this subsystem
as the invisible unitary part. The second subsystem is static and unitary, i.e., it
has no state space (meaning that the dimension of its state space is zero), and it
is represented by a plain unitary feedthrough operator from a part of the input
space to a part of the output space. All the nontrivial interaction between the state
space and the surrounding world takes place in the remaining third subsystem.
This part is completely nonunitary in the sense that its semigroup does not have
any reducing subspace on which it is unitary, and its transfer function is purely
contractive (it has no eigenvalues with absolute value one). More generally,
using the terminology introduced above, a system is called purely passive if
it has no static unitary part, and it is called completely nonunitary if it has no
invisible unitary part.!'?

Energy preserving and conservative systems are presented in Section 11.2. A
system is energy preserving if (1.2.4) holds in the form of an equality instead of
an inequality, and it is conservative if both the system itself and the dual system
are energy preserving. Equivalently, a system is energy preserving if and only if
the L2-version of the corresponding Lax—Phillips semigroup is isometric, and
it is conservative if and only if the Lax—Phillips semigroup is unitary. Various
direct conditions on a given system node to generate an energy preserving
system are also presented.

Inan energy preserving system no energy is lost, but it may be first transferred
from the input to the state, and then ‘trapped’ in the state space forever, so that it
can no longer be retrieved from the outside. Thus, from the point of view of an
external observer, a conservative system may be ‘lossy.” To specifically exclude
this case we introduce the notion of losslessness in Section 11.3. A system is
semi-lossless if its input/output map is an isometry (as a map from L2(R*; U)
into L2(R*;Y)), and it is lossless if the input/output map is unitary (thus, both
the original system and its dual are semi-lossless). Equivalently, a system is
semi-lossless if its transfer function is inner (from the left), and it is lossless if
the transfer function is bi-inner (inner from both sides). We show that an energy
preserving system is lossless if and only if the restriction of its semigroup to
the reachable subspace is strongly stable, and that a completely nonunitary

12 1n the conservative case a completely nonunitary system is often called simple.
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conservative system is lossless if and only if its semigroup is strongly stable
together with its adjoint.

In Section 11.4 we first define what we mean by an orthogonal dilation or
compression of a semigroup: the semigroup A acting on X is an orthogonal
d11at10n of 2 acting on X, or equ1valently, 2A is an orthogonal compression
of Ql if X is a closed subspace of X and A = nXQl‘X, t > 0, where my is
the orthogonal projection of X onto X. We then prove that every contraction
semigroup can be dilated into an isometric semigroup. This dilation is unique
up to a unitary similarity transformation in the state space if we require it to
be orthogonal and minimal in the sense that the orbits of (forward) trajectories
starting in X are dense in the larger state space X. This isometric semigroup can
in turn be dilated into a unitary semigroup, which is also unique up to a unitary
similarity transformation in the state space if we require it to be minimal (here we
define minimality by using both forward and backward trajectories). Combining
the two transformations we get an orthogonal unitary dilation of the original
contraction semigroup, which is unique up to unitary similarity. All of this is well
known, but it is less well known that these dilations have natural interpretations
as well-posed linear systems: to get an isometric dilation we simply add a
suitable output to the original semigroup and pass to the corresponding Lax—
Phillips semigroup (with no input). To get the unitary dilation we further add
a suitable input. This dilation theorem can be re-interpreted in the following
way. Every contraction semigroup gives rise to a conservative system (whose
semigroup is the given one). Without loss of generality, we may take this system
to be purely passive, and with this extra requirement the resulting system is
unique up to unitary similarity transformations in the input and output spaces.
The (purely contractive) transfer function of this conservative system is usually
called the characteristic function of its main operator. Some of the results of this
section are expanded to dilations and compressions of systems in Section 11.5.

In Section 11.6 we proceed to develop a universal model for a contraction
semigroup (on a Hilbert space), i.e., we show that every contraction semigroup
is unitarily similar to a compression of a bilateral shift defined on a suitable L>-
space. At the same time we get a universal model for an arbitrary completely
nonunitary conservative system (it is unitarily similar to a particular system
whose semigroup is the compression of a bilateral shift). It is actually possible
to get two different unitary similarities by starting either from the original
system or from its dual. These models become especially simple in the case
where the system is semi-lossless (or lossless).

The transfer function of every passive system (hence of every conservative
system) is a contraction on the open right half-plane C*. In Section 11.7 we
prove the converse: every contractive analytic operator-valued function (be-
tween two Hilbert spaces) on C* is the transfer function of a conservative
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system, which we, without loss of generality, may take to be completely nonuni-
tary. This completely nonunitary conservative system is unique up to a unitary
similarity transformation in the state space.

Controllable energy preserving and minimal passive realizations of a given
contractive analytic operator-valued function are studied in Section 11.8. A
controllable energy preserving realization is unique up to unitary similarity.
Among all minimal passive realizations there are two extreme ones, one whose
norm in the state space is the weakest possible one (the optimal realization
whose norm is called the available storage), and another whose norm in the
state space is the strongest possible one (the x-optimal realization whose norm is
called the required supply). Both of these are determined uniquely by the transfer
function up to unitary similarity. By interpolating half-way between these two
extreme cases we get a balanced passive realization (sometimes also called the
balanced bounded real realization), which is also unique up to unitary similarity.

Finally, in Section 11.9 we say a few words about the spectrum of a conser-
vative system, relating it to the invertibility of the transfer function.

Chapter 12 The main part of this chapter is a short overview of the theory of
discrete time systems of the type

Xyt = Axg + Buy,

(1.2.5)
yi =Cxp +Dup, keZt=1{0,1,2,...},

where A € B(X),Be B(U;X),Ce B(X;Y),De B{U;Y)and U, X,and Y
are Banach spaces. Here A is the main operator, B is the control operator, C is
the observation operator, and D is the feedthrough operator. The discrete time
semigroup A, input map B, output map C, and input/output map D are given
by

(Ax), = Akx, keZ*,
o0
Bu = ZAkBu_k_],
k=0
(Cx)r = CA*x, keZ",
o0
(Du), = Y " CABuy_;_1 + Duy, keZ=1{0,%1,+2,..},

i=0

where u = {uy };cz represents a U-valued sequence with finite support and
xeX.

The local discrete time theory is much simpler than the corresponding con-
tinuous time theory due to the boundedness of the generators A, B, C, and D.
However, this simplicity disappears when we look at the global behavior of
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solutions (over the full half-axis Z*). There is actually a very close analogy
between the global discrete time and continuous time theories.

Section 12.1 contains a presentation of the basic discrete time setting, in-
cluding the definition of the Z-transform (which is the discrete time analogue
of the Laplace transform). We use the ‘engineering’ version of this transform,
meaning that the Z-transform of the sequence {uy}iez is D 4, 7 %u,.BThe
advantage of this version of the Z-transform is that the formula for the transfer
function becomes the same as in continuous time, namely

ﬁ(z) =C(z—A) " 'B+D, z € p(A).

Clearly, this transfer function is analytic in a neighborhood of infinity, and the
feedthrough operator D is the value of Dat infinity. The section ends with a short
description of how our earlier continuous time results can be translated into dis-
crete time (with essentially the same proofs or simplified versions of the earlier
proofs). This includes notions such as duality, flow-inversion, time-inversion,
time-flow-inversion, feedback, stabilization and detection, £7-stability, control-
lability, observability, admissibility, passivity, and conservation of energy.

In Section 12.2 we study the frequency domain linear fractional transfor-
mations of a continuous time system, interpreting the transformed system as a
discrete time system. Here the discrete time main operator A is a linear frac-
tional transformation of the continuous time main operator A, and the discrete
time transfer function D can be obtained from the continuous time transfer
function by applying the same linear transformation to the argument of D.
This linear fractional transformation preserves the reachable and observable
subspaces whenever the image of infinity lies in the unbounded component
of the resolvent set of the discrete time generator (but it need not preserve
these subspaces if the above condition is violated). We also point out that if we
interpret a discrete time system (with bounded generating operators) as a con-
tinuous time system (with the same generating operators), then the reachable
and observable subspaces are the same in both interpretations.

In Section 12.3 we specialize to the £>-bounded Hilbert space case, where
the main operator is a contraction which does not have —1 as an eigenvalue.
We show that this class of systems can be mapped one-to-one onto the class
of all L2-stable continuous time (well-posed) linear systems whose semigroup
is a contraction semigroup. The mapping between these two classes even pre-
serves the norms of most of the involved (integral level) operators. We shall
refer to the time-domain version of this map as the Laguerre transform, and to
the frequency domain version as the Cayley transform. The discrete time main

13 In the ‘mathematical version’ of this transform one replaces z % by z¥.
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operator is called the co-generator of the continuous time semigroup. The La-
guerre transform does not preserve local properties, i.e., if we know a finite part
of a continuous time trajectory, then this does not tell us much about a finite part
of the corresponding discrete time trajectory. However, most global properties
are preserved, such as stability and strong stability, invariant subspaces of the
main operator, observability and controllability (and more generally, the reach-
able and unobservable subspaces), passivity, energy preservation, conservation
of energy, deficiency operators, and so on.

Section 12.4 is again devoted to continuous time systems. It uses the theory
of Section 12.3 to develop the continuous time reciprocal transform (the same
transform has a discrete time interpretation too: there it stands for time inver-
sion). This transformation corresponds to the linear fractional transformation
Z + 1/z in the complex plane, and it requires the main operator A to be injec-
tive (so that A~! exists). Like the Laguerre transform the reciprocal transform
does not preserve local properties, but it preserves most global properties, at
least if the original semigroup is a contraction semigroup (e.g., all the properties
listed at the end of the preceding paragraph are preserved).

Appendix Section A.1 describes the most important properties of the class
of regulated functions, which we use as a substitute for L in many places.
In Section A.2 we develop the polar decomposition of a closed linear operator
between two Hilbert spaces, and show that every positive (possibly unbounded)
operator on a Hilbert space has a unique positive square root. Section A.3 lists
a number of basic results about convolutions, and in Section A.4 we study the
inverses of block matrices (where each entry is a bounded operator).



2

Basic properties of well-posed linear systems

In this chapter we describe the basic properties of well-posed linear systems.
We work directly with the operators that map the initial state and the input
function into the final state and the output function, and describe their algebraic
properties. Different continuity assumptions give different types of well-posed
systems. In particular, we show that a well-posed linear system may be in-
terpreted as a strongly continuous semigroup in a suitable state space. The
alternative description of a well-posed linear system by means of a differential
system will be given later in Chapter 4.

2.1 Motivation

To motivate the notion of a well-posed linear system that will be introduced
in the next section we first take a closer look at the traditional state space
system

Xx(t) = Ax(t) 4+ Bu(t),
y(t) = Cx(t) + Du(t), t>s, 2.1.1)

x(s) = x;.

Here s is a specified initial time, often taken to be zero. We shall occasionally
use diagrams of the type drawn in Figure 2.1 to describe these systems. The
operator A is supposed to generate a strongly continuous semigroup 2’ on a
Banach space X, the state space. For the moment we assume that the control
operator B and the observation operator C are bounded linear operators, i.e.,
B € B(U;X)and C € B(X;Y), where U and Y are two more Banach spaces,
the input and output spaces. The feedthrough operator D is also bounded, i.e.,
D € B(U;Y). We call u the input function (or control), x the state trajectory,
and y the output function (or observation) of this system. The state trajectory

28
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X0
u X + y
B X =Ax+ Bu C O
+

D

Figure 2.1 Regular well-posed linear system

x is required to be a strong solution of (2.1.1), i.e., the state x and output y are
given by

t
X(f) = Qltisxs +/ Q[tivBM(U)dU, t>s,
R 2.1.2)
y(1) = CA ™ xy + C/ A" Bu(v)dv + Du(t), t>s.

The preceding formulas define the state trajectory x(¢) and the output func-
tion y(f) attime ¢ > s in terms of the given initial state x,; and the input function
u(v), v > s. By separating the contributions of x; and u to x(¢) and y from each
other we get a total of four different maps,

x(1) = A x; + Blu, t>s,

(2.1.3)
y = Cx; + Dy,
where B’ (the mapping from the input to the final state), €; (the mapping from
the initial state to the output function), and ©; (the mapping from the input to
the output) are given by

t
Blu = / A"V Bu@)dv, t>s,
(C,x,)(t) = CA x4, t>s, (214
t
®D;u)(t) := C/ A"V Bu(v)dv + Du(t), t>s.

So far we have made only marginal use of the time-invariance of the system
(2.1.1), i.e., of the fact that none of the operators A, B, C and D in (2.1.1)
depend on ¢. The important variable in (2.1.3) and (2.1.4) is the time difference
t — s, not s or ¢ separately, and by a simple time shift we can make either
the starting time s or the final time ¢ equal to zero. By using these facts we
can express the operators B, €; and D, in terms of three ‘master’ operators
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B, &, and © which do not depend on ¢ or s. These master operators are defined
by!

0
Bu :=/ A~ Bu(s)ds,

o0

Cx:=(t—CUAx, 1>0), (2.15)

t
Du = (z‘ > / CUA' Bu(s)ds + Du(t), te R) .
Thus, ‘B is the mapping from an input u# defined on R™ = (—o0, 0) to the final
state x(0) € X at time zero (take s = —00, x; = 0, and r = 0, and let u have a
finite support so that the integral converges), € is the mapping from the initial
state xop € X at time zero to the output y defined on R = [0, o0) (take s = 0
and u = 0), and ® is the mapping from the input u defined on R to the output
v, also defined on R (suppose that the support of u is bounded to the left so that
the integral converges). For obvious reasons we call B the input map (with final
time zero), € the output map (with initial time zero), and © the input/output
map of (2.1.1).

In order to rewrite the operators B, €, and ®; in terms of B, €, and D we
need two more auxiliary operators. For each J C R we define the projection
operator 7; by

u(s), selJ,
(yu)(s) = (2.1.6)
! {0, s¢J,
and for each ¢t € R we define the time shift operator ' by
(T'u)(s) ;== ut +s), sek. (2.1.7)
Then
t t
B = / A 'Bu(v)dv = / A" By pu(v) dv
N —0Q0
0 0
= / A" Brpu(v + 1) dv = / A" Bt g yu(v) dv
—00 —00
= Bt w, U,
and

(Cox)(t) = CA ™ x; = (Cx)(t — 5) = (T Cx)(1).

! For the moment these definitions are only formal. We shall describe the exact domains and
ranges of these operators later.
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A similar computation can be carried out for ®;, and we find that, for all t > s,
B = B, u,
(Csx5)(1) = (75 Cx5)(1), (2.1.8)
(Dsu)(t) = (D75, 00)U)(1).

Thus x and y can be written in the form

x(1) = A x; + B 75 u, t>s,
2.1.9)
y =1t Cxy + D7y, 000U
or alternatively (use the fact that B = B ),
x(t) = A x; + Bt w15 00y t>s,
« 150 = (2.1.10)

Yy =1 Cx; + Dps,00)lt-
Let us emphasize the following fact that we have just established:

Statement 2.1.1 In order to know the state trajectory x and the output function
y of the system (2.1.1) with arbitrary initial time s, arbitrary initial state x;,
and arbitrary input function u, it suffices to know the semigroup 2, the input
map ‘B, the output map &, and the input/output map ©. When these are known
the state and the output at an arbitrary time t > s can be recovered from (2.1.9)
or (2.1.10).

If the operators B, C, and D in (2.1.1) are bounded, then it is possible to
avoid the operators B, €, and ®; we can simply work with the variation of
constants formula (2.1.2) all the time. However, we are primarily interested in
the case where not only A, but also B and C are allowed to be unbounded,
and D is not necessarily well-defined. In this case formulas (2.1.9) have one
great advantage over (2.1.2): under appropriate assumptions all the operators
in (2.1.9) will be bounded*linear operators.

Of course, the word ‘bounded’ always refers to some topology on the spaces
of input and output signals and on the state space, and it is not at all obvious
which are the ‘best’ topologies: too weak assumptions lead to mathematical
difficulties, and too strong assumptions lead to a limited applicability. One
choice that works well in many cases is to impose the following requirements:

Well-posedness requirement 2.1.2

(1) The input space U, the state space X, and the output space Y are Banach
spaces.
(ii) The input u belongs locally to LP([s, oo; U), for some p, 1 < p < oo.

2 Locally in time.
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(iii) The state x(t) € X is well-defined at each time instance t > s (where
s € R is the initial time).

(iv) The output y belongs locally to L?([s, 00); Y) for the same value of p as
in (ii).

(v) The state x(t) € X and the output y € L, ([s, 00);Y) depend

continuously on the initial state xo € X, on the input u € sz)c([s, 00); U),
and (in the case of x(t)) on the time parameter t > Q.

This is the choice that we make throughout most of this book, and it leads
to a well-posedness notion of L”-type. The most important case is p = 2, and
the second most important cases are p = 1 and p = oco. The main reason for
taking the same value of p in (ii) and (iv) is that we want to be able to study
(static) feedback connections where a part of the output y is fed back into the
input u.

Up to now the discussion has focused on the following two questions: how
to construct the solution operators B, €, and ®© in Statement 2.1.1 from a given
set of generators (A, B, C, D) (in the case where A generates a semigroup
and B, C, and D are bounded), and what type of continuity requirements are
appropriate. There is a third question which is at least as interesting: when does
a given quadruple (2, B, €, D) arise from a system of the type (2.1.1), and how
can we compute the characterizing operators (A, B, C, D) of this system from
A, B, ¢,D)?

There are certain algebraic conditions that are necessary in order for the
operators (2, ‘B, €, D) to have representations of the type given in (2.1.5) and
in order for (2.1.9) to be valid for all permitted inputs u. To formulate these
algebraic conditions we need the projection operators 7 and 7_ and the time-
shift operators 7}, and 7’ on the positive, respectively, negative half-line, defined
by

T4 i=To00), M- i=M(—oo0), Ty =m4T, tli=1t'n_. (2.1.11)

Algebraic conditions 2.1.3 The operators 2, B, €, and ® satisfy the following

conditions:?

() A° =1 and W+ = WA forall s, t > 0 (i.e, A is a semigroup),
(ii) A Bu = Br' u forallt > 0,
(iii) €A'x = 7/ Cx forallt >0,
(iv) "Qu =D1t'u, 7_Dyu =0, and 7. Dm_u = CBu forall t € R.

3 Technically, condition (ii) says that the input map 9B ‘intertwines’ the semigroup 2’ on X and
the left-shift semigroup =/ on LY (R™; U), and condition (iii) says that the output map B

intertwines the semigroup 21" on X and the left-shift semigroup 7} on LIPOC(R*'; Y).
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The first of the conditions above says that, in the absence of an input, the
state trajectory x behaves like the state of a time-invariant linear dynamical
system.

To derive the second condition (ii) we compute

- 0
Br'm_u =/ A Bu(s +t)ds :/ AV Bu(v)dv

oo —00

0
= Ql’f AV Bu(v)dv = A" Bu.
—00

This formula, too, can be regarded a consequence of the time-invariance of
the system. Suppose that the input u vanishes on R". Then the state at time
zero is given by x(0) = Bu, and, for each ¢t > 0, the state at time ¢ is given by
x(#) = A x(0) = A" Bu. Formula (ii) says that this is equal to the state at time
zero corresponding to an input that otherwise looks identical to the original
one, but it has been advanced by ¢ time units (in particular, it vanishes on
(—t, 00)).

Formula (iii) is derived in a similar way, and it has a similar interpretation:
if we restrict the output y corresponding to a given initial state x( to the time
interval [z, co) and then shift it back to [0, co), then the resulting output is
identical to the one that we get by first letting the system develop freely for ¢
time units to get the state x(z) = A’ x, and then observing the output €x(¢) of
the system with this initial state and initial time zero.

This leaves condition (iv) to be accounted for. The first condition "' Du =
Dt'u in (iv) is another consequence of time-invariance: if the input u is delayed
or advanced by ¢ time units, then the output is also delayed or advanced by the
same amount, but it does not change in any other way.

The condition 7_®mu = 01in (iv) is a causality requirement: future inputs
are not allowed to have any effect on past outputs.

Maybe the least obvious part of (iv) is the condition 7 D7_u = €Bu, but
it is easy to verify: for all # > 0 we have

0 0
®r_u)(t) = C/ A Bu(s)ds = CQ[’/ A Bu(s)ds = (EBu)(t).

—0Q0 o0

It says that if the input # vanishes on Ei then the output y on R is the
product of the input map (which maps the past input u into the state x(0) = Bu
at time zero) and the output map (which maps x(0) into the future output
y = Cx(0) = €Bu).

It is a very interesting and important fact that the algebraic conditions 2.1.3
are not only necessary, but they are in fact sufficient (together with the well-
posedness requirement 2.1.2) for the quadruple (2, 8, €, D) to be interpreted
as the semigroup, input map, output map, and input/output map of a well-posed
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linear system. Every such system has a ‘differential’ representation similar to
the one given in (2.1.1) but slightly more complicated. The picture is roughly
the following. We combine the four operators A, B, C, and D into one single
block matrix operator S = [é g], which we call the node of the system, and
rewrite (2.1.1) in the form

x| _ o [x® B
[y(t)] =3 |:u(t)1| 1z, x(s) =X (2.1.12)

As we shall see in Chapter 4, every well-posed linear system has a represen-
tation of this type, valid for a restricted set of data: the input function should
be, for example, two times continuously differentiable, and the initial state x;
should satisfy a certain compatibility condition involving the value u(s). The
operator S is closed and (typically) unbounded from [5] to [’;] and it has
a natural splitting into an operator matrix S = [é &g] (where the combined
observation/feedthrough operator C & D stands for a certain operator from the
domain of S to Y). Under weak additional conditions even the operator C& D
can be split into C&D = [C D], so that S can be written in the familiar form
S =[45]. The splitting of C&D into [C D] is, unfortunately, not always
unique, and different applications may require different splittings.

2.2 Definitions and basic properties

Without further ado, let us give a formal definition of an L?-well-posed linear
system. In the terms of the discussion in the preceding section, such a system
consists of a semigroup 2{ and three maps B, &, and © satisfying the algebraic
conditions 2.1.3, and having enough continuity in order for the well-posedness
requirement 2.1.2 to hold.

Definition 2.2.1 Let U, X, and Y be Banach spaces, and let 1 < p < o00. A
(causal, time-invariant) L?”-well-posed linear system X on (Y, X, U) consists

of a quadruple ¥ = [%%] satisfying the following conditions:*

(1) t — A" is a strongly continuous semigroup on X (see Definition 2.2.2);
(i) B: LE(R™;U) — X satisfies A'Bu = Br'uforallu € LE(R™;U) and
allt > 0;
(i) €: X — L{ (R*;Y) satisfies €A'x = v/ &x forallx € X and all 7 > 0;
iv) ®: LY R;U) — L’ (R;Y) satisfies T'Du = Dt'u, n_Dm u =0,

c,loc c,loc
and 7, Dm_u = CBu forallu e L, (R;U)and all t € R.

c,loc

4 The notation used here is explained immediately after the definition. We shall see in Theorem
2.5.4 that these operators have some additional continuity properties, which are related to the
fact that the system has a finite exponential growth bound.
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We use the following names for the different components of X: U is the input
space, X is the state space, Y is the output space, 2 is the semigroup, *B is the in-
put (or controllability, or reachability) map (with final time zero), € is the output
(or observability) map (with initial time zero), and ® is the input/output map.

In the preceding definition we used the following notation. We let
R := (=00, 00), R™ := (—00, 0), R* := (0, 00),

s), se€J,
(T yu)(s) := u(s) forall J C R,
0, s ¢ J,
LU 1= TT[0,00)> TT_U = TT(—c0,0)>
(t'u)(s) == u(t +s), —oo<t,s < o0,
) =y, =7, t>0.
The space LZ 1c(R; U) consists of functions u: R — U that are locally in L?

and have a support that is bounded to the left. A sequence of functions u,
converges in L!, (R;U) to a function u if the common support of all the
functions u,, is bounded to the left and u,, converges to u locally in L” with
valuesin U. The space L{ (R™; U) contains those u € L?,  (R; U) which vanish

on R*, and the space sz)c (R*; Y) contains those u € LZ 1oc(R; Y) which vanish

on R™. The continuity of 98, ¢ and ® is with respect to this convergence.’
The preceding definition refers to the notion of a strongly continuous semi-

group. This notion (and the notion of a strongly continuous group) is defined

as follows:
Definition 2.2.2 Let X be a Banach space.

(i) A family 21, ¢ > 0, of bounded linear operators X — X is a semigroup
on X if A% = 1 and 2°A" = AH forall s, t > 0.

(ii) A family 2(', 7 € R, of bounded linear operators X — X is a group on X
if A% = 1 and A*Y = A+ forall s, r € R.

(iii) The semigroup in (i) is locally bounded if sup,,.,||?°|| is bounded for
each finite t > 0. The group in (ii) is locally bounded if sup_, ., ||U*|| is
bounded for each finite r > 0.

(iv) The semigroup in (i) is strongly continuous (at zero) if lim, o A'x = x
for all x € X. The group in (ii) is strongly continuous (at zero) if
lim;oA'x = x forall x € X.

(v) We abbreviate ‘strongly continuous semigroup’ to ‘Cy semigroup’ and
‘strongly continuous group’ to ‘Cy group’.

5 In the terminology of Kéthe (1969), these spaces are strict (L F)-spaces, i.e., they are the strict
inductive limits of the Fréchet spaces L ([T, 00); U) which we identify with the subspace of

loc
functions in L{:)C(R; U) which vanish on (—oo, T).
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In some parts of the theory the value of p plays an important role. Especially
the case p = oo differs significantly from the other cases. The main difficulty
in L* is that the set of continuous functions is not dense as it is in L? with
p < oo. This complicates some of the proofs: it is not enough to first prove a
result for the class of continuous (or even continuously differentiable) inputs,
and to then extend the result to arbitrary inputs in L™ by using a density
argument. For this reason we shall introduce yet another class of well-posed
linear systems that in many cases replaces the class of L>-well-posed systems.
The simplest choice would be to restrict all the inputs to be continuous, but this
leads to a difficulty with the algebraic conditions in Definition 2.2.1: even if u
is continuous the functions 7_u and 7 u are not continuous (unless u(0) = 0).
Therefore we need a slightly larger class of functions to work in. The most
natural class is then the set of regulated functions, i.e., functions that are right-
continuous and have a left hand limit at each finite point.® We denote this class
of functions by Reg,.. The space Reg.. . consists of functions locally in Reg
whose support is bounded to the left. Convergence in this space means that
the common support of all the functions should be bounded to the left, and the
convergence is uniform on each bounded interval. Observe, in particular, that
functions in Reg,,, have a well-defined value at every point and not just almost
everywhere.

Definition 2.2.3 Let U, X, and Y be Banach spaces. A (causal, time-invariant)
Reg-well-posed linear system ¥ on (Y, X, U) consists of a quadruple ¥ =
[%%] satisfying the same conditions as in Definition 2.2.1 but with Lf,loc re-
placed by Reg,. ;... More precisely, Lﬁ 1oc(R) is replaced by Reg.. 1,.(R), L (R™)

is replaced by Reg.(R™), and LY (R™) is replaced by Regloc(ﬁ+). We call the

loc
different components of ¥ by the same names as in Definition 2.2.1.

Here R = [0, 00) is the closed positive real half-line. (Analogously, we
denote the closed negative real half-line by R .) To make the formulas in the
L?-well-posed case look more similar to the formulas in the Reg-well-posed

. . =t
case we sometimes write L (R") instead of L{ (RT), etc.

Definition 2.2.4

(i) By L?|Reg we mean either L? or Reg and by L”|Reg, we mean either L}
or Reg,, depending on the context.’

6 See Section A.1 for a short introduction to this class of function. By Reg we denote the set of all
bounded regulated functions. A function in Reg is not required to have a limit at =cc.

7 The space Lg is the same as L? if p < oo, and in the case p = oo it consists of those u € L™
which vanish at £00, i.e., lim;_, o ess supj, >, [u(s)| = 0. The space Reg consists of all bounded
regulated functions, and Reg, consists of those functions in Reg which vanish at +oo.
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(ii) By an L?|Reg-well-posed linear system we mean a system which is
either Reg-well-posed or L?-well-posed for some p, 1 < p < oco. (Thus,
the case p = oo is included, except when explicitly excluded.)

(iii) By a well-posed linear system we mean a system which is either
Reg-well-posed or L?P-well-posed for some p, 1 < p < oco. (Thus, the
case p = oo is excluded.)

Remark 2.2.5 To begin with we shall work with L”|Reg-well-posed linear
systems, but later on we shall exclude the L*°-well-posed case, due to the fact
that some of our main results are not necessarily valid forinputsu € L7 .(R; U)

inthe L*>°-well-posed case. See, in particular, Theorems 4.2.1,4.5.2,4.5.4,4.6.9,
and Corollaries 4.5.5, 4.5.6.

See Section 1.1 for an intuitive explanation of the algebraic conditions (i)—
(iv) in Definition 2.2.1.

The primary reason for the introduction of the operators B, &, and ® in
Section 2.1 was that we wanted to make the algebraic conditions in Definition
2.2.1 as simple as possible. However, when we deal with the state trajectory
and the output function of the system ¥ = [%%] it is more convenient to use
the operators B, ¢, and ®; in (2.1.3) with initial time s and final time . Let
us formally reintroduce these operators and some related operators as follows:
Definition 2.2.6 Let ¥ = [%‘%] be a L”|Reg-well-posed linear system on
Y, X, U).

(i) We interpret B as an operator L?|Reg, ,.(R; U) — X by defining
Bu = Br_u forallu € LP|Reg, 1,.(R; U).
(ii) We interpret € as an operator X — L”|Reg, ;,.(R;Y) by defining
Cx =, Cx forall x € X.
(iil) The state transition map 2., the input map B, the output map €%, and
the input/output map D', with initial time s € R and final time ¢ > s are
defined by

A | B! A | Brim,
; p = _ s t=s.
Q:S @S Ts,)T ¢ ‘ JT[SJ)@T[[X’[)

(iv) The input map B' and the input/output map ®' with final time r € R
(and initial time —o0) are defined by

B =B =B, D' =9 =T oonD, t e R.

(v) The output map € and the input/output map ®; with initial time s € R
(and final time +-00) are defined by

¢, =Cr :=177¢C, D, =D 1= D5,00) s eR.
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o

TT,u

Figure 2.2 Well-posed linear system

The conventions (i) and (ii) are implicitly contained in Definition 2.2.1(ii)—
(iii) (take t = 0).

Definition 2.2.7 Let U, X, and Y be Banach spaces, and let ¥ = [%%] be a
L?|Reg-well-posed linear system on (¥, X, U). Foreachs € R, x; € X, t > s,
and u € L?|Reg),.([s, 00); U) we define the state x(t) at time t and the output
function y of ¥ with initial time s, initial state x,, and input function u by (cf.
Definition 2.2.6)

x(r) = Al x; + Blu, t>s,
’ ’ 2.2.1)
y = Cxy + Dsu.
In particular, if the initial time s is zero and the initial state xg, then
x(t) = Ulxo +Blu = A'xg + B'myu, t >0,
() 0X0 0 0 + > (222)

y = Coxo + Dou = Cxo + D u.

We use diagrams of the type drawn in Figure 2.2 to represent the relation
between the state x, the output y, the initial value x¢, and the input # of £ with
initial time zero. In our diagrams we use the following conventions throughout:

(1) Initial states and inputs enter at the top or bottom, and they are acted on
by all the operators located in the column to which they are attached. In
particular, note that x is attached to the first column and u to the second.

(i1) Final states and outputs leave to the left or right, and they are the sums of
all the elements in the row to which they are attached. In particular, note
that x is attached to the top row, and y to the bottom row.

We can reformulate the algebraic conditions in Definition 2.2.1 in terms of
the operators introduced in Definition 2.2.6 as follows.

Lemma 2.2.8 Let ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X, U). Then the operators ., B, € and D' introduced in Definition
2.2.6 have the following properties.
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AL 023
¢ | Lo]o] -

[1 0} A | B [1 0}
0 75,0 ¢ D 0 75,0

(1) Forallt € R,

(i1) Foralls <'t,

A | B!

(2.2.4)
A | Bim
o€ | Ty Dty |
(iii) Foralls <tandh € R,
[?lii’;i BT oo [2Bn o
gith [ gytth - |0 " e Dt 0 th
s+h s+h - s K (225)
A | B!
B et th’th:|‘
(iv) Foralls <r <t,
A" | B! A 10 B
¢l | |el1o
: (2.2.6)

WA | B+ AW
et | aw 49 |

We shall refer to (ii) as the causality property, to (iii) as the time-invariance
property and to (iv) as the composition property. See Theorem 2.2.11 for an
interpretation of these properties, and see also Theorem 2.2.14 for a slightly
modified set of algebraic conditions where (ii) and (iv) are combined into one
single condition.

Both in the proof of Lemma 2.2.8 and later we shall need to manipulate
expressions involving the operators t’ and 77, and their combinations. For this
the following lemma is useful:

Lemma 2.2.9 Leta, h, s, t € R, and —o00 < b < 00. Then

o =S¢,
T[a,b) = TT[a,00)T(—00,b)> Tla,b) = T(—00,b)T[a,00)s
ﬂ[a,h)fh = Thﬂ[a+h,b+h>, Thﬂ[a.h) = ﬂ[a—h,b—h)fh,
n(foo,b)fh = Thﬂ(foo,bw), Thﬂ(foo,b) = n(foo,bfh)fh

(we define a5y = O when b < a).
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The easy proof of this lemma is left to the reader.

Proof of Lemma 2.2.8 We leave the easy proofs of (i)—(iii) to the reader, and
only prove (iv). Thus, in the sequel we take s < r < 1.
The identity AL = A'A" follows from the semigroup property A~ =
A"~ and the definition of ..
By Definitions 2.2.1 and 2.2.6 and Lemma 2.2.9
%2 = %‘E{H[S',)
= B (715, + 7))
= %rt—rﬂ“7ho)rr + %‘Etﬂ[m)
= Qlt_r%ﬂ'[s_r!o)l’r + %Ttn[r’f)
= A7 Bt w5, + Bt
=B + B

Likewise,

¢ =t ’C
= (e + )T €
=TT €4+ T ot €
=TT "€+ T 7m0, EA°
=TT €+ )T EAT
= + A,

and

D§ = 75,0 D(s,0)
= (5. + )P (s + )
= + 70T Dt Ay + AT DT Ty + DL
=0 + 1m0 O 0T+ T Ts—r0) D701 T + DL
=0 + v 104-nEBRs—r0) T + DL
= + 7.7 BT 75,y + DL
=9, + B +D.

O

Occasionally we shall also need the following version of Lemma 2.2.8 where
B! is replaced by B’, € is replaced by &, and D is replaced by D or D’.
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Lemma 2.2.10 Let ¥ = [%%] be a L?|Reg-well-posed linear system on
(Y, X, U). With the notation of Definition 2.2.6, the following claims are true:

(i) Foralls,t e R, x € X, andu € LP|RegC,1OC(R; U),

B'u = lim Blu, Cu= lim Cx,
r——00 r—00
D'u= lim Du, Du= lim Du,

r——00 r—oo

Moreover, the original system ¥ = [%%] can be recovered as follows:
A = A fort >0, and

B=91" ¢=¢, D= lim D.
Ay

[%t] [ %IT[(?OOJ) }
@t B JT(_OO’t)@tTL’(_OOJ) '
[@X | ’}DS] = [ﬂ[s,oo)es | 77[5,00):9577[5*,00)] .

(ii1) Foralls,t e Rand h € R,
Bich
|:rh©’th:| ’

%H—h
|:@t+h :|

[Q:s+h | ®s+h] = [‘L'_hQ:S | T_hcgsfh ] .

il rarfom ]| 2
[@f]z ¢ 1@'] o
L r r 1

[ B Aw
| ot o

(i1) Foralls,t € R

(iv) Forallr <'t,

and foralls <r,
AT | B
[e]D ] =[e]1D,]| &
0] 1

= [+

D, +¢B +20].
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Proof Part (i) follows trivially from Definition 2.2.6 (since lim,_, _o 7} =
T (—c0,1)s 1My 00 (s, 1) = T[s5,00), AN 1M, oo 100 sy = 1 in LP|Reg, jo0)-
We get (ii), (iii), and (iv) by letting s — —oo ort — oo in the appropriate parts
of Lemma 2.2.8(ii)—(iv). O

We still refer to (ii) as the causality property, to (iii) as the time-invariance
property and to (iv) as the composition property for the operators in question.

The essential content of Lemmas 2.2.8 and 2.2.10 is that it is possible to
separate, at each time instant, the past and the future behavior of the system X
from each other in a clean way:

Theorem 2.2.11 Let ¥ = [%‘%] be a L?|Reg-well-posed linear system on
(Y, X,U),andlets € R, x; € X, andu € L?P|Reg,,.([s, 00); U). Let x and y be
the state trajectory x and the output function y of X with initial time s, initial

value x; and input function u. Then, for eachr > s,
x(r)=Ax, +Bu,
” e (2.2.7)
s,y = X + Diu

do not depend on u(t) fort > r (i.e., ‘the future has no influence on the past’),
and

x(t) = A x(r) + Blu, t=>r,

(2.2.8)
T[r,00)Y = Cx(r)+Dru,

can be interpreted as the state trajectory and the output function of ¥ with
initial time r, initial value x(r), and input function u (i.e., ‘the past influences
the future only through the present state x(r)’).

Proof of Theorem 2.2.11 That x(r) and 7, )y do not depend on u(t) fort > r
follows from the causality property in Lemma 2.2.8(ii).
By the composition properties in Lemmas 2.2.8(iv) and 2.2.10(iv),
x(t) = Alxs + Blu
= A ATx; + (AL BT + Bu
= A (Arx; +B)) + Blu
= x(r) + Blu,
y = Cxs + Dsu
= (€ + & A)x, + (D] + ¢, B +D,u
= (€ x; + Dju) + (€ (Asxs + Blu) + D, u)
= 5.y + Mooy (Crx(r) + Dyu).

Another important property of the solution is the following:
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Theorem 2.2.12 Let ¥ = [%%] be an LP-well-posed linear system where
p <oo,andlets € R, x; € X, andu € L ([s, 00); U). Then the state x(t) of

loc
X with initial time s, initial value x; and input u depends continuously on t for

t > s, and x(s) = x;.
Proof The state consists of two terms,
x(1) = A xy +Blu =A " x; + Br'mypu
= A" xg + BT 5,00\l
That x(s) = x, follows from Lemma 2.2.8(ii). The continuity of the first term

follows from Lemma 2.2.13 below, and the continuity of the second term from
Lemma 2.3.3 below. O

A similar result for Reg-well-posed and L*°-well-posed linear systems is
given in Theorem 4.2.7.
In the preceding proof we used a part of the following lemma:

Lemma 2.2.13 Let ' be a Cy-semigroup on X.

@) | A < Me® for some M > 0, some w € R and all t > 0. In particular,
A is locally bounded.
(ii) For each x € X, t — U'x is continuous on R

A sharper version of part (i) is given in Theorem 2.5.4(i) below.

Proof (i) We begin by showing that there is some 7 > 0 and M > 0 such
that ||21']] < M on [0, T]. If not, then there is some sequence #, — 0 such
that || || — oco. But this contradicts the uniform boundedness principle since
Ax — x for each x € X. Thus indeed, there exist T > 0 and M > 1 such
that ||A'|| < M for t € [0, T]. If ¢t > 0 is arbitrary, then we can choose some
n=0,1,2,... suchthatnT <t < (n+ 1)T. By the semigroup property

121 = (@) AT < AT < M = e < Me,

where w = 1/T log M.
(ii) Let z, h > 0. The right continuity of 2’x follows from

Ay — Al x| = AU x — x)|
< 2" x — x| < Me”'|A"x — x|,
and the left continuity from (take 0 < h < t)
Ay —Ax| = A" (x — Aly)]
< 27X — x| < Me”'|x — Alx].



44 Well-posed linear systems

Above we first defined what we mean by a well-posed linear system X =
[ %% ], then defined the operator families 2Z, B!, ¢!, and D’ (and a few more)
in Definition 2.2.6, and finally used these operator families to define what we
mean by the state trajectory and the output function of ¥ corresponding to
a given initial time s, a given initial state x,, and a given input function u.
Conversely, suppose that we have some independent method of constructing
the state x(7) and output y corresponding to any given initial time s < ¢, any
given initial state x;, and any given input function u. If the mapping from x;
and u to x(¢) and 7, )y is linear, then it can be written in the form (compare
this to (2.2.7))

x(t) = Axy + Blu,

t>s, 2.2.9
JT[_v’t)y = Q:;Xs + ’Dtvu - ( )

This equation then serves as a definition of the operator families 2, B, €, and

D! If these families satisfy the crucial parts of the identities listed in Lemma
2.2.8, then, as the following theorem shows, there is an underlying system

_ras

¥ = [JW =3

Theorem 2.2.14 Let U, X, and Y be Banach spaces, and let AL: X — X,
Bi: LP|Reg, 1oo(R:U) — X, €1 X — LP|Reg,o(R;Y), and Di: LP|
Reg, 1o (R; U) — LP|Reg. 1o (R; Y) be four families of bounded linear oper-
ators indexed by —oo0 < s <t < 00. Suppose that Q(gx = lim, o Ajx = x for
all x € X, that for all s <t and h € R the time invariance condition (2.2.5)
holds, and that for all s <r <t,

1 0

[ﬂé %ﬁ}_ [1 0 0]
¢ D! 0 75y T 0 o

A8 0(r1 o
x|e|@ 0|0 7n
0|0 1]|LO 7y

0 B!

(2.2.10)

Then we get a L? |Reg-well-posed linear system ¥ = [%%] by defining A" =
2j fort > 0 and, for all x € X and u € L?|Reg, 1,.(R; U),

Bu = lim Bu, ¢x = lim €x, Du= lim Du (22.11)
§—>—00 1—00 §—>—00
—>00
(in particular, these limits exist in X, LP|Reg..(RT;Y), respectively
L?|Reg, 1oc(R; Y)). Moreover, the given operator families 2, B, &, and D'
are identical to those derived from X as described in Definition 2.2.6.
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Proof We begin by expanding (2.2.10) into

A= AU,

r s
B = By, + A B,
& = 70 GRAL + 75 ) €,

s

(2.2.12)
D¢ = 700D, .ty + T € BT 1) + s DT -

From here we observe that (2.2.4) holds forall s < z. Thus, (2.2.10) is equivalent
to the combination of the causality property (2.2.4) and the composition property
(2.2.6).

Next we show that # — 2" is a Cp semigroup. The strong continuity require-
ment and the identity 2A° = 1 were assumed separately. The top left corners of
(2.2.5) and (2.2.6) give, for all s, t > 0,

W = AT = AHAY = ArA§ = A

Thus, 2 is a Cy semigroup.
From (2.2.12) we observe that forall s < r <,

By =By, 15nC =&, Dy =D, 7Dy = D

Thus, trivially, for all x € X and u € L?|Reg, 1,.(R; U), the limits in (2.2.11)
exist. Moreover, still by (2.2.12), forall s <r <t,

B = ABy, 7€ = AL
We rewrite these equations, using (2.2.4) and Lemma 2.2.9, into

%i T_rT[[s_r,Q) = Qlt_r%(,)

s—r>

ﬂ[oyl_r)fre:i, = Q:f)_rﬁr_s.

In the first equation we take t = 0 and let s — —oo to get Bt "n_ = A"B
for all r < 0. In the second equation we take s = 0 and let t — oo to get
7.7 =CA forallr > 0.

We have now verified conditions (i)—(iii) in Definitions 2.2.1 and 2.2.3, and
this only leaves the final condition (iv) concerning ©. By (2.2.12),

Ty D75y = B, 5. DTy = 0.

Taking » = 0 and letting s — —o0 and t — oo we get 7, Dn_ = B and

m_Dmr, = 0. Finally, letting s — —oo and t — oo in the identity rhgif,; =

D' 7" (which is part of (2.2.5)) we get "D = D" forall h € R. O
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2.3 Basic examples of well-posed linear systems

Our first example of a well-posed linear system is the one discussed in Section
2.1

Proposition 2.3.1 Let U, X, and Y be Banach spaces. Let A be a Cy semigroup
onX,andlet B € B(U;X), C € B(X;Y),and D € B(U;Y). Define B, €, and
D by (2.1.5). Then [ %% ] is both a Reg-well-posed and an L? -well-posed linear
system on (Y, X; U) for every p, 1 < p < 0o. Moreover, the state trajectory x
and the output function y of this system, as defined in Definition 2.2.7, coincide
with the state trajectory and the output function of the system (2.1.1) defined in

(2.1.2).

Proof The algebraic conditions are easy to verify; see the calculations after the
algebraic conditions 2.1.3. The definitions of the state trajectory and the output
function have been chosen in such a way that (2.1.3) coincides with (2.2.1).
It is assumed explicitly that % is a Cy semigroup. Thus, only the continuity
requirements on ‘B, &, and © in Definitions 2.2.1 and 2.2.3 need to be checked.

To prove the continuity of B8 L?|Reg.(R™; U) — X itsuffices to prove con-
tinuity when ¥ is L'-well-posed, since L?|Reg([—T, 0); U) C L' ((=T, 0); U).
In this case, foreach T > 0,

0 0
H/ A7 Bu(s)ds| < / 1A 1Bl |u(s)] ds
-T -T

X

< ( sup [ ||> I Blllwll L1 ¢~T.010)-
0<t<T

Thus, %5 is continuous L”|Reg.(R™; U) — X. The continuity of € follows from

the strong continuity of 2 and the fact that C (E+; U) C L?|Reg,,.(RT;Y). The

continuity of ® follows from the continuity of 8 and the fact that (Du)(¢) =

C®Bt'u + Du(r) forall r € R. O

The book by Curtain and Zwart (1995) is devoted to systems of the type de-
scribed in Proposition 2.3.1, and it contains several examples of processes with
distributed actuators and sensors which can be modeled in this way. (Boundary
control systems require B to be strictly unbounded and boundary observation
systems require C to be strictly unbounded.)

Our next example is a delay line. The model for this line is very simple:
a signal entering the right end of the line reappears T time units later at the
left end. No signals pass in the opposite direction. The simplest way to model
this as a well-posed linear system is to build it around a shift (semi)group on
a suitable L”-space. We shall need these shift semigroups later, too, so let us
first take a closer look at them.
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Example 2.3.2 Let U be a Banach space, let1 < p < oo, and let T > 0.

®

(i)

(iii)

(iv)

The family t', t € R, defined by
(T'u)(s) == u(s + 1), s eR,

is a group on LP(R; U) and on Reg(R; U). It is strongly continuous on
LP(R;U) for1 < p < o0 and on BUC(R; U), but not on L*(R; U) and
on Reg(R; U). More precisely, t'u — u in L°(R; U) or Reg(R; U) as

t - Oifand only if t'u — u in L°(R; U) or Reg(R;U) as t | 0, and
this happens if and only if u € BUC(R; U). We call t' the bilateral left
shift on L?|Reg(R; U).

The family t1, t > 0, defined by

(T u)(s) 1= (re T'u)(s) = {“(S ez

0, otherwise,
is a semigroup on LP(R*; U) and on Reg(ﬁi U). It is strongly
continuous on LP(R*; U) for 1 < p < oo and on BUC(@+; U), but not
on L®°(R"; U) and on Reg(@ﬂ U). More precisely, tiu — u in
L®R*:U) or Reg(R ;U) ast | 0ifand only ifu € BUCR ;U). We
call T’ the incoming left shift on L?|Reg(R"; U).
The family t°, t > 0, defined by

(T u)t) == (t'm_u)(s) = u(s +1), s < —t,

0, otherwise,

is a semigroup on LP?(R™; U) and on Reg(R ™ ; U). It is strongly
continuous on LP(R™;U) for 1 < p < ooandon {u € BUCR ;U) |
u(0) = 0}, but not on L°(R~; U) and on Reg(R™; U). More precisely,
ttu - uin L°(R7;U) or Reg(R™;U) as t | 0if and only if

u € BUCR ;U) and u(0) = 0. We call t'. the outgoing left shift on
LP|Reg(R™; U).

The family Ty, 1, t > 0, defined by

(Tjo.1y)(s) := (70,7 T" 7070, 1y1)(5)
_ uis+1), 0<s<T—t,
B 0, otherwise,
is a semigroup on L?((0, T); U) and on Reg([0, T); U). It is strongly
continuous on LP((0, T);U) for1 < p <ooandon{u € C([0,T];U) |

u(T) = 0}, but not on L*°((0, T); U) and on Reg([0, T); U). More
precisely, ‘L'[IQT)M — uin L0, T); U) or Reg([0, T); U) as t | 0 ifand
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onlyifu e C([0, T]; U) and u(T) = 0. We call f[to,T) the finite left shift
on LP|Reg((0, T); U).
(v) The family t7 , t € R, defined by

(tp,u)(s) :=u(s +1), s €R,

is a group on LP(T7; U) and on Reg(Tr; U). It is strongly continuous on
LP(Tr;U) for 1 < p < ooandon C(Tr;U), but not on L*(Tr; U) and
on Reg(Tr; U). More precisely, r{rTu — uin L®(Tr;U) or Reg(Ty; U)
ast — 0if and only ifr{rru — uin L®(Tr;U) or Reg(T7;U)ast | 0,
and this happens if and only if u € C(T7;U). We call T’ the circular left
shift on L?|Reg(Tr; U).

Thus, in each case, the (semi)group shifts the function on which it operates
¢ time units to the left, replaces missing values by zero, and restricts the result
to the appropriate interval. The notation T stands for the real line R where the
points t + mT, m = 0, £1, £2, ..., are identified, and L”(T7) and Reg(T7)
represent the spaces of T'-periodic functions of type L” or Reg. We remark that
L?(T7), Reg(T7) and BC(T7) can be identified with L?((0, T')), Reg([0, T)),
and {u € C([0, T]) | u(T) = u(0)}, respectively (that it, we restrict the periodic
function u to some interval of length T').

Proof of Example 2.3.2. All the proofs are very similar, so we treat only case
(i), and leave the others to the reader.

It is obvious that ¥ = 1, and it is trivial to verify the semigroup property
s+ STl

To prove the strong continuity for 1 < p < coweletu € LP(R; U) be arbi-

trary and let € > 0. Choose some v € C(RR; U) supported in some finite interval
[—T, T] such that ||u — v|| < € (this is possible since C, is dense in L” when
p < 00). Then t'v tends to v uniformly as ¢t — 0, and ’v — v vanishes outside
of [T — 1, T + 1] for |¢| < 1. This implies that t'v — v in LP(R; U), so we
can make ||7'v — v|| < € by choosing ¢ small enough. Then

T

Ie'u —ull < lIt'u — "ol + It'v — vl + [lv — u]

= llu —vll + lIlz'v = vl + llv — ull < 3e.

Thus, t’ is strongly continuous on L?(R; U).

By definition, a continuous function u is uniformly continuous iff t’u(s) —
u(s) — 0 uniformly in s as t — oo. Thus, t’ is strongly continuous on
BUC(R; U). To show that t’ is not strongly continuous on L*(R; U) and on
Reg(R; U) it suffices to consider the counter-example u(¢) = 0 for ¢t < 0 and
u(t) =u #0fort > 0.
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The more specific claims about the existence of the limits lim,_,o t’u and
lim; o t’u in L*(R; U) or Reg(R; U) remain to be proved. The L*>-case is
more difficult, so let us concentrate on this case (to get the Reg-case we simply
replace ess sup by sup everywhere).

The equivalence of the existence of the two different limits follows from the
fact that (by a change of the parameter s),

lim ess sup|u(s + ¢) — u(s)| = limess sup|u(s) — u(s — t)|.
10 ser 0 ser
Thus, to prove the final claim in (i) it suffices to show that u is (a.e. equal to) a
continuous function if T'u — win L2°(R;U) as ¢ | 0.
Suppose t'u — uin L2°(R;U)ast | 0. Fork =0, 1, 2, ... we define

+1/k 1/k
up(t) = k/ u(s)ds = k/ u(s +t)ds.
t 0

Then, sup, g |ux(t)| < esssup,.r|u(t)| and, for all A,

1k
et + ) — e (0)] < kf (s + 1+ ) — u(s + D)l ds
0

1/k
sk/ lT"u(s + 1) — u(s +1)| ds,
0

which tends to zero as & |, 0, uniformly in 7. Thus, the sequence uy, is uniformly
bounded and equicontinuous, so it converges uniformly on bounded intervals
to a continuous limit. This limit is equal to u a.e. since u; () — u(t) at every
Lebesgue point of u# as k — oo (see, e.g., Gripenberg et al. 1990, Lemma 7.4,
p- 67). We conclude that we can make u continuous by redefining it on a set of
measure Zero. O

We shall also need the following modification of this result:

Lemma2.3.3 Letu e LY

loc

R; U), where 1 < p < oo.

() t'u > uin LY (R;U)ast — 0if p < oo.

loc
() t'u > uin LY.(R;U)ast — O ifand only if t'u — u in LY2.(R; U) as
t | 0, and this is true if and only ifu € C(R; U).
i) t0u — win LE(RY; U)ast | 0 if and only ifu € C(R"; U).

) tfu > uin Lig(R™;U) ast | O ifand only ifu € CR ;U)and
u(0) = 0.

Proof This follows from Example 2.3.2, because as long as we are only inter-
ested in the values of # on an interval [T, T'] we can multiply # by a continuous
function n satisfying n(¢) = 1 for|¢t| < T + landn(¢) = Ofor|¢t| > T + 2. The
resulting function belongs to L” (R, U), or in the continuous case to BUC(R; U).
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(In (iii) and (iv) we identify L (R™; U) with the subspace of functions in

loc
Ly (R; U) which vanish on R, and vice versa.) O

We could use any one of the four semigroups 7', 7}, ’, or 7y, 1, in Example
2.3.2(1)—(iv) as the central piece of a well-posed linear system which realizes
the delay line example. For simplicity, let us use the one that ‘stores the minimal
amount of information’, namely t/, -

Example 2.3.4 Let U be a Banach space, and let T > 0 and 1 < p < oo.
DefineY = U, X = L?P((0,T);U), and

Q' x)(s) = (g 1) X)(s) = {X(s 0. 0=s =Tt

0, otherwise,

(Bu)(s) := (0,17~ u)(s) = {g(s -7, 0=s<T,

, otherwise,

x(s), 0<s<T,
Cx = o, 7H)X =
0, otherwise,

®@u)(s) = Tu)s) = u(s = T), s € R.

If p < oo, thenthisis an LP-well-posed linear system. If p = oo, then it satisfies
all the requirements of an L™ -well-posed linear system except for the strong
continuity of its semigroup.

The continuity of 98, &, and © is obvious, and it is not difficult to check
that the algebraic conditions in Definition 2.2.1 hold. Instead of giving a formal
proof, let us therefore give an informal interpretation of how this system works.
For example, let us look at the initial value problem with initial time zero. The
initial state consists of an old input to the system that has entered during the
time interval [—T, 0). It is traveling to the left in the delay line, and shows up in
the output during the time interval [0, T'). If the input « is zero on EJr, then the
output will vanish on [T, 00). A nonzero input u enters the delay line at its right
end, so that at time T the state consists of the restriction of u to [0, T'). This
part will show up in the output during the time interval [T, co). It will be an
exact copy of the input function u, apart from the fact that it has been delayed
by T time units.

We shall see later in Example 4.5.7 that it is impossible to realize the delay
line as an L*>°-well-posed or Reg-well-posed linear system. It is also impossible
to realize it as an L'-well-posed linear system with a reflexive state space; this
follows from Example 4.5.13.

Another method to construct a well-posed linear system is to use one
or several well-posed linear systems to construct a new one. The following
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examples are of this type. We leave the easy verifications that these examples
are well-posed linear systems to the reader.

Example 2.3.5 Let ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X, U). For each a € C, let e, be the scalar function e,(t) :=e*, t € R.

Then
5 Ay | By e A VBe_,
“ Co | Dy o e, e, De_,

is a linear system which is well-posed in the same sense. We call ¥, the expo-
nential shift of X by the amount «.

Example 2.3.6 Let ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X, U). For each ) > 0, let y, be the time compression operator

(yau)(s) := u(rs), s eR.

Let AL := A fort > 0, and

. A | By, A | By
— = .
< | Da e vaDry

Then %, is a linear system which is well-posed in the same sense. We call T;,
the time compression of ¥ by the amount .

Example 2.3.7 Let ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X,U), and let E € B(X1; X) have an inverse in B(X; X). Define

E-AE|E~'B
EE = .
CE D

Then X is well-posed on (Y, X1, U) in the same sense, and it has the same
input/output map as X. We call X the similarity transform of X with similarity
operator E.

Example 2.3.8 Ler ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X, U), and let E € B(Uy; U). Define

2

Then X is well-posed on (Y, X, U)) in the same sense.
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X x9
X X
~————— 911 %17 ~—————— le %ZT
y
o — O <2 ] ¢ | D,
U, T Uy

Figure 2.3 Cross-product (the union of two independent systems)

X0 U,
X
= 0 2| 0 By
~ 2 e 0o, o
y
-~ 0 ¢ | 0 9D
0
2 TT,u,

Figure 2.4 Cross-product in block form

Example 2.3.9 Ler ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X, U), and let E € B(Y;Y,). Define

[ A | B
ZE = .
| EC|ED

Then X is well-posed on (Y1, X, U) in the same sense.

Example 2.3.10 Let X) = [2}' g]‘ be a L?|Reg-well-posed linear system on
Y1, X1, Uy), and let 2y = [%2% be another linear system on (Y, X,, U,)

which is well-posed in the same sense (i.e., both are L?-well-posed with the
same value of p, or both are Reg-well-posed). Define

U:=[g]. X:=[x] vi=[y].
Ql::[g(l)lQ?z]’ %::[%l‘gz]’ Q::z[%]é)z]’ Qz[%lgz]
Then X is a linear system on (Y, X, U) which is well-posed in the same sense as

Y1 and Xy. See the equivalent Figures 2.3 and 2.4. We call X the cross-product
of 1 and X,.
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y .t
A\
X X

X1 X
-<y— Q[] %IT B — Q[z %27

1 y2
¢ | 9 ¢ | 9,

T, T, Uy

Figure 2.5 Sum junction

0 Uy

-

X
—— 0 2| 0 By
y
Q:l 62 Ql 92
xO

T iy

Figure 2.6 Sum junction in block form

Example 2.3.11 Let | = [21‘ 3‘ ] be a L?|Reg-well-posed linear system on

(Y1, X1, U), and let ¥, = [%’%] be another linear system on (Y, X,, U)
which is well-posed in the same sense. Define

U:=[u] X:=[x]
A= o] Bo=[T e ] c=[¢ &], D=[D 9.
Then X is a linear system on (Y, X, U) which is well-posed in the same sense as

Y1 and X;. See the equivalent Figures 2.5 and 2.6. We call ¥ the sum junction
of X1 and Z,.

Example 2.3.12 Let X = [%’%] be a L?|Reg-well-posed linear system on
(Y, Xy, Uy), and let 3y = [%’%] be another linear system on (Y, X», Us)
which is well-posed in the same sense. Define

_TX Y
X':[Xl]’ Y':[Y;]’

. A 0 B —T<¢ 0 .
Ql;[omz]’ %~—[%Q]’ Q:-—[olcz]v D

|
—

o]
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X x5
<X]— 911 %17: <x2— 2[2 ’BZT
N Te |9 -2 | ¢, | o,

Figure 2.7 T-junction

X}
X
X2
2 0 2| By
b4
——A ¢ o | ?
Y2
10 ¢ | D

mu

Figure 2.8 T-junction in block form

Then X is a linear system on (Y, X, U) which is well-posed in the same sense
as X1 and X,. See the equivalent Figures 2.7 and 2.8. We call ¥ the T-junction
of 1 and Xy.

Example 2.3.13 Let X = [2—:’%] be a L?|Reg-well-posed linear system on
Y, X,U), and let ¥, = [2—2%] be another linear system on (Y, X,,U)

which is well-posed in the same sense. Define

X:=[x]
w=[Tal.  B=[2]. ¢=[a &,  D:=D+D

Then X is a linear system on (Y, X, U) which is well-posed in the same sense
as X1 and ¥,. See the equivalent Figures 2.9 and 2.10. We call X the parallel
connection of X and %,.

We postpone the presentation of the more complicated cascade and feedback
connections to Section 7.2.
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y o~ _+
X ]
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Figure 2.9 Parallel connection
0
X
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X

mu

Figure 2.10 Parallel connection in block form

2.4 Time discretization

Our next theorem shows that it is possible to turn a well-posed linear system
into a discrete time system by discretizing the time.

Theorem 2.4.1 Let U, X, and Y be Banach spaces, let ¥ = [%’%] be a

L?|Reg-well-posed linear systemon (Y, X, U), andlet T > 0. Foreachx, € X,
u e L"’|Regloc(]R+; U)andn =0,1,2,..., we define

. nT_  _ _nT
Up =TT U =T T m+DTHU,
X, :=x(nT),

. T T
Yn = JT[O,T)Tn y=1" TnT,(n+1)T)Y>

where x and y are the state trajectory and the output function of ¥ with initial
time zero, initial value xy and input function u. Then, for each n > 0,

Xn4+1 = Axn + Bunv

2.4.1)
Yn = an + Duna
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where the operators (the notation is explained in Definition 2.2.6)
A= =T, B :=9B] = Bt mo 1),
C:=¢} =mone, D =9} = np.rD70.7),
are bounded linear operators between the following spaces:
A: X - X, B: L?((0, T);U) > X,
C: X —> LP(0,T);Y), D: LP(0,T);U) — L?((0,T);Y)
(in the Reg-well-posed case we replace LP((0, T)) by Reg([0, T')) throughout).
Proof This follows immediately from Lemma 2.2.8 and Theorem 2.2.11. O

Thus, we get a standard discrete time system with bounded operators A, B, C,
and D, and with state space X, input space L”|Reg([0, T); U), and output space
L?|Reg([0, T);Y). Observe that the new input and output spaces are always
infinite-dimensional, even if U and Y are finite-dimensional.

It is also possible to go in the opposite direction: If we know the solution
sequence x,, y, of the discrete time system (2.4.1), then it is possible to recreate
the state trajectory x and the output function y of the original system ¥ using
only the operators A and B:

Theorem 2.4.2 Let ¥ = [%%] be a L?|Reg-well-posed linear system on
Y, X,U),andletT > 0. Letxy € X, letu, be asequencein L?|Reg([0, T); U),
let x,, n > 1, and y,, n > 0, be the solution of (2.4.1) with initial value x,, and
define u € Lleegloc(EJr; U) by

—nT
T TT0,T)Un-

M

Il
=

n
Let x and y be the state trajectory and the output function of X with initial time
zero, initial state x, and input function u. Then,
X(I) = Q[tinTxn =+ %‘L’tinTﬂ[Q,T)un

=A""Tx, + Bt "D 70 1yu,, nT <t <(@m+ DT,
[e ]
y= Z " 70,1y V-
n=0

Thus, in order to recreate the state trajectory and the output function of the
original system it suffices to know ' for 0 <t < T and Bn_r.) (in addition
to the discrete time solution).

The straightforward proof of this theorem is left to the reader.
The one-to-one correspondence between the original system and its dis-
crete time counterpart established in Theorems 2.4.1 and 2.4.2 is important
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for two reasons: it is fundamental in the study of time discretizations of the
original system X, and it is also useful in the general study of the original
system X. At the moment the second property is the one that interests us the
most.

If we know the solution and output of X for arbitrary initial states x, and
inputs u, then we actually know all the four basic operators 2, B, €, and D.
It follows from Theorems 2.4.1 and 2.4.2 that these operators can be rewritten
in terms of the operators A, B, C, and D, or equivalently, in terms of the
‘local’ operators ', 0 <t < T, %‘lT = Br_T,0), Qg = m,1<, and @g =
710,17y 710,77 The exact correspondence is the following:

Lemma 2.4.3 Let ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X,U), and let T > 0. Then the operators A, B, €, and ® satisfy

A =TT n=0,1,2,..., t>nT,
o0

B = ZQ’["T%T[[_T,())TinT,
o0

¢ = Zr nTﬂ[O,T)QanT,
=0
o0 o0

D= Z Z T N[O,T)(QQI”%W[_T,O)T_” + ’Dn[o_r)>t”T

n=—00 k=0

00
= Z T -nT TT10,T) ¢%+@ﬂ[()T))

Il
M

" (B 1.0 + 70,1 D 0.1 T"

n=—oo

Thus, the operators 2, B, €, and ® can be reconstructed from the preceding
Sformulas if we know A" for 0 <t < T, Br_r.0), 70,1, and 70,1yD 70, 1)

Before proving Lemma 2.4.3, let us comment on the convergence of the
infinite sums. This convergence is actually trivial in the sense that in each
case of interest there are only finitely many nonzero terms in each sum, due to
the fact that we are working in L”|Reg, ... This means that every u to which
we apply ‘B and ® vanishes on some interval (—oo, —M), and that we are only
interested in the values of €xy and Du on the finite interval [— M, M). In other
words, we may multiply 8 and ® by 7 ) to the right and multiply ¢ and
® by m—m my to the left. Then only finitely many terms in each sum will be
nonzero because

—nT —nT
T—-71,00T " TT[—M,00) = T[-T,0)7T[nT—M,00) T "
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vanishes for alln > M /T and

ﬂlfM,M)TinTﬂ[O,T) = TﬁnT”[fM—nT,anT)ﬂ[O,T)
vanishes foralln > M /T andforalln < —M/T — 1.

Proof of Lemma 2.4.3 The formula for 2 is an immediate consequence of the
semigroup property 25t = 252" for s, r > 0.

To prove the formula for B we solve (2.4.1) recursively to get for all
n=1,2,3...,

n—1
Xp=A"Xo+ Y A'Bu, (1,
k=0
or, if we rewrite this in terms of the original state and the original operators 2
and B,

n—1
xp = x(T) =A"T xo + Z QIkT%JT[,T,Q)t(”_k)Tu.
k=0
On the other hand, by Theorem 2.2.11,

x(nT) = A xo + %I"Trr[o,,mu.

This being true for all xy and u, we find that (A7)" = A"” and that

n—1

%ﬂ[,nf,o) = kaT%ﬂ[,T,o)tfkT,
k=0
from which we get the desired formula (with n replaced by k) by lettingn — oo.
The formulas for € and © follow in a similar way from the fact that (cf.
Theorem 2.4.1)

n—1

Yn = Cx, +Du, = C<An'x0 + ZAkBunkl> + Du,,
k=0

hence (cf. Theorems 2.4.1 and 2.4.2)

n—1
+C

QlkTsBﬂ[,no)‘[(nik)Tu + @ﬂ[O,T)‘L'nTu> .
k=0
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On the other hand, the output y is given by
y=Cxo+Dmiu.

Equating the coefficients for x( in these formulas we get the desired formula
for €, whereas the coefficients for u give

n—

0
@71+ = Z ‘L'_nTN[o,T)(@ka%ﬂlfT,o)T_kT + @7’[[0,7*)>an.
n=0 k=

Multiply this by =77 to the right and by V7 to the left, use the shift-invariance
of ®, and make a change of summation variable to get

00 N+n-—1
Z)n[—NT,oo)z Z Z 'CinTﬂ'[O,T) (242)
n=—N k=0

X (Q:Q[kT%n'[_T,o)‘L'ikT + @TC[()J)) ,[nT.

We get the first of the three given formulas for © by letting N — oo. The other
two formulas follow from this one and the formulas for 5 and €. O

The preceding lemma has several important consequences, the first of which
is the following:

Theorem 2.4.4 Let ¥ = [ch g] be an LP-well-posed linear system on

(Y, X, U) for some p, 1 < p <oo,andletT > 0.

(i) Let g > p. If myo,1y€ maps X into L4([0, T); Y), then € maps X
continuously into Lf’oc(R+; U), and if, in addition, o D10 1) maps

L9((0,T);U) into L1((0, T); Y), then © maps LZJOC(R; U) into
LY \oe(R:Y). Thus, in this case X is also an L1-well-posed linear system
on(Y,X,U).

(ii) Let 1 < g < p. If Bm_r.,0) can be extended to a continuous map from
Li([-T,0);U) into X, then B can be extended to a continuous map
from LYR™;U) into X, and if, in addition, wo, r\Dm 0, ) can be extended
to a continuous map from L1((0, T); U) into L1((0, T); Y) then ® can be
extended to a continuous map from LY (R; U) into LY (R; U). Thus,
in this case X can be extended to an L?-well-posed linear system on
Y, X, U).

This follows immediately from Lemma 2.4.3 and the fact that

LY R;U) C LY (R;U) for g > p.

¢,loc



60 Well-posed linear systems

2.5 The growth bound

Our next task will be to employ Lemma 2.4.3 to develop a global growth
estimate on the operators 2, 8, €, and ©. The growth estimates on B, €, and
% are given in terms of a weighted L”-space:

Definition 2.5.1 Let]1 < p < o00,J C R,w € R, and let U be a Banach space.

(i) The space L5 (J; U) consists of all functions u: J — U for which the
function e_,u belongs to L?(J; U) where e_,(t) := e~ ', t € R. The
norm of u in LY (J; U) (which we often denote by ||u||») is equal to the
norm of e_,u in LP(J; U).

(ii) The space Lf),loc(R; U) consists of all functions u € L{ (R;U) which
satisfy m_u € LL(R™; U).

(iii) The spaces L ,(J;U), L, 10.(R; U), BCo(J; U), BCy 10e(R; U),
BCy.o(J; U), BCo.010c(R; U), BUC,(J; U), BUC,, 10c(R; U),
Reg,(J;U), Reg,, 1o.(R; U), Reg, ,(J; U), and Reg ,, 1,.(R; U), are
defined in an analogous way, with L? replaced by LP. BC, BCy, BUC,

Reg, or Reg, respectively.8
The operators 7r; and t’ act on these w-weighted spaces as follows:

Lemma2.5.2 Let 1 < p < o0, w e R, and u € LE(R; U). Define e_,(t) :=
e fort e R

(i) For each J C R (of positive measure) the operator 1 is a projection
operator in LE(J;U) and in Reg,(J;U) (ie, ;= JT;) with norm
l7sllo = 1.

(i) e_oT'u = e t'(e_,u) for t € R. In particular, t'u — u in LE(R; U) as
t — Oifand only if t'(e_,u) — e_nu in LP(R; U) ast — 0. The same
claim is true if we replace L? by BC, BUC, BCy, Reg, or Reg,,.

Proof (1) This is obvious.
(ii) For all s € R,

(et (e_ot))(s) = e ™ Tu(s + 1) = e u(s +1),
hence e_,t'u = e”' t'(e_,u). To prove the second claim it suffices to observe
that t'u — w in LL(R; U) iff e_,,(t'u — u) — 0in LP(R; U), and that

e_o(t'u —u) = e“”(rt(e,wu) — e,wu) + (e"” — l)e,wu,

where e” — 1 as t — 0. The same argument remains valid if we replace L?
by BC, BUC, BCy, Reg, or Reg,,. O

8 The space Lg is the same as L? if p < oo, and in the case p = oo it consists of those u € L™
which vanish at £00, i.e., lim;_, o €ss SUP|g|> |u(s)| = 0. The space Reg consists of all bounded
regulated functions, and Reg, consists of those functions in Reg which vanish at f-co.
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Example 2.5.3 Allthe claims in Example 2.3.2(i)—(iv) remain true if we replace
the spaces LP, Reg, and BUC by the corresponding weighted spaces L), Reg,,
and BUC,, respectively, where w € R is arbitrary. Moreover, if we denote the

w-weighted LP-norm or sup-norm by ||-||», then with the notation of Example
2.3.2,

@) lIr'ullo = e lullo fort € R,
(i) zhull, < e flully, fort >0,
(i) [|7"ull, = e”[lully, t =0,
(iv) 7o, ryulle < e llullyfor0 <t < T and |t pyullo =0 fort > T.

We leave the easy proof of Example 2.5.3 to the reader (the additional claims
about the norms of the shift operators are obvious, and the rest of Example 2.5.3
can be reduced to Example 2.3.2 by use of Lemma 2.5.2(ii)).

The following theorem gives us global growth estimates on 2, B, €, and 2.

Theorem 2.5.4 Let ¥ = [%] be a LP|Reg-well-posed linear system on
(Y, X, U).

(i) The limit lim,_, o 1 log(| A ||) exists, and

log(||R1" 1 A
o i CRAXD L Tos(I2D)
t—00 t t>0 t
(but possibly wg = —00). In particular, for all t > 0 it is true that
|4 > e®*" and that the spectral radius of A" is equal to e®?'.

Moreover, for each w > wy there is a constant M > 1 such that
[ < Me® fort > 0,

and e ' |A"|| — Oast — oo.

(ii) If ¥ is L?-well-posed then, for each w > wy, € is a continuous linear
operator X — LE@R*,Y), and B and © have unique extensions (that
we still denote by the same letters) to continuous linear operators
B: LOR™,U)—> Xand®: L, | (R, U) — L) | (R, Y). The latter
operator maps LR, U) continuously into LY(R, Y). In the case
p = 0o, € maps X into Lgf’w(R+, Y) and the extended operator ® also
maps L§, (R, U) into Lg,w’IOC(R, Y)and L5, (R, U) into Lg,w(R, Y).

(i) If X is L"’—well—posed, w>wy s €R x; € X, andu € LE([s, 00); U),
then the output y of ¥ satisfies y € LE([s, 00); Y). If, in addition,
p < 00, then the state trajectory x of X satisfies x € BCy ,([s, 00); X).

(v) If ¥ is Reg-well-posed, then (ii) and (iii) remain true if we replace L? by
Reg,, throughout, including the statement in (iii) that
x € BCy ,([s, 00); X).
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Note that the semigroup 7(o, 7y in Example 2.3.2(iv) has a growth bound equal
to minus infinity, because || T[lo, nll=0forr >T.

Proof (i) Recall that, by Lemma 2.2.13, ||2’|| is locally bounded. Define
. log(lIAT])
inf ——=.

w9 .=
R >0 t

Trivially, wg < co. Let w > wg, and choose some 7 > (0 such that
%log(HQlTH) < w. For each t > 0 we can choose an n =0, 1,2, ... so that
nT <t <(m+ 1)T. Then

t T t—nT
_ log(IID) _ nT log(IIA7 1) n log (=A™ 1)

A= t Tt T t
T 1 Q[’_"T
< tlo los(RTh)

Letting ¢t — oo we get

lim su

=00

1 A
P og(|[21"]) <o,
t
and this shows that lim,_, o % log(J|24'||) = ws. The claim that the spectral radius
of 2" is equal to e“* is trivial if 7 = 0, and forz > 0 the logarithm of the spectral
radius is given by

lim log(|(A)Y"|"/") = ¢ lim W = wyl.

n—00 n—>00 nt

The remaining claims in (i) follow from the facts that 2’ is locally bounded and
that lim, . o 1 log(||A'[|) = wa.

(i) We claim that the expression for B in Lemma 2.4.3 is an absolutely
converging series in B(LL(R, U); X); hence it defines B as an operator in
B(LI(R, U); X). We prove this claim as follows. Choose some o, w4 < @ < @
and some M > 1 so that ||2(']] < Me* for all ¢ > 0 (cf. Lemma 2.5.2). Then

00 00
||QL”T€B7T[—T,0)T_HT”w < ZMeaTn ”%Tr[—T,O) “we—an < oo,
n=0 n=0

Thus, B can be extended to an operator in B(LLR™, Y); X). If p < oo, then
this extension is unique since LY(R™;U) is dense in LL(R™; U). In the case
p = oo we choose some o’ satisfying wg < @' < w and observe that B has a
unique extension to Lg7, (R™; U) (since L°(R™; U) is dense in this space). But
LY ®R™;U) C L§,,(R™; U), hence the extension to L3P (R™; U) is also unique.

The proof of the fact that € e B(X;LL(R*,Y)) (and that € ¢
B(X; Lgfw(Rﬂ Y)) when p = o0) is very similar to the one give above for
9B, and it is left to the reader.
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The claims about the extension of ® remain to be proved. The proof of the
uniqueness of the extension is essentially the same as the proof of the
uniqueness of the extension of ®B, since (by causality) we know © uniquely
once we Know (oo, n® = 7(—o0,nDM(—c0,r) forallz € R. If we can extend D to
an operator in B(L5(R, U); L5(R, Y)), then we can use the identity 7700, D =
T~ 00.)DT(~o0,r) t0 extend D to an operator in B(L,, | (R, U); L] | (R, Y)).
Thus, it suffices to show that we can extend D to an operator in
B(LI(R, U); LE(R, Y)). Below we treat only the case p < oo, and leave the
analogous case p = oo to the reader. (The reader should also check that the
extended operator maps L, (R, U) into Lg, (R, Y) in the L>-case.) All the
LP-type norms below are interpreted as norms in the weighted space L/, in-
cluding the L?-norms over the interval [0, T'), and to stress this fact we denote
these norms by ||-||.

Take u € LL(R*; U). We fix some T > 0 and define u,,, y,, A, B, C, and D
as in Theorems 2.4.1 and 2.4.2, but this time we take x; = 0. Then

0 o) (n+1)T
), = f e u(s)|Pds =y / e u(s)|” ds
0 n=0 JnT

00 T 00
— Z/ |e—u)(s+n7')u(s + nT)|P ds = Z”e—wnTun”Z.
n=0 70 n=0

A similar formula is valid for ||y||,. As we saw in the proof of Lemma 2.4.3
(with xg = 0),

n—1
e_wnTyn = e_wnT <C AkBun—k—l + Dun) .

k=0

Choose some wg < o < w and some M such that ||| < Me* forall t > 0.
Then [|A¥|| < Me**T, and

—onT —onT
€™ Yallo < IDllwlle™" unllo

n—1

—wnT kT
+e T |Clly > M By lltn—i—1 ]l
k=0

—wnT
= [IDllolle™" unllw

n—1

—wnT —1-1)T
+e ™ T|Clly Y Me VT Bl ||yl
=0

—wnT
= IDlulle™" " unllo
n—1
—aT — —DT | ,—oIT
+ [ICllo 1Bl Me™T Y~ elem DT jjemelTy, |,
=0
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This can be interpreted as a convolution of the /'-sequence {a,}°, and the
17-sequence {|le=*"Tu, lw};2 o, where

_ ”D”w» n = 0,
IClloIBll, Me=Te@= T n=1,2,3,...

The convolution {(a * b),};2, of an I'-sequence {a,}52, and a [”-sequence

{ba}o2, belongs to [”, and |la * b||, < |lal|,||b]l, (the continuous time version
of this result is found in, e.g., Gripenberg et al. (1990, Theorem 2.2, p. 39),
and the proof of the discrete time version is essentially the same). Thus, the
sequence {[le " u, llw}ne, belongs to 17, and

00
—onT
1D ulll = lyls, = E lle™"" yall
n=0

% P % p
—onT
< (E an) lle™" unlll, = (E an) 7wy uell?).

n=0 n=0

In other words, we have found a constant K = ) > a, such that |Du], <
K|ull, for all u € Ly(R;U) vanishing on (—00,0). If u € L, (R;U)N
L2(R; U), then we can choose some ¢ € R such that t/u is supported on KJr

and use this result (and the time-invariance of © and Lemma 2.5.2) to get

1Dulle = It D7'ull, = e Dt'ull, < e Klt'ullo = Kllullo.

This proves that © can be extended to a bounded linear operator from LER; U)
to LE(R; Y).

(iii) The claim that y € LE([s, oo); Y) follows from (ii), Definition 2.2.7,
and Theorem 2.2.12.

By Definition 2.2.7, e ™' x(t) = e~*' (Ql’ﬂx‘Y + ‘Br’n[wo)u). According to
Theorem 2.2.12, ¢ +> x(¢) is continuous. By the estimate in (i), e *'A' Sx;, — 0
as t — oo. Suppose for the moment that u € LL(R; U) N LY (R; U) for some
wy < @ < w. Then by Example 2.5.3, ||t' 7, c0)tt]l < e”||ullo, and this
combined with part (ii) gives BT’ o0y = 0(e”") as t — oo. In particu-
lar, e™ "Bt 7[5 004 — 0 as t — oco. The same claim must then be true for
all u e LL(R;U) since LLR;U)NLY,(R;U) is dense in Ly(R; U). Thus
x € BCy ([s, 00); X).

(iv) The proofs are the same as in the L7 -case, except for the fact that we have
to replace the reference to Theorem 2.2.12 by a forward reference to Theorem
4.3.1 to get the continuity of x. O

Remark 2.5.5 The conclusion of Theorem 2.5.4 remains valid if we replace
the strong continuity assumption on 2 by a local boundedness assumption
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(cf. Lemma 2.2.13), except for the continuous dependence of x(¢) on z. The
proof remains the same.

Definition 2.5.6 Let ¥ = [%’%] be a LP|Reg-well-posed linear system on
Y, X, U).

(i) The growth bound of X is the same as the growth bound of its semigroup
2A, and it is given by the number wy defined in Theorem 2.5.4(i). We
denote the growth bound of the semigroup 2 and the growth bound of a
system X with semigroup 2 by wg throughout.

(i) By w-boundedness of ¥ or one of its components we mean the following:

(a) 2Uis w-bounded if A satisfies sup, He“”’QL’ ” < 00;

(b) B is w-bounded if B can be extended to a continuous linear operator
L?|Reg, ,(R™,U) — X;

(c) €is w-bounded if € is a continuous linear operator
X — L”|Reg, (R ", Y);

(d) ® is w-bounded if © can be extended to a continuous linear operator
LP|Regy ,(R™, U) + L?|Reg,(R", U) —
L”|Regy ,(R™, Y) + L?|Reg, (R, Y);

(e) X is w-bounded if (a)—(d) above hold.

With the help of Theorem 2.5.4 we can prove the following analogue of
Theorem 2.2.11, which corresponds to the case where the initial time is —oo
and the initial state is zero.

Theorem 2.5.7 Let ¥ = [%%] be a LP|Reg-well-posed linear system on
(Y, X, U) with growth bound wy, let ® > wg, and letu € LP|Reg , 1,.(R; U).
Define x(t) = B'u =Bt'u, t € R, and y = Du. Then x € BCy 4 10¢(R; X),
y € L?|Regy , 10c(R; Y), and for all s € R (cf. Definition 2.2.6)

x(1) = Alx(s) + Blu, t>s,

- 2.5.1)
.00y = Cex(s) + Dsu.

Thus, x(t) for t > s and s o)y can be interpreted as the state trajectory and
the output function of ¥ with initial time s, initial value x(s), and input u. If
u € L?|Reg ,(R; U) then x € BCy»(R; X) and y € L?|Reg ,(R;Y).

Proof By Theorem 2.2.11, (2.5.1) is true if u € L”|Reg, 1,.(R; U). This set of
functions u is dense in L?|Reg , 1o.(R; U), so the general case then follows
from the continuity of 8 and ®; cf. Theorem 2.5.4(ii),(iv). The additional
claims about the growth bounds of x and y follow from Theorem 2.5.4(iii),(iv)
(observe that Bt'u — 0in L”|Reg, ,(R;U) ast — —00). O
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Definition 2.5.8 We call the functions x and y in Theorem 2.5.7 the state
trajectory and the output function of ¥ with initial time —oo and input u.

Example 2.5.9

(1) The growth bound of the delay line in Example 2.3.4 is —oo.

(ii) The growth bound of the exponentially shifted system X, in Example
2.3.5is wy, = wy + Ra. Thus, it is possible to make X, exponentially
stable by choosing Ro < —wy,.

(iii) The growth bound of the time compressed system %; in Example 2.3.6 is
g, = )\a)gl.

(iv) The growth bound of the similarity transformed system X g in Example
2.3.71is WY, = Wy.

(v) The growth bound of the systems in Examples 2.3.10- 2.3.13 is
wg = max{wsy,, wg, }.

(vi) The growth bound of the Lax—Phillips model in Definition 2.7.2 is
wg = max{wy, w}.

We leave the easy proofs of these claims to the reader.

Example 2.5.10 In the case of the system presented in Proposition 2.3.1, the
extended input map ‘B and the extended input/output map © constructed in
Theorem 2.5.4(ii) and (iv) are given by (for allt € R)

0
Bu = / A~ Bu(s)ds, u € L?|Reg, ,(R7;U),
t
®@u)() = C/ A Bu(s)ds + Du(t), u € LP|Regy 4 10c(R; U).
o (2.5.2)

Proof Fix some o' € (wg, w). Then ||| < Me®" for some M < oco. This
implies that the integral fi)oo A~ Bu(s)ds converges absolutely, because (by
Holder’s inequality, with 1/p + 1/g = 1),

0 0
/ |~ Bu(s)| ds < M||B||/ e @~ ey (s)| ds
—0oQ —00

< ()l
S E——— ullLr =)
= ( w/)q L?|Reg,(R™)

The same computation shows that if we define the operator B by
B = [ A Bu(s)ds, then B € B(LP|Reg, ,(R;U); X). Since this op-
erator coincides with the extended operator ‘B, which also belongs to
B(L? |Regy ,(R™; U); X), on the dense subset of functions u vanishing outside
of some finite interval, we must have % =B.
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Essentially the same proof can be used to prove the second half of (2.5.2).
By the preceding argument,

t
®u)(t) := C/ A~ Bu(s)ds + Du(t)
—00
is well-defined for all u € L?|Reg ,, 1o.(R; U) and all ¢ € R, and by Theorem
A.3.4, D maps LP|Reg , 1o.(R; U) continuously into L”|Reg , 1,c(R; U). In
addition it coincides with © on a dense subset. O

2.6 Shift realizations

We have seen in Theorem 2.5.4 that every input/output map ® of an L”-
well-posed linear system X can be extended to a time-invariant linear oper-
ator LO(R; U) — LL(R; Y) for some w € R. Here we shall study the converse
question: given such a time-invariant operator, is it possible to construct a well-
posed linear system with this particular input/output map? As we shall see in
a moment, the answer is yes if | < p < co. An analogous result is also true if
we replace L? by Reg.

Definition 2.6.1 Let1 < p < oo,letw € R,let U and Y be Banach spaces, and
let © be alinear operator L] (R;U) D D (D) — LI (R;Y)orReg,(R;U) D
D(®) = Regi,(R;Y).

(1) D is time-invariant if T'Qu = Dt'u forallu € D (D) and all ¢ € R (in
particular, /D (D) = D (D)).
(i) A time-invariant operator ® is causal if _®m, = 0 and it is anti-causal
ifr On_ =0.
(iii) A time-invariant operator D is static if it is both causal and anti-causal.
(iv) The Hankel operator induced by a time-invariant operator ® is the
operator . ®m_, and the anti-Hankel operator induced by ® is the
operator 7_®m .
(v) The Toeplitz operator induced by a time-invariant operator ® is the
operator 7w ®m, and the anti-Toeplitz operator induced by © is the
operator 7_7_.

Thus, a time-invariant operator is causal iff its anti-Hankel operator vanishes,
itis anti-causal iff its Hankel operator vanishes, and it is static if both the Hankel
operator and the anti-Hankel operator vanish. The condition imposed on the
input/output map ® in Definition 2.2.1(iv) requires ® to be time-invariant and
causal with a Hankel operator equal to €8.
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Definition 2.6.2

(i) Forall 1 < p < oo, the notation TI? (U Y) stands for the space of all
bounded time-invariant operators © : LR, U) — LE(R;Y), with the
operator norm. The notation TI’(U; Y) stands for the space of all
bounded time-invariant operators
D: Lg, RT3 U) +LYRYU) - LE,(R™;Y) + LYRT; Y), with the
operator norm. In both cases we abbreviate T17(U; U) to TI?(U).

(ii) We denote the space of all causal operators in 717 (U; Y) by TICP (U, Y),
and abbreviate TIC? (U; U) to TICP (U).

(iii) By TI? and TIC? we mean T1? and TIC? with @ = 0.

(iv) By TICL, we mean |, TIC?.

(v) We denote the space of all continuous causal time-invariant operators

D: L, (R;U) = L, (R;Y) by TIC{, (U;Y), and abbreviate
TIC] (U;U) to TIC}, (U).

(vi) The spaces TIR, TICR, TIR¢, TICR, TICSS TI', and TICY® are
defined in the same way, with L/, replaced by Reg, ,(R7) + Regw(KJr)

and L7, replaced by Reg,. ..

(vii) We use T1 (with different subindices) to represent either TI” or TI%¢¢ and
TIC (with different subindices) to represent either TIC? or TICRes,

depending on the context.

Definition 2.6.3 Let 1 < p < o0, let U and Y be Banach spaces, and let
D e TIC}, (U;Y). By a LP-realization of © we mean an L”-well-posed linear
system on (Y, X, U) (for some Banach space X) with input/output map ©. A

Reg-realization of an operator ® € TICﬁCg (U;Y) is defined in the same way,
with L? replaced by Reg.

We shall also apply this definition in the case where © belongs to TIC,,(U; Y)
instead of TICo.(U; Y). To do this we need the following fact:

Lemma 2.6.4 If© € TIC,(U;Y) for some w € R, then © has a unique (re-
striction followed by an) extension to an operator in TIC\,.(U;Y), and this
extension determines ® uniquely. Moreover, the extension does not depend on
w, in the sense that if © € TIC, N TIC,(U;Y), then we get the same extension
ifwe interpret ® as an operator in TIC,(U; Y) or as an operator in TIC ,(U; Y).

Proof By the time-invariance and causality of ®, the restriction of ® to
L?|Reg, ,(R; U) maps this space into L?|Reg. ,(R;Y) (these are the spaces
of functions in L”|Reg, whose support is bounded to the left). Moreover,
® is determined uniquely by this restriction since L”|Reg.((—oo,t);U)
is dense in L”|Reg,((—00,1);U) (or in Lg, ((—00,1);U) in the L*>-case)
for every ¢t € R, and since we know © uniquely as soon as we know



2.6 Shift realizations 69

T (=00, = M(—00,nDT(—c0,) forall t € R. Next we use the identity m(_qo /D =
T (=00, DT (—c0,r) to extend D to an operator in TICjo.. This extension is unique
since L?|Reg, ,(R; U) is dense in L?|Reg,. 1,.(R; U). O

Example 2.6.5 Let® € TIC?(U;Y) wherel < p <oo,w € R, and U and Y
are Banach spaces.

(i) The system X defined by (cf. Example 2.3.2)

> = =
clo| |mor |®

is a w-bounded LP-well-posed linear system on (Y, LE(R™; U), U). This
is the exactly controllable shift realization of .
(ii) The system X defined by

- |:Q["B:| _ |:r+n+3371:|
¢ T

is an w-bounded L?-well-posed linear system on (Y, LE@R*;Y), U). Itis
strongly stable when w = 0 (see Definition 8.1.1). This is the exactly
observable shift realization of 2.

(iii) The system X defined by (cf. Example 2.3.2)

=[ela) [als)

is a w-bounded LP-well-posed linear system on (Y, LL(R; U), U). This is
the bilateral input shift realization of .
(iv) The system X defined by

()5

is an w-bounded LP-well-posed linear system on (Y, LL(R;Y), U). This
is the bilateral output shift realization of 2.

We leave the easy verifications of these claims to the reader. Strictly speaking,
we should replace © in (i)—(iv) by the operator in TIC}, _ induced by D; see
Lemma 2.6.4. Controllability and observability will be studied in Chapter 9.
See, in particular, Example 9.4.12. The semigroups used in these realizations
have quite different spectral properties; see Example 3.3.1.

This example provides us with a simple proof of the following theorem:
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Theorem 2.6.6 Let 1 < p < 0o, let U and Y be Banach spaces, and let ®
be an operator LY, (R;U) — L?, (R;Y). Then the following conditions are

c,loc c,loc
equivalent:

(1) ® is the input/output map of an LP-well-posed linear system;

>i1) ® is linear, continuous, time-invariant, and causal, and ® can be
extended to a bounded operator LER;U) — LE(R; Y) for some w € R;

>ii1) ® is linear, continuous, time-invariant, and causal, and the Hankel
operator t. D1 _ of ® can be extended to a bounded operator
LYR™;U) — L] (RY;Y) for some w € R;

(iv) ® is linear, continuous, time-invariant, and causal, and the Hankel
operator m.Dm_ of ® is bounded from LY (R™; U) into LL(RT;Y) for
some w € R.

Thus, Theorem 2.6.6 says that ® € TIC,.(U; Y) has an L?-realization iff ®
can be extended to a bounded operator LPR;U) — LEMR;Y), or equivalently,
w4+ ®Om_ can be extended to a bounded operator LE@R™;U) — LERT;Y).

Proof By Theorem 2.5.4(ii), (i) = (ii), and obviously (ii)) = (iii) and (ii) =
(iv). If (iii) holds, then the system in Example 2.6.5(i) is an L”-well-posed
linear system with the input/output map ©, and if (iv) holds, then the system
in Example 2.6.5(ii) is an L”-well-posed linear systems with the input/output
map ®. Thus (iii) = (i) and (iv) = (). O

There is also a Reg-well-posed version of Theorem 2.6.6:

Theorem 2.6.7 Let U and Y be Banach spaces, and let ® be an operator
Reg, 1oc(R; U) — Reg, 1,.(R; Y). Then the following conditions are equivalent:

(i) © is the input/output map of an Reg-well-posed linear system;

(i1) D is linear, continuous, time-invariant, and causal, and there is an
operator D € B(U;Y) and a constant w € R such that the mapping
U (t = (Du)(t) — Du(t)) maps Reg. 1,.(R; U) into C.(R; Y) and can
be extended to a continuous linear mapping
Regy o (R; U) — BCo,o(R; Y);

(iii) ® is linear, continuous, time-invariant, and causal, and the Hankel
operator w1 Om_ maps Reg .(R™; U) continuously into BC()_w(@Jr; Y) for
some w € R.

Proof By Definition 2.2.3, Theorem 2.5.4 and Corollary 4.5.6 below, (i) = (ii),
and obviously (ii) = (iii).

To prove that (iii) = (i) it suffices to construct a Reg-well-posed realization
of ®. For this we can use the same exactly observable shift realization as in
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2[‘% _ 'C+‘JT+@JT_
eal- [

but this time with state space BCO,,,,(KJr; Y), since the left-shift semigroup 7
is strongly continuous on this space (see Example 2.5.3). O

Example 2.6.5(ii), i.e.,

Example 2.6.5 also provides us with a simple proof of the following lemma:

Lemma 2.6.8 For each a > w, TIC,(U;Y) is continuously embedded in
TIC,(U;Y), ie., every operator ® € TIC,(U;Y) has a continuous (restric-
tion followed by an) extension to an operator in ® € TIC,(U;Y), and there is
a one-to-one correspondence between the original operator ® € TIC,(U;Y)
and its extended version ® € TIC,(U;Y).

Proof Inthe LP-case with 1 < p < oo the existence of a continuous (restriction
followed by an) extension of ® follows from Example 2.6.5 and Theorem
2.5.4(ii), and, according to Lemma 2.6.4, there is a one-to-one correspondence
between the original operator and its extended version. In the L*°-case and Reg-
case we can use exactly the same proof: the realization in Example 2.6.5(ii) is
still valid apart from the fact that the semigroup is not strongly continuous, and
the strong continuity was not used in the proof of Theorem 2.5.4(ii) (it was used
in the proof of Theorem 2.5.4(i) in the form of Lemma 2.2.13, but this time we
know in advance that the semigroup has growth bound w). O

2.7 The Lax—Phillips scattering model

Instead of using a L?|Reg-well-posed linear system to formalize the idea of
having an output and state at time ¢ > 0 which depend continuously on the
input and the initial state we can proceed in a different way which leads to a
generalized Lax—Phillips scattering model. This is a particular semigroup ¥
defined on [g], where ) = L?|Reg,(R7;Y) and U = LP|Regw(E+; U). We
call U the incoming subspace, X the inner state space, and ) the outgoing
subspace. In the classical cases treated in Lax and Phillips (1967, 1973) w is
taken to be zero and ¥ is required to be unitary (the conservative case) or a
contraction semigroup (the nonconservative case).

Theorem 2.7.1 Let ¥ = [%%] be a LP|Reg-well-posed linear system
on (Y,X,U). Let weR, Y =LP|Reg,(R™;Y) (the outgoing subspace)

and U = L”lRegw(E+;U) (the incoming subspace). For each [ig] € [g]
Uuoy
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and t >0, define (the notation is explained in Definition 2.2.6 and
Example 2.3.2)

0 0][1 ¢ D LA AL S A5 VA
T=[01 0|0 A B|=]0 A B
00 loo0 1 0o 0

Then ¥ is a semigroup on [%(}] It is strongly continuous on [%(}] iff ¥ is LP-
well-posed with 1 < p < oo. If x and y are the state trajectoryuand the output
function of ¥ corresponding to the initial state xo € X and the input function
ug € U, and if we define y(t) = yo(t) fort < 0, then forallt > 0,

T (—o0.t]Y ™ 0 0 Yo
x(1) = 01 o0 |% X0 | - 2.7.1)
T[r,00) U0 0O 0 ¢ Ug

Formula (2.7.1) shows that at any time ¢ > 0, the first component of %, [;8 ]
ug

represents the past output, the second component represents the present state
and the third component represents the future input.

Proof That T(0) is the identity operator follows from Lemma 2.2.8(i). The
claim about the strong continuity can be reduced to the strong continuity of the
two shift operators, discussed in Example 2.3.2. Thus, only the semigroup
property T = T*X’ for 5, t > 0 remains to be shown. For this we use
Definition 2.2.6, the composition property in Lemma 2.2.8(iv), and
Example 2.3.2, which give

(2 ¢ D) [L ¢y 'D
TT=]0 A B 0 A B
0

0 T 0 0 144

[l U+ QA D)+ B + DT

=| o0 A’ AB! + By r!
S .1

L 0 0 Tty

[ () + ) T (D) + € B + D))
— 0 Qs+t Qlert%é + %ngt

| 0 0 it

‘L'iﬂ .L.s+t€f)+r .L,s+t©6+t
— s+t s+t
=0 B

s+t
| 0 0 Ty

— ‘IS-H
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The semigroup ¥ in Theorem 2.7.1 has an additional ‘causality’ property,
which in the Hilbert space case where p = 2and U, X, and Y are Hilbert spaces
can be described as follows: for all # > 0, the images of the inner and incoming
states under T are orthogonal to the image of the outgoing state, and the null
space of T’ projected onto the inner and outgoing spaces is orthogonal to the
null space of T projected onto the incoming space. In the general case these
properties can most easily be characterized in the following way.

Definition 2.7.2 A Lax—Phillips model of type L”|Reg,, is a semigroup on [ 5 ] ,
where ) = L”|Reg,(R™:Y) and U = L?|Reg,(R " ; U), with the structure

L ¢ D
T=10 A B[,
0 0 7

where 2 is strongly continuous and 2B8’, €', and D’ satisfy the causality con-
ditions

%t = %tﬂ[(),,), Q:t = n[,,,())@’, @t = ﬂ[,t,o)gtﬂ[o,,). (2.7.2)

Corollary 2.7.3 The semigroup ¥ constructed in Theorem 2.7.1 is a Lax—
Phillips model of type L?|Reg,,,.

This is immediate from Theorem 2.7.1 and Definition 2.7.2.

Definition 2.7.4 We call the semigroup ¥ in Theorem 2.7.1 the Lax—Phillips
model (of type L”|Reg,) induced by X.

Remark 2.7.5 Above we have absorbed both the input and the output of
an L”|Reg-well-posed linear system X = [%%] on (Y, X, U) into the Lax—
Phillips model. It is also possible to absorb only the input or the output. If X is

LP-well-posed with p < oo and w € R, then

A B
0 (2.7.3)
Q: ©ﬂ+

is an L”-well-posed linear system on (¥, [ ],0) (with no input) where U =
LO(RT; U), and

t tot
|:r_ T’ ¢

5
0 } (2.7.4)

T_%

is an LP-well-posed linear system on (0, [ ¥ |, U) (with no output) where Y =

LI(R™;Y). We leave the easy proof to the reader.



74 Well-posed linear systems

It is only slightly more difficult to prove the converse: to every Lax—Phillips
model there corresponds a well-posed linear system which induces this Lax—
Phillips model:

Theorem 2.7.6 Let ¥ be a Lax—Phillips model of type L?|Reg,,. With the no-
tation of Definition 2.7.2, define

1 —s5._s R T —t ot T —trNI—S .S
%—SLHPOO% T’ Q—Ilggor ¢, g_;l;}lgot DT (2.7.5)

Then ¥ = [%%] is a LP|Reg-well-posed linear system on (Y, X, U), and ¥

is the Lax—Phillips model induced by this system.

Proof of Theorem 2.7.6. This proof is based on Theorem 2.2.14. We begin by
defining the needed operator families (indexed by —oo < s <t < 00) as

AL | B! A | B
¢l | e DT |
This family has the time-invariance property (2.2.5), and it follows from (2.7.2)

that it also has the causality property (2.2.4). The semigroup property T =
TT" with s, t > 0 gives us four nontrivial identities, namely

A = Y B = YB 4+ B
Q:s-‘rt — TSQ:I + Q:SQU, @s-ﬂ — ‘L'S@l + Cs%l +©stt

(where we have omitted some redundant projections) and this implies that the
operators 2%, B!, €, and D! have the composition property (2.2.6). As we
noticed in the proof of Theorem 2.2.14, the two conditions (2.2.4) and (2.2.6)
together imply (2.2.10). By Theorem 2.2.14, ¥ = [%%] is an L?|Reg-well-
posed linear system, and the corresponding Lax—Phillips model is the given
one. O

Corollary 2.7.7 For each w € R, there is a one-to-one correspondence be-
tween the class of all L?|Reg-well-posed linear systems and all Lax—Phillips
models of type LP|Reg,: every L?|Reg-well-posed linear system X induces
a unique Lax—Phillips model ¥ of type L?|Reg,, and conversely, every Lax—
Phillips model ¥ of type L?|Reg,, induces a unique L?|Reg-well-posed linear
system 2.

Proof See Corollary 2.7.3 and Theorem 2.7.6. O

There are a number of important ingredients in the Lax—Phillips scattering
theory, such as the backward and forward wave operators, the scattering oper-
ator, and the scattering matrix. All of these have natural analogs in the context
of well-posed linear systems. In the discussion below we suppose that ¥ is
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w-bounded (see Definition 2.5.6), or at least that 8, &, and ® are w-bounded.
This is true, for example, if @ > wq, Where wy is the growth bound of 2.
The backward wave operator W_ (denoted by W, in Lax and Phillips 1973,

Theorem 1.2) is the limit of the last column of Tt~' as r — oo. It maps

LP?|Reg, (R™;Y)
L?|Reg,(R;U) into |: X i|, and it is given by (cf. Theorems 2.5.4
L?|Reg(R ;U)
and 2.7.6)
T_®
Wu=| 9B |u 2.7.6)
Tt

Thus, it keeps the future input 7« intact, and maps the past input 77_u into the
past output 7_®u and the present inner state Bu.
The forward wave operator W, (denoted by W) in Lax and Phillips

1973, Theorem 1.2) is the limit of the first row of t /T as t — co. It maps
L?|Reg,(R™;Y)

|: X, :| into L?|Reg,(R; Y), and it is given by (cf. Theorems 2.5.4 and
LP|Reg(R ;U)

7.6)

y y
Wi |xo|=[n-€Dmy]|x0|. (2.7.7)
u u

Thus, it keeps the past output 7_y intact, and maps the present inner state xg
and the future input 77 u into the future output €x¢ + D u.

The two wave operators W_ and W, play very important roles in scatter-
ing theory and also in the theory of passive and conservative systems (see
Chapter 11). Their most important property is that they intertwine the Lax—
Phillips semigroup with the bilateral left-shift t* on L?|Reg,(R; U), respec-
tively, L?|Reg,(R;Y) (just as the input map B intertwines the semigroup 2’
on X with the outgoing left-shift ' on L?|Reg,(R™; U) and the output map €
intertwines 2" with the incoming left-shift 7! on L”|Reg,(R";Y)). This is the
content of the following lemma.

Lemma 2.7.8 Let w € R, let ¥ = [%%] be an w-bounded LP|Reg-well-
posed linear system on (Y, X, U), and let ¥ be the corresponding Lax—Phillips

model of type L?|Reg,. Then the two wave operators W, and W_ intertwine
T with the bilateral left-shift T as follows: for all t > 0,

TW_u=W_t'u, y € LP|Reg (R; U),
, : , L?|Reg, (R:Y
vl e[
u u u L”|Reg,,(R";U)

In particular, R (T'W_) = R(W_) and N' (W, T') = N (W_) forall t > 0.
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Proof We leave the straightforward proof of the intertwining properties to the
reader (see Definition 2.7.4 and Lemma 2.2.10(iii)—(iv)). The invariance of
R(T'W_) and N (W, T') follow from the identities T'W_t~" = W_ and
T'W,T" = W, and the fact that T~ is injective and onto. O

In this lemma the w-boundedness of 2l is irrelevant, but we need B, €, and ©
to be w-bounded in order for the two wave operators W_: L”|Reg,(R;U) —

L?|Reg,,(R™:;Y) L?|Reg,,(R™;Y)
X and W, : X — L?|Reg,(R; Y) to be bounded.
L”|Reg,(R":U) L”|Reg,,(R*;U)

The scattering operator in Lax—Phillips theory is the product W, W_, and
it is given by

T_%
WW_=[n_CDny|| B |=7D+EB+r,09=D. (27.8)
T4

Thus, the scattering operator is nothing but the (bilaterally shift-invariant) in-
put/output map ® of the corresponding well-posed linear system.

To get the scattering matrix of the Lax—Phillips system we apply the scat-
tering operator ® to an input of the form u(r) = e*ug, where z € C has a
sufficiently large real part and uy € U is fixed; see Lax and Phillips (1973,
pp. 187-188). Because of the shift-invariance of ©, the resulting output is of
the type y(z) = ey, for some yy € Y. The scattering matrix (evaluated at z) is
defined to be the operator that maps u#y € U into yy € Y. By Definition 4.6.1,
the scattering matrix of a Lax—Phillips system is equal to the transfer function
D of the corresponding well-posed linear system.

The generator of the Lax—Phillips semigroup ¥ and its resolvent are de-
scribed in Theorem 4.8.3.

2.8 The Weiss notations

In the L2-case the notion of a well-posed linear system that we have intro-
duced in Definition 2.2.1 goes back to Salamon (1989) and Staffans (1997,
1998a). There is another commonly used notion which was introduced by G.
Weiss (1989a, b, 1994a). Here the starting point is the input/state/output rela-
tions in Definition 2.2.7 with initial time zero, which are written in the form,
for every t > 0,

x(1) = Tyxo + ®u = A'xg + Bju,

) t 2.8.1)
To,ny = \IJZX() + Ftu = Q:O)C() + @014,
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[T, @,} [mf %5}
«*» = «~— (2.8.2)
v, | F, ¢ D

is the notation used by Weiss, and the operators on the right hand side are
defined in Definition 2.2.6. Comparing these operators to those appearing in
the Lax—Phillips model we find that

where

Tt:mtv CIDI‘Z%E):%’?
(2.8.3)
W= =1, F, =) =1"'D".

Substituting this into the composition property in Lemma 2.2.8(iv) we get, for
alls,t >0,

Tyyr = T, Ty,

&y, =Ty d, + &7,

Vo, =V, + 'Y, T,,

Foyr =F, +170,®, + t7'F,7".

(2.8.4)

(Weiss uses a special concatenation operator to rewrite (2.8.4) in a more compact
form, and he further usually denotes t~/7; by S;, 0.,y by P;, and t 7 by S,.)

Theorem 2.8.1 Let X be a L?|Reg-well-posed linear systemon (Y, X, U), and,
for eacht > 0, define [E—’[%] by (2.8.2). Then T is a Cy semigroup on X,

®, € B(L"|Reg(R; U); X),
W, € B(X; L”|Reg(R;Y)), (2.8.5)
F, € B(L?|Reg(R; U); L?|Reg(R; Y)),

@, = D770, Fr = Fimon, (2.8.6)
F, = mo.0F:, Ve = 0.0 Wi,

and (2.8.4) hold for all s, t > 0. Conversely, if [ %’%] is a family of operators
defined for t > 0 such that T is a Cy semigroup on X, and (2.8.4)—(2.8.6) hold
foralls, t > 0, then [%%] is a L?|Reg-well-posed linear systemon (Y, X, U),
where

B= lm o7, C=lmW, D= lim t7FST 087
§—>—00

Proof Use (2.8.3) and Theorems 2.7.1 and 2.7.6. O
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We remark that the composition property (2.8.4) and the causality property
(2.8.6) are equivalent to the block matrix identity (with s, > 0)

T )
Too @] [1 O 0 0@
v F 0w, ' 010
s+t s+t [0,1) [0,s) \Ijs O Fs

(2.8.8)
T, &, 0][1 O

X \I’t IF, 0 0 TT10,1)
0 01 077.’[07‘?)1'[

2.9 Comments

Sections 2.1-2.2 The class of L”|Reg-well-posed linear systems which we
present here is by no means the only possible setting for an infinite-dimensional
systems theory. Over time several related theories have been developed within
different fields, often independently of each other.

One classical approach is to start as we did in Section 2.1 with the formal
system

X(1) = Ax(1) + Bu(1),
y(t) = Cx(t) + Du(t), t>s, 2.1.1)
x(s) = x;,

and to then impose more or less stringent conditionson A, B, C, and D. Itis quite
natural to require A to be the generator of a strongly continuous semigroup. The
notion of a Cy semigroup has its background in parabolic and hyperbolic partial
differential equations, and we refer the reader to Davies (1980), Dunford and
Schwartz (1958, 1963, 1971), Goldstein (1985), Lunardi (1995), Nagel (1986),
Hille and Phillips (1957), Pazy (1983), and Yosida (1974) for the history and
theory of Cy semigroups beyond what we present in this book.

We get the mathematically simplest version of an infinite-dimensional sys-
tems theory by taking A in (2.1.1) to be the generator of a Cy semigroup,
and to take B, C, and D to be bounded linear operators, i.e., B € B(U; X),
C e B(X;Y),and D =B(U;Y). Here U, X and Y are usually taken to be
Hilbert spaces (instead of Banach spaces). By Proposition 2.3.1, this leads
to a system which is both Reg-well-posed and L”-well-posed for every p,
1 < p < oo. The big drawback with this class of systems is that the impulse
response of such a system is always a continuous function, and this severely
limits their applicability to boundary control and point observation processes.
Systems of this type have been studied and used by, e.g., Baras and Brockett
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(1975), Brockett and Fuhrmann (1976), Baras et al. (1974), Baras and Dewilde
(1976), Bucci and Pandolfi (1998), Callier and Dumortier (1998), Callier et al.
(1995), Callier and Winkin (1990, 1992), Curtain (1993), Curtain and Glover
(1986b), Curtain and Oostveen (1998), Curtain and Rodman (1990), Curtain
and Zwart (1994, 1995), Fuhrmann (1972, 1974, 1981), Lukes and Russell
(1969), Oostveen (1999), and Pandolfi (1992), to mention only a few works.

To partly overcome the the limitations of the class described above, the
notion of an L”-well-posed input map B (induced by A and B) and an L”-
well-posed output map € (induced by A and C) gradually evolved in Chang
and Lasiecka (1986), Curtain (1984), Curtain and Glover (1986a), Curtain and
Salamon (1986), Da Prato et al. (1986), Desch et al. (1985), Dolecki and Rus-
sell (1977), Fattorini (1968), Flandoli (1984), Glover et al. (1988), Ho and
Russell (1983), Lasiecka (1980), Lasiecka and Triggiani (1981, 1983a, b, c,
1986, 1991a), Lions (1971, 1988), Pritchard and Wirth (1978), Russell (1975),
Washburn (1979), etc. These input and output maps were combined into the
so-called Pritchard—Salamon class of infinite-dimensional systems by Salamon
(1984) and Pritchard and Salamon (1985, 1987). This class achieved a certain
popularity for a number of years. The characteristic feature of this class is that
two different norms are used in the state space. With respect to the weaker
norm, the control operator B is bounded and the output map € is L2-well-
posed, and with respect to the stronger norm the input map B is L?-well-posed
and the observation operator C is bounded. It turns out that these conditions
are sufficiently strong that virtually all of the finite-dimensional systems the-
ory can be extended to this class. However, the Pritchard—Salamon class is
still not general enough for the most interesting boundary control and point
observation processes. The impulse response is locally strong in L?, and so is
the dual impulse response (see Theorems 4.3.4 and 4.4.8). In particular, the
delay line in Example 2.3.4 does not have a Pritchard—Salamon realization.
The Pritchard—Salamon class of systems has been studied and used by, e.g.,
Curtain (1985, 1988, 1990, 1992, 1996), Curtain et al. (1994), Curtain and
Pritchard (1994), Curtain and Ran (1989), Curtain, Weiss and Zhou (1996),
Curtain and Zwart (1994), Kaashoek ef al. (1997), van Keulen (1993), and
M. Weiss (1994, 1997).

The first ‘modern’ version of an L2-well-posed linear system on three Hilbert
spaces (Y, X, U) was presented by Salamon (1987, 1989), G. Weiss (1989c),
and Curtain and Weiss (1989) (also found in Helton (1976) is a more implicit
way). As we mentioned above, at that time it was well-known how to create
L2-well-posed input and output maps from the operators A, B, and C, but
the general construction of an input/output map from A, B, and C, was still
incomplete. Such a construction was given by Salamon (1987), Smuljan (1986),
G. Weiss (1989c¢), and Curtain and Weiss (1989) (see also Helton (1976), Arov
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and Nudelman (1996), Ober and Montgomery-Smith (1990), and Ober and Wu
(1996)). The converse question of how to construct B and C from the input and
output maps B and € (see Chapter 4) was addressed in (Salamon, 1989), (Weiss,
1989a, b). Since then L2-well-posed linear systems in the Hilbert space setting
(sometimes regular; cf. Chapter 5) have been studied and used by a large number
of authors, such as Avalos et al. (1999), Curtain (1989a, b, 1997), Curtain, Weiss,
and Weiss (1996), Hinrichsen and Pritchard (1994), Logemann et al. (1998),
Jacob and Zwart (2001a, b, 2002), Logemann et al. (1996), Logemann and
Ryan (2000), Logemann et al. (1998, 2000), Logemann and Townley (1997a,
b), Morris (1994, 1999), Rebarber (1993, 1995), Staffans (1996, 1997, 1998a, b,
¢, d, 1999a), G. Weiss (1994a, b), Weiss and Curtain (1997), Weiss and Héfele
(1999), Weiss and Rebarber (1998), Staffans and Weiss (2002, 2004), M. Weiss
(1994, 1997), and Weiss and Weiss (1997).

In parallel with the work described above there was intensive research going
on in optimal control of partial differential equations, which uses much the same
technique, but which does not fit into the general framework described above.
There the authors usually work directly with the partial differential equation,
often rewritten in the form (2.1.1), instead of introducing the operators B, &,
and ©. Sometimes this approach is replaced by a ‘direct’ approach based on the
study of an integral or integro-differential equation. It is true that most examples
of parabolic type are L2-well-posed if we choose the state space appropriately
(see Theorem 5.7.3), but it is usually more important that these systems are
Reg-well-posed in a smaller state space (where the observation operator C
is bounded). Most hyperbolic examples have an L2-well-posed input map
B and a bounded control operator C (thus, they are both L?-well-posed and
Reg-well-posed). However, there do exist exceptions where the system is not
L?|Reg-well-posed in any sense. There are a number of books on optimal control
of partial differential equations, such as Bensoussan et al. (1992), Curtain and
Pritchard (1978), Lasiecka and Triggiani (1991a, 2000a, b), and Lions (1971).
Systems of parabolic type are studied by, e.g., Curtain and Ichikawa (1996),
Da Prato and Ianelli (1985), Da Prato and Ichikawa (1985, 1993), Da Prato and
Lunardi (1988, 1990), Flandoli (1987), Lasiecka (1980), Lasiecka et al. (1995),
Lasiecka et al. (1997), Lasiecka and Triggiani (1983a, b, 1987a, b, 1992b), and
McMillan and Triggiani (1994a, b). Systems of hyperbolic type are studied by,
e.g., Chang and Lasiecka (1986), Da Prato er al. (1986), Flandoli et al. (1988),
Hendrickson and Lasiecka (1993, 1995), Lasiecka and Triggiani (1981, 1983c,
1986, 1987c, 1988, 1989a, b, 1990a, b, 1991b, c, d, 1992a, c, 1993a, b), and
Lions (1988).

Above we have described how the theory of well-posed linear systems has
developed out of the theory for the state space system (2.1.1) with bounded
control operator B and observation operator C. In parallel to this development
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an algebraic theory evolved at an early stage, based on the interplay between
the input map, the output map, and the input/output map (see the algebraic
conditions in Definition 2.2.1). In particular the input/output map ® and its
Hankel operator 7y ®m_ play important roles, and the main objective is of-
ten to construct a (spectrally) minimal realization of a given input/output map
or its transfer function. A good early representative for this class of work is
Kalman et al. (1969, Part 4). The approach in Kalman et al. (1969, Part 4) is
algebraic, somewhat similar in spirit to our definition of a L”|Reg-well-posed
linear system, but it is mainly discrete time, more abstract, and it puts less em-
phasis on the exact continuity requirements of the different parts of the system.
A somewhat different approach was taken by Balakrishnan (1966). He starts
with a system with well-defined initial state, input and output, and constructs
the corresponding semigroup 2{ in roughly the same way as we do in Theorem
9.3.1(iv). Theorem 3.1 in Balakrishnan (1966) describes a Reg-well-posed lin-
ear system with finite-dimensional input and output spaces. Further works in
the same direction have been done by Baras and Brockett (1975) and Baras et al.
(1974) (bounded B and C), Baras and Dewilde (1976) (bounded B and C, and
frequency domain), Dewilde (1971) (frequency domain approach), Fuhrmann
(1974) (discrete and continuous time with bounded B and C), Fuhrmann (1981)
(many different settings), Feintuch (1998) (input/output approach), Feintuch
and Saeks (1982) (a general theory based on Hilbert resolution spaces), Kamen
(1975) (an algebraic approach), and Yamamoto (1981) (very weak continuity
assumptions). In addition, a significant amount of corresponding results have
been obtained for discrete time systems, and these can be turned into contin-
uous time results by use of the Cayley transform (see Theorem 12.3.5). See,
e.g., Arov (1974a, b, 1979a, b, c¢), Fuhrmann (1981), Helton (1974), Ober and
Montgomery-Smith (1990), and Ober and Wu (1993, 1996).

So far we have primarily discussed publications with a dominating con-
trol theory background (although some of the work in optimal control is quite
mathematically oriented). In the early 1960s a complementary theory evolved
in the field of pure mathematics and mathematical physics. This theory was
infinite-dimensional at the outset, and it uses a very different language. The
book by Sz.-Nagy and Foiag (1970) can be viewed after a translation of terms
as a treatise on infinite-dimensional discrete-time systems (Chapter 11 can be
regarded as a natural continuous-time analogue of one of the central parts of
Sz.-Nagy and Foiag (1970), rewritten in the language of L2-well-posed lin-
ear systems). In Section 2.7 we describe the close connection which exists
between the theory of L2-well-posed linear systems and Lax—Phillips scat-
tering theory, as presented in Lax and Phillips (1967, 1973). Adamajan and
Arov (1970) proved the Sz.Nagy—Foiag and Lax—Phillips theories to be equiv-
alent. The strong connection between the Lax—Phillips theory and the theory of
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well-posed linear systems was brought forward by Helton (1974, 1976), and
their work was continued by Ober and Montgomery-Smith (1990) and Ober
and Wu (1996). This connection was also noticed in the Soviet Union, where
the theory of well-posed linear systems evolved independently of the the work
by Salamon and Weiss in the West (see, e.g., Arov (1974a,b, 1979a, b, ¢, 1999),
Brodskif (1971), Livsic (1973), LivSic and Yantsevich (1977), émuljan (1986);
further references are found in Arov and Nudelman (1996). For a more detailed
description of the early history of this subject we refer the reader to Arov (1995)
and Helton (1976).

In this book we have chosen to let the input space U, the state space X, and
the output space Y be Banach spaces, and we use either a local L”-norm or
a local sup-norm on the input and output functions. This is less general than
the Fréchet spaces used by, for example, Yamamoto (1981), but more general
than the usual Hilbert space setting where U, X, and Y are Hilbert spaces and
p = 2. There are two main reasons for our choice of setting. We do not want to
leave the Banach space context, because then we lose the finite growth bound
in Theorem 2.5.4 (see Yamamoto, 1981), and this finite growth bound is a very
important technical tool. Among others, it implies the existence of a transfer
function, defined on some half-plane (see Section 4.6). On the other hand, in the
present book we would gain very little by restricting ourselves to the Hilbert
space setting (the vast majority of the formulas and the proofs are the same
in the Banach and Hilbert space cases), and there are applications where it is
quite useful to be able to work in L? with p # 2. This is, in particular, true for
systems with an analytic semigroup (see Theorem 5.7.3), and in perturbation
theory involving certain types of nonlinearities. However, some of the results
that we present are valid only in the Hilbert space setting.

Section 2.3 Shift groups and semigroups are found in one form or another in
many books on semigroup theory, such as Hille and Phillips (1957). Books on
harmonic analysis often exploit the properties of the shift operator; see, e.g.,
Foiag and Frazho (1990), Nikol’skii (1986), Rosenblum and Rovnyak (1985),
and Sz.-Nagy and Foiag (1970). The delay line example is classical, and it is
found in, e.g., Helton (1976), Salamon (1987), G. Weiss (1989c), G. Weiss
(1994a), and Weiss and Zwart (1998). The systems in Examples 2.3.5-2.3.13
have been modeled after the corresponding classic finite-dimensional examples
(and several of them are also found in Weiss and Curtain (1997)).

Section 2.4-2.5 That every Cy-semigroup has a finite growth bound is well-
known; see, e.g., Hille and Phillips (1957) or Pazy (1983). The rest of Theorem
2.5.4 is due to G. Weiss (1989a, b, 1994a) (it is also stated in Salamon (1989)
with a partial proof). Our proof is a rewritten version of G. Weiss’s proof, where
we emphasize the possibility to discretize the time.



2.9 Comments 83

Section 2.6 Different versions of the exactly observable and exactly controllable
shift realizations in Example 2.6.5 are found in, e.g., Baras and Brockett (1975),
Baras and Dewilde (1976), Fuhrmann (1974, Theorem 2.6), Fuhrmann (1981,
Section 3.2), Helton (1974, p. 31), Jacob and Zwart (2002, Theorem A.1), Ober
and Montgomery-Smith (1990), and Ober and Wu (1996, Sections 5.2-5.3).
The first time that they appear in (almost) this generality is Salamon (1989,
Theorem 4.3). The bilateral input and output shift realizations are related to the
incoming and outgoing translations representations used by Lax and Phillips
(1967, 1973).

The exactly controllable and the exactly observable shift realizations
have also been known in the integral and functional equations communi-
ties in a somewhat different setting. The ‘initial function semigroup’ in
(Gripenberg et al. 1990, Section 8.2) can be interpreted as a flow-inverted
version of the exactly controllable shift realization, and the ‘forcing function
semigroup’ described there is a flow-inverted version of the exactly observable
shift realization. (Flow-inversion is described in Section 6.3.) Analogously, the
extended semigroups in Gripenberg et al. (1990, Section 8.3) are flow-inverted
versions of the bilateral shift semigroups in Example 2.6.5. See Gripenberg
et al. (1990) for the history of these semigroups.

Section 2.7 Our presentation of the Lax—Phillips scattering model has been
modeled after Helton (1976). (The corresponding discrete time version is given
in Helton (1974).) To make the connection more transparent we have replaced
the right shift used in the shift representations of the incoming and outgoing
subspaces in Lax and Phillips (1967, 1973) and Helton (1976) by a left shift.

As Corollary 2.7.7 shows, there is a very strong connection between the Lax—
Phillips scattering theory and the theory of L?”|Reg-well-posed linear systems.
This connection does not seem to have had a significant influence on the work
by Curtain and Weiss (1989), Salamon (1987, 1989) and Weiss (1989a, b, c,
1994a, b), but it has clearly influenced the work by Arov (1979b) and Arov
and Nudelman (1996). We shall use very little of the actual theory from Lax
and Phillips (1967, 1973), although we shall rederive many of the results given
there from the present theory of well-posed linear systems. The main motivation
behind Lax and Phillips (1967, 1973) is quite different from the motivation
behind this book. There the main object is to create a theory which can be
applied to scattering. The incoming and outgoing subspaces are defined in an
abstract way, and they are intrinsically infinite-dimensional. There the typical
incoming and outgoing subspaces consist of initial data for solutions of the wave
equation in free space which vanish in a truncated backward or forward light
cone (the amount of truncation is proportional to the size of the scatterer). In Lax
and Phillips (1967) the incoming and outgoing subspaces are defined in such
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a way that the corresponding well-posed linear system is always controllable
and observable (cf. Chapter 9).

Parts of Corollary 2.7.7 (where either the input operator or output operator
vanishes) were proved by Grabowski and Callier (1996) and Engel (1998). Itis
also implicitly contained in Arov and Nudelman (1996) and in Helton (1976).

Section 2.8 The Weiss notation appears for the first time in Weiss (1989a) (the
input operator), Weiss (1989b) (the output operator), and Curtain and Weiss
(1989) (the input/output operator), and has since then been used by many work-
ers in the field. The notation used in Definition 2.2.1 was introduced in Staffans
(1997), and resembles the notation used by Salamon (1989) (and by Fuhrmann
(1981) in the discrete time case). The Weiss notation is convenient as long we
confine ourselves to the initial value problem with initial time zero and positive
final time, but the resulting algebraic conditions (2.8.4) are more complicated
than those used in Definition 2.2.1, and they are less flexible if one wants to
work with some other notions of state and output. These alternative notions
of state are important, for example, in optimal control theory and for some of
the transformations described in Chapter 6. In this work we have throughout
replaced the Weiss notation by that in Definition 2.2.6.



3

Strongly continuous semigroups

The most central part of a well-posed linear system is its semigroup. This
chapter is devoted to a study of the properties of C semigroups, both in the
time domain and in the frequency domain. Typical time domain issues are the
generator of a semigroup, the dual semigroup, and the nonhomogeneous initial
value problem. The resolvent of the generator lives in the frequency domain.

3.1 Norm continuous semigroups

We begin by introducing the notion of the generator of a Cy (semi)group
(cf. Definition 2.2.2).

Definition 3.1.1
(i) The generator A of a Cy semigroup £ is the operator
1
Ax = lim — (" — Dx,
0 h

defined for all those x € X for which this limit exists.
(i) The generator A of a Cy group 2 is the operator

1
Ax := lim — (A" — 1
X hl_)rr(l) h(Ql )x,
defined for all those x € X for which this limit exists.

Before we continue our study of Cy semigroups and their generators, let
us first study the smaller class of uniformly continuous semigroups, i.e., semi-
groups 2 which satisfy (cf. Definition 2.2.2)

lim||2" — 1] = 0. 3.1.1
im0’ — 1 (3.1.1)
Clearly, every uniformly continuous semigroup is a Cy semigroup.

85



86 Strongly continuous semigroups

We begin by presenting an example of a uniformly continuous (semi)group.
(As we shall see in Theorem 3.1.3, every uniformly continuous (semi)group is
of this type.)

Example 3.1.2 Let A € B(X), and define

o n
ar._ N (AD
et = ZO e r e R. (3.1.2)

Then e is a uniformly continuous group on X, and its generator is A. This
group satisfies ||eA’ || < elAl for all t € R. In particular, the growth bounds
of the semigroups t — e and t — e~" (where t > 0) are bounded by ||A||
(cf. Definition 2.5.6).

Proof The series in (3.1.2) converges absolutely since

Z‘ (Ar)"

This proves that [le4’|| satisfies the given bounds. Clearly ¢’ = 1. Being a
power series, the function ¢ — e’ is analytic, hence uniformly continuous for
all z. By differentiating the power series (this is permitted since e*’ is analytic)
we find that the generator of e’ is A (and the limit in Definition 3.1.1 is
uniform). Thus, it only remains to verify the group property eA¢+) = eAseA?,

which is done as follows:

> A'(s +1)" x "IN (n
A(s+t1) E § : k ,n—k
¢ N n! N n! <k>s !

(IIAIIIII)" — el

n=0 . n=0 """ k=0

x©  n Aksk Anfktnfk e AkSk e Anfktnfk
B R S ST
_CAACAI.

Theorem 3.1.3 Let 2 be a uniformly continuous semigroup. Then the following
claims are true:

(1) 2 has a bounded generator Aand A" = e forallt > 0;
(i) t > A" is analytic and A =AA =A"A forallt > 0;
(iii) A can be extended to an analytic group on R satisfying
4" = AUA' = A'A forall t € R
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Remark 3.1.4 Actually a slightly stronger result is true: every Cy semigroup
2 satisfying
limsup||2" — 1| < 1 (3.1.3)
110

has a bounded generator A and 2" = e?’. Alternatively, every Cy semigroup
21 for which the operator foh 2A° ds is invertible for some & > 0 has a bounded
generator A and 2’ = e?’. The proof is essentially the same as the one given
below (it uses strong integrals instead of uniform integrals).

Proof of Theorem 3.1.3 (i) For sufficiently small positive h, [1—
(1/h) foh A ds|| < 1, hence (1/h) foh A% ds is invertible, and so is foh A ds.
By the semigroup property, for 0 < t < h,

1 h 1 h h
—(A -1 Ads = - At d —f A% d
j@ ) [Faras = 3([Tarras - [Favas)
l/t+h h
== Ql”’ds—/ A ds
() [ was)
1 t+h t
= —(/ Ql”’ds—/ Ql%is).
t\Jp 0

Multiply by ( Oh A ds)_1 to the right and let ¢ | O to get

: 1 t _ h " s -1
lim —(' — 1) = (1 —1)(/0 A ds)

in the uniform operator norm. This shows that 2 has the bounded generator
A= - 1)(th 2A ds)il. By Example 3.1.2, the group e’ has the same
generator A as 2. By Theorem 3.2.1(vii) below, ' = e’ for t > 0.

(i1)—(iii) See Example 3.1.2 and its proof. O

3.2 The generator of a C, semigroup

We now return to the more general class of C semigroups. We already intro-
duced the notion of the generator of a Cy semigroup in Definition 3.1.1. Some
basic properties of this generator are listed in the following theorem.

Theorem 3.2.1 Let 2l be a Cy semigroup on a Banach space X with generator
A.

(i) Forall x € X,
t+h

1
lim — Wxds =A'x.
nlo h J;
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(i) Forallx e Xand0 <s <t < 0o, f;Q(”xdv € D(A) and

t
Alx —Ax = A/ Ax dv.

s

(iii) Forallx € D(A)andt > 0, A'x € D (A), t > A'x is continuously
differentiable in X, and

d

—A'x = AUA'x = A" Ax, t > 0.

dr
(v) Forallx e D(A)and (0 <s <t < 00,

t t
Ax —WAx = A/ Axdv = / AV Ax dv.

(v) Foralln =1,2,3,...,ifx € D(A"), then A'x € D(A") forallt > 0,
the function t +> ' x is n times continuously differentiable in X, and for
allk =0,1,2,...,n,

d\n

(—) Ax = AFA Ay, 10,

dr

(vi) A is a closed linear operator and ﬂflo:ID (A") is dense in X. For each
x € N D (A") the function t — U'x belongs to C°°(K+; U).

(vii) U is uniquely determined by its generator A.

Proof (i) This follows from the continuity of s > 2A*x (see Lemma 2.2.13(ii)).
(ii) Let x € X and & > 0. Then

1 t 1 [
E(m" — 1)/ Ax dv = Z/ A x — A’x)dv

1 t+h s+h
= Z/ A’x dv —/ A’x dv.
t S

As h | 0 this tends to A'x — A¥x.
(iii) Let x € D(A) and & > 0. Then

1 1
E(mh —DA'x = m’z(mh —1x — A'Axash | 0.

Thus, A'x € D(A), and AA'x = A" Ax is equal to the right-derivative of 2’ x
at 7. To see that it is also a left-derivative we compute

1 1
(@' Ay — A Ax = m’*h(z(mhx —x)— Ax) " — A Ax.

This tends to zero because of the uniform boundedness of 2'~" and the strong
continuity of 2’ (see Lemma 2.2.13).



3.2 The generator of a Cy semigroup 89

(iv) We get (iv) by integrating (iii).

(v) This follows from (iii) by induction.

(vi) The linearity of A is trivial. To prove that A is closed we let x,, € D (A),
x, — x,and Ax, — yin X, and claim that Ax = y. By part (iv) with s = 0,

t
A'x, — x, :/ A Ax, ds.
0

Both sides converge as n — oo (the integrand converges uniformly on [0, ¢]),
hence

t
A'x —x =/ Ayds.
0

Divide by ¢, let ¢ | 0, and use part (i) to get Ax = y.

We still need to show that ()2, D (A") is dense in X. Pick some real-valued
C® function n with compact support in (0, 1) and fooo n(s)ds = 1. For each
xeXandk=1,2,3,..., wedefine

1
Xy = k/ n(ks)Ax ds.
0

Then, for each & > 0,
1 h 1 ! s+h
—(A" — Dxp = — Nk x — A x]ds
h h Jo
1+h
= kf E[n(k(s — h)) — n(ks)|Ax ds
0
1
— —k? / (k)W x ds ash | 0.
0

Thus, x; € D (A) and Axy = —k? fol N(ks)?A*x. We can repeat the same argu-
ment with n replaced by 7, etc., to get x; € D(A") foreveryn =1,2,3...
This means that x; € (- D (A").

We claim that x; — x as k — oo, proving the density of ()7, D (A") in X.
To see this we make a change of integration variable to get

1
xsz n(s)2A *x ds.
0

The function 25/%x tends uniformly to x on [0, 1], hence the integral tends to
Jo" n(s)xds = x as k — oo.
That 2x € C“(K+; U) whenever x € (), D (A") follows from (iv).
(vii) Suppose that there is another Cy semigroup 2(; with the same generator
A. Take x € D(A),t > 0, and consider the function s > A" ~*2A3x, s € [0, ¢].
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We can use part (iii) and the chain rule to compute its derivative in the form
d , , .
d—lei’ltl_‘x = AU x — WAA x = A Ax — A A Ax = 0.
s

Thus, this function is a constant. Taking s =0 and s = ¢ we get A'x = Ajx
for all x € D (A). By the density of D (A) in X, the same must be true for all
x € X. O

To illustrate Definition 3.1.1, let us determine the generators of the shift
(semi)groups 7', 7, 7’, f[to,T)’ and r{rr in Examples 2.3.2 and 2.5.3. The do-
mains of these generators are spaces of the following type:

Definition 3.2.2 Let J be a subinterval of R, w € R, and let U be a Banach
space.

(i) A function u belongs to W,.”(J; U) if it is an nth order integral of a
function u™ € L{ (J;U) (i.e, u V() —u" V(1)) = ft? u™(s)ds,
etc.).! It belongs to W, (J; U) if, in addition, u® e LE(J; U) for all
k=0,1,2,.

(i1) The space W 1OC(R U) consists of the functions in Wl "P(R; U) whose
support is bounded to the left, and the space W 1oc(R U) consists of the
functions u in W,,”(R; U) which satisfy 7_u € Wy (R™; U).

(iii) The spaces W2 (J: U), Wg.P | (R; U), BC)(J; U), BC), | (R; U),
BCp ,(J;U), BCy , 1o (R; U), BUC,(J; U), BUC;, | (R; U),
Reg,(J;U), Reg,, 1,.(R; U), Regg ,(J;U), and Regy , 1,.(R; U) are
defined in an analogous way, with L? replaced by BC, BCy, BUC, Reg,
or Reg,.

Example 3.2.3 The generators of the (semi)groups t', T/,

in Examples 2.3.2 and 2.5.3 are the following:

t t t
™, Tjo. 1) and Ty,

(i) The generator of the bzlateral left shift group ! on LE(R; U) is the
differentiation operator 5 4 \ith domain W R; U), and the generator of
the left shift group t' on BUC,(R; U) is the differentiation operator %
with domain BUCﬂlu(R; U). We denote these generators simply by %.

(ii) The generator of the incoming left shift semigroup tj_ on LE(RT; U) is
the differentiation operator d% with domain Wa],’p (K+; U), and the
generator of the left shift semigroup t! on BUCw(@Jr; U) is the

. . . . —+
differentiation operator (f—s with domain BUC}U(]R ; U). We denote these
generators by % +

! Our definition of W]Zcp implies that the functions in this space are locally absolutely continuous

together with their derivatives up to order n — 1. This is true independently of whether U has
the Radon—Nikodym property or not.



(iii)

@iv)

)

3.2 The generator of a Cy semigroup 91

The generator of the outgoing left shift semigroup t° on LE(R™;U) is
the differentiation operator 3 Wlth domain

{u e W,J) PR ;U) | u(0) = O}, and the generator of the left shift
semigroup T on {u € BUC,(R ;U) | u(0) = 0} is the differentiation
operator % with domain {u € BUC}U(@_; U) | u(0) = u(0) = 0}. We
denote these generators by (f—k

The generator of the finite left shift semigroup f[to,T) on LP([0,T);U) is
the differentiation operator % with domain

{u e Whe([0, T, U) | u(T) = 0, and the generator of the left shift
semigroup I[IO,T) on{u € C([0, T];U) | u(T) = 0} is the differentiation
operator % with domain {u € C'([0, T1;U) | u(T) = i(T) = 0}. We
denote these generators by ‘f—s[O‘T).

The generator of the circular left shift group tTtl‘r on LP(T7;U) is the
differentiation operator d% with domain WP (Tr; U) (which can be
identified with {u € W"?([0, T1; U) | u(T) = u(0)}), and the generator
of the circular left shift group T1trT on C(Ty; U) is the differentiation
operator % with domain C'(Tr; U) (which can be identified with the set
{u e CY([0, T1;U) | u(T) = u(0) and i(T) = 11(0)}). We denote these
generators by %TT.

Proof The proofs are very similar to each other, so let us only prove, for ex-
ample, (iii). Since the proof for the L”-case works in the BUC-case, too, we
restrict the discussion to the L”-case. For simplicity we take w = 0, but the
same argument applies when o is nonzero.

Suppose that u € L?(R™; U), and that —(r+u —u)— gin LP(R7;U) as
h | 0. If we extend u and g to L”(R; U) by defining them to be zero on R"
then this can be written as E(T u—u)—> gin LP(R;U)ash | 0.

Fix some a € R, and for each ¢t € R, define

t+a a
f@) = / u(s)ds = / u(s +t)ds.
' 0

Then

1, “y
—(z f—f)=/ —(t'u(s +1t) —u(s +1))ds
h o h
t+a 1
=/ %(Thu(s)—u(s))ds

t+a
— f g(s)dsash | 0.
t
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On the other hand
t+a+h

lh _l 4 l t+a 4
h(rf_f)_hf,% ”(S)S_h/, u(s)ds

1 t+a+h 1 t+h
= —/ u(s)ds — Ef u(s)ds,
t

h t+a

and as h | O this tends to u(z + a) — u(t) whenever both ¢ and ¢ 4+ a are
Lebesgue points of u. We conclude that for almost all @ and ¢,

t+a
u(t +a) = u(t) + / g(s)ds.

By definition, this means that u € W'?(R; U) and that it = g. Since we ex-
tended u to all of R by defining u to be zero on R" , we have, in addition
u(0) = 0 (if we redefine u on a set of measure zero t0 make it continuous
everywhere).

To prove the converse claim it suffices to observe that, if u € WLP(R U)
and u#(0) = 0, then we can extend u to a function in W'?(R; U) by defining u
to be zero on R™, and that

1 N _ 1 N _ 1 t+h . J
E(T u—u)t) = E(u(t +h) —u(@) = Z/y u(s)ds,

whichtendstoiin LP(R; U)ash | 0(see,e.g., Gripenberg et al. (1990, Lemma
7.4, p. 67)). O

Let us record the following fact for later use:

Lemma 3.2.4 For 1 < p < oo, WiPR,U) BCp ,(R; U), i.e., every u €
Wal)’p(R; U) is continuous and e~ “'u(t) — 0 as t — =oo0.

Proof The continuity is obvious. The function u_, () = e~“'u(t) belongs to

L?, and so does its derivative —wu_,, + e_, . This implies that u_, (1) — 0
ast — oQ. O

By combining Theorem 3.2.1(vi) with Example 3.2.3 we get the major part
of the following lemma:

Lemma3.2.5 Let1 <p<oo, weR andn=0,1,2,... Then C*(R;U)
is dense in LU,(R; U), L, (R;U), W"P(R; U), WP(R; U), BCH(R; U), and
C"(R: U).

loc

Proof 1t follows from Theorem 3.2.1(vi) and Example 3.2.3 that
ﬂ,fozl W5P(R; U) is dense in L”(R;U) and in W"?(R; U). Let u belong to
this space. Then u € C*°. Choose any n € C°(R;R) satisfying n(z) = 1 for
|t| <1, and define u,,(t) = n(t/m)u(t). Thenu,, € C(R;U), and u,, — u in
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L?(R;U) and in W*P(R; U), proving the density of C° in L” and in W"7.
The other claims are proved in a similar manner (see also Lemma 2.3.3). O

Example 3.2.6 Let A" be a Cy semigroup on a Banach space X with
generator A.

(i) For each a € C, the generator of the exponentially shifted semigroup
e A", t > 0 (see Example 2.3.5) is A + .
(ii) For each ) > 0, the generator of the time compressed semigroup A,
t > 0 (see Example 2.3.6) is LA.
(iii) For each (boundedly) invertible E € B(X1; X), the generator Ag of the
similarity transformed semigroup 2., = E'A'E, t > 0 (see Example
2.3.7)is Ap = E-VAE, with domain D (Ag) = E~'D (A).

We leave the easy proof to the reader.
Theorem 3.2.1 does not say anything about the spectrum and resolvent set
of the generator A. These notions and some related ones are defined as follows:

Definition 3.2.7 Let A: X D D(A) — X be closed, and let o € C.

(1) « belongs to the resolvent set p(A) of A if « — A is injective, onto, and
has an inverse (@ — A)~! € B(X). Otherwise « belongs to the spectrum
o(A)of A.

(ii) o belongs to the point spectrum o,(A), or equivalently, « is an
eigenvalue of A, if (o — A) is not injective. A vector x € X satisfying
(¢ — A)x = 0is called an eigenvector corresponding to the eigenvalue «.

(iii) o belongs to the residual spectrum o,(A) if (¢ — A) is injective but its
range is not dense in X.

(iv) « belongs to the continuous spectrum o.(A) if (@ — A) is injective and
has dense range, but the range is not closed.

(v) The resolvent of A is the operator-valued function & — (o — A)™,
defined on p(A).

By the closed graph theorem, o (A) is the disjoint union of 0,(A), 0,(A), and
o.(A). The different parts of the spectrum need not be closed (see Examples
3.3.1 and 3.3.5), but, as the following lemma shows, the resolvent set is always
open, hence the whole spectrum is always closed.

Lemma 3.2.8 Let A be a(closed) operator X D D (A) — X, with a nonempty
resolvent set.

(i) For each o and B in the resolvent set of A,
@—A"'-B-A"'=B-@-A'B-AH". (321
In particular, (@ — A) ' B—A)'=B -A) '(«a—-A)"".
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(ii) Let o € p(A) and denote ||( — A)~Y|| by k. Then every B in the circle
|B — a| < 1/k belongs to the resolvent set of A, and

I8 — A" < ; (3.2.2)

K
—Kk|p—al

(iii) Let o € p(A). Then §||(a — A)~'| = 1, where § is the distance from o to
a(A).

The identity (3.2.1) in (i) is usually called the resolvent identity. Note that
the closedness of A is a consequence of the fact that A has a nonempty resolvent
set.

Proof of Lemma 3.2.8. (i) Multiply the left hand side by (¢« — A) to the left and
by (8 — A) to the right to get

@—AD[a-A"'=B-A"B-A=B-a
(ii) By part (i), for all 8 € C,
B—A)=(1+(B—a)e—A) ") - A). (3.2.3)

It follows from the contraction mapping principle that if we take |8 — «| < 1/k,
then (1 + (B — a)(@ — A)~") is invertible and

|1+ B -a)e—a )| < -
T l—«l|p -«
This combined with (3.2.3) implies that 8 € p(A) and that (3.2.2) holds.
(iii) This follows from (ii). O

Our next theorem lists some properties of the resolvent (A — A)~! of the
generator of a Cp semigroup. Among others, it shows that the resolvent set of
the generator of a semigroup contains a right half-plane.

Theorem 3.2.9 Let ' be a Cy semigroup on a Banach space X with generator
A and growth bound wsy (see Definition 2.5.6).

(i) Every A € CL{ belongs to the resolvent set of A, and
1 o0
(A — A"ty = —/ s"e MW x ds
n! 0
forallx € X, A € (CLL, andn =0,1,2,... In particular,

oo
r—A)'x= / e M Ux ds
0

forallx € X and ) € C} .
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(ii) For each w > wsy there is a finite constant M such that
[ =A™ = MO — o)™
foralln =1,2,3,... and A € C$. In particular,
=47 < MO — w)™!

forall ) € C.
(iii) For all x € X, the following limits exist in the norm of X :

lim A —A) " 'x =xand lim A —A)"'x =0.
A—+00 r——+o0
@iv) Forallt > 0 and all . € p(A),
A=A A=A —A)""

Proof (i) Define 2} = e 2" and A, = A — A. Then by Example 3.2.6(i), A;,
is the generator of 2, . We observe that 2, has negative growth bound, i.e., for
all x € X, 2} x tends exponentially to zero as t — co. More precisely, for each
wg < o < NA there is a constant M such that for all s > 0 (cf. Example 2.3.5),

e A% < Me™(r=es, (3.2.4)
Apply Theorem 3.2.1(ii) with s = 0 and 2l and A replaced by 2, and A; to get
t
Wx —x = A,\/O A3 x ds.
Since A, is closed, we can let  — oo to get
X = —A)\/ A3 x ds.
0

On the other hand, if x € D (A), then we can do the same thing starting from
the identity in Theorem 3.2.1(iv) to get

[e.¢]
x= —/ A3 Ayx ds.
0
This proves that A belongs to the resolvent set of A and that
oo
h—A)'x = / e M Axds, xeX. (32.5)
0

To get a similar formula for iterates of (A — A)~! we differentiate this formula
with respect to A. By the resolvent identity in Lemma 3.2.8(1) withh = 8 — A,

;l.ii’%%[(’\ +h—A) k= —A)x] = -0 — A) .
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The corresponding limit of the right hand side of (3.2.5) is

lim [ — (%" —&™)Axds = lim / —(e" — 1)eMAx ds.
=0 Jo h h—0Jo h

Ash — 0, %(e’” - 1) — s uniformly on compact subsets of @Jr, and

hs
/ e’dy
0

This combined with (3.2.4) shows that we can use the Lebesgue dominated
convergence theorem to move the limit inside the integral to get

1 |hs|
<§— eh! dy < selst,

1/ hs — e
[he =Dl = = Thst Jo

" |hs|

[o¢]
(A —A)x = / se MUAsxds, xeX.
0

The same argument can be repeated. Every time we differentiate the right
hand side of (3.2.5) the integrand is multiplied by a factor —s (but we can still
use the Lebesgue dominated convergence theorem). Thus, to finish the proof
of (i) we need to show that

dl‘l
d)\n
To do this we use induction over n, the chain rule, and the fact that the formula

is true for n = 1, as we have just seen. We leave this computation to the reader.
(i1) Use part (i), (3.2.4), and the fact that (cf. Lemma 4.2.10)

1 [ :
— st M=l go — RA — ) "D A >0, n=01,2,...
n! 0

A—A) v = (="l — A" "Dy, (3.2.6)

(iii) We observe that the two claims are equivalent to each other since (A —
A)(A — A)~'x = x. If x € D(A), then we can use part (ii) to get

M —A)'x —x| = A — A) x|
=|(A —A)'Ax| »> 0as A — oo.

As D (A)isdensein X and limsup,_, ,  [IA(A — A)7!| < oo (this, too, follows
from part (ii)), it must then be true that A(A — A~ 'x > xforall x € X.
(iv) By Theorem 3.2.1(iii), for all y € D (A),

AN —A)y=xO—AAy.

Substituting y = (A — A)~!x and applying (A — A)~ to both sides of this iden-
tity we find that

A=A Ax=A0—A)"x

forall x € X. O
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In this proof we used an estimate on |%(eh" — 1)| that will be useful later,
too, so let us separate this part of the proof into the following slightly more
general lemma:

Lemma 3.2.10 Letl < p<oo,w e R, andn=0,1,2,...
(1) Foralla, B € C,
e — &”| < o — Bl max{e™, &™)},
1 N, 9
le* —ef — (@ — B)e’| < Ela — BI* max{e", e}
(ii) The function o — (t — e*', t € R™) is analytic on the half-plane C' in
Y 4 ®
the spaces LL(R™; C), Wy, P(R™; C), and BC ,(R75C) (ie., it has a
complex derivative with respect to o in these spaces when Ro > w). Its
derivative is the function t — re*', t € R™.
(iii) The function a — (t — €%, t > 0) is analytic on the half-plane C in
w

the spaces LL(RT; C), WZ*”(E*; C), and Bcgyw(@ﬂ QC). Its derivative is
the function t — te*', t > 0.

Proof (i) Define f(t) = e@P7ef. Then f(t) = (a — B)e® P"ef and

1
/ f(s)ds
0

1
< |(¥ _ ’B|ef]\‘ﬂ/ ’e(a_ﬂ)s’ds
0

<|a-— ﬂ|e§1iﬂ sup eﬂi(afﬂ)s
0<s<l1

=|a — ﬁ|e'("ﬂ max{em("‘_ﬂ), 1}

= |o — B| max{e"®, &"P)}.

le* —ef| = | f(1) — f(0)] =

The similar proof of the second inequality is left to the reader. It can be based
on the fact that f(¢) = (o — B)?e@P"ef, and that

1 K
e” —ef —(a—pref = f(1) = f(0)— f(0) = fo /0 f)dvds.

(i) It follows from (i) with « replaced by (« + k)t and B replaced by at
that the function # > 1 (e — ') — re* tends to zero as t — 0 (as a com-
plex limit) uniformly for ¢ in each bounded interval. Moreover, combining the
growth estimate that (i) gives for this function with the Lebesgue dominated
convergence theorem we find that it tends to zero in LE(R™;C). A similar argu-
ment shows that all 7-derivatives of this function also tend to zero in L5(R™; C),
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i.e., the function itself tends to zero in W, ”(R~; C). The proof of the analyticity
in BC5(R™; C) is similar (but slightly simpler).
(iii) This proof is completely analogous to the proof of (ii). O

3.3 The spectra of some generators

To get an example of what the spectrum of a generator can look like, let us
determine the spectra of the generators of the shift (semi)groups in Examples
2.3.2and 3.2.3:

Example 3.3.1 The generators of the (semi)groups t', T, ', 1 ) and T
in Examples 2.3.2 and 2.5.3 (see Example 3.2.3) have the following spectra:

(i) The spectrum of the generator % of the left shift bilateral group t' on
LER; U) with 1 < p < 00 or on BUC,(R; U) is equal to the vertical
line {MA = w}. The whole spectrum is a residual spectrum in the
L'-case, a continuous spectrum in the LP-case with 1 < p < oo, and a
point spectrum in the BUC- case

(ii) The spectrum of the generator of the incoming left shift semigroup
1'+ on LERT;U)with1 < p < oo oron BUCw(R ; U) is equal to the
closed half-plane (Cw. The open left half-plane C, belongs to the point
spectrum, and the boundary {R\ = w} belongs to the continuous
spectrum in the LP-case with 1 < p < 0o and to the point spectrum in
the BUC-case.

(iii) The spectrum of the generator < of the outgoing left shift semigroup t*
on LER™;U) with1 < p < 00 oron {u € BUC,(R ;U) | u(0) = 0} is
equal to the closed half-plane E;. The open half-plane C_, belongs to the
residual spectrum, and the boundary {RA = w} belongs to the residual
spectrum in the L'-case and to the continuous spectrum in the other
cases.

(iv) The spectrum of the generator ~- dé 0.7) of the finite left shift semigroup
‘L'[OYT) on LP([0, T); U)with 1 < p < o0 or on
{fu e CO0, T];U) | u(0) = 0} is empty.

(v) The spectrum of the generator %TT of the circular left shift group r{rr on
LP(Tr;U)ywith 1 < p < oo oron C(T7;U) is a pure point spectrum
located at 2w jm/T | m =0, £1, £2,...}.

Proof For simplicity we take w = 0. The general case can either be reduced to
the case w = 0 with the help of Lemma 2.5.2(ii), or it can be proved directly
by a slight modification of the argument below.
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(1) As t’ is a group, both t’ and 7' are semigroups, and |z’|| = 1 for

all + € R. It follows from Theorem 3.2.9(i) that every A ¢ jR belongs to the
resolvent set of %. It remains to show that jR belongs to the residual spectrum
in the L'-case, to the continuous spectrum in the L”-case with 1 < p < oo,
and to the point spectrum in the BUC-case.

Set) = jBwhere f € R,andletu € W'P(R; U) =D (£).1f jBu — i = f
for some u € W'?(R; U)and f € LP(R;U) then, by the variation of constants
formula, forall T € R,

t
u(t) = P Dy(T) — / P f(s)ds.
T
By letting T — —oo we get (see Lemma 3.2.4)

1
ut) = — lim /P9 f(s)ds.
T——o0 Jr
In particular, if f = Othenu = 0,1.e., j8 — f—S is injective. By lettingt — +o00
we find that

t
lim lim e P f(s)ds = 0.
t=>00T—>—00 Jr
If p = 1, then this implies that the range of j§ — % is not dense, hence jB €
or(d%). If p > 1then itis not true for every f € LP(R; U) that the limits above
exist, so the range of j§ — % isnotequalto LP(R; U), i.e., jo € a(d%). On the
other hand, if f € C*(R; U) with [ e™/# f(s)ds = 0, and if we define u
to be the integral above, then u € C°(R; U) € W'"P(R;U) and jBy — it = f.
The set of functions f of this type is dense in LP(R; U) when 1 < p < oo.
Thus jg — % has dense range if p > 1, and in this case j§ € oc(%).
In the BUC-case the function e z(f) = e/’ is an eigenfunction, i.e., (jB —
L)ejs = 0; hence jB € 0, (£).2
(ii) That C* C p (d%+) follows from Theorem 3.2.9(i). If %A < 0 then
A €0y (%Jr), because then the function u = e* belongs to Wl*p(EJr; U) and
Au — it = 0. The proof that the imaginary axis belongs either to the singular
spectrum in the L7 -case or to the point spectrum in the BUC-case is quite similar
to the one above, and it is left to the reader (in the L”-case, let T — +o0 to get
u(t) = [ e/P0=) f(s)ds, and see also the footnote about the case p = 1).

2 It is easy to show that the range of j8 — 4s is not closed i m the L'-case and BUC-case either.
For example, in the L!-case the range is dense in{f e L'\R;U) | fR f(s)ds = 0}, but it is not
true for every f € L'(R; U) with f f(s) ds = 0 that the function
ut) = — [ /P9 f(s)ds belongs to L' (R; U).
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(iiii) That C* C % € p (%_) follows from Theorem 3.2.9(i). If %A < 0 or
if i <0and p = 1, thenevery f € R ()\ — %_) satisfies

0
/ e f(s)ds =0,

—00
hence the range is not dense in this case. We leave the proof of the claim that
o. = {& € C | ®r = 0} in the other cases to the reader (see the proof of (i)).

(iv) This follows from Theorem 3.2.9(i), since the growth bound of 79, r) is
—00.

(v) For each m € Z, the derivative of the T-periodic function e*™/""/T with
respect to ¢ is (2 jm/ T)e*™ ™!/ 'hence 27 jm/ T is an eigenvalue of %Tr with
eigenfunction e?>™/"/T

To complete the proof of (v) we have to show that the remaining points A
in the complex plane belong to the resolvent set of %Tf‘ To do this we have to
solve the equation Au — it = f, where, for example, f € L?(Ty; U). By the
variation of constants formula, a solution of this equation must satisfy

u(s) = e u(r) — f e’V f(v)dv, s, teR.

t

Taking s =t 4+ T, and requiring that u(¢r + 7') = u(¢) (in order to ensure 7 '-
periodicity of u) we get

t+T
(1 —eu@) = — / TV £(v) dv.

The factor on the left hand side is invertible iff A does not coincide with any of
the points 2 jm /T, in which case we get the following formula for the unique
T -periodic solution u of Au — it = f:

t+T
ut) =(1 —ef”)*lf eV f(v)dv

T
=(1—e?)! / e ™ f(t +s)ds.
0

The right-hand side of this formula maps L?(Ty;U) into W'?(Ty; U) and
C(T7:;U) into CY(T;U), and by differentiating this formula we find that,
indeed, Au — i = f. O

d d d d
ds’ ds+’ ds -’ ds[0,T)

d

and T,

Example 3.3.2 The resolvents of the generators
in Example 3.2.3 can be described as follows:

(i) The resolvent (k — d%)_l of the generator of the bilateral left shift group
! on LER; U) and on BUC,(R; U) maps f into t —> ftoo e =9 f(s)ds,
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t e R, if A > w, and it maps f into t > —fioo e f(s)ds, t e R, if
RA < w.

(ii) For each ). € CJ the resolvent (% — %Jr)_l of the generator of the

incoming left shift semigroup t!_ on LYRY; U) and on BUCw(K+; U)
maps f into 1+ [7 ™) f(s)ds, t > 0.

(iii) For each i € C} the resolvent (A — %_)71 of the generator of the
outgoing left shift semigroup t* on LE(R™; U) and on
{u € BUC,(R ;U) | u(0) = O} maps f into t — [’ &'~ f(s)ds,
teR .

(iv) For each ) € C the resolvent (A — (f—s[oyr))il of the generator of the finite
left shift semigroup l'[to’T) on LP([0, T);U) and on
{u e CUO, T1;U) | u(T) = 0} maps f into t > fIT e =9 f(s)ds,
te[0, 7).

(v) For each ) € C which is not one of the points
{2njm/T | m =0, £1, £2, ...} the resolvent (k — d%TT)_] of the
generator of the circular left shift group T{TT on LP(T7;U) and on

C(T7;U) maps f into t = (1 —e™*T)~ [T &20=9 £(5) ds.

The proof of this is essentially contained in the proof of Example 3.3.1.

The shift (semi)group examples that we have seen so far have rather ex-
ceptional spectra. They play an important role in our theory, but in typical
applications one more frequently encounters semigroups of the following type:

Example 3.3.3 Let {¢,}2, be an orthonormal basis in a separable Hilbert
space X, and let {1,}° | be a sequence of complex numbers. Then the sum

(o)
Ax =) e(x.¢u)ps. x€X, 120,
n=1

converges for each x € X and t > 0 and defines a Cy semigroup if and only if

w9 = sup R, < o0.
n>0

The growth bound of this semigroup is wg, and
1) =e“2, ¢>0.
It is a group if and only if
oy = irzlgi}i)\n > —00.
in which case

A7) =e*, 1<0.
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In particular, if R, = w for all n, then A" is a group, and
120 =e“, teR.

Proof Clearly, the sum converges always if we choose x = ¢,, in which case
A, =eM'¢,, and A ¢,| ="' If A’ is to be a semigroup, then ||2A| >
e for all n, and by Theorem 2.5.4(i), the number wy defined above must be
finite and less than or equal to the growth bound of 2. If 2(’ is to be a group,
then 2~ is also a semigroup, and the same argument with 7 replaced by —¢
shows that necessarily ag > —o0 in this case.

Let us suppose that wgy < oo. Foreach N = 1,2, 3, ..., define

N
§ A

tNx = € lt(-xv ¢n>¢n~
n=1

Then it is easy to show that each 2 is a C group (since ¢, L ¢, whenn # k).
For each ¢ > 0, the sum converges as N — oo because the norm of the tail of
the series tends to zero (the sequence ¢, is orthonormal):

o0 2 00
A . 2
D0 pdda| = D 1 (x. )bl
n=N+1 n=N+1
o0
20N, 2
= Y M(x, ¢
n=N+1
o0
< Y |(x, )
n=N+1

— 0as N — oo.
Thus 21" € B(X) (as a strong limit of operators in B(X)). The norm estimate
14| < e®»! follows from the fact that (see the computation above)

> e x, du) b
n=1

2
< ezwmt|x|2'

|Ax|* =

Moreover, for each x the convergence is uniform in ¢ over bounded intervals
since

[Ax — Ay x < Y |(x, gl

n=N+1

o . . =+ .
This implies that t — 2’ x is continuous on R~ for each x € X. Since each 2y
satisfies 2[?\, =1 and Ql‘;\frr = AL A%, s, ¢ > 0, the same identities carry over to
the limit. We conclude that 2 is a Cp semigroup.

If ag > —o0, then we can repeat the same argument to get convergence also
forr < 0. O
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Definition 3.3.4 A (semi)group of the type described in Example 3.3.3 is called

oo

diagonal, with eigenvectors {¢,};2 | and eigenvalues {1} ;.

The reason for this terminology is the following:

Example 3.3.5 The generator A of the (semi)group in Example 3.3.3 is the
operator

with domain

[e¢]

D(A):{xeX

(L4 [l Dlx, @) < oo}.

n=1

The spectrum of A is the closure of the set {\, |n=1,2,3,...}: every A,
belongs to the point spectrum and cluster points different from all the ), belong
to the continuous spectrum. The resolvent operator is given by

o0

(@—A)"x = (= 1) (X, dn)bn-

n=1

Proof Suppose that lim, g %(Q{hx — x) exists. Taking the inner product with
Gn,n=1,2,3,..., we get

. 1 h T l - Ach
fim 3 ("% =), ¢,) = lim ;@ D(x, ¢ ) (B> bn)

_ T 1 Anh
= lhlﬁ}h(e Dx, én)

= )\n<x’ (bn)

Thus, for all x € D(A), we have Ax = Zf,ozl An{x, ¢n)@,. The norm of this
vector is finite as is the norm of x = Y '~ | (x, ¢,)¢,, so we conclude that

[e¢]

D(A)C{xeX

(L4 [l Dlx, ) < oo}.

n=1
To prove the opposite inclusion, let us suppose that

o0

(14 A P)x, @) |* < o0.

n=I1
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Then the sum y = > 7

ne1 An{X, @)@, converges in X, and for each i > 0 we
have

2

i( (@ = 1) = ) (¥, $u)n
i) @ —1)—

Take & < 1. Then, by Lemma 3.2.10, %|e’\"h — 1] < |Au|M, (h), where

2
Ao 142, da) 2.

M,(h) = max{1, e""} < M = max({1, e“?},
hence

1 2
@ =1 = 1 @) < (14 M P, @)

Moreover, for each n, (+(e*" —1) — A,) — 0 as h | 0. This means that we
can use the discrete Lebesgue dominated convergence theorem to conclude
T@Ahx —x)—y —> 0ash | 0,ie,x € D(A).

Obviously every A, is an eigenvalue since ¢, € D (A) and Ag,, = A,¢,. The
spectrum of A contains therefore at least the closure of {A, |n =1,2,3,...}
(the spectrum is always closed).

If inf, 59l — A, | > O, then there exist two positive constants a and b such
that a(l + |A,|) < | — A,| < b(1 + |1, ]), and the sum

oo
Bx = (c = 1) (x, $u) s
n=1
converges for every x € X and defines an operator B € B(X) which maps X
onto D (A). It is easy to show that B is the inverse to (@ — A), hence « € p(A).
Conversely, suppose that (« — A) has an inverse (o — A)~!. Then

1= |¢al = (@ — A) (o — A)py|
= (e —A) (@ = A)dal < @ — Al — Al

This shows that every o € p(A) satisfies inf,,>oloc — A,| > 0.

Ifinf,>0la — A,| = Obuta # A, forall n, then « is not an eigenvalue because
ax — Ax =) 07 (a — An){X, ¢n)Pn = 0 only when (x, ¢,) = O forall n, i.e.,
x = 0. On the other hand, the range of « — A is dense because it contains
all finite linear combinations of the base vectors ¢,. Thus a € o.(A) in this
case. O

Example 3.3.3 can be generalized to the case where A is an arbitrary normal
operator on a Hilbert space X, whose spectrum is contained in some left half-
plane. The proofs remain essentially the same, except for the fact that the sums
have to be replaced by integrals over a spectral resolution. We refer the reader



3.3 The spectra of some generators 105

to Rudin (1973, pp. 301-303) for a precise description of the spectral resolution
used in the following theorem (dual operators and semigroups are discussed in
Section 3.5).

Example 3.3.6 Let A be a closed and densely defined normal operator on a
Hilbert space X (i.e., A*A = AA*), and let E be the corresponding spectral
resolution of A, so that

(Ax,y)xz/ ME(dMx,y), xeD(), yelX.
o(4)

Then the following claims are valid.

(1) Foreachn =1,2,3, ... the domain of A" is given by

DMQ:PGX

(1+ |x|2)”<E(dx)x,x>} < 00,
a(A)

and
nmwﬁzheX‘/ m%wmem}
o(A)
(i) Foreacha € p(A), 0 <k <ne{l,2,3,...},andx, y € X,

<Mm—Aﬁmwx=/ Mo —M)E(dMx, y).
o(A)

(iii) A generates a Cy semigroup A on X if and only if the spectrum of A is
contained in some left half-plane, i.e.,

wy = sup NA < oo.
reo(A)

In this case,
|0 =e”*, >0,
and

(Ax,y) = / e (E(dM)x, y), t>0, xeX, yeX. 331
o(A)
(iv) A generates a Cy group A on X if and only if o (A) is contained in some
vertical strip o < RNA < w. In this case, if we define
agy = inf{RA | L € 0(A)},
then
A = e*, 7 <0,

and (3.3.1) holds for all t € R.
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(v) A Cy semigroup A on X is normal (i.e., A = A" forallt > 0) if and
only if its generator is normal.

Proof (1)—(ii) See Rudin (1973, Theorems 12.21, 13.24 and 13.33).
(iii) See Rudin (1973, Theorem 13.37) and the remark following that theo-
rem.
(iv) The proof of this is analogous to the proof of (iii).
(v) See Rudin (1973, Theorem 13.37).
O

Most of the examples of semigroups that we will encounter in this book are
either of the type described in Example 2.3.2, 3.3.3, or 3.3.6, or a transformation
of these examples of the types listed in Examples 2.3.10-2.3.13.

3.4 Which operators are generators?

There is a celebrated converse to Theorem 3.2.9(i) that gives a complete char-
acterization of the class of operators A that generate Cy semigroups:

Theorem 3.4.1 (Hille-Yosida) A linear operator A is the generator of a Cy
semigroup U satisfying ||| < Me®" if and only if the following conditions
hold:
(i) D(A)is dense in X;
(1) every real A > w belongs to the resolvent set of A, and
_ M
||(A—A) "H <—fork>wandn=1,2,3,...
r — o)

Alternatively, condition (ii) can be replaced by

(ii") every real & > w belongs to the resolvent set of A, and

Mn!
(k—A)"HSF n)+1f0rk>a)andn:O,l,2,...
— )"

al’l
|

Note that the assumption implies that A must be closed, since it has a
nonempty resolvent set.

Proof The necessity of (i) and (ii) follows from Theorems 3.2.1(vi) and 3.2.9
(1)—(ii) (the exact estimate in Theorem 3.2.9(ii) was derived from (3.2.4), which
isequivalent to ||A"|| < Me®"). The equivalence of (ii) and (ii") is a consequence
of (3.2.6).

Let us start the proof of the converse claim by observing that the conclusion
of Theorem 3.2.9(iii) remains valid, since the proof used only (ii) with n = 1
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and the density of D (A) in X. This means that if we define
Ay =aAle —A) '=d*(@— A —a,

then each A, € B(X), and, for each x € D(A), A,x — Ax in X as o — o0.
Since A, is bounded, we can define 2!, = ede’ as in Example 3.1.2. We claim
that for each x € X, the limit A'x = lim,_, o 2/, x exists, uniformly in 7 on any
bounded interval, and that 2( is a semigroup with generator A.

Define

By = Ay +a = > (0 — AL

Then, by (ii), foralln =1,2,3, ...,
MaZn
1Byl < ———, (3.4.1)
(0 — w)

and by Theorem 3.2.9(iii) and Example 3.2.6(i),

B o B"t"
t _ . —at Byt _ _—at o
A =e el =¢ Z—n! ) (3.4.2)
n=0
Therefore
X n MaZn
) < e Y
monla—o) (3.4.3)
— Me—ate(azt)/(ot—w) — Me(au)t)/((x—w)’ t> 0.

This tends to Me® as o — oo, and the convergence is uniform in ¢ on
any bounded interval. Since (o — A)~! and (8 — A)~' commute (see Lemma
3.2.8(1)), also A, and Ag commute, i.e., A,Ag = AgA,, and this implies that
A Ag = Ap, forall o, B > wand t € R. Thus, forallx € X andr € R,

t
d
Ao x — Agx = / d—[Ql;Q[i{s] dsx
o as

t t
= /0 A (Ay — Ap)A x ds = /O AL (A — Ap)x ds,

and

|2 — Agx|

t
< M2 / e/ @) Bolt=N/B=0)| A x _ A,x|ds. (344
0

Let o, B — oo. Then the products of the exponentials tend to e?*e® =) =
e, uniformly in s and ¢ on any bounded interval, and if x € D (A), then
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|Agx — Agx| — 0 since both Ayx — x and Agx — x. Therefore,

lim |2x — ngx| =0, x € D(A),

o, f—~oo
uniformly in 7 on any bounded interval. In other words, & > 2’ x is a Cauchy
family in C (R+; X), and it has a limit in C (EJr; X). Since we have a uniform
bound on the norm of 2! x for ¢ in each bounded interval (see (3.4.3)) and
D (A) is dense in X, the limit limy_, o A}, x must exist in C(E+;X) for all
x € X, uniformly in 7 on any bounded interval. Let us denote the limit by (' x.
For each > 0 we have 2" € B(X) (the strong limit of a family of operators in
B(X) belongs to B(X)). By construction ¢ — 2’x is continuous, i.e., ¢ — A’
is strongly continuous. Moreover, 2’ inherits the semigroup properties 2A° = 1
and A°T = A" from 2!, and it also inherits the bound ||| < Me®'. We
conclude that 2’ is a Cy semigroup.

The only thing left to be shown is that the generator of 2is A. Letx € D (A).
Then by Theorem 3.2.1(iv)

oa—>00

t t
Ax —x = lim (Ax —x) = lim / A Agxds = / A Ax ds

(the integrand converges uniformly on [0, ¢] to 2* Ax). Divide this by ¢ and
let r | 0. This shows that, if we (temporarily) denote the generator of 2 by B,
then D (A) € D (B), and Bx = Ax for all x € D (A). In other words, B is an
extension of A. But this extension cannot be nontrivial, because if we take some
common point « in the resolvent sets of A and B (any « > o will do), then

X = (¢ — A)D(A) = (@ — B)D (A)
which implies that
DB)=(—-B)'X=(@—-A)"'X=D(A).
g

Corollary 3.4.2 A linear operator A is the generator of a Cy semigroup 2
satisfying ||| < e® if and only if the following conditions hold:

(i) D(A)is dense in X;
(i) every real A > w belongs to the resolvent set of A, and

=A< Sforx > .

A —w)

Proof This follows from Theorem 3.4.1 since ||(@ — A)™"|| < [[(a — A)~'||".
O

The case w = 0 is of special interest:
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Definition 3.4.3 By a bounded semigroup or group we mean a semigroup or
group 2 satisfying sup, ||| < 0o or sup, g ||| < oo, respectively. By a
contraction semigroup or group we mean a semigroup or group 2l satisfying
A7 < 1forallt > 0ort € R, respectively.

Corollary 3.4.4 Let A be a linear operator X D D (A) — X with dense do-
main and let M < 0o. Then the following conditions are equivalent:

(1) A is the generator of a (bounded) Cy semigroup 2 satisfying ||| < M
forallt > 0;
(ii) every positive real A belongs to the resolvent set of A and

|x =A™ < MA™ fora > 0andn =1,2,3,...;
(iii) the right half-plane C* belongs to the resolvent set of A and
[ =A™ < RN for W > 0andn =1,2,3, ...

Proof By Theorem 3.4.1, (i) < (ii). Obviously (iii) = (ii). To show that (i) =
(iii) we split A € C into A = o + jB and apply Theorem 3.4.1 with A replaced
by a, A’ replaced by e /2" and A replaced by A — jB. O

Corollary 3.4.5 Let A be a linear operator X D D (A) — X with dense do-
main. Then the following conditions are equivalent

(1) A is the generator of a Cy contraction semigroup;
(ii) every positive real A belongs to the resolvent set of A and

| = A7 < 27" for x> 0;
(iii) the right-half plane C belongs to the resolvent set of A, and
[ =)~ < @)~ for %in > 0.

Proof This proof is similar to the proof of Corollary 3.4.4, but we replace
Theorem 3.4.1 by Corollary 3.4.2. O

There is also another characterization of the generators of contraction semi-
groups which is based on dissipativity.

Definition 3.4.6 A linear operator A: X D D(A) — X is dissipative if for
every x € D(A) there is a vector x* € X* with |[x*|> = |x|*> = (x*, x) such
that % (x*, Ax) < 0 (if X is a Hilbert space, then we take x* = x).3

Lemma 3.4.7 Let A: X D D (A) — X be a linear operator. Then the follow-
ing conditions are equivalent:

3 The dual space X* is discussed at the beginning of Section 3.5.
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(i) A is dissipative;

(i) A — jBI is dissipative for all B € R;
@iii) |(A — A)x| = Alx| forall x € D(A) and all ). > 0O;
(iv) |(A — A)x| = RA|x| forall x € D(A) and all » € CT.

Proof (i) = (ii): This follows from Definition 3.4.6 since, with the notation of
that definition, % (x*, jBx) = R(—jB{x*, x)) = R(—jBlx|?) = 0.

(i) = (iv): Suppose that (ii) holds. Let x € D(A) and A = « + jB with
o > 0and B8 € R. Choose some x* € X* with |x*|> = |x|> = (x*, x) such that
NR(x*, Ax) < 0 (by the Hahn—Banach theorem, this is possible). Then

[Ax — Ax||x| = [{x*, Ax — Ax)| > R{x™, Ax — Ax)
= N(x*, ox) — Rix*, (A — jB)x) > alx ],
and (iv) follows.

(iv) = (iii): This is obvious.

(iii) = (1): Let x € D (A), and suppose that A|x| < |(A — A)x| forall A > O.
Choose some z} € X* with [zf| = 1 such that (z}, (A — A)x) = |[(A — A)x|.
Then, for all A > 0,

Alx| < |Ax — Ax| = (2}, Ax — Ax)
= AN(z}, x) — N(z}, Ax) < Alx| — N(z}, Ax).

This implies that 91(z}, Ax) < 0 and that
AN(ZY, x) > [Ax — Ax| > Alx| — |Ax].

Forall A > 0, let Z} be the weak™ closure of the set {z} | « > A}. Then each Z}
is a weak™ compact subset of the unit ball in X*, and for all z* € Z} we have

R(z*, Ax) <0, R(* x) > x| —r7"Ax], || <1

(the functionals z* +— N (z*, x) and z* — N(z*, Ax) are continuous in the
weak* topology). The sets Z} obviously have the finite intersection property
and they are weak™* compact, so their intersection [),., Z; is nonempty (see,
e.g., Rudin (1987, Theorem 2.6, p. 37)). Choose any z* in this intersection.
Then

M(z*, Ax) <0, N x) > x|, [ <L

The last two inequalities imply that |z*| = (z*, x) = |x|. By taking x* = |x|z*
in Definition 3.4.6 we find that A is dissipative. O

By using the notion of dissipativity we can add one more condition to the
list of equivalent conditions in Corollary 3.4.5.
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Theorem 3.4.8 (Lumer-Phillips) Let A be a linear operator X D D (A) —
X with dense domain. Then the following conditions are equivalent (and they
are equivalent to the conditions (ii) and (iii) in Corollary 3.4.5):

(i) A is the generator of a Cy contraction semigroup;
(iv) A is dissipative and p(A) N CT £ @.

These conditions are, in particular, true if
(v) A is closed and densely defined, and both A and A* are dissipative.
If X is reflexive, then (v) is equivalent to the other conditions.

Proof (i) = (iv): This follows from Corollary 3.4.5 and Lemma 3.4.7.

(iv) = (i): Suppose that (iv) holds. Then A is closed (since its resolvent set
is nonempty). Take some A =« + jB € p(A) witha > 0 and B € R. If A is
dissipative, then we get from Lemma 3.4.7(iv) for all x € D (A), |(A — A)x| >
a|x|. This implies that |[(A — A)~!|| < 1/a. By Lemma 3.2.8, the resolvent set
of A contains an open circle with center A and radius o = fA. We can repeat
this argument with o replaced by first (3/2)a, then (3/2)%a, then (3/2)3a, etc.,
to show that the whole right-half plane belongs to the resolvent set, and that
l(x — A~ < (Ma)~! for all A € C*. By Corollary 3.4.5, A is therefore the
generator of a Cy contraction semigroup.

(v) = (iv): By Lemma 3.4.7, |(1 — A)x| > |x| for all x € D (A). This im-
plies that 1 — A is injective and has closed range (see Lemma 9.10.2(iii)). If
R (1 — A) # X then, by the Hahn—Banach theorem, there is some nonzero x* €
X* such that (x*, x — Ax = 0), or equivalently, (x*, Ax) = (x*, x) forall x €
D (A). This implies that x* € D (A*) and that A*x* = x*,i.e.,(1 — A*)x* = 0.
By Lemma 3.4.7 and the dissipativity of A*, |x*| < |(1 — A*)x*| = 0, contra-
dicting our original choice of x*. Thus R (1 — A) = X. By the closed graph
theorem, (1 — A)~! € B(X), so 1 € p(A), and we have proved that (iv) holds.

If X is reflexive, then A is a generator of a Cy contraction semigroup if
and only if A* is the generator of a Cy contraction semigroup (see Theorem
3.5.6(v)), so (v) follows from (iv) in this case. O

In the Hilbert space case there is still another way of characterizing a gen-
erator of a contraction semigroup.

Theorem 3.4.9 Let X be a Hilbert space, and let A be a linear operator X D
D (A) — X with dense domain. Then the following conditions are equivalent:

(1) A is the generator of a Cy contraction semigroup,
(vi) there is some ) € Ct N p(A) for which the operator
A, = (X + A)(x — A~ is a contraction,
(vii) all . € C* belong to p(A), and Ay, = (& + A)(A — A~V is a contraction,
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If A, is defined as in (i) and (ii), then —1 is not an eigenvalue of A,, and
R+ A,) =D (A). Conversely, if X is a Hilbert space and if A is a contraction
on X such that —1 is not an eigenvalue of A, then R (1 + A) is dense in X, and,
forall ). € C*, the operator A; with D (A;) = R (1 + A) defined by

Ajx = ax — 201 (1 4+ A) " 'x, xeR(+A),

is the generator of a Cy contraction semigroup on X (and the operator A; in
(vi) and (vii) corresponding to A is A).

Proof (1) = (vii) = (vi) = (i): Let us denote A = « + jB where o > 0 and
B € R. Forall x € D(A), if we denote B = A — j§3, then

[(x — A)x|? = (& — B)x|* = &®|x|> — 2aM(x, Bx) + |Bx|?
% + A)x|? = |(« + B)x|* = &®|x|> + 2aM% (x, Bx) + |Bx|*.

If (i) holds, then by Lemma 3.4.7 and Theorem 3.4.8, B = A — jB is dissi-
pative, and we get |(A + A)x| < [(A — A)x| forall » € C* and all x € D (A).
By Corollary 3.4.5, A € p(A), and by replacing x by (A — A)~'x we find that
|Asx| < |x|forall x € X,i.e., A, is a contraction. This proves that (i) = (vii).
Obviously (vii) = (vi). If (vi) holds, then for that particular value of A, we
have |A,x| < |x| for all x € X, or equivalently, |(A + A)x| < |(A — A)x| for
all x € D(A). The preceding argument then shows that B = A — jg is dissi-
pative, hence so is A, and (i) follows from Theorem 3.4.8. This proves that (i),
(vi), and (vii) are equivalent.

Let us next show that —1 cannot be an eigenvalue of A, (although —1 €
o(A,) whenever A is unbounded) and that R (1 + A;) = D (A). This follows
from the (easily verified) identity that

L+A, =20 (x— AL

Here the right-hand side is injective, hence so is the left-hand side, and the range
of the right-hand side is D (A), hence so is the range of the left-hand side.

It remains to prove the converse part. Let A be a contraction on X such
that —1 is not an eigenvalue of A. Then the operator A, is well-defined on
D(A;) =R +A),and

(A1 — A;)x = 2R%4 (1 + A) " Lx, xeR(+A).

This implies that A — A, is injective, R (A — A;) = X, and (A — A7 =
204 (1 + A)~!. In particular, A € p(A;). Arguing as in the proof of the im-
plication (vi) = (i) we find that A, is dissipative since A is a contraction (note
that we have the same relationship between A, and A as we had between A
and A,, namely A = (A + A4,)(A — A,)~"). If we knew that D (A) is dense in
X, then we could conclude from Theorem 3.4.8 that A, is the generator of a Cy
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contraction semigroup. Thus, to complete the proof, the only thing remaining
to be verified is that R (1 + A) is dense in X. This is true if and only if —1 is
not an eigenvalue of A*, so let us prove this statement instead. If A*x = x for
some x € X, then

(A*x, x) = (x, Ax) = (x,x) = |x|,
hence
Ix — Ax|> = |x]® — 2% (x, Ax) + |Ax|? = |Ax|* — [x|* <0,

and we see that Ax = x. This implies that x = 0, because —1 was supposed
not to be an eigenvalue of A. O

The operator A; in Theorem 3.4.9 is called the Cayley transform of A with
parameter &« € C*. We shall say much more about this transform in Chapter 11.

3.5 The dual semigroup

Many results in quadratic optimal control rely on the possibility of passing
from a system to its dual system. In this section we shall look at the dual of the
semigroup 2. The dual of the full system will be discussed in Section 6.2.

In most applications of the duality theory the state space X is a Hilbert
space. In this case it is natural to identify the dual X with X itself. This has
the effect that the mapping from an operator A on X to its dual A* becomes
conjugate-linear instead of linear, as is the case in the standard Banach space
theory. To simplify the passage from the Banach space dual of an operator to
the Hilbert space dual we shall throughout use the conjugate-linear dual instead
of the ordinary dual of a Banach space.

As usual, we define the dual X* of the Banach space X to be the space of all
bounded linear functionals x*: X — C. We denote the value of the functional
x* € X* acting on the vector x € X alternatively by

*
xx = (x, x7) = (o, X ) x x-
The norm in X* is the usual supremum-norm

|x*|x+ == sup [{x,x™)], (3.5.1)
lxlx=1
and by the Hahn—Banach theorem, the symmetric relation
lxlx = sup [(x,x")] (35.2)

[x*]xx =1

also holds. On this space we use a nonstandard linear structure, defining the
sum of two elements x* and y* in X* and the product of a scalar A € C and a
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vector x* € X* by

(x, x* 4+ y*) 1= (x, x") + (x, y"), x € X,

- (3.5.3)
(x, Ax™) == Ax, x¥), xeX, reC

In other words, the mapping (x, x*) — (x, x*) is anti-linear (linear in x and
conjugate-linear in x*). All the standard results on the dual of a Banach space
and the dual operator remain valid in this conjugate-linear setting, except for
the fact that the mapping from an operator A to its dual operator A* becomes
conjugate-linear instead of linear, like in the standard Hilbert space case.

Let A be aclosed (unbounded) operator X D D (A) — Y with dense domain.
The domain of the dual A* of A consists of those y* € Y* for which the linear
functional

x> (Ax, Yy w.y, x €D(A),

can be extended to a bounded linear functional on X. This extension is unique
since D (A) is dense, and it can be written in the form

x> (AX, Y )y = (X, X x.xn, x €D(A),

for some x* € X.For y* € D(A*) we define A* by A*y* = x*, where x* € X*
is the element above. Thus,

<AX, y*)(YY*) = <.X, A*y*)(x’x*), X € D(A) , y* S D (A*) , (354)
and this relationship serves as a definition of A*.

Lemma 3.5.1 Let A: X D D(A) — Y be a closed linear operator with dense
domain. Then

(i) A*: Y* D D(A*) — U" is a closed linear operator,

(i) if A € B(X;Y), then A* € B(Y*; X*), and ||A|| = ||A*|,
>iii) D (A*) weak*-dense in Y*,
(iv) if Y is reflexive, then D (A*) is dense in Y*.

Proof (i) It is a routine calculation to show that A* is linear. Let us show that
it is closed. Take some sequence y, € D (A*) such that y; — y* € Y* and
A*y¥ — x*in X* asn — oo. Then, for each x € D (A),
(x,x*) = lim {x, Ay}) = lim (Ax, y7) = (Ax, y").
n— o0 n—o00

This means that the functional (Ax, y*) can be extended to a bounded linear
functional on X, hence y* € D(A*) and x* = A*y*. Thus, A* is closed.
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(i) If A € B(X;Y), then it is clear that D (A*) = Y*. Moreover,

I A*l5r+xs) = sup [A*y"[x« = sup [{x, A"y")x x+l
[y*|=1

[x|=1
[y*|=1
= sup [(Ax, y*)x. x| = sup|Axl|y
lx|=1 Ixl=1
[y*I=1
= | Allsx:y)-

(iii) Lety € ¥,y # 0. As Ais closed, the set {[ 4] | x € D (A)}isaclosed
subspace of [%], and [S] certainly does not belong to this subspace. By the
Hahn—Banach theorem in [}Q]* = [ ¥-]. there is some x{ € X* and y; € ¥*
such that (x, x{) 4+ (Ax, y{) = 0 for all x € D (A), but (0, x;) — (y, ¥{) # 0.
The first equation says that yj € D (A*) (and that A*y} = —x{). Thus, for each
nonzero y € Y, it is possible to find some y* € D (A*) such that (y, y*) # 0,
or equivalently, Y > y = 0iff (y, y*) = 0 for all y* € D (A*). This shows that
D (A*) is weak*-dense in Y* (apply the Hahn—-Banach theorem (Rudin, 1973,
Theorem 3.5, p. 59) to the weak*-topology).

@iv) If Y is reflexive, then (iii) implies that D (A*) is weakly dense in Y*,
hence dense in Y* (Rudin 1973, Corollary 3.12(b), p. 65).

g

Lemma 3.5.2 Let A: X D D(A) — Y be closed, densely defined, and injec-
tive, and suppose that R (A) = Y. Then A™' € B(Y; X), and (A~")* = (A*)"..
We denote this operator by A™*.

Proof The operator A~! is closed since A is closed, and by the closed graph
theorem, it is bounded, i.e., A~! € B(Y; X). By Lemma 3.5.1(ii), (A~")* €
B(X*; Y*). It remains to show that (A~1)* = (4*)~L.

Take some arbitrary x € D (A) and x* € X*. Then

(x,x*) = (A7 Ax, x*) = (Ax, (A~ H*x%).

This implies that (A~!)*x* € D (A*) and that A*(A~!)*x* = x*. Thus, (A~!)*
is aleft inverse of A*. If we instead take some arbitrary x € X andx* € D (A*),
then

(, x") = (AA "x, x*) = (A7 'x, A"x%) = (x, (A" A*x™).

Thus, (A~ )* is also a right inverse of A*. This means that A* is invertible, with
(AN~ = (A" 0

Lemma 3.5.3 Let A: X D D(A) — X be densely defined, and let o« € p(A)
(in particular, this means that A is closed). Then a € p(A*), and (o —
A =@ -A Y =(@—-A)™
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Proof By the definition of the dual operator, (¢« — A)* = o — A*. Therefore
Lemma 3.5.3 follows from Lemma 3.5.2, applied to the operatoraz — A. O

Lemma3.54 Let A: X D D(A) - Y be densely defined, and let B €
B(Y;Z). Then (BA)* = A*B* (with D(BA)*) =D (A*B*)={z*e€ Z* |
B*z € D(A)}).

Proof Let x e D(A)=D(BA) and z*€ D(A*B*)={z"€ Z*|B*z ¢
D (A*)}. Then

(BAX,z")z,25) = (Ax, B*Z")(v,y) = (x, A"B*Z") (x,x*).

This implies that z* € D ((BA)*), and that (BA)*z* = A*B*z*. To complete
the proof it therefore suffices to show that D ((BA)*) C D (A*B*). Let z* €
D ((BA)*). Then, for every x € D(A) = D (BA),

(Ax, B*Z*) v,y = (BAX, 2%)(z.27) = (X, (BA)"Z")(x x*.
This implies that B*z* € D (A*), and hence z* € D (A*B*). O

Lemma 3.5.5 Let B € B(X;Y) be invertible (with an inverse in B(Y ; X)), and
let A:' Y D D(A) — Z be densely defined. Then AB is densely defined (with
D(AB)={x € X | Bx e D(A)}), and (AB)" = B*A* (with D(B*A*) =
D (AM)).

Proof The domain of AB is the image under B~! of D (A) which is dense
in Y, and therefore D (AB) is dense in X (if x € X, and if y, € D(A) and
Y. = v := Bxiny, thenx, := B~'y,in D(AB),and x, — B~ 'y = x in X).
Thus A B has an adjoint (AB)*.

Letx e D(AB)={x € X | Bx e D(A)} and z* € D (A*). Then

(ABx,Z%)(z.2+) = (Bx, A"Z") v,y = (x, B"A"Z")(x.x).
This implies that z* € D((AB)*), and that (AB)*z* = B*A*z*. To com-
plete the proof it therefore suffices to show that D ((AB)*) C D(A*). Let
7* € D((AB)*). Then, for every y € D (A), we have B~'y € D (AB), and
(Ay, 2%)z.29 = (ABB™'y, 2%) 2.2 = (B™'y, (ABY"Z")x x+)
=(y, BT (AB)"z") v,y
This implies that z* € D (A*). O

Theorem 3.5.6 Let A be a Cy semigroup on a Banach space X with generator
A.

1) A = A, t > 0, is a locally bounded semigroup on X* (but it need not
be strongly continuous). This semigroup has the same growth bound as .
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(i) Let X© = {x* € X* | lim, o A x* = x*}. Then X© is a closed subspace
of X* which is invariant under A*, and the restriction A° of A* to X© is
a Cy semigroup on X°.

(iil) The generator A® of the semigroup 2° in (ii) is the restriction of A* to
D(A®) = (x* € D(A") | A*x* € X°).

(iv) X© is the closure of D (A*) in X*. Thus, D (A*) C X© and D (A*) is
dense in X©.

(v) If X is reflexive, then X© = X*, A® = A*, and A* is a Cy semigroup on
X* with generator A*.

(vi) If A € B(X), then X© = X*, A® = A*, and A* is a Cy semigroup on X*
with generator A*.

For an example where X© # X*, see Example 3.5.11 with p = 1.

Proof of Theorem 3.5.6 (i) This follows from Lemmas 3.5.1(ii) and 3.5.4.

(ii) The proof of the claim that A* maps X© into X © is the same as the proof
of Lemma 2.2.13(ii).

To show that X© is closed we let x} € X©, x¥ — x* € X*. Write

247X — x| < A" — A%l + (1A — x4 llxg — x|l

Given € > 0, we can make [0 x* — A*x| + [|x; — x*|| < €/2 for all 0 <
s < 1 by choosing n large enough (since ||2** || < Me®® for some M > 0 and
o € R).Nextwechooset < 1sosmallthat [|[A*x} — x| < e/2forall0 <s <
t. Then ||2A*x* — x*|| < € for 0 <s < r. This proves that lim, o A" x* = x*,
hence x* € X©. Thus X© is closed in X*.

Since X© is closed in X*, it is a Banach space with the same norm, and by
definition, 2 is a Cy semigroup on X©.

(iii) Let A® be the generator of 2®. Choose some x € D(A) and x* €
D (A®) C X© C X*. Then

1
A , * . =1 <_ t_l , *>
(Ax, x™)x,x im t(ﬂ )X, X )

1
= lim <x, S — 1)x*)
10 t (X, X*)

= (x, AQX*)(X,X*)-

This implies that x* € D (A*) and A®x* = A*x*. In other words, if we let B
be the restriction of A* to D (B) = {x* € D(A*) | A*x* € X®}, then A® C B,
ie., D(A®) C D(B)and A°X* = Bx* forall x* € D (A®).

It remains to show that D (B) = D (A®). Choose some & € p(A®) N p(A*)
(by Theorem 3.2.9(i) and Lemma 3.5.3, any o with R large enough will do).
Then o — A® maps D (A®) one-to-one onto X©, hence o — B maps D (B)
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onto X©, i.e.,
© = (@ — A%)D (A°) = (a — B)D(B).

But o — B is a restriction of « — A* which is one-to-one on X*; hence « — B
is injective on D (B), and

D(B)=(a—B)'X® =(a— A9)7'X° =D ().

(iv) Let x* € D (A*). Choose a and M such that ||L°|| < Me** forall s > 0.
Then, for all x € X, all r > 0, and all real & > wy, by Theorem 3.2.1(ii) and
Example 3.2.6(i),

|(xx, (€A — Dx*)| = |{(e™ A" — Dx, x*)|
(@ = A — A7 '™ A — Dx, x*)|
(

(@ — A) (e A = Dx, (@ — A)x*)|

|
|
|
‘(/ e Y Wxds, (o — A)x*>

< Mi|lx|[ll (e — A)x™]|.

Taking the supremum over all x € X with ||x|| = 1 and using (3.5.1) we get
e~ A" — Dx*|| < Mt|(a — A)x*|| — Oast | 0,

which implies that lim, o A*x* = x*. This shows that D (A*) C X©. That
D (A*)is dense in X© follows from the fact that D (AO) C D(A*)and D (AQ)
is dense in X©.

(v)—(vi) These follow from (iv) and Lemma 3.5.1(i1)—(iv). O

Definition 3.5.7 The Cy semigroup 2® in Theorem 3.5.6 is the dual of the Cy
semigroup 2, X© is the ®-dual of X (with respect to ), and A® is the ®-dual
of A.

Example 3.5.8 The dual A* of the diagonal (semi)group A in Example 3.3.3 is
another diagonal (semi)group where the eigenvectors {¢,}.> | stay the same but
the sequence of eigenvalues {1, }7> | has been replaced by its complex conjugate
{n 102 1 Thus

o —
A x = Zek“[(x,qbn)(bn, xeH, t>0.
n=1
The dual generator A* has the same domain as A, and it is given by

ZX (x.$)bu. X €D(A).
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Inparticular, A" = A* forallt > 0and A = A* ifand only if all the eigenvalues
are real.

We leave the proof to the reader as an exercise.
Let us next look at the duals of the shift (semi)groups in Examples 2.3.2 and
2.5.3. To do this we need to determine the dual of an L”-space.

Lemma 3.5.9 Let U be a reflexive Banach space®, let 1 < p < o0, 1/p +
1/g =1 (with1/oo =0), € R, and J C R (with positive measure).

(i) The dual of L(J;U) can be identified with LY ,(J; U*) in the sense that
every bounded linear functional f on LY (J;U) is of the form

(u, f) = /J(M(f), w* ) w,undt, uelLl(J;U),

for some u* € LY (J; U*). The norm of the functional f is equal to the
LY (J)-norm on u*.
(i) LE(JT;U) is reflexive iff 1 < p < o0.
Proof For w = 0 this lemma is contained in Diestel and Uhl (1977, Theorem 1,
p- 98 and Corollary 2, p. 100). If f is a bounded linear functional on LP(J;U)
for some w # 0, then f,: v > (v, f,) = (e, v, f) (where e,(f) =e”) is a
bounded linear functional on L”(J; U), hence this functional has a representa-
tion of the form

(v, fo) = /(v(l),u,“;(t)) dt
J

for some u} € L9(J;U"). Replacing v € L”(J;U) by u =e,v € LL(J;U)
and u’ by u* =e_,u’ € L1 (J; U*) we get the desired representation

U, f) = (oot fu) = /J e u(t), u?, (1)) dt

= / (u(t), e™ul (1)) dt = f (u(t), u*(t)) dt.
J J
O

The representation in Lemma 3.5.9 is canonical in the sense that it ‘inde-
pendent of p and @’ in the following sense:

Lemma 3.5.10 Let U be a reflexive Banach space. If f is a bounded linear
functional on LY (J; U)YNLEA(J;U), where 1 < p; < 00,1 < ps < 00, ;| €
R, and w, € R, then we get the same representing function u* for f if we use

4 In part (i) the reflexivity assumption on U can be weakened to the assumption that U has the
Radon-Nikodym property. See Diestel and Uhl (1977, Theorem 1, p. 98).
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any combination of p; and wj, i, j =1, 2, in Lemma 3.5.9. In particular, u* €
LY (J;UNLE, (J;U*), where 1/py+1/q1 = 1and 1/py +1/g> = 1.

—wi —wy

Proof This follows from the fact that the integral f S{u(@), u*(t)) dt does not
depend on either p or w (as long as it converges absolutely). O

Example 3.5.11 Let U be a reflexive Banach space, let 1 < p < oo, 1/p+
1/g =1 (with1/oo =0), and w € R.

(i) The dual of the bilateral left shift group ', t € R, on LE(R; U) is the
right shift group t=', t € R, which acts on LY ,(R; U*) if 1 < p < 00
and on BUC_,(R; U*) if p = 1.

(ii) The dual of the incoming left shift semigroup t', t > 0, on LERY; U) is
the right shift semigroup

_ _ u(s —t), s>t,
(tiw)(0) = (v mpu)(s) = {0

otherwise,

’

which acts on L ,(R*; U*) if 1 < p < oo and on
{u* € BUC_,(R";U*) | u*(0) = O} if p = 1.

(iii) The dual of the outgoing left shift semigroup ', t > 0, on LE(R™; U) is
the right shift semigroup

—t —t M(S - t)7 s < 07
(T2 u)(s) = (ot u)(s) =
0, otherwise,
which acts on LY ,(R™;U*) if 1 < p < oo and on BUC_,(R ;U*) if

p=1
(iv) The dual of the finite left shift semigroup r[’O’T), t>0,0n L0, T),U)is
the right shift semigroup

u(s —1), t<s<T,

(T yu)(s) = (p0,1)T " 10,1y )(8) =
[0.7) 0, otherwise,

which acts on L1((0, T); U*) if 1 < p < oo and on
{u* e CO, TLU") |u*(0)=0}ifp=1

(v) The dual of the circular left shift group r{TT, t >0, on LE(T7;U) is the
circular right shift group

(tp, u)(s) = (x~"u)(s) = u(s — 1),

which acts on LY(T7;U*) if 1 < p <ooandon C(Tr;U*)if p= 1.
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Proof (i) By Lemma 3.5.9, the dual of LE(R;U) is L‘iw(R; U*). Let u €
LH(R;U)and u* € LY (R;U*) and t € R. Then

[e¢]

(t'u, u*) = /'00 (t'u(s), u™(s)) ds = / (u(s +1), u*(s)) ds

= /00 (u(s), u*(s —t))ds = /'00 (u(s), T 'u*(s)) ds

= (u, v "u").

This shows that T* = t~'. The rest of (i) follows from Theorem 3.5.6, Defini-
tion 3.5.7, and Examples 2.3.2 and 2.5.3.
(i1)—(@iv) These follow from (i) and Examples 2.3.2 and 2.5.3. d

The new right shift semigroups that we obtained in Example 3.5.11 are sim-
ilar to the left shift semigroups that we have encountered earlier. The similarity
transform is the reflection operator 51 (in one case combined with a shift), which
we define as follows.

Definition 3.5.12 Let 1 < p < 00, and let U be a Banach space.

(i) For each function u € L? (R; U) we define the reflection SIu of u by

loc
Au)(s) = u(—s), seR. 3.5.5)
(i1) For each function u € Reg,,.(R; U) we define the reflection Slu of u by

Su)(s) = tlii{n u(t), sekR. 3.5.6)

Observe that these two cases are consistent in the sense that in part (ii) we
have (Su)(s) = u(—s) for all but countably many s.

Lemma3.5.13 Let J CR teR weR andl < p < 0.

(1) A maps LP|Reg,(R;U) onto L?|Reg_,(R; U), and

(@ A '=4,
(b) A" =74,
(c) A, = ngq;90° and
(@) A* =S (in LE(J; U) with reflexive U and 1 < p < 00).

(ii) mj =my (in LE(J; U) with reflexive U and 1 < p < 00).

(iii) The dual of the time compression operator y; (see Example 2.3.6) is the
inverse time compression operator yi;, (in LI(J; U) with reflexive U
and1 < p < 00).

5 In the Reg-well-posed case we require x; to be right-continuous and define IJ to be the set
whose characteristic function is xss
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(iv) The right shift (semi)groups in Example 3.5.11 are similar to the
corresponding left shift (semi)groups in Examples 2.3.2 and 2.5.3 as

follows:

(a) 1°© = Ar4;
(b) rf =Ar_A;
(c) 1° = A, A,

d) 755 =1 Ao A’
(e) ‘[%T = A, S

We leave the easy proof to the reader.

3.6 The rigged spaces induced by the generator

In our subsequent theory of L”|Reg-well-posed linear systems we shall need
a scale of spaces X,, n =0, +£1, £2,..., which are constructed from X by
means of the semigroup generator A. In particular, the spaces X and X_; will
be of fundamental importance. To construct these spaces we need not even
assume that A generates a C semigroup on X; it is enough if A has a nonempty
resolvent set and dense domain.

We begin with the case n > 0, and define

Xo=X, X,=D(A") forn=1,23,...

Choose an arbitrary number « from the resolvent set of A. Then (o« — A)™"
maps X one-to-one onto D (A”") (this can be proved by induction over n), and
we can define a norm in X,, by

x|, = Ix|x, = |(Oé — A)"x|X.

With this norm each X, becomes a Banach space, X,+1 C X, with a dense
injection, and (A — «)" is an isometric (i.e., norm-preserving) isometry (i.e.,
bounded linear operator with a bounded inverse) from X, onto X. If X is a
Hilbert space, then so are all the spaces X,,.

If we replace o by some other 8 € p(A), then (8 — A)™" has the same range
as (o« — A)™", so if we use B instead of « in the definition of X,, then we still
get the same space, but with a different norm. However, the two norms are
equivalent since (¢ — A)*(8 — A)™" is an isomorphism (not isometric) on X:
for n = 1 this follows from the resolvent formula in Lemma 3.2.8(i) which
gives

(@—AB-A"'=1+@-pB—-A)",
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and by iterating this formula we get the general case. Most of the time the value
of a € p(A) which determines the exact norm in X,, is not important.

If A generates a Cy semigroup %, then the restriction %x, of %A to X,
is a Cy semigroup on X,. It follows from Theorem 3.2.1(iii) and Example
3.2.6(1) that Ajx, = (¢ — A)"™A(x — A)", i.e., A jx, and A are (isometrically)
isometric. Thus, all the important properties of these semigroups are identical.
In particular, they all have the same growth bound wg, and the generator of 2,
is the restriction Ay, ,,
simplicity)  instead of 2 x, and A instead of A x,,, (but we still use the more
complicated notions in those cases where the distinction is important).

It is also possible to go in the opposite direction to get spaces X, with
negative index n. This time we first define a sequence of weaker norms in X,
namely

of A to X,,+;. In the sequel we occasionally write (for

x|—n = |(@ — A)"x|, forn =1,2,3,...,

andlet X _,, be the completion of X withrespecttothenorm |-|_,. Then (@ — A)"
has a unique extension to an isometric operator which maps X onto X_,. We
denote this operator by (¢ — A)/y and its inverse by (o — A)l}”ﬂ, or sometimes
simply by (¢ — A)", respectively (¢« — A)™", if no confusion is likely to arise.
In the case n = 1 we often write (o« — A‘x)_' instead of (a0 — A)f)(l,l . Thus, for
alln,l =0, £1,£2,...,

(a — A)ixwl is an isometry of X, ; onto X,,.
If A generates a C semigroup 2 on X, then we can use the formula
Ay, = (@ — A)\Ua — Ay,

to extend (rather than restrict) 2 to a semigroup on each of the spaces X_,,.
In this way we get a full scale of spaces X, 1 C X, forn =0, £1,+£2,...,
and a corresponding scale of isometric semigroups 2x ,. In places where no
confusion is likely to arise we abbreviate 2(|x_, to . The generator of 2y _, is
A\x_,.,- Asinthe case of the semigroup itself we sometimes abbreviate A x
to A.

Above we have defined the norm in X by using the fact that (@ — A)~! maps
X one-to-one onto X| whenever & € p(A). Another commonly used norm in
X is the graph norm

—n+1

172

Ixllx, = (Ix1% + [Ax%) (3.6.1)

This is the restriction of the norm |[}]] = (Ix[3 + Iylg()l/2 in [{] to the
graph G (A) = {[4*] | x € X}. This graph is closed since A is closed, so it is
a Banach space in itself (or a Hilbert space if X is a Hilbert space). The map
which takes [ 4¥ | € G (A) into x is injective, so we may let x € D (A) inherit
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the norm of [ 4¥ | € G (A), and this is the norm |-y, in (3.6.1). This norm is
majorized by the earlier introduced norm |-|x, since

|Ax|x = (A — a + a)x|x < |Ixllx, + le|lx]x,
and
Ixx = (@ — A (@ — A)xlx < (e — A llx]x,,

so by the open mapping theorem, the two norms |-|x, and ||-||x, are equivalent.
A similar norm can be used in X,, = D (A") forn = 2, 3, ..., namely

1/2

Ixllx, = (IxI% + [A"x[%) (3.6.2)

To prove that thisis anormin X, we can argue as above: the operator A” is closed
since it is the restriction of (A")x = Ajx_,,, A|x_,,, - - - Ajx € B(X; X_,)toits
natural domain D (A") = {x € X | (A");xx € X}, and the above norm is the
graph norm of A” on D (A"). To show that it is equivalent to the norm |-|x,
we may argue as follows. Take some o € p(A). Then, for each x € D (A") we
have (from the binomial formula)

(@ — A)'x = Z <Z>akA”kx,

k=0

or equivalently,

A'x =(x— A)'x — Z (Z)akA”kx

k=1

- (1 _ ; <Z)akA”_k(oz - A)‘”)(oz — AYx.

Thus, |A"x|x < M|x|x,, where M is the norm of the operator 1 —
>t (kAR — A)™ € B(X), and, of course,

Ix[x = (@ — A)™" (e — A)"x|x = ll(@ — A)7"[llx]x,-

This shows that the norm ||| x, is majorized by the norm |[-|x, , so by the open

mapping theorem, the two norms |-|x, and ||| x, are equivalent.
Let us illustrate these constructions by looking at Example 3.3.5. In this

example we have

o0

X%, = Dl = Ml [(x, i) 3

k=1

where o € p(A), and each X, is a Hilbert space with the orthogonal basis
{¢n};2, (it becomes orthonormal if we divide ¢ by |a — Ag]). Forn > 1 we
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can alternatively use the equivalent norm

oo
%, = D1+ D™ [x, i3
k=1

cf. Example 3.3.5.

Remark 3.6.1 This remark explains how the spaces X,, interact with duality.
Since X,,+1 C X, foralln =0, £1, £2, ..., with dense embeddings, the duals
of these embedding maps are injective (see Lemma 9.10.2(ii)), so they define
embeddings (X,,)* C (X,+1)* (which need not be dense). Since (¢« — A)" is an
isometry of X,,4; onto X, it follows that (¢« — A*)" is an isometry of (X;)* onto
(Xpq)* forall n, I =0, £1,+2,.... If X is reflexive, then the embeddings
(Xn)* C (Xp41)* are dense, and these spaces are the same as we would get
by repeating the argument leading to the definition of the spaces X,,, with X
replaced by X*, A replaced by A*, and using a different subindex (i.e., —n
instead of n). When we discuss the causal and anti-causal dual systems X¢ and
>t it is convenient to denote the domain of A* by X*, and accordingly, in the
sequel we use the notation

X, =X =X, n=0,=£1,4£2,...
In particular,

(A", x)x,,x,) = (6, A™'X ) x,0x0

* *
7("“))7 X € Xn—Hv X € X7[9

where by A* we mean A™ := (A*)" = (A™")*.

In the Hilbert space case one often uses a slightly different construction,
which resembles the one described in Remark 3.6.1. Assume that W C X are
two Hilbert spaces, with a continuous and dense embedding. Then (x, y) >
(x, y)x is a bounded sesquilinear form on W, and therefore (see, e.g., Kato
1980, pp. 256-257) there is a unique operator E € B(W) which is positive and
self-adjoint (with respect to the inner product of W) such that

(5, V)x = (Ex, y)w = (x, EY)w = (VEx,VEy)w,  x,yeW,

where +/E is the positive self-adjoint square root of E (cf. Lemma A.2.2). For
allx e W,

|Ex|% = (EVEx, EVEx)w < ||Ell})VEx[}y = | Elljuw|xlk.

and this implies that E can be extended to a unique operator in B(X), which
we still denote by the same symbol E. This operator is still self-adjoint in X
since (x, Ey)x = (Ex, Ey)w = (Ex, y)x forall x, y € W, and W is dense in
X. The space X may be regarded as the completion of W with respect to the
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norm |x|x = |\/Ex|w, and this means that the extended version of ~/E is an
isometric isomorphism of W onto X.

Let V be the completion of X with respect to the norm |x|y = IWEx|x. By
repeating the same argument that we gave above with W replaced by X and X
replaced by V we find that E can be extended to a self-adjoint operator in V
(which we still denote by the same letter), that /E is an isometric isomorphism
of V onto X, and that E is an isometric isomorphism of V onto W. Moreover,

(x, y)v = (Ex, y)x = (x, Ey)x = (VEx, VEy)x, x,yeX,
(x, y)v =(Ex,y)x = (Ex, Ey)w, x,yeW.

The space V can be interpreted as the dual of W with X as pivot space as
follows. Every x € V induces a bounded linear functional on W through the
formula

(x, v)v,w) = (Ex, y)w,

and every bounded linear functional on W is of this type since £ maps W
one-to-one onto V. This is a norm-preserving mapping of the dual of W onto
V, since the norm of the above functional is |Ex|w = |x|y. That X is a pivot
space means that forallx € X andy € W,

(x, Y)v,wy = {x, ¥)x,

which is true since both sides are equal to (Ex, y)w.

If we apply this procedure (in the Hilbert space case) to the space X; C X
described at the beginning of this section, then we get V = X* | and the extended
version of E is givenby E = (« — A)~ (@ — Ai"X)’1 if we use the norm |x|; =
[ — A)x|x in X;. If we instead use the graph norm |x|> = |x|§( + |Ax|§( in
X1, then the extended version of E is given by E = (1 + ATXA)_l.

In this book we shall usually identify X with its dual, and identify the dual of
W with V as described above. However, occasionally it is important to compute
the dual of an operator with respect to the inner productin W or in V instead of
computing it with respect to the inner produce in X. Here the following result
is helpful.

Proposition 3.6.2 Let U, Y, and W C X C V be Hilbert spaces, where the
embeddings are continuous and dense, let E € B(V) be injective, selfadjoint
(with respect to the inner product in V), and suppose that ~/E maps V iso-
metrically onto X and that NE \x maps X isometrically onto W (the operator
E and the space V can be constructed starting from W and X as explained
above). We identify U and Y with their duals.

(1) Let B € B(U; W), let B’ € B(W; U) be the adjoint of B with respect to
the inner product in W, and let B* € B(X; U) be the adjoint of B with



3.6 The rigged spaces 127

respect to the inner product in X (note that B € B(U; X)). Then

B* = B'E|x. In particular, this formula can be used to extend B* to
B'E € B(V;U), which is the adjoint of B when we identify the dual of
W with V.

(ii) Let B € B(U; X), let B* € B(X; U) be the adjoint of B with respect to
the inner product in X, and let B” € B(V; U) be the adjoint of B with
respect to the inner product in 'V (note that B € B(U;V)). Then
B’ = B*E.

(iii) Let B € B(U; V), let B* € B(W; U) be the adjoint of B when we
identify the dual of V wi