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Preface

This main purpose of this book is to present the basic theory of well-posed
linear systems in a form which makes it available to a larger audience, thereby
opening up the possibility of applying it to a wider range of problems. Up to
now the theory has existed in a distributed form, scattered between different
papers with different (and often noncompatible) notation. For many years this
has forced authors in the field (myself included) to start each paper with a long
background section to first bring the reader up to date with the existing theory.
Hopefully, the existence of this monograph will make it possible to dispense
with this in future.

My personal history in the field of abstract systems theory is rather short but
intensive. It started in about 1995 when I wanted to understand the true nature
of the solution of the quadratic cost minimization problem for a linear Volterra
integral equation. It soon became apparent that the most appropriate setting
was not the one familiar to me which has classically been used in the field of
Volterra integral equations (as presented in, e.g., Gripenberg et al. [1990]). It
also became clear that the solution was not tied to the class of Volterra integral
equations, but that it could be formulated in a much more general framework.
From this simple observation I gradually plunged deeper and deeper into the
theory of well-posed (and even non-well-posed) linear systems.

One of the first major decisions that I had to make when I began to write
this monograph was how much of the existing theory to include. Because of
the nonhomogeneous background of the existing theory (several strains have
been developing in parallel independently of each other), it is clear that it is
impossible to write a monograph which will be fully accepted by every worker
in the field. I have therefore largely allowed my personal taste to influence the
final result, meaning that results which lie closer to my own research interests
are included to a greater extent than others. It is also true that results which
blend more easily into the general theory have had a greater chance of being
included than those which are of a more specialist nature. Generally speaking,
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xii Preface

instead of borrowing results directly from various sources I have reinterpreted
and reformulated many existing results into a coherent setting and, above all,
using a coherent notation.

The original motivation for writing this book was to develop the background
which is needed for an appropriate understanding of the quadratic cost mini-
mization problem (and its indefinite minimax version). However, due to page
and time limitations, I have not yet been able to include any optimal control in
this volume (only the background needed to attack optimal control problems).
The book on optimal control still remains to be written.

Not only was it difficult to decide exactly what parts of the existing theory
to include, but also in which form it should be included. One such decision
was whether to work in a Hilbert space or in a Banach space setting. Optimal
control is typically done in Hilbert spaces. On the other hand, in the basic theory
it does not matter if we are working in a Hilbert space or a Banach space (the
technical differences are minimal, compared to the general level of difficulty of
the theory). Moreover, there are several interesting applications which require
the use of Banach spaces. For example, the natural norm in population dynamics
is often the L1-norm (representing the total mass), parabolic equations have a
well-developed L p-theory with p �= 2, and in nonlinear equations it is often
more convenient to use L∞-norms than L2-norms. The natural decision was to
present the basic theory in an arbitrary Banach space, but to specialize to Hilbert
spaces whenever this additional structure was important. As a consequence of
this decision, the present monograph contains the first comprehensive treatment
of a well-posed linear system in a setting where the input and output signals are
continuous (as opposed to belonging to some L p-space) but do not have any
further differentiability properties (such as belonging to some Sobolev spaces).
(More precisely, they are continuous apart from possible jump discontinuities.)

The first version of the manuscript was devoted exclusively to well-posed
problems, and the main part of the book still deals with problems that are well
posed. However, especially in H∞-optimal control, one naturally runs into non-
well-posed problems, and this is also true in circuit theory in the impedance
and transmission settings. The final incident that convinced me that I also had
to include some classes of non-well-posed systems in this monograph was my
discovery in 2002 that every passive impedance system which satisfies a certain
algebraic condition can be represented by a (possibly non-well-posed) system
node. System nodes are a central part of the theory of well-posed systems, and
the well-posedness property is not always essential. My decision not to stay
strictly within the class of well-posed systems had the consequence that this
monograph is also the the first comprehensive treatment of (possibly non-well-
posed) systems generated by arbitrary system nodes.



Preface xiii

The last three chapters of this book have a slightly different flavor from the
earlier chapters. There the general Banach space setting is replaced by a stan-
dard Hilbert space setting, and connections are explored between well-posed
linear systems, Fourier analysis, and operator theory. In particular, the admissi-
bility of scalar control and observation operators for contraction semigroups is
characterized by means of the Carleson measure theorem, and systems theory
interpretations are given of the basic dilation and model theory for contractions
and continuous-time contraction semigroups in Hilbert spaces.

It took me approximately six years to write this monograph. The work has
primarily been carried out at the Mathematics Institute of Åbo Akademi, which
has offered me excellent working conditions and facilities. The Academy of
Finland has supported me by relieving me of teaching duties for a total of two
years, and without this support I would not have been able to complete the
manuscript in this amount of time.

I am grateful to several students and colleagues for helping me find errors and
misprints in the manuscript, most particularly Mikael Kurula, Jarmo Malinen
and Kalle Mikkola.

Above all I am grateful to my wife Marjatta for her understanding and
patience while I wrote this book.



Notation

Basic sets and symbols

C The complex plane.
C+ω , C

+
ω C+ω := {z ∈ C | 
z > ω} and C

+
ω := {z ∈ C | 
z ≥ ω}.

C−ω , C
−
ω C−ω := {z ∈ C | 
z < ω} and C

−
ω := {z ∈ C | 
z ≤ ω}.

C+, C
+

C+ := C+0 and C
+

:= C
+
0 .

C−, C
−

C− := C−0 and C
−

:= C
−
0 .

D+r , D
+
r D+r := {z ∈ C | 
z > r} and D

+
r := {z ∈ C | |z| ≥ r}.

D−r , D
−
r D−r := {z ∈ C | 
z < r} and D

−
r := {z ∈ C | |z| ≤ r}.

D+, D
+

D+ := D+1 and D
+

:= D
+
1 .

D−, D
−

D− := D−1 and D
−

:= D
−
1 .

R R := (−∞,∞).
R+, R

+
R+ := (0,∞) and R

+
:= [0,∞).

R−, R
−

R− := (−∞, 0) and R
−

:= (−∞, 0].
T The unit circle in the complex plane.
TT The real line R where the points t + mT , m = 0,±1,±2, . . .

are identified.
Z The set of all integers.
Z+, Z− Z+ := {0, 1, 2, . . .} and Z− := {−1,−2,−3, . . .}.
j j := √−1.
0 The number zero, or the zero vector in a vector space, or the

zero operator, or the zero-dimensional vector space {0}.
1 The number one and also the identity operator on any set.

Operators and related symbols

A, B, C, D In connection with an L p|Reg-well-posed linear system or an
operator node, A is usually the main operator, B the control
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Notation xv

operator, C the observation operator and D a feedthrough
operator. See Chapters 3 and 4.

C&D The observation/feedthrough operator of an L p|Reg-well-
posed linear system or an operator node. See Definition 4.7.2.

A, B, C, D The semigroup, input map, output map, and input/output map
of an L p|Reg-well-posed linear system, respectively. See Def-
initions 2.2.1 and 2.2.3.

D̂ The transfer function of an L p|Reg-well-posed linear system
or an operator node. See Definitions 4.6.1 and 4.7.4.

B(U ; Y ), B(U ) The set of bounded linear operators from U into Y or from
U into itself, respectively.

C, L The Cayley and Laguerre transforms. See Definition 12.3.2.
τ t The bilateral time shift operator τ t u(s) := u(t + s) (this is

a left-shift when t > 0 and a right-shift when t < 0). See
Example 2.5.3 for some additional shift operators.

γλ The time compression or dilation operator (γλu)(s) := u(λs).
Here λ > 0.

πJ (πJ u)(s) := u(s) if s ∈ J and (πJ u)(s) := 0 if s /∈ J . Here
J ⊂ R.

π+, π− π+ := π[0,∞) and π− := π(−∞,0).
R The time reflection operator about zero: ( Ru)(s) := u(−s)

(in the L p-case) or ( Ru)(s) := limt↓−s u(t) (in the Reg-case).
See Definition 3.5.12.

Rh The time reflection operator about the point h. See Lemma
6.1.8.

σ The discrete-time bilateral left-shift operator (σu)k := uk+1,
where u = {uk}k∈Z. See Section 12.1 for the definitions of σ+
and σ−.

πJ (πJu)k := uk if k ∈ J and (πJu)k := 0 if k /∈ J . Here J ⊂ Z

and u = {uk}k∈Z.
π+, π− π+ := πZ+ and π− := πZ− .
w-lim The weak limit in a Banach space. Thus w-limn→∞ xn = x in

X iff limn→∞ x∗xn = x∗x for all x∗ ∈ X∗. See Section 3.5.
〈x, x∗〉 In a Banach space setting x∗x := 〈x, x∗〉 is the continuous

linear functional x∗ evaluated at x . In a Hilbert space setting
this is the inner product of x and x∗. See Section 3.5.

E⊥ E⊥ := {x∗ ∈ X∗ | 〈x, x∗〉 = 0 for all x ∈ E}. This is the an-
nihilator of E ⊂ X . See Lemma 9.6.4.

⊥F ⊥F := {x ∈ X | 〈x, x∗〉 = 0 for all x∗ ∈ F}. This is the pre-
annihilator of F ⊂ X∗. See Lemma 9.6.4. In the reflexive
case ⊥F = F⊥, and in the nonreflexive case ⊥F = F⊥ ∩ X .



xvi Notation

A∗ The (anti-linear) dual of the operator A. See Section 3.5.
A ≥ 0 A is (self-adjoint and) positive definite.
A � 0 A ≥ ε for some ε > 0, hence A is invertible.
D (A) The domain of the (unbounded) operator A.
R (A) The range of the operator A.
N (A) The null space (kernel) of the operator A.
rank(A) The rank of the operator A.
dim(X ) The dimension of the space X .
ρ(A) The resolvent set of A (see Definition 3.2.7). The resolvent

set is always open.
σ (A) The spectrum of A (see Definition 3.2.7). The spectrum is

always closed.
σp(A) The point spectrum of A, or equivalently, the set of eigenval-

ues of A (see Definition 3.2.7).
σr (A) The residual spectrum of A (see Definition 3.2.7).
σc(A) The continuous spectrum of A (see Definition 3.2.7).
ωA The growth bound of the semigroup A. See Definition 2.5.6.
T I, TIC T I stands for the set of all time-invariant, and TIC stands for

the set of all time-invariant and causal operators. See Defini-
tion 2.6.2 for details.

A&B, C&D A&B stands for an operator (typically unbounded) whose
domain D (A&B) is a subspace of the cross-product

[
X
U

]
of

two Banach spaces X and U , and whose values lie in a third
Banach space Z . If D (A&B) splits into D (A&B) = X1 +̇
U1 where X1 ⊂ X and U1 ⊂ U , then A&B can be written in
block matrix form as A&B = [A B], where A = A&B |X1

and B = A&B |U1 . We alternatively write these identities in
the form Ax = A&B

[ x
0

]
and Bu = A&B

[ 0
u

]
, interpreting

D (A&B) as the cross-product of X1 and U1.

Special Banach spaces

U Frequently the input space of the system.
X Frequently the state space of the system.
Y Frequently the output space of the system.
Xn Spaces constructed from the state space X with the help of the

generator of a semigroup A. In particular, X1 is the domain
of the semigroup generator. See Section 3.6.

X∗n X∗n := (X∗)n = (X−n)∗. See Remark 3.6.1.
+̇ X = X1 +̇ X2 means that the Banach space X is the direct

sum of X1 and X2, i.e., both X1 and X2 are closed subspaces
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of X , and every x ∈ X has a unique representation of the form
x = x1 + x2 where x1 ∈ X1 and x2 ∈ X2.

⊕ X = X1 ⊕ X2 means that the Hilbert space X is the or-
thogonal direct sum of the Hilbert spaces X1 and X2, i.e.,
X = X1 +̇ X2 and X1 ⊥ X2.[

X
Y

]
The cross-product of the two Banach spaces X and Y . Thus,[

X
Y

] = [ X
0

] +̇ [ 0
Y

]
.

Special functions

χI The characteristic function of the set I .
1+ The Heaviside function: 1+ = χR+ . Thus (1+)(t) = 1 for t ≥

0 and (1+)(t) = 0 for t < 0.
B The Beta function (see (5.3.1)).
� The Gamma function (see (3.9.7)).
eω eω(t) = eωt for ω, t ∈ R.
log The natural logarithm.

Function spaces

V (J ; U ) Functions of type V (= L p, BC, etc.) on the interval J ⊂ R

with range in U .
Vloc(J ; U ) Functions which are locally of type V , i.e., they are defined

on J ⊂ R with range in U and they belong to V (K ; U ) for
every bounded subinterval K ⊂ J .

Vc(J ; U ) Functions in V (J ; U ) with bounded support.
Vc,loc(J ; U ) Functions in Vloc(J ; U ) whose support is bounded to the left.
Vloc,c(J ; U ) Functions in Vloc(J ; U ) whose support is bounded to the right.
V0(J ; U ) Functions in V (J ; U ) vanishing at ±∞. See also the special

cases listed below.
Vω(J ; U ) The set of functions u for which (t �→ e−ωt u(t)) ∈ V (J ; U ).

See also the special cases listed below.
Vω,loc(R; U ) The set of functions u ∈ Vloc(R; U ) which satisfy π−u ∈

Vω(R−; U ).
V (TT ; U ) The set of T -periodic functions of type V on R. The norm in

this space is the V -norm over one arbitrary interval of length
T .

BC Bounded continuous functions; sup-norm.
BC0 Functions in BC that tend to zero at ±∞.
BCω Functions u for which (t �→ e−ωt u(t)) ∈ BC.
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BCω,loc(R; U ) Functions u ∈ C(R; U ) which satisfy π−u ∈ BCω(R−; U ).
BC0,ω Functions u for which (t �→ e−ωt u(t)) ∈ BC0.
BC0,ω,loc(R; U ) Functions u ∈ C(R; U ) which satisfy π−u ∈ BC0,ω(R−; U ).
BUC Bounded uniformly continuous functions; sup-norm.
BUCn Functions which together with their n first derivatives belong

to BUC. See Definition 3.2.2.
C Continuous functions. The same space as BCloc.
Cn n times continuously differentiable functions. The same

space as BCn
loc.

C∞ Infinitely many times differentiable functions. The same
space as BC∞loc.

L p, 1 ≤ p <∞ Strongly measurable functions with norm
{∫ |u(t)|p dt

}1/p
.

L∞ Strongly measurable functions with norm ess sup|u(t)|.
L p

0 L p
0 = L p if 1 ≤ p <∞, and L∞0 consists of those u ∈ L∞

which vanish at ±∞, i.e., limt→∞ ess sup|s|≥t |u(s)| = 0.
L p
ω Functions u for which (t �→ e−ωt u(t)) ∈ L p.

L p
ω,loc(R; U ) Functions u ∈ L p

loc(R; U ) which satisfy π−u ∈ L p
ω(R−; U ).

L p
0,ω Functions u for which (t �→ e−ωt u(t)) ∈ L p

0 .
L p

0,ω,loc(R; U ) Functions u ∈ L p
loc(R; U ) which satisfy π−u ∈ L p

0,ω(R−; U ).
W n,p Functions which together with their n first (distribution)

derivatives belong to L p. See Definition 3.2.2.
Reg Bounded right-continuous functions which have a left hand

limit at each finite point.
Reg0 Functions in Reg which tend to zero at ±∞.
Regω The set of functions u for which (t �→ e−ωt u(t)) ∈ Reg.
Regω,loc(R; U ) The set of functions u ∈ Regloc(R; U ) which satisfy π−u ∈

Regω(R−; U ).
Reg0,ω The set of functions u for which (t �→ e−ωt u(t)) ∈ Reg0.
Reg0,ω,loc(R; U ) Functions u ∈ Regloc(R; U ) which satisfy π−u ∈

Reg0,ω(R−; U ).
Regn Functions which together with their n first derivatives belong

to Reg. See Definition 3.2.2.
L p|Reg This stands for either L p or Reg, whichever is appropriate.



1

Introduction and overview

We first introduce the reader to the notions of a system node and an L p-well-
posed linear system with 1 ≤ p ≤ ∞, and continue with an overview of the
rest of the book.

1.1 Introduction

There are three common ways to describe a finite-dimensional linear time-
invariant system in continuous time:

(i) the system can be described in the time domain as an input/output map D

from an input signal u into an output signal y;
(ii) the system can be described in the frequency domain by means of a

transfer function D̂, i.e., if û and ŷ are the Laplace transforms of the
input u respectively the output y, then ŷ = D̂û in some right half-plane;

(iii) the system can be described in state space form in terms of a set of first
order linear differential equations (involving matrices A, B, C , and D of
appropriate sizes)

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t), t ≥ 0,

x(0) = x0.

(1.1.1)

In (i)–(iii) the input signal u takes its values in the input space U and the
output signal y takes its values in the output space Y , both of which are
finite-dimensional real or complex vector spaces (i.e., Rk or Ck for some
k = 1, 2, 3, . . .), and the state x(t) in (iii) takes its values in the state space
X (another finite-dimensional vector space).

All of the three descriptions mentioned above are important, but we shall
regard the third one, the state space description, as the most fundamental

1



2 Introduction and overview

one. From a state space description it is fairly easy to get both an input/
output description and a transfer function description. The converse statement
is more difficult (but equally important): to what extent is it true that an input/
output description or a transfer function description can be converted into a
state space description? (Various answers to this question will be given below.)

The same three types of descriptions are used for infinite-dimensional lin-
ear time-invariant systems in continuous time. The main difference is that we
encounter certain technical difficulties which complicate the formulation. As a
result, there is not just one general infinite-dimensional theory, but a collection
of competing theories that partially overlap each other (and which become
more or less equivalent when specialized to the finite-dimensional case). In this
book we shall concentrate on two quite general settings: the case of a system
which is either well-posed in an L p-setting (for some p ∈ [1,∞]) or (more
generally), it has a differential description resembling (1.1.1), i.e., it is induced
by a system node.

In order to give a definition of a system node we begin by combining the
four matrices A, B, C , and D into one single block matrix S = [ A B

C D

]
, which

we call the node of the system, and rewrite (1.1.1) in the form[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0. (1.1.2)

For a moment, let us ignore the original matrices A, B, C , and D, and simply
regard S as a linear operator mapping

[
X
U

]
into
[

X
Y

]
(recall that we denoted the

input space by U , the state space by X , and the output space by Y ). If U , X and
Y are all finite-dimensional, then S is necessarily bounded, but this need not
be true if U , X , or Y is infinite-dimensional. The natural infinite-dimensional
extension of (1.1.1) is to replace (1.1.1) by (1.1.2) and to allow S to be an
unbounded linear operator with some additional properties. These properties
are chosen in such a way that (1.1.2) generates some reasonable family of
trajectories, i.e., for some appropriate class of initial states x0 ∈ X and input
functions u the equation (1.1.2) should have a well-defined state trajectory x(t)
(defined for all t ≥ 0) and a well-defined output function y. The set of additional
properties that we shall use in this work is the following.

Definition 1.1.1 We take U , X , and Y to be Banach spaces (sometimes Hilbert
spaces), and call S a system node if it satisfies the following four conditions:1

(i) S is a closed (possibly unbounded) operator mapping D (S) ⊂ [ X
U

]
into[

X
Y

]
;

1 It follows from Lemma 4.7.7 that this definition is equivalent to the definition of a system node
given in 4.7.2.
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(ii) if we split S into S = [ SX
SY

]
in accordance with the splitting of the range

space
[

X
Y

]
(SX is the ‘top row’ of S and SY is the ‘bottom row’), then SX

is closed (with D (SX ) = D (S));
(iii) the operator A defined by Ax = SX

[
x
0

]
with domain D (A) = {x ∈ X |[

x
0

] ∈ D (S)} is the generator of a strongly continuous semigroup on X ;
(iv) for every u ∈ U there is some x ∈ X such that

[
x
u

] ∈ D (S).

It turns out that when these additional conditions hold, then (1.1.2) has
trajectories of the following type. We use the operators SX and SY defined in
(ii) to split (1.1.2) into

ẋ(t) = SX

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0,

y(t) = SY

[
x(t)
u(t)

]
, t ≥ 0.

(1.1.3)

If (i)–(iv) hold, then for each x0 ∈ X and u ∈ C2([0,∞); U ) such that
[ x0

u(0)

] ∈
D (S), there is a unique function x ∈ C1([0,∞); X ) (called a state trajectory)

satisfying x(0) = x0,
[

x(t)
u(t)

]
∈ D (S), t ≥ 0, and ẋ(t) = SX

[
x(t)
u(t)

]
, t ≥ 0. If we

define the output y ∈ C([0,∞); Y ) by y(t) = SY

[
x(t)
u(t)

]
, t ≥ 0, then the three

functions u, x , and y satisfy (1.1.2) (this result is a slightly simplified version
of Lemma 4.7.8).

Another consequences of conditions (i)–(iv) above is that it is almost (but
not quite) possible to split a system node S into S = [ A B

C D

]
as in the finite-

dimensional case. If X is finite-dimensional, then the operator A in (iii) will
be bounded, and this forces the full system node S to be bounded, with
D (S) = [ X

U

]
. Trivially, in this case S can be decomposed into four bounded

operators S = [ A B
C D

]
. If X is infinite-dimensional, then a partial decomposi-

tion still exists. The operator A in this partial decomposition corresponds to an
extension A|X of the semigroup generator A in (iii).2This extension is defined
on all of X , and it maps X into a larger ‘extrapolation space’ X−1 which con-
tains X as a dense subspace. There is also a control operator B which maps
U into X−1, and the operator SX defined in (ii) (the ‘top row’ of X ) is the
restriction to D (S) of the operator

[
A|X B

]
which maps

[
X
U

]
into X−1. (Fur-

thermore, D (S) = {[ x
u

] ∈ [ X
U

] | [A|X B
] [

x
u

] ∈ X
}
.) Thus, SX always has a

decomposition (after an appropriate extension of its domain and also an ex-
tension of the range space). The ‘bottom row’ SY is more problematic, due to
the fact that it is not always possible to embed Y as a dense subspace in some
larger space Y−1 (for example, Y may be finite-dimensional). It is still true,

2 We shall also refer to A as the main operator of the system node.
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however, that it is possible to define an observation operator C with domain
D (C) = D (A) by Cx = SY

[
x
0

]
, x ∈ D (A). The feedthrough operator D in

the finite-dimensional decomposition A = [ A B
C D

]
need not always exist, and it

need not be unique. However, this lack of a unique well-defined feedthrough
operator is largely compensated by the fact that every system node has a transfer
function, defined on the resolvent set of the operator A in (iii). See Section 4.7 for
details.3

The other main setting that we shall use (and after which this book has
been named) is the L p-well-posed setting with 1 ≤ p ≤ ∞. This setting can be
introduced in two different ways. One way is to first introduce a system node
of the type described above, and then add the requirement that for all t > 0, the
final state x(t) and the restriction of y to the interval [0, t) depend continuously
on x0 and the restriction of u to [0, t). This added requirement will give us an
L p-well-posed linear system if we use the X -norm for x0 and x(t), the norm in
L p([0, t); U ) for u, and the norm in L p([0, t); Y ) for y.4 (See Theorem 4.7.13
for details.)

However, it is also possible to proceed in a different way (as we do in
Chapter 2) and to introduce the notion of an L p-well-posed linear system without
any reference to a system node. In this approach we look directly at the mapping
from the initial state x0 and the input function (restricted to the interval [0, t))
to the final state x(t) and the output function y (also restricted to the interval
[0, t)). Assuming the same type of continuous dependence as we did above, the
relationship between these four objects can be written in the form (we denote
the restrictions of u and y to some interval [s, t) by π[s,t)u, respectively π[s,t) y)[

x(t)
π[0,t) y

]
=
[

At
0 Bt

0

Ct
0 Dt

0

][
x0

π[0,t)u

]
, t ≥ 0,

for some families of bounded linear operatorAt
0 : X → X ,Bt

0 : L p([0, t); U )→
X ,Ct

0 : X → L p([0, t); Y ), and Dt
0 : L p([0, t); U )→ L p([0, t); Y ). If these

families correspond to the trajectories of some system node (as described ear-
lier), then they necessarily satisfy some algebraic conditions, with can be stated
without any reference to the system node itself. Maybe the simplest way to list
these algebraic conditions is to look at a slightly extended version of (1.1.2)

3 Another common way of constructing a system node is the following. Take any semigroup
generator A in X , and extend it to an operator A|X ∈ B(X ; X−1). Let B ∈ B(U ; X−1) and
C ∈ B(X1; U ) be arbitrary, where X1 is D (A) with the graph norm. Finally, fix the value of the
transfer function to be a given operator in B(U ; Y ) at some arbitrary point in ρ(A), and use
Lemma 4.7.6 to construct the corresponding system node.

4 Here we could just as well have replaced the interval [0, t) by (0, t) or [0, t]. However, we shall
later consider functions which are defined pointwise everywhere (as opposed to almost
everywhere), and then it is most convenient to use half-open intervals of the type [s, t), s < t .



1.1 Introduction 5

where the initial time zero has been replaced by a general initial time s, namely[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ s, x(s) = xs, (1.1.4)

and to also look at the corresponding maps from xs and π[s,t)u to x(t) and π[s,t) y
which we denote by[

x(t)
π[s,t) y

]
=
[

At
s Bt

s

Ct
s Dt

s

][
xs

π[s,t)u

]
, s ≤ t.

These two-parameter families of bounded linear operators At
s , Bt

s , Ct
s , and Dt

s

have the properties listed below. In this list of properties we denote the left-shift
operator by

(τ t u)(s) = u(t + s), −∞ < s, t <∞,

and the identity operator by 1.

Algebraic conditions 1.1.2 The operator families At
s , Bt

s , Ct
s , and Dt

s satisfy
the following conditions:5

(i) For all t ∈ R, [
At

t Bt
t

Ct
t Dt

t

]
=
[

1 0

0 0

]
.

(ii) For all s ≤ t , [
At

s Bt
s

Ct
s Dt

s

]
=
[

At
s Bt

sπ[s,t)

π[s,t)C
t
s π[s,t)D

t
sπ[s,t)

]
.

(iii) For all s ≤ t and h ∈ R,[
At+h

s+h Bt+h
s+h

Ct+h
s+h Dt+h

s+h

]
=
[

At
s Bt

sτ
h

τ−hCt
s τ−hDt

sτ
h

]
.

(iv) For all s ≤ r ≤ t ,[
At

s Bt
s

Ct
s Dt

s

]
=
[

At
rA

r
s Bt

r + At
rB

r
s

Ct
rA

r
s + Cr

s Dt
r + Ct

rB
r
s +Dr

s

]
.

All of these conditions have natural interpretations (see Sections 2.1 and 2.2
for details): (i) is an initial condition, (ii) says that the system is causal, (iii)

5 By Theorem 2.2.14, these algebraic conditions are equivalent to those listed in Definition 2.2.1.
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says that the system is time-invariant, and (iv) gives a formula for how to patch
two solutions together, the first of which is defined on [s, r ] and the second on
[r, t], and with the initial state of the second solution equal to the final state
of the first solution at the ‘switching time’ r . For example, if we take a closer
look at the family At

s , then (iii) says that At
s = At−s

0 for all s ≤ t , (i) says that
A0

0 = 1, and (iv) says that At
0 = Ar

0A
t−r
0 for all 0 ≤ r ≤ t . This means that the

family At
0 is simply a semigroup (it is the semigroup generated by the operator

A of the corresponding system node).

Not only are the conditions (i)–(iv) above necessary for the family
[

At
s Bt

s

Ct
s Dt

s

]
to be generated by a system node S through the equation (1.1.4), but they are
sufficient as well (when combined with the appropriate continuity assumptions).
This will be shown in Chapters 3 and 4 (out of which the former deals exclusively
with semigroups). However, it is possible to develop a fairly rich theory by
simply appealing to the algebraic conditions (i)–(iv) above (and appropriate
continuity conditions), without any reference to the corresponding system node.
Among other things, every L p-well-posed linear system has a finite growth
bound, identical to the growth bound of its semigroup At

0. See Chapter 2 for
details.

Most of the remainder of the book deals with extensions of various notions
known from the theory of finite-dimensional systems to the setting of L p-
well-posed linear systems, and even to systems generated by arbitrary system
nodes. Some of the extensions are straightforward, others are more compli-
cated, and some finite-dimensional results are simply not true in an infinite-
dimensional setting. Conversely, many of the infinite-dimensional results that
we present do not have any finite-dimensional counterparts, in the sense that
these statements become trivial if the state space is finite-dimensional. In many
places the case p = ∞ is treated in a slightly different way from the case
p <∞, and the class of L∞-well-posed linear systems is often replaced by
another class of systems, the Reg-well-posed class, which allows functions to
be evaluated everywhere (recall that functions in L∞ are defined only almost
everywhere), and which restricts the set of permitted discontinuities to jump
discontinuities.

The last three chapters have a slightly different flavor from the others. We
replace the general Banach space setting which has been used up to now by
a standard Hilbert space setting, and explore some connections between well-
posed linear systems, Fourier analysis, and operator theory. In particular, in
Section 10.3 we establish the standard connection between the class of bounded
time-invariant causal operators on L2 and the set of bounded analytic functions
on the right half-plane, and in Sections 10.5–10.7 the admissibility and bound-
edness of scalar control and observation operators for contraction semigroups
are characterized by means of the Carleson measure theorem. Chapter 11 has
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a distinct operator theory flavor. It contains among others a systems theory
interpretation of the basic dilation and model theory for continuous-time con-
traction semigroups on Hilbert spaces.

Chapter 12 contains a short introduction to discrete-time systems (and it
also contains a section on continuous-time systems). Some auxiliary results
have been collected in the appendix.

After this rough description of what this book is all about, let us also tell the
reader what this book is not about, and give some indications of where to look
for these missing results.

There are a number of examples of L p-well-posed linear system given in
this book, but these are primarily of a mathematical nature, and they are not the
true physical examples given in terms of partial differential equations which
are found in books on mathematical physics. There are two reasons for this
lack of physical examples. One of them is the lack of space and time. The
present book is quite large, and any addition of such examples would require
a significant amount of additional space. It would also require another year or
two or three to complete the manuscript. The other reason is that the two recent
volumes Lasiecka and Triggiani (2000a, b) contain an excellent collection of
examples of partial differential equations modeling various physical systems.
By Theorem 5.7.3(iii), most of the examples in the first volume dealing with
parabolic problems are Reg-well-posed. Many of the examples in the second
volume dealing with hyperbolic problems are L2-well-posed. Almost all the
examples in Lasiecka and Triggiani (2000a, b) are generated by system nodes.
(The emphasis of these two volumes is quite different from the emphasis of
this book. They deal with optimal control, whereas we take a more general
approach, focusing more on input/output properties, transfer functions, coprime
fractions, realizations, passive and conservative systems, discrete time systems,
model theory, etc.)

Our original main motivation for introducing the class of systems generated
by arbitrary system nodes was that this class is a very natural setting for a
study of impedance passive systems. Such systems need not be well-posed,
but under rather weak assumptions they are generated by system nodes. The
decision not to include a formal discussion of impedance passive systems in this
book was not easy. Once more this decision was dictated partly by the lack of
space and time, and partly by the fact that there is another recently discovered
setting which may be even more suitable for this class of systems, namely the
continuous time analogue of the state/signal systems introduced in Arov and
Staffans (2004, see also Ball and Staffans 2003). Impedance passive systems
are discussed in the spirit of this book in Staffans (2002a, b, c).

Another obvious omission (already mentioned above) is the lack of results
concerning quadratic optimal control. This omission may seem even more
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strange in light of the fact that the original motivation for writing this book
was to present a general theory that could be used in the study of optimal con-
trol problems (of definite and indefinite type). However, also this omission has
two valid reasons. The first one is the same as we mentioned above, i.e., lack of
space and time. The other reason is even more fundamental: the theory of opti-
mal control is at this very moment subject to very active research, and it has not
yet reached the needed maturity to be written down in the form of a monograph.
We are here thinking about a general theory in the spirit of this book. There do,
of course, exist quite mature theories for various subclasses of systems. One
such class is the one which assumes that the system is of the ‘classical’ form
(1.1.1), where A is the generator of a strongly continuous semigroup and the
operators B, C , and D are bounded. This class is thoroughly investigated in
Curtain and Zwart (1995). Systems of this type are easy to deal with (hence,
they have a significant pedagogical value), but they are too limited to cover
many of the interesting boundary control systems encountered in mathematical
physics. (For example, the models developed in Sections 11.6 and 11.7 have
bounded B, C , and D only in very special cases.) Other more general (hence
less complete) theories are found in, e.g., Lions (1971), Curtain and Pritchard
(1978), Bensoussan et al. (1992), Fattorini (1999), and Lasiecka and Triggiani
(2000a, b). Quadratic optimal control results in the setting of L2-well-posed
linear systems are found in Mikkola (2002), Staffans (1997, 1998a, b, c, d),
Weiss (2003), and Weiss and Weiss (1997).

There is a significant overlap between some parts of this book and certain
books which deal with ‘abstract system theory’, such as Fuhrmann (1981)
and Feintuch and Saeks (1982), or with operator theory, such as Lax and
Phillips (1967), Sz.-Nagy and Foiaş (1970), Brodskiı̆ (1971), Livšic (1973),
and Nikol’skiı̆ (1986). In particular, Chapter 11 can be regarded as a natural
continuous-time analogue of one of the central parts of Sz.-Nagy and Foiaş
(1970, rewritten in the language of L2-well-posed linear systems).

1.2 Overview of chapters 2–13

Chapter 2 In this chapter we develop the basic theory of L p-well-posed lin-
ear systems starting from a set of algebraic conditions which is equivalent to
1.1.2. We first simplify the algebraic conditions 1.1.2 by using a part of those
conditions to replace the original two-parameter families At

s , Bt
s , Ct

s , and Dt
s

introduced in Section 1.1 by a semigroup At , t ≥ 0, and three other operators,
the input map B = B0

−∞, the output map C = C∞0 , and the input/output map
D = D∞−∞. The resulting algebraic conditions that A, B, C, and D have to sat-
isfy are listed in 2.1.3 and again in Definition 2.2.1. The connection between the
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quadruple A, B, C, and D and the original four operator families At
s , Bt

s , Ct
s , and

Dt
s is explained informally in Section 2.1 and more formally in Definition 2.2.6

and Theorem 2.2.14. Thus, we may either interpret an L p-well-posed linear
system as a quadruple � = [A B

C D

]
, or as a two-parameter family of operators

�t
s =
[

At
s Bt

s

Ct
s Dt

s

]
, where s represents the initial time and t the final time.

In the case where p = ∞ we often require the system to be Reg-well-posed
instead of L∞-well-posed. Here Reg stands for the class of regulated functions
(which is described in more detail in Section A.1). By a regulated function
we mean a function which is locally bounded, right-continuous, and which
has a left-hand limit at each finite point. The natural norm in this space is the
L∞-norm (i.e., the sup-norm). In this connection we introduce the following
terminology (see Definition 2.2.4). By an L p|Reg-well-posed linear system we
mean a system which is either Reg-well-posed or L p-well-posed for some p,
1 ≤ p ≤ ∞, and by a well-posed linear system we mean a system which is
either Reg-well-posed or L p-well-posed for some p, 1 ≤ p <∞. Thus, the
L p-case with p = ∞ is included in the former class but not in the latter. The
reason for this distinction is that not all results that we present are true for L∞-
well-posed systems. Whenever we write L p|Reg we mean either L p or Reg,
whichever is appropriate at the moment.

In our original definition of the operators B and D we restrict their domains
to consist of those input functions which are locally in L p|Reg with values in
U , and whose supports are bounded to the left. The original range spaces of
C and D consist of output functions which are locally in L p|Reg with values
in Y . However, as we show in Theorem 2.5.4, every L p|Reg-well-posed linear
system has a finite exponential growth bound (equal to the growth bound of
its semigroup). This fact enables us to extend the operators B and D to a
larger domain, and to confine the ranges of C and D to a smaller space. More
precisely, we are able to relax the original requirement that the support of the
input function should be bounded to the left, replacing it by the requirement
that the input function should belong to some exponentially weighted L p|Reg-
space. We are also able to show that the ranges of C and D lie in an exponentially
weighted L p|Reg-space (the exponential weight is the same in both cases, and
it is related to the growth bound of the system). In later discussions we most of
the time use these extended/confined versions of B, C, and D.

As part of the proof of the fact that every L p|Reg-well-posed linear system
has a finite growth bound we show in Section 2.4 that every such system can
be interpreted as a discrete-time system Σ = [ A B

C D

]
with infinite-dimensional

input and output spaces, and with bounded operators A, B, C, and D. More pre-

cisely,
[

A B

C D

] = [AT
0 BT

0

CT
0 DT

0

]
, the discrete-time input space is L p|Reg([0, T ); U ),

and the output space is L p|Reg([0, T ); Y ), for some T > 0. We achieve
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this by regarding L p|Reg([0,∞); U ) as an infinite product of the spaces
L p|Reg([kT, (k + 1)T ); U ), k = 0, 1, 2, . . ., and treating L p|Reg([0,∞); Y ) in
a similar manner.

In Section 2.6 we show that a linear time-invariant causal operator which
maps L p|Regloc([0,∞); U ) into L p|Regloc([0,∞); U ) can be interpreted as
the input/output map of some L p|Reg-well-posed linear system if and only
if it is exponentially bounded. In Section 2.7 we show how to re-interpret an
L p-well-posed linear system with p <∞ as a strongly continuous semigroup
in a suitable (infinite-dimensional) state space. This construction explains the
connection between a well-posed linear system and the semigroups occurring
in scattering theory studied in, e.g., Lax and Phillips (1967).

Chapter 3 Here we develop the basic theory of C0 (i.e., strongly continuous)
semigroups and groups. The treatment resembles the one found in most text-
books on semigroup theory (such as Pazy (1983)), but we put more emphasis
on certain aspects of the theory than what is usually done. The generator of a
C0 semigroup and its resolvent are introduced in Section 3.2, and the celebrated
Hille–Yosida generating theorem is stated and proved in Section 3.4, together
with theorems characterizing generators of contraction semigroups. The pri-
mary examples are shift semigroups in (exponentially weighted) L p-spaces.
Dual semigroups are studied in Section 3.5, both in the reflexive case and the
nonreflexive case (in the latter case the dual semigroup is defined on a closed
subspace of the dual of the original state space). Here we also explain the duality
concept which we use throughout the whole book: in spite of the fact that most
of the time we work in a Banach space instead of a Hilbert space setting, we
still use the conjugate-linear dual rather than the standard linear dual (to make
the passage from the Banach space to the Hilbert space setting as smooth as
possible).

The first slightly nonstandard result in Chapter 3 is the introduction in Sec-
tion 3.6 of “Sobolev spaces” with positive and negative index induced by a
semigroup generator A, or more generally, by an unbounded densely defined
operator A with a nonempty resolvent set.6 If we denote the original state space
by X = X0, then this is a family of spaces

· · · ⊂ X2 ⊂ X1 ⊂ X ⊂ X−1 ⊂ X−2 ⊂ · · · ,
where each embedding is continuous and dense, and (α − A) maps X j+1 one-
to-one onto X j for all α in the resolvent set of A and all j ≥ 0. A similar
statement is true for j < 0: the only difference is that we first have to extend A

6 In the Russian tradition these spaces are known as spaces with a ‘positive norm’ respectively
‘negative norm’. Spaces with positive index are sometimes referred to as ‘interpolation spaces,’
and those with negative index as ‘extrapolation spaces’.
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to an operator A|X j+1 mapping X j+1 into X j (such an extension always exists
and it is unique). We shall refer to this family as the family of rigged spaces
induced by A. The most important of these spaces with positive index is X1,
which is the domain of A equipped with (for example) the graph norm. The
most important of these spaces with negative index is X−1, which will contain
the range of the control operator induced by a system node whose semigroup
generator is the operator A above.

Standard resolvent and multiplicative approximations of the semigroup are
presented in Section 3.7. We then turn to a study of the nonhomogeneous Cauchy
problem, i.e., the question of the existence of solutions of the nonhomogeneous
differential equation

ẋ(t) = Ax(t)+ f (t), t ≥ s,

x(s) = xs .
(1.2.1)

More generally, we often replace A by the extended operator A|X−1 in the
equation above, or by A|X j for some other j ≤ −1. We show that under fairly
mild assumptions on the forcing function f in (1.2.1) the solution produced by
the variation of constant formula

x(t) = At−s xs +
∫ t

s
At−v f (v) dv, (1.2.2)

is indeed a more or less classical solution of (1.2.1), provided we work in a
rigged space X j with a sufficiently negative value of j (most of the time it will
suffice to take j = −1).

In Section 3.9 we develop a symbolic calculus for semigroup generators.
This calculus enables us to introduce rigged spaces Xα of fractional order
α ∈ R. The same calculus is also needed in Section 3.10, where we de-
velop the theory of analytic semigroups (whose generators are sectorial op-
erators). The spectrum determined growth property, i.e., the question of to
what extent the growth bound of a semigroup can be determined from the
spectrum of its generator, is studied in some detail in Section 3.11. We then
take a closer look at the Laplace transform, and present some additional sym-
bolic calculus for Laplace transforms. This leads eventually to frequency do-
main descriptions of the shift semigroups that we originally introduced in the
time domain. Finally, we study invariant and reducing subspaces of semi-
groups and their generators, together with two different kinds of spectral
projections.

Chapter 4 In Chapter 2 we developed the theory of L p|Reg-well-posed linear
systems starting from a set of algebraic conditions equivalent to 1.1.2 com-
bined with appropriate continuity conditions. Here we replace these algebraic
conditions by a set of differential/algebraic conditions, i.e., we try to recover
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as much as possible of the system (1.1.1) that we used to motivate the al-
gebraic conditions (1.1.2) in the first place. We begin by proving in Section
4.2 the existence of a control operator B mapping the input space U into the
extrapolation space X−1. This operator is called bounded if R (B) ⊂ X . In
the next section we give conditions under which the state trajectory x(t) of a
L p|Reg-well-posed linear system is a solution of the non homogeneous Cauchy
problem

ẋ(t) = A|X x(t)+ Bu(t), t ≥ s,

x(s) = xs .
(1.2.3)

Here the values in the first of these equations (including ẋ(t)) lie in X−1, and
A|X is the extension of the semigroup generator A to an operator which maps
the original state space X into X−1. Under suitable additional smoothness as-
sumptions x will be continuously differentiable in X (rather than differentiable
almost everywhere in X−1), but it will not, in general, be possible to replace
A|X by A in (1.2.3) (i.e., it need not be true that x(t) ∈ D (A) = X1). The re-
sults of this section depend heavily on the corresponding results for the non
homogeneous Cauchy problem proved in Chapter 3.

The existence of an observation operator C mapping the interpolation space
X1 into the output space Y is established in Section 4.4. This operator is called
bounded if it can be extended to a bounded linear operator from X into Y .

The question of how to define a feedthrough operator, i.e., how to find an
operator corresponding to the operator D in (1.1.1), is more complicated. (This
question is the main theme of Chapter 5.) Two cases where this question has a
simple solution are discussed in Section 4.5: one is the case where the control
operator is bounded, and the other is the case where the observation operator is
bounded.

In Section 4.6 we prove that every L p|Reg-well-posed linear system has an
analytic transfer function. It is operator-valued, with values in B(U ; Y ) (where
U is the input space and Y is the output space). Originally it is defined on a
right half-plane whose left boundary is determined by the growth bound of the
system, but it is later extended to the whole resolvent set of the main operator. In
this section we also prove the existence of a system node of the type described
in Definition 1.1.1. Here we introduce a slightly different notation compared to
the one in (1.1.3): we denote the ‘top row’ of S by A&B instead of SX , and the
‘bottom row’ of S by C&D instead of SY . The reason for this notation is that
intuitively A&B can be regarded as a combination of two operators A and B
which cannot be completely separated from each other, and analogously, C&D
can intuitively be regarded as a combination of two other operators C and D
which cannot either be completely separated from each other. We call C&D
the combined observation/feedthrough operator. Actually, the splitting of A&B
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into two independent operators is always possible in the sense that A&B is the
restriction of the operator

[
A|X B

]
(which maps

[
X
U

]
continuously into X−1)

to its domainD (A&B) = D (S) = {[ x
u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}
. Thus, this

separation is based on the fact that the domain of A&B can be extended to all
of
[

X
U

]
at the expense of also extending the range space from X to X−1. The

question to what extent C&D can be split into two operators C and D is more
difficult, and it is discussed in Chapter 5.

Motivated by the preceding result we proceed in Section 4.7 to study linear
systems which are not necessarily L p|Reg-well-posed, but which still have a dy-
namics which is determined by a system node. In passing we introduce the even
more general class of operator nodes, which differs from the class of system
nodes in the sense that the operator A in Definition 1.1.1 must still be densely
defined and have a non-empty resolvent set, but it need not generate a semi-
group. It is still true that every operator node has a main operator A ∈ B(X1; X )
(i.e., the operator A in Definition 1.1.1), a control operator B ∈ B(U ; X−1), an
observation operator C ∈ B(X1; Y ), and an analytic transfer function defined
on the resolvent set of A.

The system nodes of some of our earlier examples of L p|Reg-well-posed
linear systems are computed in Section 4.8, including the system nodes of the
delay line and of the Lax–Phillips semigroup presented in Section 2.7. Diagonal
and normal systems are studied in Section 4.9.

Finally, in Section 4.10 it is shown how one can ‘peel off’ the inessential
parts of the input and output spaces, namely the null space of the control op-
erator and a direct complement to the range of the observation operator. These
subspaces are of less interest in the sense that with respect to these subspaces
the system acts like a static system rather than a more general dynamic system
(a system is static if the output is simply the input multiplied by a fixed bounded
linear operator; thus, it has no memory, and it does not need a state space). The
same section also contains a different type of additive decomposition: to any
pair of reducing subspaces of the semigroup generator, one of which is con-
tained in its domain, it is possible to construct two independent subsystems in
such a way that the original system is the parallel connection of two separate
subsystems.

Chapter 5 In this chapter we take a closer look at the existence of a feedthrough
operator, i.e., an operator D ∈ B(U ; Y ) corresponding to the operator D in
(1.1.1). We begin by defining a compatible system. This is a system whose
combined observation/feedthrough operator C&D (this is the same operator
which was denoted by SY in Definition 1.1.1) can be split into two independent
operators C|W and D in the following sense. There exists a Banach space W ,
X1 ⊂ W ⊂ X , and two operators C|W ∈ B(W ; Y ) and D ∈ B(U ; Y ) such that
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C&D is the restriction of
[
C|W D

]
to its domain D (C&D) = D (S). We warn

the reader that neither is the space W unique, nor are the operators C|W and D
corresponding to a particular space W unique (except in the case where X1 is
dense in W ).7 Note that this splitting of C&D differs from the corresponding
splitting of A&B described earlier in the sense that the operators C|W and D
have the same range space Y as the original observation/feedthrough operator.8

Also note that C|W is an extension of the original observation operator C ,
whose domain is X1 ⊂ W . There is a minimal space W , which we denote by
(X + BU )1. This is the sum of X1 and the range of (α − A|X )−1 B, where α is
an arbitrary number in ρ(A). Often it is enough to work in this smallest possible
space W , but sometimes it may be more convenient to use a larger space W
(for example, in the case where X1 is not dense in (X + BU )1, or in the regular
case which will be introduced shortly). One of the most interesting results in
Section 5.1 (only recently discovered) says that most L p|Reg-well-posed linear
systems are compatible. In particular, this is true whenever the input space U
and the state space X are Hilbert spaces.

Section 5.2 deals with boundary control systems. These are systems (not
necessarily well-posed) whose control operator B is strictly unbounded in the
sense that R (B) ∩ X = 0. It turns out that every boundary control system is
compatible, and that it is possible to choose the operator D in a compatible
splitting of C&D in an arbitrary way. (The most common choice is to take
D = 0.)

As a preparation for the next major subject treated in Chapter 5 we study
various approximations of the identity operator acting on the state space in
Section 5.3. By using these approximations and summability methods we extend
the observation operator of an L p|Reg-well-posed linear system � to a larger
domain in Section 5.4. Apart from using different summability methods we
also distinguish between limits in the weak, the strong, or the uniform operator
topology. The system � is called regular if this extension of the observation
operator is a compatible extension of the type described above, i.e., together
with some operator D ∈ B(U ; Y ) it provides us with a compatible splitting of
the combined observation/feedthrough operator C&D. In this case it is possible
to develop some explicit formulas for the operator D. Maybe the simplest of
these formulas is the one which says that if we denote the transfer function of
� by D̂, then D = limα→+∞ D̂(α) (here α is real, and the limit is taken in the
weak, strong, or uniform sense). It turns out that all L1-well-posed systems are
weakly regular, and they are even strongly regular whenever their state space

7 However, D is determined uniquely by C|W , and C|W is determined uniquely by D.
8 This is important, e.g., in the case where X is infinite-dimensional but Y is finite-dimensional,

in which case Y does not have any nontrivial extension in which Y is dense.
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is reflexive (see Theorem 5.6.6 and Lemma 5.7.1(ii)). All L∞-well-posed and
Reg-well-posed systems are strongly regular (see Lemma 5.7.1(i)). The standard
delay line is uniformly regular (with D = 0), and so are all typical L p-well-
posed systems whose semigroup is analytic. Roughly speaking, in order for an
L p|Reg-well-posed linear system not to be regular both the control operator B
and the observation operator C must be ‘maximally unbounded’ [see Weiss
and Curtain (1999, Proposition 4.2) or Mikkola (2002) for details].

Chapter 6 Here we introduce various transformations that can be applied to
an L p|Reg-well-posed linear system or to a system or operator node. Some
of these transformations produce systems which evolve in the backward time
direction. We call these systems anti-causal, and describe their basic proper-
ties in Section 6.1. A closely related notion is the time-inversion discussed in
Section 6.4. By this we mean the reversal of the direction of time. The time-
inverse of a (causal) L p|Reg-well-posed linear system or system node is always
an anti-causal L p|Reg-well-posed linear system or system node. However, it is
sometimes possible to alternatively interpret the new system as a causal system,
of the same type as the original one. This is equivalent to saying that the original
causal system has an alternative interpretation as an anti-causal system. This
will be the case if and only if the system semigroup can be extended to a group,
and (only) in this case we shall call the original system time-invertible. Com-
patibility is always preserved under time-inversion, but none of the different
types of regularity (weak, strong, or uniform) need be preserved.

In Section 6.2 we present the dual of an L p-well-posed linear system with
p <∞ in the case where the input space U , the output space Y , and the state
space X are reflexive. This dual can be defined in two different ways which
are time-inversions of each other: the causal dual evolves in the forward time
direction, and the anti-causal dual evolves in the backward time direction.
Both of these are Lq -well-posed with 1/p + 1/q = 1 (q = ∞ if p = 1). We
also present the dual of a system or operator node S. Here the causal dual is
simply the (unbounded) adjoint of S, whereas the anti-causal dual is the adjoint
of S with an additional change of sign (due to the change of the direction of
time).

In the rest of this chapter we discuss three different types of inversions which
can be carried out under suitable additional assumptions on the system, namely
flow-inversion, time-inversion, and time-flow-inversion. We have already de-
scribed time-inversion above. Flow-inversion is introduced in Section 6.3. It
amounts to interchanging the input with the output, so that the old input be-
comes the new output, and the old output becomes the new input. For this to
be possible the original system must satisfy some additional requirements. A
well-posed linear system (recall that we by this mean an L p-well-posed linear
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system with p <∞ or a Reg-well-posed linear system) has a well-posed flow-
inverse if and only if the input/output map has a locally bounded inverse. In this
case we call the system flow-invertible (in the well-posed sense). Also system
and operator nodes can be flow-inverted under suitable algebraic assumptions
described in Theorems 6.3.10 and 6.3.13. Under some mild conditions, compat-
ibility and strong regularity are preserved in flow-inversion.9 Weak regularity
is not always preserved, but uniform regularity is.

Time-flow-inversion is studied in Section 6.5. It amounts to performing
both the preceding inversions at the same time. If the original system is flow-
invertible and the flow-inverted system is time-invertible, then we get the
time-flow-inverted system by carrying out these two inversions in sequence.
A similar statement is true if the original system is time-invertible and the
time-inverted system is flow-invertible. However, a system may be time-flow-
invertible even if it is neither flow-invertible nor time-invertible. The exact
condition for time-flow-invertibility in the well-posed case is that the block op-

erator matrix
[

At
0 Bt

0
Ct

0 Dt
0

]
introduced in Section 1.1 should have a bounded inverse

for some (hence, for all) t > 0. For example, all conservative scattering systems
(defined in Chapter 11) are time-flow-invertible. It is an interesting fact that the
conditions for flow-invertibility, time-invertibility, and time-flow-invertibility
are all independent of each other in the sense that any one of these conditions
may hold for a given system but not the other two, or any two may hold but not
the third (and there are systems where none of these or all of these hold).

Finally, in Section 6.6 we study partial flow-inversion. In ordinary flow-
inversion we exchange the roles of the full input and the full output, but in
partial flow-inversion we only interchange a part of the input with a part of the
output, and keep the remaining parts of the input and output intact. This transfor-
mation is known under different names in different fields: people in H∞ control
theory call this a chain scattering transformation, and in the Russian tradition a
particular case is known under the name Potapov–Ginzburg transformation. The
technical difference between this transformation and the original flow-inversion
is not very big, and it can be applied to a wider range of problems. In particular,
the output feedback which we shall discuss in the next chapter can be regarded
as a special case of partial-flow-inversion (and the converse is true, also).

Chapter 7 This chapter deals with feedback, which is one of the most central
notions in control theory. The most basic version is output feedback discussed
in Section 7.1. In output feedback the behavior of the system is modified by
adding a term K y to the input, where y is the output and K is a bounded linear

9 At the moment there are no counter-examples known where strong regularity would not be
preserved.
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operator from the output space Y to the input space U . As we mentioned above,
output feedback can be regarded as a special case of partial flow-inversion,
which was discussed in Section 6.6, and it would be possible to prove all the
results in Section 7.1 by appealing to the corresponding results in Section 6.6.
However, since feedback is of such great importance in its own right, we give
independent proofs of most of the central results (the proofs are slightly modified
versions of those given in Section 6.6). In particular, an operator K ∈ B(Y ; U )
is called an admissible feedback operator for a well-posed linear system with
input space U , output space Y , and input/output map D if the operator 1− KD

has a locally bounded inverse (or, equivalently, 1−DK has a locally bounded
inverse); in this case the addition of K times the output to the input leads to
another well-posed liner system, which we refer to as the closed-loop system.
Some alternative feedback configurations which are essentially equivalent to
the basic output feedback are presented in Section 7.2.

From this simple notion of output feedback it is possible to derive some
more advanced versions by first adding an input or an output to the system, and
then using the new input or output as a part of a feedback loop. The case where
we add another output which we feed back into the original input is called state
feedback, and the case where we add another input to which we feed back the
original output is called output injection. Both of these schemes are discussed
in Section 7.3.

Up to now we have in this chapter only dealt with the well-posed case. In
Section 7.4 we first investigate how the different types of feedback described
above affect the corresponding system nodes, and then we use the resulting
formulas to define generalized feedback which can be applied also to non-well-
posed systems induced by system nodes. This type of feedback is defined in
terms of operations involving only the original system node, feedback operators,
and extensions of the original system node corresponding to the addition of new
inputs and outputs. To save some space we do not give independent proofs of
most of the results of this section, but instead reduce the statements to the
corresponding ones in Section 6.6.

In Section 7.5 we investigate to what extent compatibility and regularity are
preserved under feedback (the results are analogous to those for flow-inversion).
As shown in Section 7.6, output feedback commutes with the duality transfor-
mation (but state feedback becomes output injection under the duality transform,
since the duality transform turns inputs into outputs and conversely). Some spe-
cific feedback examples are given in Section 7.7, with a special emphasis on
the preservation of compatibility.

Chapter 8 So far we have not said much about the stability of a system (only
well-posedness, which amounts to local boundedness). Chapter 8 is devoted to
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stability and various versions of stabilizability. In our interpretation, stability
implies well-posedness, so here we only discuss well-posed systems.10

By the stability of a system we mean that the maps from the initial state and
the input function to the final state and the output are not just locally bounded
(which amounts to well-posedness), but that they are globally bounded. In other
words, in the L p-case, an arbitrary initial state x0 and an arbitrary input function
in L p([0,∞); U ) should result in a bounded trajectory x(t), t ≥ 0, and an output
in L p([0,∞); Y ). The system is weakly or strongly stable if, in addition, the
state x(t) tends weakly or strongly to zero as t →∞.11 As shown in Section 8.1,
to some extent the stability of the system is reflected in its frequency domain
behavior. In particular, the transfer function is defined in the full open right-half
plane. Exponential stability means that the system has a negative growth rate.

A (possibly unstable) system is stabilizable if it is possible to make it stable
through the use of some state feedback. It is detectable if it is possible to
make it stable through the use of some output injection. (Thus, every stable
system is both stabilizable and detectable.) When we add adjectives such as
‘exponentially,’ ‘weakly,’ or ‘strongly’ we mean that the resulting system has
the indicated additional stability property. A particularly important case is the
one where the system is both stabilizable and detectable, and each type of
feedback stabilizes not only the original system, but the extended system which
we get by adding the new input and the new output (thus, it is required that
the state feedback also stabilizes the new input used for the output injection,
and conversely). We refer to this situation by saying that the system is jointly
stabilizable and detectable.

A very important fact is that the transfer function of every jointly stabilizable
and detectable system has a doubly coprime factorization, and that this factor-
ization can be computed directly from a jointly stabilizing and detecting state
feedback and output injection pair. This is explained in Section 8.3, together
with the basic definitions of coprimeness and coprime fractions. Both time do-
main and frequency domain versions are included. We interpret coprimeness
throughout in the strongest possible sense, i.e., in order for two operators to be
coprime we require that the corresponding Bezout identity has a solution.

In applications it can be very important that a particular input/output map (or
its transfer function) has a doubly coprime factorization, but it is often irrelevant

10 We regret the fact that we have not been able to include a treatment of the important case
where the original system is non-well-posed, but can be made well-posed by appropriate
feedback. The reason for this omission is simply the lack of space and time. Most of the
necessary tools are found in Chapters 6 and 7.

11 In the Reg-well-posed case we add the requirements that the input function and output function
should also tend to zero at infinity. The same condition with the standard limit replaced by an
essential limit is used in the L∞ case as well.
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how one arrives at this factorization. The existence of a doubly coprime factor-
ization is a pure input/output property which can be stated without any reference
to an underlying system. Moreover, it is easy to construct examples of systems
which are not jointly stabilizable and detectable, but whose input/output map
still has doubly coprime factorizations. We address this question in Section 8.4,
where we introduce the notions of coprime stabilizability and detectability. We
call a state feedback right coprime stabilizing if the closed-loop system corre-
sponding to this feedback is stable and produces a right coprime factorization of
the input/output map. Analogously, an output injection is left coprime detecting
if the closed-loop system corresponding to this feedback is stable and produces
a left coprime factorization of the input/output map.

The last theme in this chapter is the dynamic stabilization presented in Sec-
tion 8.5. Here we show that every well-posed jointly stabilizable and detectable
system can be stabilized by means of a dynamic controller, i.e., we show that
there is another well-posed linear system (called the controller) such that the
interconnection of these two systems produces a stable system. We also present
the standard Youla parametrization of all stabilizing controllers.

Chapter 9 By a realization of a given time-invariant causal map D we mean a
(often well-posed) linear system whose input/output map is D. In this chapter
we study the basic properties of these realizations. For simplicity we stick to
the L p|Reg-well-posed case. We begin by defining what we mean by a minimal
realization: this is a realization which is both controllable and observable.
Controllability means that the range of the input map (the map denoted by
B above) is dense in the state space, and observability means that the output
map (the map denoted by C above) is injective. As shown in Section 9.2, any
two L p|Reg-well-posed realizations of the same input/output map are pseudo-
similar to each other. This means roughly that there is a closed linear operator
whose domain is a dense subspace of one of the two state spaces, its range is
a dense subspace of the other state space, it is injective, and it intertwines the
corresponding operators of the two systems. Such a pseudo-similarity is not
unique, but there is one which is maximal and another which is minimal (in the
sense of graph inclusions). There are many properties which are not preserved
by a pseudo-similarity, such as the spectrum of the main operator, but pseudo-
similarities are still quite useful in certain situations (for example, in Section
9.5 and Chapter 11).

In Section 9.3 we show how to construct a realization of a given input/output
map from a factorization of its Hankel operator.

The notions of controllability and observability that we have defined above
are often referred to as approximate controllability or observability. Some other
notions of controllability and observability (such as exact, or null in finite time,
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or exact in infinite time, or final state observable) are presented in Section 9.4,
and the relationships between these different notions are explained. In particular,
it is shown that every controllable L p-well-posed linear system with p <∞
whose input map B and output map C are (globally) bounded can be turned into
a system which is exactly controllable in infinite time by replacing the original
state space by a subspace with a stronger norm. If it is instead observable, then
it can be turned into a system which is exactly observable in infinite time by
completing the original state space with respect to a norm which is weaker
than the original one. Of course, if it is minimal, then both of these statements
apply.

Input normalized, output normalized, and balanced realizations are presented
in Section 9.5. A minimal realization is input normalized if the input map B

becomes an isometry after its null space has been factored out. It is output nor-
malized if the output map C is an isometry. These definitions apply to the general
L p-well-posed case in a Banach space setting. In the Hilbert space setting with
p = 2 a minimal system is input normalized if its controllability gramian BB∗

is the identity operator, and it is output normalized if its observability gramian
C∗C is the identity operator. We construct a (Hankel) balanced realization by
interpolating half-way between these two extreme cases (in the Hilbert space
case with p = 2 and a bounded input/output map). This realization is charac-
terized by the fact that its controllability and observability gramians coincide.
All of these realizations (input normalized, output normalized, or balanced) are
unique up to a unitary similarity transformation in the state space. The balanced
realization is always strongly stable together with its dual.

A number of methods to test the controllability or observability of a system in
frequency domain terms are given in Section 9.6, and some further time domain
test are given in Section 9.10. In Section 9.7 we discuss modal controllability
and observability, i.e., we investigate to what extent it is possible to control
or observe different parts of the spectrum of the main operator (the semigroup
generator). We say a few words about spectral minimality in Section 9.8. This
is the question about to what extent it is possible to construct a realization
with a main operator whose spectrum essentially coincides with the points of
singularities of the transfer function. A complete answer to this question is not
known at this moment (and it may never be).

Some comments on to what extent controllability and observability are pre-
served under various transformations of the system (including feedback and
duality) are given in Sections 9.9 and 9.10.

Chapter 10 In Chapter 4 we saw that every L p|Reg-well-posed linear system
has a control operator B mapping the input space U into the extrapolation
space X−1, and also an observation operator C mapping the domain X1 of the
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semigroup generator into the output space. Here we shall study the converse
question: given a semigroup generator A and an operator B or C of the type
described above, when can B or C be interpreted as the control operator, re-
spectively, observation operator of an L p|Reg-well-posed linear system whose
main operator is A? We call B or C admissible whenever the answer to this
question is positive. It is called stable if, in addition, the corresponding input or
output map is bounded. The input map B of the system is determined uniquely
by A and B, and the output map C is determined uniquely by A and C . Note
that in this formulation there is no coupling between B and C , i.e., they need
not be the control and observation operators of the same L p|Reg-well-posed
linear system. If they are, then we call them jointly admissible. In this case they
do not only determine (together with A) the input map B and the output map
C of the system uniquely, but also the input/output map D, up to an arbitrary
static constant (i.e., an undetermined feedthrough term in B(U ; Y )).

After some preliminaries presented in Section 10.1 we proceed to show
in Section 10.2 that the two questions about the admissibility of a control,
respectively, observation operator are dual to each other.

In Sections 10.3–10.7 we restrict our focus to the L2-well-posed Hilbert
space case. We begin by showing in Section 10.3 that there is a one-to-one cor-
respondence between the space TIC(U ; Y ) of all time-invariant causal contin-
uous operators mapping L2(R+; U ) into L2(R+; Y ) and the space of frequency
domain multiplication operators with a symbol in H∞(U ; Y ) (the space of all
B(U ; Y )-valued bounded analytic function on the open right-half plane C+).
The correspondence between the time and frequency domain operators is the
same as before, i.e, the frequency domain multiplier is the transfer function of
the time-domain operator. However, in the new setting we can from the bound-
edness of the transfer function conclude that the corresponding time-domain
operator is bounded as well (which is not true in the general L p|Reg-well-posed
Banach space case). Here we also state and prove the well-known fact that, in
the L2-well-posed Hilbert space case, the Laplace transform maps L2(R+; U )
one-to-one onto H 2(C+; U ). A related result is that an output map C is bounded
from X to L2(R+; Y ) if and only if the function λ �→ C(λ− A)−1x belongs to
H 2(C+; Y ) for each x ∈ X . The analogous dual result for input maps is also
valid.

An input map B is bounded on L2(R−,U ) if and only if the controllability
gramian BB∗ is a bounded operator on X , and an output map C is bounded from
X into L2(R+, Y ) if and only if the observability gramian C∗C is a bounded
operator on X (here we require U , X , and Y to be Hilbert spaces, and we
identify them with their own duals). These two operators on the state space X
can be characterized in several different ways, as shown in Section 10.4. Among
others, they are the solutions of the controllability, respectively, observability
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Lyapunov equations. This gives us an alternative way of testing the admissibility
and stability of control and observation operators.

There are some special admissibility and stability tests that can be applied
in the Hilbert space case with one-dimensional input and output cases. These
tests require the semigroup of the system to be a contraction semigroup (after a
possible exponential rescaling). To present these results we need the notion of
a Carleson measure over the closed right half-plane C

+
. The most basic results

about such measures are presented in Section 10.5. By using these results we are
able to give necessary and sufficient conditions for the admissibility and stabil-
ity of control and observation operators with scalar input, respectively, output
spaces in the case where the system semigroup is diagonal or normal (see Section
10.6; by a diagonal semigroup we mean a semigroup whose generator is normal
and has a complete set of eigenvectors). The same result can be extended to the
more general case of a contraction semigroup, and this is done in Section 10.7.

Finally, in Section 10.8 we return to the general Banach space L p-well-posed
case with p <∞ and give some necessary and sufficient conditions for the
admissibility and stability of a control or observation operator in terms of con-
ditions on the corresponding Lax–Phillips semigroup introduced in Section 2.7.

Chapter 11 In this chapter we study passive and conservative systems in a
scattering setting, and we assume throughout that the input space U , the state
space X , and the output space Y are Hilbert spaces. Intuitively, passivity means
that the system has no internal energy sources, and conservativity means that
neither the system itself nor the dual system has any energy sources or sinks.

We begin by presenting the basic results for passive systems in Section 11.1.
A system node S is (scattering) passive if the trajectories of this system node
satisfy the energy inequality (here u is the input, x the state, and y the output)

|x(t)|2X +
∫ t

0
|y(s)|2Y ds ≤ |x0|2X +

∫ t

0
|u(s)|2U ds, t ≥ 0. (1.2.4)

This inequality is stronger than the corresponding well-posedness inequality
(where the right-hand side is multiplied by a finite positive constant M(t)),
so every (scattering) passive system is L2-well-posed. The same inequality
implies that the system is stable (in the sense that we attached to this word in
Chapter 4). It is even true that the semigroup A is a contraction semigroup,
and that the other system operators B, C, and D are contractions. A system is
passive if and only if the dual system is passive, and this is true if and only if
the L2-version of the corresponding Lax–Phillips semigroup is a contraction
semigroup. It is easy to formulate conditions directly on a system node in order
for the corresponding system to be passive; see Theorem 11.1.5. To each passive
system there corresponds a number of deficiency operators, which measure how
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much A, B, C, and D differ from isometries or co-isometries. Many properties
of the system can be expressed in terms of these deficiency operators.

We end Section 11.1 with a decomposition of an arbitrary passive system
into three independent subsystems. The semigroup of the first subsystem is
unitary, and there is no interaction between the state space and the surrounding
world (the control and observation operators are zero, and this part of the state
space is both uncontrollable and unobservable). We shall refer to this subsystem
as the invisible unitary part. The second subsystem is static and unitary, i.e., it
has no state space (meaning that the dimension of its state space is zero), and it
is represented by a plain unitary feedthrough operator from a part of the input
space to a part of the output space. All the nontrivial interaction between the state
space and the surrounding world takes place in the remaining third subsystem.
This part is completely nonunitary in the sense that its semigroup does not have
any reducing subspace on which it is unitary, and its transfer function is purely
contractive (it has no eigenvalues with absolute value one). More generally,
using the terminology introduced above, a system is called purely passive if
it has no static unitary part, and it is called completely nonunitary if it has no
invisible unitary part.12

Energy preserving and conservative systems are presented in Section 11.2. A
system is energy preserving if (1.2.4) holds in the form of an equality instead of
an inequality, and it is conservative if both the system itself and the dual system
are energy preserving. Equivalently, a system is energy preserving if and only if
the L2-version of the corresponding Lax–Phillips semigroup is isometric, and
it is conservative if and only if the Lax–Phillips semigroup is unitary. Various
direct conditions on a given system node to generate an energy preserving
system are also presented.

In an energy preserving system no energy is lost, but it may be first transferred
from the input to the state, and then ‘trapped’ in the state space forever, so that it
can no longer be retrieved from the outside. Thus, from the point of view of an
external observer, a conservative system may be ‘lossy.’ To specifically exclude
this case we introduce the notion of losslessness in Section 11.3. A system is
semi-lossless if its input/output map is an isometry (as a map from L2(R+; U )
into L2(R+; Y )), and it is lossless if the input/output map is unitary (thus, both
the original system and its dual are semi-lossless). Equivalently, a system is
semi-lossless if its transfer function is inner (from the left), and it is lossless if
the transfer function is bi-inner (inner from both sides). We show that an energy
preserving system is lossless if and only if the restriction of its semigroup to
the reachable subspace is strongly stable, and that a completely nonunitary

12 In the conservative case a completely nonunitary system is often called simple.
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conservative system is lossless if and only if its semigroup is strongly stable
together with its adjoint.

In Section 11.4 we first define what we mean by an orthogonal dilation or
compression of a semigroup: the semigroup Ã acting on X̃ is an orthogonal
dilation of A acting on X , or equivalently, A is an orthogonal compression
of Ã, if X is a closed subspace of X̃ and At = πX Ãt

|X , t ≥ 0, where πX is
the orthogonal projection of X̃ onto X . We then prove that every contraction
semigroup can be dilated into an isometric semigroup. This dilation is unique
up to a unitary similarity transformation in the state space if we require it to
be orthogonal and minimal in the sense that the orbits of (forward) trajectories
starting in X are dense in the larger state space X̃ . This isometric semigroup can
in turn be dilated into a unitary semigroup, which is also unique up to a unitary
similarity transformation in the state space if we require it to be minimal (here we
define minimality by using both forward and backward trajectories). Combining
the two transformations we get an orthogonal unitary dilation of the original
contraction semigroup, which is unique up to unitary similarity. All of this is well
known, but it is less well known that these dilations have natural interpretations
as well-posed linear systems: to get an isometric dilation we simply add a
suitable output to the original semigroup and pass to the corresponding Lax–
Phillips semigroup (with no input). To get the unitary dilation we further add
a suitable input. This dilation theorem can be re-interpreted in the following
way. Every contraction semigroup gives rise to a conservative system (whose
semigroup is the given one). Without loss of generality, we may take this system
to be purely passive, and with this extra requirement the resulting system is
unique up to unitary similarity transformations in the input and output spaces.
The (purely contractive) transfer function of this conservative system is usually
called the characteristic function of its main operator. Some of the results of this
section are expanded to dilations and compressions of systems in Section 11.5.

In Section 11.6 we proceed to develop a universal model for a contraction
semigroup (on a Hilbert space), i.e., we show that every contraction semigroup
is unitarily similar to a compression of a bilateral shift defined on a suitable L2-
space. At the same time we get a universal model for an arbitrary completely
nonunitary conservative system (it is unitarily similar to a particular system
whose semigroup is the compression of a bilateral shift). It is actually possible
to get two different unitary similarities by starting either from the original
system or from its dual. These models become especially simple in the case
where the system is semi-lossless (or lossless).

The transfer function of every passive system (hence of every conservative
system) is a contraction on the open right half-plane C+. In Section 11.7 we
prove the converse: every contractive analytic operator-valued function (be-
tween two Hilbert spaces) on C+ is the transfer function of a conservative
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system, which we, without loss of generality, may take to be completely nonuni-
tary. This completely nonunitary conservative system is unique up to a unitary
similarity transformation in the state space.

Controllable energy preserving and minimal passive realizations of a given
contractive analytic operator-valued function are studied in Section 11.8. A
controllable energy preserving realization is unique up to unitary similarity.
Among all minimal passive realizations there are two extreme ones, one whose
norm in the state space is the weakest possible one (the optimal realization
whose norm is called the available storage), and another whose norm in the
state space is the strongest possible one (the∗-optimal realization whose norm is
called the required supply). Both of these are determined uniquely by the transfer
function up to unitary similarity. By interpolating half-way between these two
extreme cases we get a balanced passive realization (sometimes also called the
balanced bounded real realization), which is also unique up to unitary similarity.

Finally, in Section 11.9 we say a few words about the spectrum of a conser-
vative system, relating it to the invertibility of the transfer function.

Chapter 12 The main part of this chapter is a short overview of the theory of
discrete time systems of the type

xk+1 = Axk + Buk,

yk = Cxk + Duk, k ∈ Z+ = {0, 1, 2, . . .} , (1.2.5)

where A ∈ B(X ), B ∈ B(U ; X ), C ∈ B(X ; Y ), D ∈ B(U ; Y ) and U , X , and Y
are Banach spaces. Here A is the main operator, B is the control operator, C is
the observation operator, and D is the feedthrough operator. The discrete time
semigroup A, input map B, output map C, and input/output map D are given
by

(Ax)k = Ak x, k ∈ Z+,

Bu =
∞∑

k=0

AkBu−k−1,

(Cx)k = CAk x, k ∈ Z+,

(Du)k =
∞∑

i=0

CAiBuk−i−1 + Duk, k ∈ Z = {0,±1,±2, . . .} ,

where u = {uk}k∈Z represents a U -valued sequence with finite support and
x ∈ X .

The local discrete time theory is much simpler than the corresponding con-
tinuous time theory due to the boundedness of the generators A, B, C, and D.
However, this simplicity disappears when we look at the global behavior of
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solutions (over the full half-axis Z+). There is actually a very close analogy
between the global discrete time and continuous time theories.

Section 12.1 contains a presentation of the basic discrete time setting, in-
cluding the definition of the Z -transform (which is the discrete time analogue
of the Laplace transform). We use the ‘engineering’ version of this transform,
meaning that the Z -transform of the sequence {uk}k∈Z is

∑
k∈Z z−kuk .13The

advantage of this version of the Z -transform is that the formula for the transfer
function becomes the same as in continuous time, namely

D̂(z) = C(z − A)−1B+ D, z ∈ ρ(A).

Clearly, this transfer function is analytic in a neighborhood of infinity, and the
feedthrough operatorD is the value of D̂ at infinity. The section ends with a short
description of how our earlier continuous time results can be translated into dis-
crete time (with essentially the same proofs or simplified versions of the earlier
proofs). This includes notions such as duality, flow-inversion, time-inversion,
time-flow-inversion, feedback, stabilization and detection, �p-stability, control-
lability, observability, admissibility, passivity, and conservation of energy.

In Section 12.2 we study the frequency domain linear fractional transfor-
mations of a continuous time system, interpreting the transformed system as a
discrete time system. Here the discrete time main operator A is a linear frac-
tional transformation of the continuous time main operator A, and the discrete
time transfer function D̂ can be obtained from the continuous time transfer
function D̂ by applying the same linear transformation to the argument of D̂.
This linear fractional transformation preserves the reachable and observable
subspaces whenever the image of infinity lies in the unbounded component
of the resolvent set of the discrete time generator (but it need not preserve
these subspaces if the above condition is violated). We also point out that if we
interpret a discrete time system (with bounded generating operators) as a con-
tinuous time system (with the same generating operators), then the reachable
and observable subspaces are the same in both interpretations.

In Section 12.3 we specialize to the �2-bounded Hilbert space case, where
the main operator is a contraction which does not have −1 as an eigenvalue.
We show that this class of systems can be mapped one-to-one onto the class
of all L2-stable continuous time (well-posed) linear systems whose semigroup
is a contraction semigroup. The mapping between these two classes even pre-
serves the norms of most of the involved (integral level) operators. We shall
refer to the time-domain version of this map as the Laguerre transform, and to
the frequency domain version as the Cayley transform. The discrete time main

13 In the ‘mathematical version’ of this transform one replaces z−k by zk .
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operator is called the co-generator of the continuous time semigroup. The La-
guerre transform does not preserve local properties, i.e., if we know a finite part
of a continuous time trajectory, then this does not tell us much about a finite part
of the corresponding discrete time trajectory. However, most global properties
are preserved, such as stability and strong stability, invariant subspaces of the
main operator, observability and controllability (and more generally, the reach-
able and unobservable subspaces), passivity, energy preservation, conservation
of energy, deficiency operators, and so on.

Section 12.4 is again devoted to continuous time systems. It uses the theory
of Section 12.3 to develop the continuous time reciprocal transform (the same
transform has a discrete time interpretation too: there it stands for time inver-
sion). This transformation corresponds to the linear fractional transformation
z �→ 1/z in the complex plane, and it requires the main operator A to be injec-
tive (so that A−1 exists). Like the Laguerre transform the reciprocal transform
does not preserve local properties, but it preserves most global properties, at
least if the original semigroup is a contraction semigroup (e.g., all the properties
listed at the end of the preceding paragraph are preserved).

Appendix Section A.1 describes the most important properties of the class
of regulated functions, which we use as a substitute for L∞ in many places.
In Section A.2 we develop the polar decomposition of a closed linear operator
between two Hilbert spaces, and show that every positive (possibly unbounded)
operator on a Hilbert space has a unique positive square root. Section A.3 lists
a number of basic results about convolutions, and in Section A.4 we study the
inverses of block matrices (where each entry is a bounded operator).



2

Basic properties of well-posed linear systems

In this chapter we describe the basic properties of well-posed linear systems.
We work directly with the operators that map the initial state and the input
function into the final state and the output function, and describe their algebraic
properties. Different continuity assumptions give different types of well-posed
systems. In particular, we show that a well-posed linear system may be in-
terpreted as a strongly continuous semigroup in a suitable state space. The
alternative description of a well-posed linear system by means of a differential
system will be given later in Chapter 4.

2.1 Motivation

To motivate the notion of a well-posed linear system that will be introduced
in the next section we first take a closer look at the traditional state space
system

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t), t ≥ s,

x(s) = xs .

(2.1.1)

Here s is a specified initial time, often taken to be zero. We shall occasionally
use diagrams of the type drawn in Figure 2.1 to describe these systems. The
operator A is supposed to generate a strongly continuous semigroup At on a
Banach space X , the state space. For the moment we assume that the control
operator B and the observation operator C are bounded linear operators, i.e.,
B ∈ B(U ; X ) and C ∈ B(X ; Y ), where U and Y are two more Banach spaces,
the input and output spaces. The feedthrough operator D is also bounded, i.e.,
D ∈ B(U ; Y ). We call u the input function (or control), x the state trajectory,
and y the output function (or observation) of this system. The state trajectory

28



2.1 Motivation 29

u
C

D

y

x0

x
B x = Ax + Bu

+

+

Figure 2.1 Regular well-posed linear system

x is required to be a strong solution of (2.1.1), i.e., the state x and output y are
given by

x(t) = At−s xs +
∫ t

s
At−vBu(v) dv, t ≥ s,

y(t) = CAt−s xs + C
∫ t

s
At−vBu(v) dv + Du(t), t ≥ s.

(2.1.2)

The preceding formulas define the state trajectory x(t) and the output func-
tion y(t) at time t ≥ s in terms of the given initial state xs and the input function
u(v), v ≥ s. By separating the contributions of xs and u to x(t) and y from each
other we get a total of four different maps,

x(t) = At−s xs +Bt
su, t ≥ s,

y = Cs xs +Dsu,
(2.1.3)

where Bt
s (the mapping from the input to the final state), Cs (the mapping from

the initial state to the output function), and Ds (the mapping from the input to
the output) are given by

Bt
su :=

∫ t

s
At−vBu(v) dv, t ≥ s,

(Cs xs)(t) := CAt−s xs, t ≥ s,

(Dsu)(t) := C
∫ t

s
At−vBu(v) dv + Du(t), t ≥ s.

(2.1.4)

So far we have made only marginal use of the time-invariance of the system
(2.1.1), i.e., of the fact that none of the operators A, B, C and D in (2.1.1)
depend on t . The important variable in (2.1.3) and (2.1.4) is the time difference
t − s, not s or t separately, and by a simple time shift we can make either
the starting time s or the final time t equal to zero. By using these facts we
can express the operators Bt

s , Cs and Ds in terms of three ‘master’ operators
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B, C, and D which do not depend on t or s. These master operators are defined
by1

Bu :=
∫ 0

−∞
A−s Bu(s) ds,

Cx := (t �→ CAt x, t ≥ 0
)
,

Du :=
(

t �→
∫ t

−∞
CAt−s Bu(s) ds + Du(t), t ∈ R

)
.

(2.1.5)

Thus, B is the mapping from an input u defined on R− = (−∞, 0) to the final
state x(0) ∈ X at time zero (take s = −∞, xs = 0, and t = 0, and let u have a
finite support so that the integral converges), C is the mapping from the initial
state x0 ∈ X at time zero to the output y defined on R

+ = [0,∞) (take s = 0
and u = 0), and D is the mapping from the input u defined on R to the output
y, also defined on R (suppose that the support of u is bounded to the left so that
the integral converges). For obvious reasons we call B the input map (with final
time zero), C the output map (with initial time zero), and D the input/output
map of (2.1.1).

In order to rewrite the operators Bt
s , Cs and Ds in terms of B, C, and D we

need two more auxiliary operators. For each J ⊂ R we define the projection
operator πJ by

(πJ u)(s) :=
{

u(s), s ∈ J,

0, s /∈ J,
(2.1.6)

and for each t ∈ R we define the time shift operator τ t by

(τ t u)(s) := u(t + s), s ∈ R. (2.1.7)

Then

Bt
s =
∫ t

s
At−vBu(v) dv =

∫ t

−∞
At−vBπ[s,t)u(v) dv

=
∫ 0

−∞
A−vBπ[s,t)u(v + t) dv =

∫ 0

−∞
A−vBτ tπ[s,t)u(v) dv

= Bτ tπ[s,t)u,

and

(Cs xs)(t) = CAt−s xs = (Cxs)(t − s) = (τ−sCxs)(t).

1 For the moment these definitions are only formal. We shall describe the exact domains and
ranges of these operators later.
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A similar computation can be carried out for Ds , and we find that, for all t ≥ s,

Bt
s = Bτ tπ[s,t)u,

(Cs xs)(t) = (τ−sCxs)(t),

(Dsu)(t) = (Dπ[s,∞)u)(t).

(2.1.8)

Thus x and y can be written in the form

x(t) = At−s xs +Bτ tπ[s,t)u, t ≥ s,

y = τ−sCxs +Dπ[s,∞)u,
(2.1.9)

or alternatively (use the fact that B = Bπ(−∞,0)),

x(t) = At−s xs +Bτ tπ[s,∞)u, t ≥ s,

y = τ−sCxs +Dπ[s,∞)u.
(2.1.10)

Let us emphasize the following fact that we have just established:

Statement 2.1.1 In order to know the state trajectory x and the output function
y of the system (2.1.1) with arbitrary initial time s, arbitrary initial state xs ,
and arbitrary input function u, it suffices to know the semigroup A, the input
map B, the output map C, and the input/output map D. When these are known
the state and the output at an arbitrary time t ≥ s can be recovered from (2.1.9)
or (2.1.10).

If the operators B, C , and D in (2.1.1) are bounded, then it is possible to
avoid the operators B, C, and D; we can simply work with the variation of
constants formula (2.1.2) all the time. However, we are primarily interested in
the case where not only A, but also B and C are allowed to be unbounded,
and D is not necessarily well-defined. In this case formulas (2.1.9) have one
great advantage over (2.1.2): under appropriate assumptions all the operators
in (2.1.9) will be bounded2linear operators.

Of course, the word ‘bounded’ always refers to some topology on the spaces
of input and output signals and on the state space, and it is not at all obvious
which are the ‘best’ topologies: too weak assumptions lead to mathematical
difficulties, and too strong assumptions lead to a limited applicability. One
choice that works well in many cases is to impose the following requirements:

Well-posedness requirement 2.1.2

(i) The input space U, the state space X, and the output space Y are Banach
spaces.

(ii) The input u belongs locally to L p([s,∞; U ), for some p, 1 ≤ p ≤ ∞.

2 Locally in time.
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(iii) The state x(t) ∈ X is well-defined at each time instance t ≥ s (where
s ∈ R is the initial time).

(iv) The output y belongs locally to L p([s,∞); Y ) for the same value of p as
in (ii).

(v) The state x(t) ∈ X and the output y ∈ L p
loc([s,∞); Y ) depend

continuously on the initial state x0 ∈ X, on the input u ∈ L p
loc([s,∞); U ),

and (in the case of x(t)) on the time parameter t ≥ 0.

This is the choice that we make throughout most of this book, and it leads
to a well-posedness notion of L p-type. The most important case is p = 2, and
the second most important cases are p = 1 and p = ∞. The main reason for
taking the same value of p in (ii) and (iv) is that we want to be able to study
(static) feedback connections where a part of the output y is fed back into the
input u.

Up to now the discussion has focused on the following two questions: how
to construct the solution operators B, C, and D in Statement 2.1.1 from a given
set of generators (A, B,C, D) (in the case where A generates a semigroup
and B, C , and D are bounded), and what type of continuity requirements are
appropriate. There is a third question which is at least as interesting: when does
a given quadruple (A,B,C,D) arise from a system of the type (2.1.1), and how
can we compute the characterizing operators (A, B,C, D) of this system from
(A,B,C,D)?

There are certain algebraic conditions that are necessary in order for the
operators (A,B,C,D) to have representations of the type given in (2.1.5) and
in order for (2.1.9) to be valid for all permitted inputs u. To formulate these
algebraic conditions we need the projection operators π+ and π− and the time-
shift operators τ t

+ and τ t
− on the positive, respectively, negative half-line, defined

by

π+ := π[0,∞), π− := π(−∞,0), τ t
+ := π+τ t , τ t

− := τ tπ−. (2.1.11)

Algebraic conditions 2.1.3 The operators A, B, C, and D satisfy the following
conditions:3

(i) A0 = 1 and As+t = AsAt for all s, t ≥ 0 (i.e, A is a semigroup),
(ii) AtBu = Bτ t

−u for all t ≥ 0,
(iii) CAt x = τ t

+Cx for all t ≥ 0,
(iv) τ tDu = Dτ t u, π−Dπ+u = 0, and π+Dπ−u = CBu for all t ∈ R.

3 Technically, condition (ii) says that the input map B ‘intertwines’ the semigroup At on X and
the left-shift semigroup τ t− on L p

c (R−; U ), and condition (iii) says that the output map B

intertwines the semigroup At on X and the left-shift semigroup τ t+ on L p
loc(R+; Y ).
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The first of the conditions above says that, in the absence of an input, the
state trajectory x behaves like the state of a time-invariant linear dynamical
system.

To derive the second condition (ii) we compute

Bτ tπ−u =
∫ −t

−∞
A−s Bu(s + t) ds =

∫ 0

−∞
At−vBu(v) dv

= At
∫ 0

−∞
A−vBu(v) dv = AtBu.

This formula, too, can be regarded a consequence of the time-invariance of
the system. Suppose that the input u vanishes on R

+
. Then the state at time

zero is given by x(0) = Bu, and, for each t > 0, the state at time t is given by
x(t) = At x(0) = AtBu. Formula (ii) says that this is equal to the state at time
zero corresponding to an input that otherwise looks identical to the original
one, but it has been advanced by t time units (in particular, it vanishes on
(−t,∞)).

Formula (iii) is derived in a similar way, and it has a similar interpretation:
if we restrict the output y corresponding to a given initial state x0 to the time
interval [t,∞) and then shift it back to [0,∞), then the resulting output is
identical to the one that we get by first letting the system develop freely for t
time units to get the state x(t) = At x0, and then observing the output Cx(t) of
the system with this initial state and initial time zero.

This leaves condition (iv) to be accounted for. The first condition τ tDu =
Dτ t u in (iv) is another consequence of time-invariance: if the input u is delayed
or advanced by t time units, then the output is also delayed or advanced by the
same amount, but it does not change in any other way.

The condition π−Dπ+u = 0 in (iv) is a causality requirement: future inputs
are not allowed to have any effect on past outputs.

Maybe the least obvious part of (iv) is the condition π+Dπ−u = CBu, but
it is easy to verify: for all t > 0 we have

(Dπ−u)(t) = C
∫ 0

−∞
At−s Bu(s) ds = CAt

∫ 0

−∞
A−s Bu(s) ds = (CBu)(t).

It says that if the input u vanishes on R
+

, then the output y on R
+

is the
product of the input map (which maps the past input u into the state x(0) = Bu
at time zero) and the output map (which maps x(0) into the future output
y = Cx(0) = CBu).

It is a very interesting and important fact that the algebraic conditions 2.1.3
are not only necessary, but they are in fact sufficient (together with the well-
posedness requirement 2.1.2) for the quadruple (A,B,C,D) to be interpreted
as the semigroup, input map, output map, and input/output map of a well-posed
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linear system. Every such system has a ‘differential’ representation similar to
the one given in (2.1.1) but slightly more complicated. The picture is roughly
the following. We combine the four operators A, B, C , and D into one single
block matrix operator S = [ A B

C D

]
, which we call the node of the system, and

rewrite (2.1.1) in the form[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ s, x(s) = xs . (2.1.12)

As we shall see in Chapter 4, every well-posed linear system has a represen-
tation of this type, valid for a restricted set of data: the input function should
be, for example, two times continuously differentiable, and the initial state xs

should satisfy a certain compatibility condition involving the value u(s). The
operator S is closed and (typically) unbounded from

[
X
U

]
to
[

X
Y

]
, and it has

a natural splitting into an operator matrix S = [ A B
C&D

]
(where the combined

observation/feedthrough operator C&D stands for a certain operator from the
domain of S to Y ). Under weak additional conditions even the operator C&D
can be split into C&D = [C D

]
, so that S can be written in the familiar form

S = [ A B
C D

]
. The splitting of C&D into

[
C D

]
is, unfortunately, not always

unique, and different applications may require different splittings.

2.2 Definitions and basic properties

Without further ado, let us give a formal definition of an L p-well-posed linear
system. In the terms of the discussion in the preceding section, such a system
consists of a semigroup A and three maps B, C, and D satisfying the algebraic
conditions 2.1.3, and having enough continuity in order for the well-posedness
requirement 2.1.2 to hold.

Definition 2.2.1 Let U , X , and Y be Banach spaces, and let 1 ≤ p ≤ ∞. A
(causal, time-invariant) L p-well-posed linear system � on (Y, X,U ) consists
of a quadruple � = [A B

C D

]
satisfying the following conditions:4

(i) t �→ At is a strongly continuous semigroup on X (see Definition 2.2.2);
(ii) B : L p

c (R−; U )→ X satisfies AtBu = Bτ t
−u for all u ∈ L p

c (R−; U ) and
all t ≥ 0;

(iii) C : X → L p
loc(R+; Y ) satisfies CAt x = τ t

+Cx for all x ∈ X and all t ≥ 0;
(iv) D : L p

c,loc(R; U )→ L p
c,loc(R; Y ) satisfies τ tDu = Dτ t u, π−Dπ+u = 0,

and π+Dπ−u = CBu for all u ∈ L p
c,loc(R; U ) and all t ∈ R.

4 The notation used here is explained immediately after the definition. We shall see in Theorem
2.5.4 that these operators have some additional continuity properties, which are related to the
fact that the system has a finite exponential growth bound.
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We use the following names for the different components of �: U is the input
space, X is the state space, Y is the output space, A is the semigroup, B is the in-
put (or controllability, or reachability) map (with final time zero), C is the output
(or observability) map (with initial time zero), and D is the input/output map.

In the preceding definition we used the following notation. We let
R := (−∞,∞), R− := (−∞, 0), R+ := (0,∞),

(πJ u)(s) :=
{

u(s), s ∈ J,

0, s /∈ J,
for all J ⊂ R,

π+u := π[0,∞), π−u := π(−∞,0),

(τ t u)(s) := u(t + s), −∞ < t, s <∞,

τ t
+ := π+τ t , τ t

− := τ tπ−, t ≥ 0.

The space L p
c,loc(R; U ) consists of functions u : R→ U that are locally in L p

and have a support that is bounded to the left. A sequence of functions un

converges in L p
c,loc(R; U ) to a function u if the common support of all the

functions un is bounded to the left and un converges to u locally in L p with
values in U . The space L p

c (R−; U ) contains those u ∈ L p
c,loc(R; U ) which vanish

on R+, and the space L p
loc(R+; Y ) contains those u ∈ L p

c,loc(R; Y ) which vanish
on R−. The continuity of B, C and D is with respect to this convergence.5

The preceding definition refers to the notion of a strongly continuous semi-
group. This notion (and the notion of a strongly continuous group) is defined
as follows:

Definition 2.2.2 Let X be a Banach space.

(i) A family At , t ≥ 0, of bounded linear operators X → X is a semigroup
on X if A0 = 1 and AsAt = As+t for all s, t ≥ 0.

(ii) A family At , t ∈ R, of bounded linear operators X → X is a group on X
if A0 = 1 and AsAt = As+t for all s, t ∈ R.

(iii) The semigroup in (i) is locally bounded if sup0≤s≤t‖As‖ is bounded for
each finite t > 0. The group in (ii) is locally bounded if sup−t≤s≤t‖As‖ is
bounded for each finite t > 0.

(iv) The semigroup in (i) is strongly continuous (at zero) if limt↓0 At x = x
for all x ∈ X . The group in (ii) is strongly continuous (at zero) if
limt→0 At x = x for all x ∈ X .

(v) We abbreviate ‘strongly continuous semigroup’ to ‘C0 semigroup’ and
‘strongly continuous group’ to ‘C0 group’.

5 In the terminology of Köthe (1969), these spaces are strict (L F)-spaces, i.e., they are the strict
inductive limits of the Fréchet spaces L p

loc([T,∞); U ) which we identify with the subspace of
functions in L p

loc(R; U ) which vanish on (−∞, T ).
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In some parts of the theory the value of p plays an important role. Especially
the case p = ∞ differs significantly from the other cases. The main difficulty
in L∞ is that the set of continuous functions is not dense as it is in L p with
p <∞. This complicates some of the proofs: it is not enough to first prove a
result for the class of continuous (or even continuously differentiable) inputs,
and to then extend the result to arbitrary inputs in L∞ by using a density
argument. For this reason we shall introduce yet another class of well-posed
linear systems that in many cases replaces the class of L∞-well-posed systems.
The simplest choice would be to restrict all the inputs to be continuous, but this
leads to a difficulty with the algebraic conditions in Definition 2.2.1: even if u
is continuous the functions π−u and π+u are not continuous (unless u(0) = 0).
Therefore we need a slightly larger class of functions to work in. The most
natural class is then the set of regulated functions, i.e., functions that are right-
continuous and have a left hand limit at each finite point.6 We denote this class
of functions by Regloc. The space Regc,loc consists of functions locally in Reg
whose support is bounded to the left. Convergence in this space means that
the common support of all the functions should be bounded to the left, and the
convergence is uniform on each bounded interval. Observe, in particular, that
functions in Regloc have a well-defined value at every point and not just almost
everywhere.

Definition 2.2.3 Let U , X , and Y be Banach spaces. A (causal, time-invariant)
Reg-well-posed linear system � on (Y, X,U ) consists of a quadruple � =[A B

C D

]
satisfying the same conditions as in Definition 2.2.1 but with L p

c,loc re-
placed by Regc,loc. More precisely, L p

c,loc(R) is replaced by Regc,loc(R), L p
c (R−)

is replaced by Regc(R−), and L p
loc(R+) is replaced by Regloc(R

+
). We call the

different components of � by the same names as in Definition 2.2.1.

Here R
+

:= [0,∞) is the closed positive real half-line. (Analogously, we
denote the closed negative real half-line by R

−
.) To make the formulas in the

L p-well-posed case look more similar to the formulas in the Reg-well-posed
case we sometimes write L p

loc(R
+

) instead of L p
loc(R+), etc.

Definition 2.2.4

(i) By L p|Reg we mean either L p or Reg and by L p|Reg0 we mean either L p
0

or Reg0, depending on the context.7

6 See Section A.1 for a short introduction to this class of function. By Reg we denote the set of all
bounded regulated functions. A function in Reg is not required to have a limit at ±∞.

7 The space L p
0 is the same as L p if p <∞, and in the case p = ∞ it consists of those u ∈ L∞

which vanish at ±∞, i.e., limt→∞ ess sup|s|≥t |u(s)| = 0. The space Reg consists of all bounded
regulated functions, and Reg0 consists of those functions in Reg which vanish at ±∞.
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(ii) By an L p|Reg-well-posed linear system we mean a system which is
either Reg-well-posed or L p-well-posed for some p, 1 ≤ p ≤ ∞. (Thus,
the case p = ∞ is included, except when explicitly excluded.)

(iii) By a well-posed linear system we mean a system which is either
Reg-well-posed or L p-well-posed for some p, 1 ≤ p <∞. (Thus, the
case p = ∞ is excluded.)

Remark 2.2.5 To begin with we shall work with L p|Reg-well-posed linear
systems, but later on we shall exclude the L∞-well-posed case, due to the fact
that some of our main results are not necessarily valid for inputs u ∈ L∞c,loc(R; U )
in the L∞-well-posed case. See, in particular, Theorems 4.2.1, 4.5.2, 4.5.4, 4.6.9,
and Corollaries 4.5.5, 4.5.6.

See Section 1.1 for an intuitive explanation of the algebraic conditions (i)–
(iv) in Definition 2.2.1.

The primary reason for the introduction of the operators B, C, and D in
Section 2.1 was that we wanted to make the algebraic conditions in Definition
2.2.1 as simple as possible. However, when we deal with the state trajectory
and the output function of the system � = [A B

C D

]
it is more convenient to use

the operators Bt
s , Cs , and Ds in (2.1.3) with initial time s and final time t . Let

us formally reintroduce these operators and some related operators as follows:

Definition 2.2.6 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ).

(i) We interpret B as an operator L p|Regc,loc(R; U )→ X by defining
Bu = Bπ−u for all u ∈ L p|Regc,loc(R; U ).

(ii) We interpret C as an operator X → L p|Regc,loc(R; Y ) by defining
Cx = π+Cx for all x ∈ X .

(iii) The state transition map At
s , the input map Bt

s , the output map Ct
s , and

the input/output map Dt
s with initial time s ∈ R and final time t ≥ s are

defined by[
At

s Bt
s

Ct
s Dt

s

]
:=
[

At−s Bτ tπ[s,t)

π[s,t)τ
−sC π[s,t)Dπ[s,t)

]
, t ≥ s.

(iv) The input map Bt and the input/output map Dt with final time t ∈ R

(and initial time −∞) are defined by

Bt = Bt
−∞ := Bτ t , Dt = Dt

−∞ := π(−∞,t)D, t ∈ R.

(v) The output map Cs and the input/output map Ds with initial time s ∈ R

(and final time +∞) are defined by

Cs = C∞s := τ−sC, Ds = D∞s := Dπ[s,∞), s ∈ R.
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y
A

C D

Btx

p+u

x0

Figure 2.2 Well-posed linear system

The conventions (i) and (ii) are implicitly contained in Definition 2.2.1(ii)–
(iii) (take t = 0).

Definition 2.2.7 Let U , X , and Y be Banach spaces, and let � = [A B

C D

]
be a

L p|Reg-well-posed linear system on (Y, X,U ). For each s ∈ R, xs ∈ X , t ≥ s,
and u ∈ L p|Regloc([s,∞); U ) we define the state x(t) at time t and the output
function y of � with initial time s, initial state xs , and input function u by (cf.
Definition 2.2.6)

x(t) = At
s xs +Bt

su, t ≥ s,

y = Cs xs +Dsu.
(2.2.1)

In particular, if the initial time s is zero and the initial state x0, then

x(t) = At
0x0 +Bt

0u = At x0 +Btπ+u, t ≥ 0,

y = C0x0 +D0u = Cx0 +Dπ+u.
(2.2.2)

We use diagrams of the type drawn in Figure 2.2 to represent the relation
between the state x , the output y, the initial value x0, and the input u of � with
initial time zero. In our diagrams we use the following conventions throughout:

(i) Initial states and inputs enter at the top or bottom, and they are acted on
by all the operators located in the column to which they are attached. In
particular, note that x0 is attached to the first column and u to the second.

(ii) Final states and outputs leave to the left or right, and they are the sums of
all the elements in the row to which they are attached. In particular, note
that x is attached to the top row, and y to the bottom row.

We can reformulate the algebraic conditions in Definition 2.2.1 in terms of
the operators introduced in Definition 2.2.6 as follows.

Lemma 2.2.8 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ). Then the operators At
s , Bt

s , Ct
s , and Dt

s introduced in Definition
2.2.6 have the following properties.
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(i) For all t ∈ R, [
At

t Bt
t

Ct
t Dt

t

]
=
[

1 0

0 0

]
. (2.2.3)

(ii) For all s ≤ t ,[
At

s Bt
s

Ct
s Dt

s

]
=
[

1 0
0 π[s,t)

][
At

s Bt
s

Ct
s Dt

s

][
1 0
0 π[s,t)

]

=
[

At
s Bt

sπ[s,t)

π[s,t)C
t
s π[s,t)D

t
sπ[s,t)

]
.

(2.2.4)

(iii) For all s ≤ t and h ∈ R,[
At+h

s+h Bt+h
s+h

Ct+h
s+h Dt+h

s+h

]
=
[

1 0
0 τ−h

][
At

s Bt
s

Ct
s Dt

s

][
1 0
0 τ h

]

=
[

At
s Bt

sτ
h

τ−hCt
s τ−hDt

sτ
h

]
.

(2.2.5)

(iv) For all s ≤ r ≤ t ,[
At

s Bt
s

Ct
s Dt

s

]
=
[

At
r 0 Bt

r

Ct
r 1 Dt

r

]Ar
s Br

s

Cr
s Dr

s

0 1


=
[

At
rA

r
s Bt

r + At
rB

r
s

Ct
rA

r
s + Cr

s Dt
r + Ct

rB
r
s +Dr

s

]
.

(2.2.6)

We shall refer to (ii) as the causality property, to (iii) as the time-invariance
property and to (iv) as the composition property. See Theorem 2.2.11 for an
interpretation of these properties, and see also Theorem 2.2.14 for a slightly
modified set of algebraic conditions where (ii) and (iv) are combined into one
single condition.

Both in the proof of Lemma 2.2.8 and later we shall need to manipulate
expressions involving the operators τ t and πJ and their combinations. For this
the following lemma is useful:

Lemma 2.2.9 Let a, h, s, t ∈ R, and −∞ < b ≤ ∞. Then

τ s+t = τ sτ t ,

π[a,b) = π[a,∞)π(−∞,b), π[a,b) = π(−∞,b)π[a,∞),

π[a,b)τ
h = τ hπ[a+h,b+h), τ hπ[a,b) = π[a−h,b−h)τ

h,

π(−∞,b)τ
h = τ hπ(−∞,b+h), τ hπ(−∞,b) = π(−∞,b−h)τ

h

(we define π[a,b) = 0 when b ≤ a).
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The easy proof of this lemma is left to the reader.

Proof of Lemma 2.2.8 We leave the easy proofs of (i)–(iii) to the reader, and
only prove (iv). Thus, in the sequel we take s ≤ r ≤ t .

The identity At
s = At

rA
r
s follows from the semigroup property At−s =

At−rAr−s and the definition of At
s .

By Definitions 2.2.1 and 2.2.6 and Lemma 2.2.9

Bt
s = Bτ tπ[s,t)

= Bτ t (π[s,r ) + π[r,t))

= Bτ t−rπ[s−r,0)τ
r +Bτ tπ[r,t)

= At−rBπ[s−r,0)τ
r +Bτ tπ[r,t)

= At−rBτ rπ[s,r ) +Bτ tπ[r,t)

= At
rB

r
s +Bt

r .

Likewise,

Ct
s = π[s,t)τ

−sC

= (π[s,r ) + π[r,t))τ
−sC

= π[s,r )τ
−sC+ τ−rπ[0,t−r )τ

r−sC

= π[s,r )τ
−sC+ τ−rπ[0,t−r )CAr−s

= π[s,r )τ
−sC+ π[r,t)τ

−rCAr−s

= Cr
s + Ct

rA
r
s ,

and

Dt
s = π[s,t)Dπ[s,t)

= (π[s,r ) + π[r,t))D(π[s,r ) + π[r,t))

= Dr
s + π[r,t)τ

−rDτ rπ[s,r ) + π[s,r )τ
−rDτ rπ[r,t) +Dt

r

= Dr
s + τ−rπ[0,t−r )Dπ[s−r,0)τ

r + τ−rπ[s−r,0)Dπ[0,t−r )τ
r +Dt

r

= Dr
s + τ−rπ[0,t−r )CBπ[s−r,0)τ

r +Dt
r

= Dr
s + π[r,t)τ

−rCBτ rπ[s,r ) +Dt
r

= Dr
s + Ct

rB
r
s +Dt

r .

�

Occasionally we shall also need the following version of Lemma 2.2.8 where
Bt

s is replaced by Bt , Ct
s is replaced by Cs , and Dt

s is replaced by Ds or Dt .
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Lemma 2.2.10 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ). With the notation of Definition 2.2.6, the following claims are true:

(i) For all s, t ∈ R, x ∈ X, and u ∈ L p|Regc,loc(R; U ),

Bt u = lim
r→−∞Bt

r u, Csu = lim
r→∞Cr

s x,

Dt u = lim
r→−∞Dt

r u, Dsu = lim
r→∞Dr

su,

Moreover, the original system � = [A B

C D

]
can be recovered as follows:

At = At
0 for t ≥ 0, and

B = B0, C = C0, D = lim
s→−∞
t→∞

Dt
s .

(ii) For all s, t ∈ R [
Bt

Dt

]
=
[

Btπ(−∞,t)

π(−∞,t)D
tπ(−∞,t)

]
,

[
Cs Ds

] = [π[s,∞)Cs π[s,∞)Dsπ[s,∞)
]
.

(iii) For all s, t ∈ R and h ∈ R,[
Bt+h

Dt+h

]
=
[

Btτ h

τ−hDtτ h

]
,

[
Cs+h Ds+h

] = [ τ−hCs τ−hDsτ
h
]
.

(iv) For all r ≤ t , [
Bt

Dt

]
=
[

At
r 0 Bt

r

Ct
r 1 Dt

r

]Br

Dr

1


=
[

Bt
r + At

rB
r

Dt
r + Ct

rB
r +Dr

]
.

and for all s ≤ r ,

[
Cs Ds

] = [Cr 1 Dr

]Ar
s Br

s

Cr
s Dr

s

0 1


= [Cr

s + CrA
r
s Dr + CrB

r
s +Dr

s

]
.
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Proof Part (i) follows trivially from Definition 2.2.6 (since limr→−∞ π[r,t) =
π(−∞,t), limr→∞ π[s,r ) = π[s,∞), and lims→−∞,t→∞ π[s,t) = 1 in L p|Regc,loc).
We get (ii), (iii), and (iv) by letting s →−∞ or t →∞ in the appropriate parts
of Lemma 2.2.8(ii)–(iv). �

We still refer to (ii) as the causality property, to (iii) as the time-invariance
property and to (iv) as the composition property for the operators in question.

The essential content of Lemmas 2.2.8 and 2.2.10 is that it is possible to
separate, at each time instant, the past and the future behavior of the system �

from each other in a clean way:

Theorem 2.2.11 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ), and let s ∈ R, xs ∈ X, and u ∈ L p|Regloc([s,∞); U ). Let x and y be
the state trajectory x and the output function y of � with initial time s, initial
value xs and input function u. Then, for each r > s,

x(r ) = Ar
s xs +Br

su,

π[s,r ) y = Cr
s xs +Dr

su
(2.2.7)

do not depend on u(t) for t ≥ r (i.e., ‘the future has no influence on the past’),
and

x(t) = At
r x(r )+Bt

r u, t ≥ r,

π[r,∞) y = Cr x(r )+Dr u,
(2.2.8)

can be interpreted as the state trajectory and the output function of � with
initial time r, initial value x(r ), and input function u (i.e., ‘the past influences
the future only through the present state x(r )’).

Proof of Theorem 2.2.11 That x(r ) and π[s,r ) y do not depend on u(t) for t ≥ r
follows from the causality property in Lemma 2.2.8(ii).

By the composition properties in Lemmas 2.2.8(iv) and 2.2.10(iv),

x(t) = At
s xs +Bt

su

= At
rA

r
s xs + (At

rB
r
s +Br

s )u

= At
r (Ar

s xs +Br
s )+Br

su

= At
r x(r )+Br

su,

y = Cs xs +Dsu

= (Cr
s + CrA

r
s )xs + (Dr

s + CrB
r
s +Dr )u

= (Cr
s xs +Dr

su)+ (Cr (Ar
s xs +Br

su)+Dr u
)

= π[s,r ) y + π[r,∞)(Cr x(r )+Dr u).

�

Another important property of the solution is the following:
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Theorem 2.2.12 Let � = [A B

C D

]
be an L p-well-posed linear system where

p <∞, and let s ∈ R, xs ∈ X, and u ∈ L p
loc([s,∞); U ). Then the state x(t) of

� with initial time s, initial value xs and input u depends continuously on t for
t ≥ s, and x(s) = xs .

Proof The state consists of two terms,

x(t) = At
s xs +Bt

su = At−s xs +Bτ tπ[s,t)u

= At−s xs +Bτ tπ[s,∞)u.

That x(s) = xs follows from Lemma 2.2.8(ii). The continuity of the first term
follows from Lemma 2.2.13 below, and the continuity of the second term from
Lemma 2.3.3 below. �

A similar result for Reg-well-posed and L∞-well-posed linear systems is
given in Theorem 4.2.7.

In the preceding proof we used a part of the following lemma:

Lemma 2.2.13 Let At be a C0-semigroup on X.

(i) ‖At‖ ≤ Meωt for some M > 0, some ω ∈ R and all t ≥ 0. In particular,
A is locally bounded.

(ii) For each x ∈ X, t �→ At x is continuous on R
+

.

A sharper version of part (i) is given in Theorem 2.5.4(i) below.

Proof (i) We begin by showing that there is some T > 0 and M > 0 such
that ‖At‖ ≤ M on [0, T ]. If not, then there is some sequence tn → 0 such
that ‖Atn‖ → ∞. But this contradicts the uniform boundedness principle since
Atn x → x for each x ∈ X . Thus indeed, there exist T > 0 and M ≥ 1 such
that ‖At‖ < M for t ∈ [0, T ]. If t ≥ 0 is arbitrary, then we can choose some
n = 0, 1, 2, . . . such that nT ≤ t ≤ (n + 1)T . By the semigroup property

‖At‖ = ‖(AT
)n

At−nT ‖ ≤ ‖AT ‖n‖At−nT ‖ ≤ Mn+1 = MeωnT ≤ Meωt ,

where ω = 1/T log M .
(ii) Let t , h > 0. The right continuity of At x follows from

|At+h x − At x | = |At (Ah x − x)|
≤ ‖At‖|Ah x − x | ≤ Meωt |Ah x − x |,

and the left continuity from (take 0 ≤ h ≤ t)

|At−h x − At x | = |At−h(x − Ah x)|
≤ ‖At−h‖|Ah x − x | ≤ Meωt |x − Ah x |.

�



44 Well-posed linear systems

Above we first defined what we mean by a well-posed linear system � =[A B

C D

]
, then defined the operator families At

s , Bt
s , Ct

s , and Dt
s (and a few more)

in Definition 2.2.6, and finally used these operator families to define what we
mean by the state trajectory and the output function of � corresponding to
a given initial time s, a given initial state xs , and a given input function u.
Conversely, suppose that we have some independent method of constructing
the state x(t) and output y corresponding to any given initial time s ≤ t , any
given initial state xs , and any given input function u. If the mapping from xs

and u to x(t) and π[s,t) y is linear, then it can be written in the form (compare
this to (2.2.7))

x(t) = At
s xs +Bt

su,
t ≥ s,

π[s,t) y = Ct
s xs +Dt

su.
(2.2.9)

This equation then serves as a definition of the operator families At
s , Bt

s , Ct
s , and

Dt
s . If these families satisfy the crucial parts of the identities listed in Lemma

2.2.8, then, as the following theorem shows, there is an underlying system
� = [A B

C D

]
.

Theorem 2.2.14 Let U, X, and Y be Banach spaces, and let At
s : X → X,

Bt
s : L p|Regc,loc(R; U )→ X,Ct

s : X → L p|Regc,loc(R; Y ), and Dt
s : L p|

Regc,loc(R; U )→ L p|Regc,loc(R; Y ) be four families of bounded linear oper-
ators indexed by −∞ < s ≤ t <∞. Suppose that A0

0x = limt↓0 At
0x = x for

all x ∈ X, that for all s ≤ t and h ∈ R the time invariance condition (2.2.5)
holds, and that for all s ≤ r ≤ t ,

[
At

s Bt
s

Ct
s Dt

s

]
=

[
1 0 0
0 π[s,r ) π[r,t)

]At
r 0 Bt

r

0 1 0
Ct

r 0 Dt
r



×

Ar
s Br

s 0

Cr
s Dr

s 0
0 0 1


1 0

0 π[s,r )

0 π[r,t)

 .
(2.2.10)

Then we get a L p|Reg-well-posed linear system � = [A B

C D

]
by defining At =

At
0 for t ≥ 0 and, for all x ∈ X and u ∈ L p|Regc,loc(R; U ),

Bu = lim
s→−∞B0

s u, Cx = lim
t→∞Ct

0x, Du = lim
s→−∞
t→∞

Dt
su (2.2.11)

(in particular, these limits exist in X, L p|Regloc(R+; Y ), respectively
L p|Regc,loc(R; Y )). Moreover, the given operator families At

s , Bt
s , Ct

s , and Dt
s

are identical to those derived from � as described in Definition 2.2.6.
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Proof We begin by expanding (2.2.10) into

At
s = At

rA
r
s ,

Bt
s = Bt

rπ[r,t) + At
rB

r
sπ[s,r ),

Ct
s = π[r,t)C

t
rA

r
s + π[s,r )C

r
s ,

Dt
s = π[r,t)D

t
rπ[r,t) + π[r,t)C

t
rB

r
sπ[s,r ) + π[s,r )D

r
sπ[s,r ).

(2.2.12)

From here we observe that (2.2.4) holds for all s ≤ t . Thus, (2.2.10) is equivalent
to the combination of the causality property (2.2.4) and the composition property
(2.2.6).

Next we show that t �→ At is a C0 semigroup. The strong continuity require-
ment and the identity A0 = 1 were assumed separately. The top left corners of
(2.2.5) and (2.2.6) give, for all s, t ≥ 0,

As+t = As+t
0 = As+t

s As
0 = At

0A
s
0 = AtAs .

Thus, A is a C0 semigroup.
From (2.2.12) we observe that for all s ≤ r ≤ t ,

Bt
sπ[r,t) = Bt

r , π[s,r )C
t
s = Cr

s , Dt
sπ[r,t) = Dt

r , π[s,r )D
t
s = Dr

s .

Thus, trivially, for all x ∈ X and u ∈ L p|Regc,loc(R; U ), the limits in (2.2.11)
exist. Moreover, still by (2.2.12), for all s ≤ r ≤ t ,

Bt
sπ[s,r ) = At

rB
r
s , π[r,t)C

t
s = Ct

rA
r
s .

We rewrite these equations, using (2.2.4) and Lemma 2.2.9, into

Bt
sτ
−rπ[s−r,0) = At−rB0

s−r , π[0,t−r )τ
rCt

s = Ct−r
0 Ar−s .

In the first equation we take t = 0 and let s →−∞ to get Bτ−rπ− = A−rB

for all r ≤ 0. In the second equation we take s = 0 and let t →∞ to get
π+τ rC = CAr for all r ≥ 0.

We have now verified conditions (i)–(iii) in Definitions 2.2.1 and 2.2.3, and
this only leaves the final condition (iv) concerning D. By (2.2.12),

π[r,t)D
t
sπ[s,r ) = Ct

rB
r
s , π[s,r )D

t
sπ[r,t) = 0.

Taking r = 0 and letting s →−∞ and t →∞ we get π+Dπ− = CB and
π−Dπ+ = 0. Finally, letting s →−∞ and t →∞ in the identity τ hDt+h

s+h =
Dt

sτ
h (which is part of (2.2.5)) we get τ hD = Dτ h for all h ∈ R. �
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2.3 Basic examples of well-posed linear systems

Our first example of a well-posed linear system is the one discussed in Section
2.1:

Proposition 2.3.1 Let U, X, and Y be Banach spaces. Let A be a C0 semigroup
on X, and let B ∈ B(U ; X ), C ∈ B(X ; Y ), and D ∈ B(U ; Y ). Define B, C, and
Dby (2.1.5). Then

[A B

C D

]
is both a Reg-well-posed and an L p-well-posed linear

system on (Y, X ; U ) for every p, 1 ≤ p ≤ ∞. Moreover, the state trajectory x
and the output function y of this system, as defined in Definition 2.2.7, coincide
with the state trajectory and the output function of the system (2.1.1) defined in
(2.1.2).

Proof The algebraic conditions are easy to verify; see the calculations after the
algebraic conditions 2.1.3. The definitions of the state trajectory and the output
function have been chosen in such a way that (2.1.3) coincides with (2.2.1).
It is assumed explicitly that A is a C0 semigroup. Thus, only the continuity
requirements on B, C, and D in Definitions 2.2.1 and 2.2.3 need to be checked.

To prove the continuity of B : L p|Regc(R−; U )→ X it suffices to prove con-
tinuity when� is L1-well-posed, since L p|Reg([−T, 0); U ) ⊂ L1((−T, 0); U ).
In this case, for each T > 0,∥∥∥∥∫ 0

−T
A−s Bu(s) ds

∥∥∥∥
X

≤
∫ 0

−T
‖A−s‖‖B‖|u(s)| ds

≤
(

sup
0≤t<T

‖A−s‖
)
‖B‖‖u‖L1((−T,0);U ).

Thus, B is continuous L p|Regc(R−; U )→ X . The continuity of C follows from

the strong continuity of A and the fact that C(R
+

; U ) ⊂ L p|Regloc(R+; Y ). The
continuity of D follows from the continuity of B and the fact that (Du)(t) =
CBτ t u + Du(t) for all t ∈ R. �

The book by Curtain and Zwart (1995) is devoted to systems of the type de-
scribed in Proposition 2.3.1, and it contains several examples of processes with
distributed actuators and sensors which can be modeled in this way. (Boundary
control systems require B to be strictly unbounded and boundary observation
systems require C to be strictly unbounded.)

Our next example is a delay line. The model for this line is very simple:
a signal entering the right end of the line reappears T time units later at the
left end. No signals pass in the opposite direction. The simplest way to model
this as a well-posed linear system is to build it around a shift (semi)group on
a suitable L p-space. We shall need these shift semigroups later, too, so let us
first take a closer look at them.
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Example 2.3.2 Let U be a Banach space, let 1 ≤ p ≤ ∞, and let T > 0.

(i) The family τ t , t ∈ R, defined by

(τ t u)(s) := u(s + t), s ∈ R,

is a group on L p(R; U ) and on Reg(R; U ). It is strongly continuous on
L p(R; U ) for 1 ≤ p <∞ and on BUC(R; U ), but not on L∞(R; U ) and
on Reg(R; U ). More precisely, τ t u → u in L∞(R; U ) or Reg(R; U ) as
t → 0 if and only if τ t u → u in L∞(R; U ) or Reg(R; U ) as t ↓ 0, and
this happens if and only if u ∈ BUC(R; U ). We call τ t the bilateral left
shift on L p|Reg(R; U ).

(ii) The family τ t
+, t ≥ 0, defined by

(τ t
+u)(s) := (π+τ t u)(s) =

{
u(s + t), s ≥ 0,

0, otherwise,

is a semigroup on L p(R+; U ) and on Reg(R
+

; U ). It is strongly
continuous on L p(R+; U ) for 1 ≤ p <∞ and on BUC(R

+
; U ), but not

on L∞(R+; U ) and on Reg(R
+

; U ). More precisely, τ t
+u → u in

L∞(R+; U ) or Reg(R
+

; U ) as t ↓ 0 if and only if u ∈ BUC(R
+

; U ). We
call τ t

+ the incoming left shift on L p|Reg(R
+

; U ).
(iii) The family τ t

−, t ≥ 0, defined by

(τ t
−u)(t) := (τ tπ−u)(s) =

{
u(s + t), s < −t,

0, otherwise,

is a semigroup on L p(R−; U ) and on Reg(R
−

; U ). It is strongly
continuous on L p(R−; U ) for 1 ≤ p <∞ and on {u ∈ BUC(R

−
; U ) |

u(0) = 0}, but not on L∞(R−; U ) and on Reg(R−; U ). More precisely,
τ t
−u → u in L∞(R−; U ) or Reg(R−; U ) as t ↓ 0 if and only if

u ∈ BUC(R
−

; U ) and u(0) = 0. We call τ t
− the outgoing left shift on

L p|Reg(R−; U ).
(iv) The family τ t

[0,T ), t ≥ 0, defined by

(τ t
[0,T )u)(s) := (π[0,T )τ

tπ[0,T )u)(s)

=
{

u(s + t), 0 ≤ s < T − t,

0, otherwise,

is a semigroup on L p((0, T ); U ) and on Reg([0, T ); U ). It is strongly
continuous on L p((0, T ); U ) for 1 ≤ p <∞ and on {u ∈ C([0, T ]; U ) |
u(T ) = 0}, but not on L∞((0, T ); U ) and on Reg([0, T ); U ). More
precisely, τ t

[0,T )u → u in L∞((0, T ); U ) or Reg([0, T ); U ) as t ↓ 0 if and
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only if u ∈ C([0, T ]; U ) and u(T ) = 0. We call τ t
[0,T ) the finite left shift

on L p|Reg((0, T ); U ).
(v) The family τ t

TT
, t ∈ R, defined by

(τ t
TT

u)(s) := u(s + t), s ∈ R,

is a group on L p(TT ; U ) and on Reg(TT ; U ). It is strongly continuous on
L p(TT ; U ) for 1 ≤ p <∞ and on C(TT ; U ), but not on L∞(TT ; U ) and
on Reg(TT ; U ). More precisely, τ t

TT
u → u in L∞(TT ; U ) or Reg(TT ; U )

as t → 0 if and only if τ t
TT

u → u in L∞(TT ; U ) or Reg(TT ; U ) as t ↓ 0,
and this happens if and only if u ∈ C(TT ; U ). We call τ t

− the circular left
shift on L p|Reg(TT ; U ).

Thus, in each case, the (semi)group shifts the function on which it operates
t time units to the left, replaces missing values by zero, and restricts the result
to the appropriate interval. The notation TT stands for the real line R where the
points t + mT , m = 0,±1,±2, . . . , are identified, and L p(TT ) and Reg(TT )
represent the spaces of T -periodic functions of type L p or Reg. We remark that
L p(TT ), Reg(TT ) and BC(TT ) can be identified with L p((0, T )), Reg([0, T )),
and {u ∈ C([0, T ]) | u(T ) = u(0)}, respectively (that it, we restrict the periodic
function u to some interval of length T ).

Proof of Example 2.3.2. All the proofs are very similar, so we treat only case
(i), and leave the others to the reader.

It is obvious that τ 0 = 1, and it is trivial to verify the semigroup property
τ s+t = τ sτ t .

To prove the strong continuity for 1 ≤ p <∞ we let u ∈ L p(R; U ) be arbi-
trary and let ε > 0. Choose some v ∈ C(R; U ) supported in some finite interval
[−T, T ] such that ‖u − v‖ ≤ ε (this is possible since Cc is dense in L p when
p <∞). Then τ tv tends to v uniformly as t → 0, and τ tv − v vanishes outside
of [−T − 1, T + 1] for |t | ≤ 1. This implies that τ tv→ v in L p(R; U ), so we
can make ‖τ tv − v‖ ≤ ε by choosing t small enough. Then

‖τ t u − u‖ ≤ ‖τ t u − τ tv‖ + ‖τ tv − v‖ + ‖v − u‖
= ‖u − v‖ + ‖τ tv − v‖ + ‖v − u‖ ≤ 3ε.

Thus, τ t is strongly continuous on L p(R; U ).
By definition, a continuous function u is uniformly continuous iff τ t u(s)−

u(s)→ 0 uniformly in s as t →∞. Thus, τ t is strongly continuous on
BUC(R; U ). To show that τ t is not strongly continuous on L∞(R; U ) and on
Reg(R; U ) it suffices to consider the counter-example u(t) = 0 for t < 0 and
u(t) = u �= 0 for t ≥ 0.
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The more specific claims about the existence of the limits limτ→0 τ
t u and

limτ↓0 τ
t u in L∞(R; U ) or Reg(R; U ) remain to be proved. The L∞-case is

more difficult, so let us concentrate on this case (to get the Reg-case we simply
replace ess sup by sup everywhere).

The equivalence of the existence of the two different limits follows from the
fact that (by a change of the parameter s),

lim
t↓0

ess sup
s∈R
|u(s + t)− u(s)| = lim

t↓0
ess sup

s∈R
|u(s)− u(s − t)|.

Thus, to prove the final claim in (i) it suffices to show that u is (a.e. equal to) a
continuous function if τ t u → u in L∞(R; U ) as t ↓ 0.

Suppose τ t u → u in L∞(R; U ) as t ↓ 0. For k = 0, 1, 2, . . . we define

uk(t) = k
∫ t+1/k

t
u(s) ds = k

∫ 1/k

0
u(s + t) ds.

Then, supt∈R|uk(t)| ≤ ess supt∈R|u(t)| and, for all h,

|uk(t + h)− uk(t)| ≤ k
∫ 1/k

0
|u(s + t + h)− u(s + t)| ds

≤ k
∫ 1/k

0
|τ hu(s + t)− u(s + t)| ds,

which tends to zero as h ↓ 0, uniformly in t . Thus, the sequence uk is uniformly
bounded and equicontinuous, so it converges uniformly on bounded intervals
to a continuous limit. This limit is equal to u a.e. since uk(t)→ u(t) at every
Lebesgue point of u as k →∞ (see, e.g., Gripenberg et al. 1990, Lemma 7.4,
p. 67). We conclude that we can make u continuous by redefining it on a set of
measure zero. �

We shall also need the following modification of this result:

Lemma 2.3.3 Let u ∈ L p
loc(R; U ), where 1 ≤ p ≤ ∞.

(i) τ t u → u in L p
loc(R; U ) as t → 0 if p <∞.

(ii) τ t u → u in L∞loc(R; U ) as t → 0 if and only if τ t u → u in L∞loc(R; U ) as
t ↓ 0, and this is true if and only if u ∈ C(R; U ).

(iii) τ t
+u → u in L∞loc(R+; U ) as t ↓ 0 if and only if u ∈ C(R

+
; U ).

(iv) τ t
−u → u in L∞loc(R−; U ) as t ↓ 0 if and only if u ∈ C(R

−
; U ) and

u(0) = 0.

Proof This follows from Example 2.3.2, because as long as we are only inter-
ested in the values of u on an interval [−T, T ] we can multiply u by a continuous
function η satisfying η(t) = 1 for |t | ≤ T + 1 and η(t) = 0 for |t | ≥ T + 2. The
resulting function belongs to L p(R,U ), or in the continuous case to BUC(R; U ).
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(In (iii) and (iv) we identify L∞loc(R+; U ) with the subspace of functions in
L∞loc(R; U ) which vanish on R−, and vice versa.) �

We could use any one of the four semigroups τ t , τ t
+, τ t

−, or τ t
[0,T ) in Example

2.3.2(i)–(iv) as the central piece of a well-posed linear system which realizes
the delay line example. For simplicity, let us use the one that ‘stores the minimal
amount of information’, namely τ t

[0,T ).

Example 2.3.4 Let U be a Banach space, and let T > 0 and 1 ≤ p ≤ ∞.
Define Y = U, X = L p((0, T ); U ), and

(At x)(s) := (τ t
[0,T )x)(s) =

{
x(s + t), 0 ≤ s < T − t,

0, otherwise,

(Bu)(s) := (π[0,T )τ
−T u)(s) =

{
u(s − T ), 0 ≤ s < T,

0, otherwise,

Cx := π[0,T )x =
{

x(s), 0 ≤ s < T,

0, otherwise,

(Du)(s) := (τ−T u)(s) = u(s − T ), s ∈ R.

If p <∞, then this is an L p-well-posed linear system. If p = ∞, then it satisfies
all the requirements of an L∞-well-posed linear system except for the strong
continuity of its semigroup.

The continuity of B, C, and D is obvious, and it is not difficult to check
that the algebraic conditions in Definition 2.2.1 hold. Instead of giving a formal
proof, let us therefore give an informal interpretation of how this system works.
For example, let us look at the initial value problem with initial time zero. The
initial state consists of an old input to the system that has entered during the
time interval [−T, 0). It is traveling to the left in the delay line, and shows up in
the output during the time interval [0, T ). If the input u is zero on R

+
, then the

output will vanish on [T,∞). A nonzero input u enters the delay line at its right
end, so that at time T the state consists of the restriction of u to [0, T ). This
part will show up in the output during the time interval [T,∞). It will be an
exact copy of the input function u, apart from the fact that it has been delayed
by T time units.

We shall see later in Example 4.5.7 that it is impossible to realize the delay
line as an L∞-well-posed or Reg-well-posed linear system. It is also impossible
to realize it as an L1-well-posed linear system with a reflexive state space; this
follows from Example 4.5.13.

Another method to construct a well-posed linear system is to use one
or several well-posed linear systems to construct a new one. The following



2.3 Basic examples 51

examples are of this type. We leave the easy verifications that these examples
are well-posed linear systems to the reader.

Example 2.3.5 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ). For each α ∈ C, let eα be the scalar function eα(t) := eαt , t ∈ R.
Then

�α =
[

Aα Bα

Cα Dα

]
:=
[

eαA Be−α

eαC eαDe−α

]

is a linear system which is well-posed in the same sense. We call �α the expo-
nential shift of � by the amount α.

Example 2.3.6 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ). For each λ > 0, let γλ be the time compression operator

(γλu)(s) := u(λs), s ∈ R.

Let At
λ := Aλt for t ≥ 0, and

�λ =
[

Aλ Bλ

Cλ Dλ

]
:=
[

Aλ Bγ1/λ

γλC γλDγ1/λ

]
.

Then �λ is a linear system which is well-posed in the same sense. We call �λ

the time compression of � by the amount λ.

Example 2.3.7 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ), and let E ∈ B(X1; X ) have an inverse in B(X ; X1). Define

�E :=
[

E−1AE E−1B

CE D

]
.

Then �E is well-posed on (Y, X1,U ) in the same sense, and it has the same
input/output map as�. We call�E the similarity transform of� with similarity
operator E.

Example 2.3.8 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ), and let E ∈ B(U1; U ). Define

�E :=
[

A BE

C DE

]

Then �E is well-posed on (Y, X,U1) in the same sense.
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Figure 2.3 Cross-product (the union of two independent systems)
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Figure 2.4 Cross-product in block form

Example 2.3.9 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ), and let E ∈ B(Y ; Y1). Define

�E :=
[

A B

EC ED

]
.

Then �E is well-posed on (Y1, X,U ) in the same sense.

Example 2.3.10 Let �1 =
[

A1 B1

C1 D1

]
be a L p|Reg-well-posed linear system on

(Y1, X1,U1), and let �2 =
[

A2 B2

C2 D2

]
be another linear system on (Y2, X2,U2)

which is well-posed in the same sense (i.e., both are L p-well-posed with the
same value of p, or both are Reg-well-posed). Define

U := [ U1
U2

]
, X := [ X1

X2

]
, Y := [ Y1

Y2

]
,

A := [A1 0
0 A2

]
, B := [B1 0

0 B2

]
, C := [ C1 0

0 C2

]
, D := [D1 0

0 D2

]
.

Then� is a linear system on (Y, X,U ) which is well-posed in the same sense as
�1 and�2. See the equivalent Figures 2.3 and 2.4. We call� the cross-product
of �1 and �2.
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Figure 2.6 Sum junction in block form

Example 2.3.11 Let �1 =
[

A1 B1

C1 D1

]
be a L p|Reg-well-posed linear system on

(Y1, X1,U ), and let �2 =
[

A2 B2

C2 D2

]
be another linear system on (Y2, X2,U )

which is well-posed in the same sense. Define

U := [ U1
U2

]
, X := [ X1

X2

]
,

A := [A1 0
0 A2

]
, B := [B1 0

0 B2

]
, C := [C1 C2

]
, D := [D1 D2

]
.

Then� is a linear system on (Y, X,U ) which is well-posed in the same sense as
�1 and �2. See the equivalent Figures 2.5 and 2.6. We call � the sum junction
of �1 and �2.

Example 2.3.12 Let �1 =
[

A1 B1

C1 D1

]
be a L p|Reg-well-posed linear system on

(Y, X1,U1), and let �2 =
[

A2 B2

C2 D2

]
be another linear system on (Y, X2,U2)

which is well-posed in the same sense. Define

X := [ X1
X2

]
, Y := [ Y1

Y2

]
,

A := [A1 0
0 A2

]
, B := [B1

B2

]
, C := [ C1 0

0 C2

]
, D := [D1

D2

]
.
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Figure 2.8 T-junction in block form

Then � is a linear system on (Y, X,U ) which is well-posed in the same sense
as �1 and �2. See the equivalent Figures 2.7 and 2.8. We call � the T-junction
of �1 and �2.

Example 2.3.13 Let �1 =
[

A1 B1

C1 D1

]
be a L p|Reg-well-posed linear system on

(Y, X1,U ), and let �2 =
[

A2 B2

C2 D2

]
be another linear system on (Y, X2,U )

which is well-posed in the same sense. Define

X := [ X1
X2

]
,

A := [A1 0
0 A2

]
, B := [B1

B2

]
, C := [C1 C2

]
, D := D1 +D2.

Then � is a linear system on (Y, X,U ) which is well-posed in the same sense
as �1 and �2. See the equivalent Figures 2.9 and 2.10. We call � the parallel
connection of �1 and �2.

We postpone the presentation of the more complicated cascade and feedback
connections to Section 7.2.



2.4 Time discretization 55

+

p+u

+
x1

y1

x2

y2

y

x0
1 x0

2

A1

C1 D1

B1t A2

C2 D2

B2t

Figure 2.9 Parallel connection

x1

x2

y

p+u

x0
1

x0
2

0

0

C2 D2

A1

A2

C1 D1

B1t
B2t

+

Figure 2.10 Parallel connection in block form

2.4 Time discretization

Our next theorem shows that it is possible to turn a well-posed linear system
into a discrete time system by discretizing the time.

Theorem 2.4.1 Let U, X, and Y be Banach spaces, let � = [A B

C D

]
be a

L p|Reg-well-posed linear system on (Y, X,U ), and let T > 0. For each x0 ∈ X,
u ∈ L p|Regloc(R

+
; U ) and n = 0, 1, 2, . . . , we define

un := π[0,T )τ
nT u = τ nTπ[nT,(n+1)T )u,

xn := x(nT ),

yn := π[0,T )τ
nT y = τ nTπ[nT,(n+1)T ) y,

where x and y are the state trajectory and the output function of � with initial
time zero, initial value x0 and input function u. Then, for each n ≥ 0,

xn+1 = Axn + Bun,

yn = Cxn + Dun,
(2.4.1)
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where the operators (the notation is explained in Definition 2.2.6)

A := AT
0 = AT , B := BT

0 = Bτ Tπ[0,T ),

C := CT
0 = π[0,T )C, D := DT

0 = π[0,T )Dπ[0,T ),

are bounded linear operators between the following spaces:

A : X → X, B : L p((0, T ); U )→ X,

C : X → L p((0, T ); Y ), D : L p((0, T ); U )→ L p((0, T ); Y )

(in the Reg-well-posed case we replace L p((0, T )) by Reg([0, T )) throughout).

Proof This follows immediately from Lemma 2.2.8 and Theorem 2.2.11. �

Thus, we get a standard discrete time system with bounded operatorsA,B,C,
and D, and with state space X , input space L p|Reg([0, T ); U ), and output space
L p|Reg([0, T ); Y ). Observe that the new input and output spaces are always
infinite-dimensional, even if U and Y are finite-dimensional.

It is also possible to go in the opposite direction: If we know the solution
sequence xn , yn of the discrete time system (2.4.1), then it is possible to recreate
the state trajectory x and the output function y of the original system � using
only the operators A and B:

Theorem 2.4.2 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ), and let T > 0. Let x0 ∈ X, let un be a sequence in L p|Reg([0, T ); U ),
let xn, n ≥ 1, and yn, n ≥ 0, be the solution of (2.4.1) with initial value x0, and
define u ∈ L p|Regloc(R

+
; U ) by

u =
∞∑

n=0

τ−nTπ[0,T )un.

Let x and y be the state trajectory and the output function of� with initial time
zero, initial state x0, and input function u. Then,

x(t) = At−nT xn +Bτ t−nTπ[0,T )un

= At−nT xn + Bτ t−(n+1)Tπ[0,T )un, nT ≤ t < (n + 1)T,

y =
∞∑

n=0

τ−nTπ[0,T ) yn.

Thus, in order to recreate the state trajectory and the output function of the
original system it suffices to know At for 0 ≤ t ≤ T and Bπ[−T,0) (in addition
to the discrete time solution).

The straightforward proof of this theorem is left to the reader.
The one-to-one correspondence between the original system and its dis-

crete time counterpart established in Theorems 2.4.1 and 2.4.2 is important
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for two reasons: it is fundamental in the study of time discretizations of the
original system �, and it is also useful in the general study of the original
system �. At the moment the second property is the one that interests us the
most.

If we know the solution and output of � for arbitrary initial states x0 and
inputs u, then we actually know all the four basic operators A, B, C, and D.
It follows from Theorems 2.4.1 and 2.4.2 that these operators can be rewritten
in terms of the operators A, B, C, and D, or equivalently, in terms of the
‘local’ operators At , 0 ≤ t ≤ T , B0

−T = Bπ[−T,0), CT
0 = π[0,T )C, and DT

0 =
π[0,T )Dπ[0,T ). The exact correspondence is the following:

Lemma 2.4.3 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ), and let T > 0. Then the operators A, B, C, and D satisfy

At = AnT At−nT , n = 0, 1, 2, . . . , t ≥ nT,

B =
∞∑

n=0

AnT Bπ[−T,0)τ
−nT ,

C =
∞∑

n=0

τ−nTπ[0,T )CAnT ,

D =
∞∑

n=−∞

∞∑
k=0

τ−nTπ[0,T )

(
CAkT Bπ[−T,0)τ

−kT +Dπ[0,T )

)
τ nT

=
∞∑

n=−∞
τ−nTπ[0,T )

(
CB+Dπ[0,T )

)
τ nT

=
∞∑

n=−∞
τ−nT

(
CBπ[−T,0) + π[0,T )Dπ[0,T )

)
τ nT .

Thus, the operators A, B, C, and D can be reconstructed from the preceding
formulas if we know At for 0 ≤ t ≤ T , Bπ[−T,0), π[0,T )C, and π[0,T )Dπ[0,T ).

Before proving Lemma 2.4.3, let us comment on the convergence of the
infinite sums. This convergence is actually trivial in the sense that in each
case of interest there are only finitely many nonzero terms in each sum, due to
the fact that we are working in L p|Regc,loc. This means that every u to which
we apply B and D vanishes on some interval (−∞,−M), and that we are only
interested in the values of Cx0 and Du on the finite interval [−M, M). In other
words, we may multiply B and D by π[−M,∞) to the right and multiply C and
D by π[−M,M) to the left. Then only finitely many terms in each sum will be
nonzero because

π[−T,0)τ
−nTπ[−M,∞) = π[−T,0)π[nT−M,∞)τ

−nT
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vanishes for all n ≥ M/T and

π[−M,M)τ
−nTπ[0,T ) = τ−nTπ[−M−nT,M−nT )π[0,T )

vanishes for all n ≥ M/T and for all n ≤ −M/T − 1.

Proof of Lemma 2.4.3 The formula for A is an immediate consequence of the
semigroup property As+t = AsAt for s, t ≥ 0.

To prove the formula for B we solve (2.4.1) recursively to get for all
n = 1, 2, 3 . . . ,

xn = An x0 +
n−1∑
k=0

AkBun−k−1,

or, if we rewrite this in terms of the original state and the original operators A

and B,

xn = x(nT ) = AnT x0 +
n−1∑
k=0

AkT Bπ[−T,0)τ
(n−k)T u.

On the other hand, by Theorem 2.2.11,

x(nT ) = AnT x0 +Bτ nTπ[0,nT )u.

This being true for all x0 and u, we find that (AT )n = AnT and that

Bπ[−nT,0) =
n−1∑
k=0

AkT Bπ[−T,0)τ
−kT ,

from which we get the desired formula (with n replaced by k) by letting n→∞.
The formulas for C and D follow in a similar way from the fact that (cf.

Theorem 2.4.1)

yn = Cxn + Dun = C
(
An x0 +

n−1∑
k=0

AkBun−k−1

)
+ Dun,

hence (cf. Theorems 2.4.1 and 2.4.2)

y =
∞∑

n=0

τ−nTπ[0,T ) yn

=
∞∑

n=0

τ−nTπ[0,T )

(
CAnT x0

+ C
n−1∑
k=0

AkT Bπ[−T,0)τ
(n−k)T u +Dπ[0,T )τ

nT u

)
.
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On the other hand, the output y is given by

y = Cx0 +Dπ+u.

Equating the coefficients for x0 in these formulas we get the desired formula
for C, whereas the coefficients for u give

Dπ+ =
∞∑

n=0

n−1∑
k=0

τ−nTπ[0,T )

(
CAkT Bπ[−T,0)τ

−kT +Dπ[0,T )

)
τ nT .

Multiply this by τ−N T to the right and by τ N T to the left, use the shift-invariance
of D, and make a change of summation variable to get

Dπ[−N T,∞) =
∞∑

n=−N

N+n−1∑
k=0

τ−nTπ[0,T ) (2.4.2)

×
(
CAkT Bπ[−T,0)τ

−kT +Dπ[0,T )

)
τ nT .

We get the first of the three given formulas for D by letting N →∞. The other
two formulas follow from this one and the formulas for B and C. �

The preceding lemma has several important consequences, the first of which
is the following:

Theorem 2.4.4 Let � = [A B

C D

]
be an L p-well-posed linear system on

(Y, X,U ) for some p, 1 ≤ p ≤ ∞, and let T > 0.

(i) Let q ≥ p. If π[0,T )C maps X into Lq ([0, T ); Y ), then C maps X
continuously into Lq

loc(R+; U ), and if, in addition, π[0,T )Dπ[0,T ) maps
Lq ((0, T ); U ) into Lq ((0, T ); Y ), then D maps Lq

c,loc(R; U ) into
Lq

c,loc(R; Y ). Thus, in this case � is also an Lq-well-posed linear system
on (Y, X,U ).

(ii) Let 1 ≤ q ≤ p. If Bπ[−T,0) can be extended to a continuous map from
Lq ([−T, 0); U ) into X, then B can be extended to a continuous map
from Lq

c (R−; U ) into X, and if, in addition, π[0,T )Dπ[0,T ) can be extended
to a continuous map from Lq ((0, T ); U ) into Lq ((0, T ); Y ) then D can be
extended to a continuous map from Lq

c,loc(R; U ) into Lq
c,loc(R; U ). Thus,

in this case � can be extended to an Lq-well-posed linear system on
(Y, X,U ).

This follows immediately from Lemma 2.4.3 and the fact that

Lq
c,loc(R; U ) ⊂ L p

c,loc(R; U ) for q ≥ p.
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2.5 The growth bound

Our next task will be to employ Lemma 2.4.3 to develop a global growth
estimate on the operators A, B, C, and D. The growth estimates on B, C, and
D are given in terms of a weighted L p-space:

Definition 2.5.1 Let 1 ≤ p ≤ ∞, J ⊂ R,ω ∈ R, and let U be a Banach space.

(i) The space L p
ω(J ; U ) consists of all functions u : J → U for which the

function e−ωu belongs to L p(J ; U ) where e−ω(t) := e−ωt , t ∈ R. The
norm of u in L p

ω(J ; U ) (which we often denote by ‖u‖ω) is equal to the
norm of e−ωu in L p(J ; U ).

(ii) The space L p
ω,loc(R; U ) consists of all functions u ∈ L p

loc(R; U ) which
satisfy π−u ∈ L p

ω(R−; U ).
(iii) The spaces L p

0,ω(J ; U ), L p
0,ω,loc(R; U ), BCω(J ; U ), BCω,loc(R; U ),

BC0,ω(J ; U ), BC0,ω,loc(R; U ), BUCω(J ; U ), BUCω,loc(R; U ),
Regω(J ; U ), Regω,loc(R; U ), Reg0,ω(J ; U ), and Reg0,ω,loc(R; U ), are
defined in an analogous way, with L p replaced by L p

0 , BC, BC0, BUC,
Reg, or Reg0, respectively.8

The operators πJ and τ t act on these ω-weighted spaces as follows:

Lemma 2.5.2 Let 1 ≤ p ≤ ∞, ω ∈ R, and u ∈ L p
ω(R; U ). Define e−ω(t) :=

e−ωt for t ∈ R.

(i) For each J ⊂ R (of positive measure) the operator πJ is a projection
operator in L p

ω(J ; U ) and in Regω(J ; U ) (i.e., πJ = π2
J ) with norm

‖πJ‖ω = 1.
(ii) e−ωτ t u = eωtτ t (e−ωu) for t ∈ R. In particular, τ t u → u in L p

ω(R; U ) as
t → 0 if and only if τ t (e−ωu)→ e−ωu in L p(R; U ) as t → 0. The same
claim is true if we replace L p by BC, BUC, BC0, Reg, or Reg0.

Proof (i) This is obvious.
(ii) For all s ∈ R,(

eωtτ t (e−ωu)
)
(s) = eωt e−ω(s+t)u(s + t) = e−ωsu(s + t),

hence e−ωτ t u = eωtτ t (e−ωu). To prove the second claim it suffices to observe
that τ t u → u in L p

ω(R; U ) iff e−ω(τ t u − u)→ 0 in L p(R; U ), and that

e−ω(τ t u − u) = eωt
(
τ t (e−ωu)− e−ωu

)+ (eωt − 1
)
e−ωu,

where eωt → 1 as t → 0. The same argument remains valid if we replace L p

by BC, BUC, BC0, Reg, or Reg0. �

8 The space L p
0 is the same as L p if p <∞, and in the case p = ∞ it consists of those u ∈ L∞

which vanish at ±∞, i.e., limt→∞ ess sup|s|≥t |u(s)| = 0. The space Reg consists of all bounded
regulated functions, and Reg0 consists of those functions in Reg which vanish at ±∞.
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Example 2.5.3 All the claims in Example 2.3.2(i)–(iv) remain true if we replace
the spaces L p, Reg, and BUC by the corresponding weighted spaces L p

ω, Regω,
and BUCω, respectively, where ω ∈ R is arbitrary. Moreover, if we denote the
ω-weighted L p-norm or sup-norm by ‖·‖ω, then with the notation of Example
2.3.2,

(i) ‖τ t u‖ω = eωt‖u‖ω for t ∈ R,
(ii) ‖τ t

+u‖ω ≤ eωt‖u‖ω for t ≥ 0,
(iii) ‖τ t

−u‖ω = eωt‖u‖ω, t ≥ 0,
(iv) ‖τ t

[0,T )u‖ω ≤ eωt‖u‖ω for 0 ≤ t < T and ‖τ t
[0,T )u‖ω = 0 for t ≥ T .

We leave the easy proof of Example 2.5.3 to the reader (the additional claims
about the norms of the shift operators are obvious, and the rest of Example 2.5.3
can be reduced to Example 2.3.2 by use of Lemma 2.5.2(ii)).

The following theorem gives us global growth estimates on A, B, C, and D.

Theorem 2.5.4 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ).

(i) The limit limt→∞ 1
t log(‖At‖) exists, and

ωA := lim
t→∞

log(‖At‖)
t

= inf
t>0

log(‖At‖)
t

<∞

(but possibly ωA = −∞). In particular, for all t ≥ 0 it is true that
‖At‖ ≥ eωAt and that the spectral radius of At is equal to eωAt .
Moreover, for each ω > ωA there is a constant M ≥ 1 such that

‖At‖ ≤ Meωt for t ≥ 0,

and e−ωt‖At‖ → 0 as t →∞.
(ii) If � is L p-well-posed then, for each ω > ωA, C is a continuous linear

operator X → L p
ω(R+, Y ), and B and D have unique extensions (that

we still denote by the same letters) to continuous linear operators
B : L p

ω(R−,U )→ X and D : L p
ω,loc(R,U )→ L p

ω,loc(R, Y ). The latter
operator maps L p

ω(R,U ) continuously into L p
ω(R, Y ). In the case

p = ∞, C maps X into L∞0,ω(R+, Y ) and the extended operator D also
maps L∞0,ω,loc(R,U ) into L p

0,ω,loc(R, Y ) and L∞0,ω(R,U ) into L p
0,ω(R, Y ).

(iii) If � is L p-well-posed, ω > ωA, s ∈ R, xs ∈ X, and u ∈ L p
ω([s,∞); U ),

then the output y of � satisfies y ∈ L p
ω([s,∞); Y ). If, in addition,

p <∞, then the state trajectory x of � satisfies x ∈ BC0,ω([s,∞); X ).
(iv) If � is Reg-well-posed, then (ii) and (iii) remain true if we replace L p by

Reg0 throughout, including the statement in (iii) that
x ∈ BC0,ω([s,∞); X ).
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Note that the semigroup τ[0,T ) in Example 2.3.2(iv) has a growth bound equal
to minus infinity, because ‖τ t

[0,T )‖ = 0 for t ≥ T .

Proof (i) Recall that, by Lemma 2.2.13, ‖At‖ is locally bounded. Define

ωA := inf
t>0

log(‖At‖)
t

.

Trivially, ωA <∞. Let ω > ωA, and choose some T > 0 such that
1
T log(‖AT ‖) < ω. For each t ≥ 0 we can choose an n = 0, 1, 2, . . . so that
nT ≤ t ≤ (n + 1)T . Then

ωA ≤ log(‖At‖)
t

≤ nT

t

log(‖AT ‖)
T

+ log(‖At−nT ‖)
t

<
nTω

t
+ log(‖At−nT ‖)

t
.

Letting t →∞ we get

lim sup
t→∞

log(‖At‖)
t

≤ ω,

and this shows that limt→∞ 1
t log(‖At‖) = ωA. The claim that the spectral radius

of At is equal to eωAt is trivial if t = 0, and for t > 0 the logarithm of the spectral
radius is given by

lim
n→∞ log(‖(At )n‖1/n) = t lim

n→∞
log(‖Ant‖)

nt
= ωAt.

The remaining claims in (i) follow from the facts that At is locally bounded and
that limt→∞ 1

t log(‖At‖) = ωA.
(ii) We claim that the expression for B in Lemma 2.4.3 is an absolutely

converging series in B(L p
ω(R,U ); X ); hence it defines B as an operator in

B(L p
ω(R,U ); X ). We prove this claim as follows. Choose some α, ωA < α < ω

and some M ≥ 1 so that ‖At‖ ≤ Meαt for all t ≥ 0 (cf. Lemma 2.5.2). Then

∞∑
n=0

∥∥AnT Bπ[−T,0)τ
−nT
∥∥
ω
≤
∞∑

n=0

MeαT n
∥∥Bπ[−T,0)

∥∥
ω

e−ωT n <∞.

Thus, B can be extended to an operator in B(L p
ω(R−, Y ); X ). If p <∞, then

this extension is unique since L p
c (R−; U ) is dense in L p

ω(R−; U ). In the case
p = ∞ we choose some ω′ satisfying ωA < ω′ < ω and observe that B has a
unique extension to L∞0,ω′ (R

−; U ) (since L∞c (R−; U ) is dense in this space). But
L∞ω (R−; U ) ⊂ L∞0,ω′ (R

−; U ), hence the extension to L∞ω (R−; U ) is also unique.
The proof of the fact that C ∈ B(X ; L p

ω(R+, Y )) (and that C ∈
B(X ; L∞0,ω(R+, Y )) when p = ∞) is very similar to the one give above for
B, and it is left to the reader.
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The claims about the extension of D remain to be proved. The proof of the
uniqueness of the extension is essentially the same as the proof of the
uniqueness of the extension of B, since (by causality) we know D uniquely
once we know π(−∞,t)D = π(−∞,t)Dπ(−∞,t) for all t ∈ R. If we can extend D to
an operator inB(L p

ω(R,U ); L p
ω(R, Y )), then we can use the identityπ(−∞,t)D =

π(−∞,t)Dπ(−∞,t) to extend D to an operator in B(L p
ω,loc(R,U ); L p

ω,loc(R, Y )).
Thus, it suffices to show that we can extend D to an operator in
B(L p

ω(R,U ); L p
ω(R, Y )). Below we treat only the case p <∞, and leave the

analogous case p = ∞ to the reader. (The reader should also check that the
extended operator maps L∞0,ω(R,U ) into L∞0,ω(R, Y ) in the L∞-case.) All the
L p-type norms below are interpreted as norms in the weighted space L p

ω, in-
cluding the L p-norms over the interval [0, T ), and to stress this fact we denote
these norms by ‖·‖ω.

Take u ∈ L p
ω(R+; U ). We fix some T > 0 and define un , yn , A, B, C, and D

as in Theorems 2.4.1 and 2.4.2, but this time we take x0 = 0. Then

‖u‖p
ω =
∫ ∞

0
|e−ωsu(s)|p ds =

∞∑
n=0

∫ (n+1)T

nT
|e−ωsu(s)|p ds

=
∞∑

n=0

∫ T

0
|e−ω(s+nT )u(s + nT )|p ds =

∞∑
n=0

‖e−ωnT un‖p
ω.

A similar formula is valid for ‖y‖ω. As we saw in the proof of Lemma 2.4.3
(with x0 = 0),

e−ωnT yn = e−ωnT

(
C

n−1∑
k=0

AkBun−k−1 + Dun

)
.

Choose some ωA < α < ω and some M such that ‖At‖ ≤ Meαt for all t ≥ 0.
Then ‖Ak‖ ≤ MeαkT , and

‖e−ωnT yn‖ω ≤ ‖D‖ω‖e−ωnT un‖ω

+ e−ωnT ‖C‖ω
n−1∑
k=0

MeαkT ‖B‖ω‖un−k−1‖ω

= ‖D‖ω‖e−ωnT un‖ω

+ e−ωnT ‖C‖ω
n−1∑
l=0

Meα(n−l−1)T ‖B‖ω‖ul‖ω

= ‖D‖ω‖e−ωnT un‖ω

+ ‖C‖ω‖B‖ωMe−αT
n−1∑
l=0

e(α−ω)(n−l)T ‖e−ωlT ul‖ω.
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This can be interpreted as a convolution of the l1-sequence {an}∞n=0 and the
l p-sequence {‖e−ωnT un‖ω}∞n=0, where

an =
{
‖D‖ω, n = 0,

‖C‖ω‖B‖ωMe−αT e(α−ω)nT , n = 1, 2, 3, . . .

The convolution {(a ∗ b)n}∞n=0 of an l1-sequence {an}∞n=0 and a l p-sequence
{bn}∞n=0 belongs to l p, and ‖a ∗ b‖p ≤ ‖a‖1‖b‖p (the continuous time version
of this result is found in, e.g., Gripenberg et al. (1990, Theorem 2.2, p. 39),
and the proof of the discrete time version is essentially the same). Thus, the
sequence {‖e−ωnT un‖ω}∞n=0 belongs to l p, and

‖Dπ+u‖p
ω = ‖y‖p

ω =
∞∑

n=0

‖e−ωnT yn‖p
ω

≤
( ∞∑

n=0

an

)p

‖e−ωnT un‖p
ω =
( ∞∑

n=0

an

)p

‖π+u‖p
ω.

In other words, we have found a constant K =∑∞n=0 an such that ‖Du‖ω ≤
K‖u‖ω for all u ∈ L p

ω(R; U ) vanishing on (−∞, 0). If u ∈ L p
c,loc(R; U ) ∩

L p
ω(R; U ), then we can choose some t ∈ R such that τ t u is supported on R

+

and use this result (and the time-invariance of D and Lemma 2.5.2) to get

‖Du‖ω = ‖τ−tDτ t u‖ω = e−ωt‖Dτ t u‖ω ≤ e−ωt K‖τ t u‖ω = K‖u‖ω.
This proves that D can be extended to a bounded linear operator from L p

ω(R; U )
to L p

ω(R; Y ).
(iii) The claim that y ∈ L p

ω([s,∞); Y ) follows from (ii), Definition 2.2.7,
and Theorem 2.2.12.

By Definition 2.2.7, e−ωt x(t) = e−ωt
(
At−s xs +Bτ tπ[s,∞)u

)
. According to

Theorem 2.2.12, t �→ x(t) is continuous. By the estimate in (i), e−ωtAt−s xs → 0
as t →∞. Suppose for the moment that u ∈ L p

ω(R; U ) ∩ L p
ω′ (R; U ) for some

ωA < ω′ < ω. Then by Example 2.5.3, ‖τ tπ[s,∞)u‖ω′ ≤ eω
′t‖u‖ω′ , and this

combined with part (ii) gives Bτ tπ[s,∞)u = O(eω
′t ) as t →∞. In particu-

lar, e−ωtBτ tπ[s,∞)u → 0 as t →∞. The same claim must then be true for
all u ∈ L p

ω(R; U ) since L p
ω(R; U ) ∩ L p

ω′ (R; U ) is dense in L p
ω(R; U ). Thus

x ∈ BC0,ω([s,∞); X ).
(iv) The proofs are the same as in the L p-case, except for the fact that we have

to replace the reference to Theorem 2.2.12 by a forward reference to Theorem
4.3.1 to get the continuity of x . �

Remark 2.5.5 The conclusion of Theorem 2.5.4 remains valid if we replace
the strong continuity assumption on A by a local boundedness assumption
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(cf. Lemma 2.2.13), except for the continuous dependence of x(t) on t . The
proof remains the same.

Definition 2.5.6 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ).

(i) The growth bound of � is the same as the growth bound of its semigroup
A, and it is given by the number ωA defined in Theorem 2.5.4(i). We
denote the growth bound of the semigroup A and the growth bound of a
system � with semigroup A by ωA throughout.

(ii) By ω-boundedness of � or one of its components we mean the following:
(a) A is ω-bounded if A satisfies supt≥0

∥∥e−ωtAt
∥∥ <∞;

(b) B is ω-bounded if B can be extended to a continuous linear operator
L p|Reg0,ω(R−,U )→ X ;

(c) C is ω-bounded if C is a continuous linear operator
X → L p|Regω(R

+
, Y );

(d) D is ω-bounded if D can be extended to a continuous linear operator
L p|Reg0,ω(R−,U ) +̇ L p|Regω(R

+
,U )→

L p|Reg0,ω(R−, Y ) +̇ L p|Regω(R
+
, Y );

(e) � is ω-bounded if (a)–(d) above hold.

With the help of Theorem 2.5.4 we can prove the following analogue of
Theorem 2.2.11, which corresponds to the case where the initial time is −∞
and the initial state is zero.

Theorem 2.5.7 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, let ω > ωA, and let u ∈ L p|Reg0,ω,loc(R; U ).
Define x(t) = Bt u = Bτ t u, t ∈ R, and y = Du. Then x ∈ BC0,ω,loc(R; X ),
y ∈ L p|Reg0,ω,loc(R; Y ), and for all s ∈ R (cf. Definition 2.2.6)

x(t) = At
s x(s)+Bt

su, t ≥ s,

π[s,∞) y = Cs x(s)+Dsu.
(2.5.1)

Thus, x(t) for t ≥ s and π[s,∞) y can be interpreted as the state trajectory and
the output function of � with initial time s, initial value x(s), and input u. If
u ∈ L p|Reg0,ω(R; U ) then x ∈ BC0,ω(R; X ) and y ∈ L p|Reg0,ω(R; Y ).

Proof By Theorem 2.2.11, (2.5.1) is true if u ∈ L p|Regc,loc(R; U ). This set of
functions u is dense in L p|Reg0,ω,loc(R; U ), so the general case then follows
from the continuity of B and D; cf. Theorem 2.5.4(ii),(iv). The additional
claims about the growth bounds of x and y follow from Theorem 2.5.4(iii),(iv)
(observe that Bτ t u → 0 in L p|Reg0,ω(R; U ) as t →−∞). �
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Definition 2.5.8 We call the functions x and y in Theorem 2.5.7 the state
trajectory and the output function of � with initial time −∞ and input u.

Example 2.5.9

(i) The growth bound of the delay line in Example 2.3.4 is −∞.
(ii) The growth bound of the exponentially shifted system �α in Example

2.3.5 is ωAα
= ωA+
α. Thus, it is possible to make �α exponentially

stable by choosing 
α < −ωA.
(iii) The growth bound of the time compressed system �λ in Example 2.3.6 is

ωAλ
= λωA.

(iv) The growth bound of the similarity transformed system �E in Example
2.3.7 is ωAE = ωA.

(v) The growth bound of the systems in Examples 2.3.10– 2.3.13 is
ωA = max{ωA1 , ωA2}.

(vi) The growth bound of the Lax–Phillips model in Definition 2.7.2 is
ωA= max{ωA, ω}.

We leave the easy proofs of these claims to the reader.

Example 2.5.10 In the case of the system presented in Proposition 2.3.1, the
extended input map B and the extended input/output map D constructed in
Theorem 2.5.4(ii) and (iv) are given by (for all t ∈ R)

Bu =
∫ 0

−∞
A−s Bu(s) ds, u ∈ L p|Reg0,ω(R−; U ),

(Du)(t) = C
∫ t

−∞
At−s Bu(s) ds + Du(t), u ∈ L p|Reg0,ω,loc(R; U ).

(2.5.2)

Proof Fix some ω′ ∈ (ωA, ω). Then ‖At‖ ≤ Meω
′t for some M <∞. This

implies that the integral
∫ 0
−∞ A−s Bu(s) ds converges absolutely, because (by

Hölder’s inequality, with 1/p + 1/q = 1),∫ 0

−∞

∣∣A−s Bu(s)
∣∣ ds ≤ M‖B‖

∫ 0

−∞
e(ω−ω′)s |e−ωsu(s)| ds

≤
( 1

(ω − ω′)q

)1/q
‖u‖L p |Regω(R−).

The same computation shows that if we define the operator B̃ by
B̃ = ∫ 0

−∞ A−s Bu(s) ds, then B̃ ∈ B(L p|Reg0,ω(R−; U ); X ). Since this op-
erator coincides with the extended operator B, which also belongs to
B(L p|Reg0,ω(R−; U ); X ), on the dense subset of functions u vanishing outside
of some finite interval, we must have B̃ = B.
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Essentially the same proof can be used to prove the second half of (2.5.2).
By the preceding argument,

(D̃u)(t) := C
∫ t

−∞
At−s Bu(s) ds + Du(t)

is well-defined for all u ∈ L p|Reg0,ω,loc(R; U ) and all t ∈ R, and by Theorem
A.3.4, D̃ maps L p|Reg0,ω,loc(R; U ) continuously into L p|Reg0,ω,loc(R; U ). In
addition it coincides with D on a dense subset. �

2.6 Shift realizations

We have seen in Theorem 2.5.4 that every input/output map D of an L p-
well-posed linear system � can be extended to a time-invariant linear oper-
ator L p

ω(R; U )→ L p
ω(R; Y ) for some ω ∈ R. Here we shall study the converse

question: given such a time-invariant operator, is it possible to construct a well-
posed linear system with this particular input/output map? As we shall see in
a moment, the answer is yes if 1 ≤ p <∞. An analogous result is also true if
we replace L p by Reg.

Definition 2.6.1 Let 1 ≤ p ≤ ∞, letω ∈ R, let U and Y be Banach spaces, and
let D be a linear operator L p

loc(R; U ) ⊃ D (D)→ L p
loc(R; Y ) or Regloc(R; U ) ⊃

D (D)→ Regloc(R; Y ).

(i) D is time-invariant if τ tDu = Dτ t u for all u ∈ D (D) and all t ∈ R (in
particular, τ tD (D) = D (D)).

(ii) A time-invariant operator D is causal if π−Dπ+ = 0 and it is anti-causal
if π+Dπ− = 0.

(iii) A time-invariant operator D is static if it is both causal and anti-causal.
(iv) The Hankel operator induced by a time-invariant operator D is the

operator π+Dπ−, and the anti-Hankel operator induced by D is the
operator π−Dπ+.

(v) The Toeplitz operator induced by a time-invariant operator D is the
operator π+Dπ+, and the anti-Toeplitz operator induced by D is the
operator π−Dπ−.

Thus, a time-invariant operator is causal iff its anti-Hankel operator vanishes,
it is anti-causal iff its Hankel operator vanishes, and it is static if both the Hankel
operator and the anti-Hankel operator vanish. The condition imposed on the
input/output map D in Definition 2.2.1(iv) requires D to be time-invariant and
causal with a Hankel operator equal to CB.
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Definition 2.6.2

(i) For all 1 ≤ p <∞, the notation TI p
ω(U ; Y ) stands for the space of all

bounded time-invariant operators D : L p
ω(R; U )→ L p

ω(R; Y ), with the
operator norm. The notation TI∞ω (U ; Y ) stands for the space of all
bounded time-invariant operators
D : L∞0,ω(R−; U ) +̇ L∞ω (R+; U )→ L∞0,ω(R−; Y ) +̇ L∞ω (R+; Y ), with the
operator norm. In both cases we abbreviate TI p

ω(U ; U ) to TI p
ω(U ).

(ii) We denote the space of all causal operators in TI p
ω(U ; Y ) by TICp

ω(U ; Y ),
and abbreviate TICp

ω(U ; U ) to TICp
ω(U ).

(iii) By TI p and TICp we mean TI p
ω and TICp

ω with ω = 0.
(iv) By TICp

∞ we mean
⋃

ω∈R TICp
ω.

(v) We denote the space of all continuous causal time-invariant operators
D : L p

c,loc(R; U )→ L p
c,loc(R; Y ) by TICp

loc(U ; Y ), and abbreviate
TICp

loc(U ; U ) to TICp
loc(U ).

(vi) The spaces TIReg
ω , TICReg

ω , TIReg, TICReg, TICReg
∞ TIReg

loc , and TICReg
loc are

defined in the same way, with L p
ω replaced by Reg0,ω(R−) +̇ Regω(R

+
)

and L p
c,loc replaced by Regc,loc.

(vii) We use TI (with different subindices) to represent either TI p or TIReg and
TIC (with different subindices) to represent either TICp or TICReg,
depending on the context.

Definition 2.6.3 Let 1 ≤ p ≤ ∞, let U and Y be Banach spaces, and let
D ∈ TICp

loc(U ; Y ). By a L p-realization of D we mean an L p-well-posed linear
system on (Y, X,U ) (for some Banach space X ) with input/output map D. A
Reg-realization of an operator D ∈ TICReg

loc (U ; Y ) is defined in the same way,
with L p replaced by Reg.

We shall also apply this definition in the case where D belongs to TICω(U ; Y )
instead of TICloc(U ; Y ). To do this we need the following fact:

Lemma 2.6.4 If D ∈ TICω(U ; Y ) for some ω ∈ R, then D has a unique (re-
striction followed by an) extension to an operator in TICloc(U ; Y ), and this
extension determines D uniquely. Moreover, the extension does not depend on
ω, in the sense that if D ∈ TICα ∩ TICω(U ; Y ), then we get the same extension
if we interpret D as an operator in TICα(U ; Y ) or as an operator in TICω(U ; Y ).

Proof By the time-invariance and causality of D, the restriction of D to
L p|Regc,ω(R; U ) maps this space into L p|Regc,ω(R; Y ) (these are the spaces
of functions in L p|Regω whose support is bounded to the left). Moreover,
D is determined uniquely by this restriction since L p|Regc((−∞, t); U )
is dense in L p|Regω((−∞, t); U ) (or in L∞0,ω((−∞, t); U ) in the L∞-case)
for every t ∈ R, and since we know D uniquely as soon as we know
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π(−∞,t)D = π(−∞,t)Dπ(−∞,t) for all t ∈ R. Next we use the identityπ(−∞,t)D =
π(−∞,t)Dπ(−∞,t) to extend D to an operator in TICloc. This extension is unique
since L p|Regc,ω(R; U ) is dense in L p|Regc,loc(R; U ). �

Example 2.6.5 Let D ∈ TICp
ω(U ; Y ) where 1 ≤ p <∞, ω ∈ R, and U and Y

are Banach spaces.

(i) The system � defined by (cf. Example 2.3.2)

� =
[

A B

C D

]
=
[

τ− 1

π+Dπ− D

]

is a ω-bounded L p-well-posed linear system on (Y, L p
ω(R−; U ),U ). This

is the exactly controllable shift realization of D.
(ii) The system � defined by

� =
[

A B

C D

]
=
[
τ+ π+Dπ−

1 D

]

is an ω-bounded L p-well-posed linear system on (Y, L p
ω(R+; Y ),U ). It is

strongly stable when ω = 0 (see Definition 8.1.1). This is the exactly
observable shift realization of D.

(iii) The system � defined by (cf. Example 2.3.2)

� =
[

A B

C D

]
=
[

τ π−

π+D D

]

is a ω-bounded L p-well-posed linear system on (Y, L p
ω(R; U ),U ). This is

the bilateral input shift realization of D.
(iv) The system � defined by

� =
[

A B

C D

]
=
[
τ Dπ−

π+ D

]

is an ω-bounded L p-well-posed linear system on (Y, L p
ω(R; Y ),U ). This

is the bilateral output shift realization of D.

We leave the easy verifications of these claims to the reader. Strictly speaking,
we should replace D in (i)–(iv) by the operator in TICp

loc induced by D; see
Lemma 2.6.4. Controllability and observability will be studied in Chapter 9.
See, in particular, Example 9.4.12. The semigroups used in these realizations
have quite different spectral properties; see Example 3.3.1.

This example provides us with a simple proof of the following theorem:
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Theorem 2.6.6 Let 1 ≤ p <∞, let U and Y be Banach spaces, and let D

be an operator L p
c,loc(R; U )→ L p

c,loc(R; Y ). Then the following conditions are
equivalent:

(i) D is the input/output map of an L p-well-posed linear system;
(ii) D is linear, continuous, time-invariant, and causal, and D can be

extended to a bounded operator L p
ω(R; U )→ L p

ω(R; Y ) for some ω ∈ R;
(iii) D is linear, continuous, time-invariant, and causal, and the Hankel

operator π+Dπ− of D can be extended to a bounded operator
L p
ω(R−; U )→ L p

loc(R+; Y ) for some ω ∈ R;
(iv) D is linear, continuous, time-invariant, and causal, and the Hankel

operator π+Dπ− of D is bounded from L p
c (R−; U ) into L p

ω(R+; Y ) for
some ω ∈ R.

Thus, Theorem 2.6.6 says that D ∈ TICloc(U ; Y ) has an L p-realization iff D

can be extended to a bounded operator L p
ω(R; U )→ L p

ω(R; Y ), or equivalently,
π+Dπ− can be extended to a bounded operator L p

ω(R−; U )→ L p
ω(R+; Y ).

Proof By Theorem 2.5.4(ii), (i)⇒ (ii), and obviously (ii)⇒ (iii) and (ii)⇒
(iv). If (iii) holds, then the system in Example 2.6.5(i) is an L p-well-posed
linear system with the input/output map D, and if (iv) holds, then the system
in Example 2.6.5(ii) is an L p-well-posed linear systems with the input/output
map D. Thus (iii)⇒ (i) and (iv)⇒ (i). �

There is also a Reg-well-posed version of Theorem 2.6.6:

Theorem 2.6.7 Let U and Y be Banach spaces, and let D be an operator
Regc,loc(R; U )→ Regc,loc(R; Y ). Then the following conditions are equivalent:

(i) D is the input/output map of an Reg-well-posed linear system;
(ii) D is linear, continuous, time-invariant, and causal, and there is an

operator D ∈ B(U ; Y ) and a constant ω ∈ R such that the mapping
u �→ (t �→ (Du)(t)− Du(t)

)
maps Regc,loc(R; U ) into Cc(R; Y ) and can

be extended to a continuous linear mapping
Reg0,ω(R; U )→ BC0,ω(R; Y );

(iii) D is linear, continuous, time-invariant, and causal, and the Hankel
operator π+Dπ− maps Regc(R−; U ) continuously into BC0,ω(R

+
; Y ) for

some ω ∈ R.

Proof By Definition 2.2.3, Theorem 2.5.4 and Corollary 4.5.6 below, (i)⇒ (ii),
and obviously (ii)⇒ (iii).

To prove that (iii)⇒ (i) it suffices to construct a Reg-well-posed realization
of D. For this we can use the same exactly observable shift realization as in
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Example 2.6.5(ii), i.e., [
A B

C D

]
=
[
τ+ π+Dπ−

1 D

]

but this time with state space BC0,ω(R
+

; Y ), since the left-shift semigroup τ+
is strongly continuous on this space (see Example 2.5.3). �

Example 2.6.5 also provides us with a simple proof of the following lemma:

Lemma 2.6.8 For each α > ω, TICω(U ; Y ) is continuously embedded in
TICα(U ; Y ), i.e., every operator D ∈ TICω(U ; Y ) has a continuous (restric-
tion followed by an) extension to an operator in D ∈ TICα(U ; Y ), and there is
a one-to-one correspondence between the original operator D ∈ TICω(U ; Y )
and its extended version D ∈ TICα(U ; Y ).

Proof In the L p-case with 1 ≤ p <∞ the existence of a continuous (restriction
followed by an) extension of D follows from Example 2.6.5 and Theorem
2.5.4(ii), and, according to Lemma 2.6.4, there is a one-to-one correspondence
between the original operator and its extended version. In the L∞-case and Reg-
case we can use exactly the same proof: the realization in Example 2.6.5(ii) is
still valid apart from the fact that the semigroup is not strongly continuous, and
the strong continuity was not used in the proof of Theorem 2.5.4(ii) (it was used
in the proof of Theorem 2.5.4(i) in the form of Lemma 2.2.13, but this time we
know in advance that the semigroup has growth bound ω). �

2.7 The Lax–Phillips scattering model

Instead of using a L p|Reg-well-posed linear system to formalize the idea of
having an output and state at time t > 0 which depend continuously on the
input and the initial state we can proceed in a different way which leads to a
generalized Lax–Phillips scattering model. This is a particular semigroup T

defined on
[ Y

X
U

]
, where Y = L p|Regω(R−; Y ) and U = L p|Regω(R

+
; U ). We

call U the incoming subspace, X the inner state space, and Y the outgoing
subspace. In the classical cases treated in Lax and Phillips (1967, 1973) ω is
taken to be zero and T is required to be unitary (the conservative case) or a
contraction semigroup (the nonconservative case).

Theorem 2.7.1 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system

on (Y, X,U ). Let ω ∈ R, Y = L p|Regω(R−; Y ) (the outgoing subspace)

and U = L p|Regω(R
+

; U ) (the incoming subspace). For each
[ y0

x0
u0

]
∈
[ Y

X
U

]
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and t ≥ 0, define (the notation is explained in Definition 2.2.6 and
Example 2.3.2)

Tt :=
τ t 0 0

0 1 0
0 0 τ t

+

1 Ct
0 Dt

0

0 At Bt
0

0 0 1

 =
τ t
− τ tCt

0 τ tDt
0

0 At Bt
0

0 0 τ t
+

 .
Then T is a semigroup on

[ Y
X
U

]
. It is strongly continuous on

[ Y
X
U

]
iff � is L p-

well-posed with 1 ≤ p <∞. If x and y are the state trajectory and the output
function of � corresponding to the initial state x0 ∈ X and the input function
u0 ∈ U , and if we define y(t) = y0(t) for t < 0, then for all t ≥ 0,π(−∞,t] y

x(t)
π[t,∞)u0

 =
τ−t 0 0

0 1 0
0 0 τ−t

Tt

y0

x0

u0

 . (2.7.1)

Formula (2.7.1) shows that at any time t ≥ 0, the first component of Tt

[ y0
x0
u0

]
represents the past output, the second component represents the present state
and the third component represents the future input.

Proof That T(0) is the identity operator follows from Lemma 2.2.8(i). The
claim about the strong continuity can be reduced to the strong continuity of the
two shift operators, discussed in Example 2.3.2. Thus, only the semigroup
property Ts+t = TsTt for s, t ≥ 0 remains to be shown. For this we use
Definition 2.2.6, the composition property in Lemma 2.2.8(iv), and
Example 2.3.2, which give

TsTt =
τ s
− τ sCs

0 τ sDs
0

0 As Bs
0

0 0 τ s
+

τ t
− τ tCt

0 τ tDt
0

0 At Bt
0

0 0 τ t
+


=
τ s
−τ

t
− τ s

−τ
tCt

0 + τ sCs
0A

t τ s
−τ

tDt
0 + τ sCs

0B
t
0 + τ sDs

0τ
t
+

0 AsAt AsBt
0 +Bs

0τ
t
+

0 0 τ s
+τ

t
+


=
τ s+t
− τ s+t (Ct

0 + Cs+t
t At

0) τ s+t (Dt
0 + Cs+t

t Bt
0 +Ds+t

t )
0 As+t As+t

t Bt
0 +Bs+t

t

0 0 τ s+t
+


=
τ s+t
− τ s+tCs+t

0 τ s+tDs+t
0

0 As+t Bs+t
0

0 0 τ s+t
+


= Ts+t .

�
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The semigroup T in Theorem 2.7.1 has an additional ‘causality’ property,
which in the Hilbert space case where p = 2 and U , X , and Y are Hilbert spaces
can be described as follows: for all t ≥ 0, the images of the inner and incoming
states under Tt are orthogonal to the image of the outgoing state, and the null
space of Tt projected onto the inner and outgoing spaces is orthogonal to the
null space of Tt projected onto the incoming space. In the general case these
properties can most easily be characterized in the following way.

Definition 2.7.2 A Lax–Phillips model of type L p|Regω is a semigroup on
[ Y

X
U

]
,

where Y = L p|Regω(R−; Y ) and U = L p|Regω(R
+

; U ), with the structure

Tt =
τ t
− Ct Dt

0 At Bt

0 0 τ t
+

 ,
where A is strongly continuous and Bt , Ct , and Dt satisfy the causality con-
ditions

Bt =Btπ[0,t), Ct = π[−t,0)C
t , Dt = π[−t,0)D

tπ[0,t). (2.7.2)

Corollary 2.7.3 The semigroup T constructed in Theorem 2.7.1 is a Lax–
Phillips model of type L p|Regω.

This is immediate from Theorem 2.7.1 and Definition 2.7.2.

Definition 2.7.4 We call the semigroup T in Theorem 2.7.1 the Lax–Phillips
model (of type L p|Regω) induced by �.

Remark 2.7.5 Above we have absorbed both the input and the output of
an L p|Reg-well-posed linear system � = [A B

C D

]
on (Y, X,U ) into the Lax–

Phillips model. It is also possible to absorb only the input or the output. If � is
L p-well-posed with p <∞ and ω ∈ R, thenAt Bt

0

0 τ t
+

C Dπ+

 (2.7.3)

is an L p-well-posed linear system on
(
Y,
[

X
U
]
, 0
)

(with no input) where U =
L p
ω(R+; U ), and [

τ t
− τ tCt

0 B

0 At π−D

]
(2.7.4)

is an L p-well-posed linear system on
(
0,
[ Y

X

]
,U
)

(with no output) where Y =
L p
ω(R−; Y ). We leave the easy proof to the reader.
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It is only slightly more difficult to prove the converse: to every Lax–Phillips
model there corresponds a well-posed linear system which induces this Lax–
Phillips model:

Theorem 2.7.6 Let T be a Lax–Phillips model of type L p|Regω. With the no-
tation of Definition 2.7.2, define

B = lim
s→−∞B−sτ s, C = lim

t→∞ τ
−tCt , D = lim

t→∞
s→−∞

τ−tDt−sτ s . (2.7.5)

Then � = [A B

C D

]
is a L p|Reg-well-posed linear system on (Y, X,U ), and T

is the Lax–Phillips model induced by this system.

Proof of Theorem 2.7.6. This proof is based on Theorem 2.2.14. We begin by
defining the needed operator families (indexed by −∞ < s ≤ t <∞) as[

At
s Bt

s

Ct
s Dt

s

]
=
[

At−s Bt−sτ s

τ−tCt−s τ−tDt−sτ s

]
.

This family has the time-invariance property (2.2.5), and it follows from (2.7.2)
that it also has the causality property (2.2.4). The semigroup property Ts+t =
TsTt with s, t ≥ 0 gives us four nontrivial identities, namely

As+t = AsAt , Bs+t = AsBt +Bsτ t ,

Cs+t = τ sCt + CsAt , Ds+t = τ sDt + CsBt +Dsτ t

(where we have omitted some redundant projections) and this implies that the
operators At

s , Bt
s , Ct

s , and Dt
s have the composition property (2.2.6). As we

noticed in the proof of Theorem 2.2.14, the two conditions (2.2.4) and (2.2.6)
together imply (2.2.10). By Theorem 2.2.14, � = [A B

C D

]
is an L p|Reg-well-

posed linear system, and the corresponding Lax–Phillips model is the given
one. �

Corollary 2.7.7 For each ω ∈ R, there is a one-to-one correspondence be-
tween the class of all L p|Reg-well-posed linear systems and all Lax–Phillips
models of type L p|Regω: every L p|Reg-well-posed linear system � induces
a unique Lax–Phillips model T of type L p|Regω, and conversely, every Lax–
Phillips model T of type L p|Regω induces a unique L p|Reg-well-posed linear
system �.

Proof See Corollary 2.7.3 and Theorem 2.7.6. �

There are a number of important ingredients in the Lax–Phillips scattering
theory, such as the backward and forward wave operators, the scattering oper-
ator, and the scattering matrix. All of these have natural analogs in the context
of well-posed linear systems. In the discussion below we suppose that � is
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ω-bounded (see Definition 2.5.6), or at least that B, C, and D are ω-bounded.
This is true, for example, if ω > ωA, where ωA is the growth bound of A.

The backward wave operator W− (denoted by W2 in Lax and Phillips 1973,
Theorem 1.2) is the limit of the last column of Tτ−t as t →∞. It maps

L p|Regω(R; U ) into

[
L p |Regω(R−;Y )

X
L p |Reg(R

+
;U )

]
, and it is given by (cf. Theorems 2.5.4

and 2.7.6)

W−u =
π−DB

π+

 u. (2.7.6)

Thus, it keeps the future input π+u intact, and maps the past input π−u into the
past output π−Du and the present inner state Bu.

The forward wave operator W+ (denoted by W1 in Lax and Phillips
1973, Theorem 1.2) is the limit of the first row of τ−tT as t →∞. It maps[

L p |Regω(R−;Y )
X

L p |Reg(R
+

;U )

]
into L p|Regω(R; Y ), and it is given by (cf. Theorems 2.5.4 and

2.7.6)

W+

 y
x0

u

 = [π− C Dπ+
] y

x0

u

 . (2.7.7)

Thus, it keeps the past output π−y intact, and maps the present inner state x0

and the future input π+u into the future output Cx0 +Dπ+u.
The two wave operators W− and W+ play very important roles in scatter-

ing theory and also in the theory of passive and conservative systems (see
Chapter 11). Their most important property is that they intertwine the Lax–
Phillips semigroup with the bilateral left-shift τ t on L p|Regω(R; U ), respec-
tively, L p|Regω(R; Y ) (just as the input map B intertwines the semigroup At

on X with the outgoing left-shift τ t
− on L p|Regω(R−; U ) and the output map C

intertwines At with the incoming left-shift τ t
+ on L p|Regω(R+; Y )). This is the

content of the following lemma.

Lemma 2.7.8 Let ω ∈ R, let � = [A B

C D

]
be an ω-bounded L p|Reg-well-

posed linear system on (Y, X,U ), and let T be the corresponding Lax–Phillips
model of type L p|Regω. Then the two wave operators W+ and W− intertwine
T with the bilateral left-shift τ as follows: for all t ≥ 0,

Tt W−u = W−τ t u, y ∈ L p|Regω(R; U ),

W+Tt
[

y
x
u

]
= τ t W+

[
y
x
u

]
,

[
y
x
u

]
∈
[

L p |Regω(R−;Y )
X

L p |Regω(R+;U )

]
.

In particular, R (Tt W−
) = R (W−) and N (W+Tt) = N (W−) for all t ≥ 0.
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Proof We leave the straightforward proof of the intertwining properties to the
reader (see Definition 2.7.4 and Lemma 2.2.10(iii)–(iv)). The invariance of
R (Tt W−

)
and N (W+Tt) follow from the identities Tt W−τ−t = W− and

τ−t W+Tt = W+ and the fact that τ−t is injective and onto. �

In this lemma theω-boundedness of A is irrelevant, but we need B, C, and D

to be ω-bounded in order for the two wave operators W− : L p|Regω(R; U )→[
L p |Regω(R−;Y )

X
L p |Regω(R+;U )

]
and W+ :

[
L p |Regω(R−;Y )

X
L p |Regω(R+;U )

]
→ L p|Regω(R; Y ) to be bounded.

The scattering operator in Lax–Phillips theory is the product W+W−, and
it is given by

W+W− =
[
π− C Dπ+

]π−DB

π+

 = π−D+ CB+ π+D = D. (2.7.8)

Thus, the scattering operator is nothing but the (bilaterally shift-invariant) in-
put/output map D of the corresponding well-posed linear system.

To get the scattering matrix of the Lax–Phillips system we apply the scat-
tering operator D to an input of the form u(t) = ezt u0, where z ∈ C has a
sufficiently large real part and u0 ∈ U is fixed; see Lax and Phillips (1973,
pp. 187–188). Because of the shift-invariance of D, the resulting output is of
the type y(t) = ezt y0 for some y0 ∈ Y . The scattering matrix (evaluated at z) is
defined to be the operator that maps u0 ∈ U into y0 ∈ Y . By Definition 4.6.1,
the scattering matrix of a Lax–Phillips system is equal to the transfer function
D̂ of the corresponding well-posed linear system.

The generator of the Lax–Phillips semigroup T and its resolvent are de-
scribed in Theorem 4.8.3.

2.8 The Weiss notations

In the L2-case the notion of a well-posed linear system that we have intro-
duced in Definition 2.2.1 goes back to Salamon (1989) and Staffans (1997,
1998a). There is another commonly used notion which was introduced by G.
Weiss (1989a, b, 1994a). Here the starting point is the input/state/output rela-
tions in Definition 2.2.7 with initial time zero, which are written in the form,
for every t ≥ 0,

x(t) = Tt x0 +�t u = At x0 +Bt
0u,

π[0,t) y = �t x0 + Ft u = Ct
0x0 +Dt

0u,
(2.8.1)
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where [
Tt �t

�t Ft

]
:=
[

At Bt
0

Ct
0 Dt

0

]
(2.8.2)

is the notation used by Weiss, and the operators on the right hand side are
defined in Definition 2.2.6. Comparing these operators to those appearing in
the Lax–Phillips model we find that

Tt = At , �t = Bt
0 =Bt ,

�t = Ct
0 = τ−tCt , Ft = Dt

0 = τ−tDt .
(2.8.3)

Substituting this into the composition property in Lemma 2.2.8(iv) we get, for
all s, t ≥ 0,

Ts+t = TsTt ,

�s+t = Ts�t +�sτ
t ,

�s+t = �t + τ−t�sTt ,

Fs+t = Ft + τ−t�s�t + τ−tFsτ
t .

(2.8.4)

(Weiss uses a special concatenation operator to rewrite (2.8.4) in a more compact
form, and he further usually denotes τ−tπ+ by St , π[0,t) by Pt , and τ−t by St .)

Theorem 2.8.1 Let� be a L p|Reg-well-posed linear system on (Y, X,U ), and,

for each t ≥ 0, define
[

Tt �t

�t Ft

]
by (2.8.2). Then T is a C0 semigroup on X,

�t ∈ B(L p|Reg(R; U ); X ),

�t ∈ B(X ; L p|Reg(R; Y )),

Ft ∈ B(L p|Reg(R; U ); L p|Reg(R; Y )),

(2.8.5)

�t = �tπ[0,t), Ft = Ftπ[0,t),

Ft = π[0,t)Ft , �t = π[0,t)�t ,
(2.8.6)

and (2.8.4) hold for all s, t ≥ 0. Conversely, if
[

Tt �t

�t Ft

]
is a family of operators

defined for t ≥ 0 such that T is a C0 semigroup on X, and (2.8.4)–(2.8.6) hold
for all s, t ≥ 0, then

[A B

C D

]
is a L p|Reg-well-posed linear system on (Y, X,U ),

where

B = lim
s→−∞�−sτ

s, C = lim
t→∞�t , D = lim

t→∞
s→−∞

τ−sFt−sτ
s . (2.8.7)

Proof Use (2.8.3) and Theorems 2.7.1 and 2.7.6. �
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We remark that the composition property (2.8.4) and the causality property
(2.8.6) are equivalent to the block matrix identity (with s, t ≥ 0)

[
Ts+t �s+t

�s+t Fs+t

]
=
[

1 0 0
0 π[0,t) τ

−tπ[0,s)

]Ts 0 �s

0 1 0
�s 0 Fs


×
Tt �t 0
�t Ft 0
0 0 1

1 0
0 π[0,t)

0 π[0,s)τ
t

 .
(2.8.8)

2.9 Comments

Sections 2.1–2.2 The class of L p|Reg-well-posed linear systems which we
present here is by no means the only possible setting for an infinite-dimensional
systems theory. Over time several related theories have been developed within
different fields, often independently of each other.

One classical approach is to start as we did in Section 2.1 with the formal
system

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t), t ≥ s,

x(s) = xs,

(2.1.1)

and to then impose more or less stringent conditions on A, B, C , and D. It is quite
natural to require A to be the generator of a strongly continuous semigroup. The
notion of a C0 semigroup has its background in parabolic and hyperbolic partial
differential equations, and we refer the reader to Davies (1980), Dunford and
Schwartz (1958, 1963, 1971), Goldstein (1985), Lunardi (1995), Nagel (1986),
Hille and Phillips (1957), Pazy (1983), and Yosida (1974) for the history and
theory of C0 semigroups beyond what we present in this book.

We get the mathematically simplest version of an infinite-dimensional sys-
tems theory by taking A in (2.1.1) to be the generator of a C0 semigroup,
and to take B, C , and D to be bounded linear operators, i.e., B ∈ B(U ; X ),
C ∈ B(X ; Y ), and D = B(U ; Y ). Here U , X and Y are usually taken to be
Hilbert spaces (instead of Banach spaces). By Proposition 2.3.1, this leads
to a system which is both Reg-well-posed and L p-well-posed for every p,
1 ≤ p ≤ ∞. The big drawback with this class of systems is that the impulse
response of such a system is always a continuous function, and this severely
limits their applicability to boundary control and point observation processes.
Systems of this type have been studied and used by, e.g., Baras and Brockett
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(1975), Brockett and Fuhrmann (1976), Baras et al. (1974), Baras and Dewilde
(1976), Bucci and Pandolfi (1998), Callier and Dumortier (1998), Callier et al.
(1995), Callier and Winkin (1990, 1992), Curtain (1993), Curtain and Glover
(1986b), Curtain and Oostveen (1998), Curtain and Rodman (1990), Curtain
and Zwart (1994, 1995), Fuhrmann (1972, 1974, 1981), Lukes and Russell
(1969), Oostveen (1999), and Pandolfi (1992), to mention only a few works.

To partly overcome the the limitations of the class described above, the
notion of an L p-well-posed input map B (induced by A and B) and an L p-
well-posed output map C (induced by A and C) gradually evolved in Chang
and Lasiecka (1986), Curtain (1984), Curtain and Glover (1986a), Curtain and
Salamon (1986), Da Prato et al. (1986), Desch et al. (1985), Dolecki and Rus-
sell (1977), Fattorini (1968), Flandoli (1984), Glover et al. (1988), Ho and
Russell (1983), Lasiecka (1980), Lasiecka and Triggiani (1981, 1983a, b, c,
1986, 1991a), Lions (1971, 1988), Pritchard and Wirth (1978), Russell (1975),
Washburn (1979), etc. These input and output maps were combined into the
so-called Pritchard–Salamon class of infinite-dimensional systems by Salamon
(1984) and Pritchard and Salamon (1985, 1987). This class achieved a certain
popularity for a number of years. The characteristic feature of this class is that
two different norms are used in the state space. With respect to the weaker
norm, the control operator B is bounded and the output map C is L2-well-
posed, and with respect to the stronger norm the input map B is L2-well-posed
and the observation operator C is bounded. It turns out that these conditions
are sufficiently strong that virtually all of the finite-dimensional systems the-
ory can be extended to this class. However, the Pritchard–Salamon class is
still not general enough for the most interesting boundary control and point
observation processes. The impulse response is locally strong in L2, and so is
the dual impulse response (see Theorems 4.3.4 and 4.4.8). In particular, the
delay line in Example 2.3.4 does not have a Pritchard–Salamon realization.
The Pritchard–Salamon class of systems has been studied and used by, e.g.,
Curtain (1985, 1988, 1990, 1992, 1996), Curtain et al. (1994), Curtain and
Pritchard (1994), Curtain and Ran (1989), Curtain, Weiss and Zhou (1996),
Curtain and Zwart (1994), Kaashoek et al. (1997), van Keulen (1993), and
M. Weiss (1994, 1997).

The first ‘modern’ version of an L2-well-posed linear system on three Hilbert
spaces (Y, X,U ) was presented by Salamon (1987, 1989), G. Weiss (1989c),
and Curtain and Weiss (1989) (also found in Helton (1976) is a more implicit
way). As we mentioned above, at that time it was well-known how to create
L2-well-posed input and output maps from the operators A, B, and C , but
the general construction of an input/output map from A, B, and C , was still
incomplete. Such a construction was given by Salamon (1987), Šmuljan (1986),
G. Weiss (1989c), and Curtain and Weiss (1989) (see also Helton (1976), Arov
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and Nudelman (1996), Ober and Montgomery-Smith (1990), and Ober and Wu
(1996)). The converse question of how to construct B and C from the input and
output maps B and C (see Chapter 4) was addressed in (Salamon, 1989), (Weiss,
1989a, b). Since then L2-well-posed linear systems in the Hilbert space setting
(sometimes regular; cf. Chapter 5) have been studied and used by a large number
of authors, such as Avalos et al. (1999), Curtain (1989a, b, 1997), Curtain, Weiss,
and Weiss (1996), Hinrichsen and Pritchard (1994), Logemann et al. (1998),
Jacob and Zwart (2001a, b, 2002), Logemann et al. (1996), Logemann and
Ryan (2000), Logemann et al. (1998, 2000), Logemann and Townley (1997a,
b), Morris (1994, 1999), Rebarber (1993, 1995), Staffans (1996, 1997, 1998a, b,
c, d, 1999a), G. Weiss (1994a, b), Weiss and Curtain (1997), Weiss and Häfele
(1999), Weiss and Rebarber (1998), Staffans and Weiss (2002, 2004), M. Weiss
(1994, 1997), and Weiss and Weiss (1997).

In parallel with the work described above there was intensive research going
on in optimal control of partial differential equations, which uses much the same
technique, but which does not fit into the general framework described above.
There the authors usually work directly with the partial differential equation,
often rewritten in the form (2.1.1), instead of introducing the operators B, C,
and D. Sometimes this approach is replaced by a ‘direct’ approach based on the
study of an integral or integro-differential equation. It is true that most examples
of parabolic type are L2-well-posed if we choose the state space appropriately
(see Theorem 5.7.3), but it is usually more important that these systems are
Reg-well-posed in a smaller state space (where the observation operator C
is bounded). Most hyperbolic examples have an L2-well-posed input map
B and a bounded control operator C (thus, they are both L2-well-posed and
Reg-well-posed). However, there do exist exceptions where the system is not
L p|Reg-well-posed in any sense. There are a number of books on optimal control
of partial differential equations, such as Bensoussan et al. (1992), Curtain and
Pritchard (1978), Lasiecka and Triggiani (1991a, 2000a, b), and Lions (1971).
Systems of parabolic type are studied by, e.g., Curtain and Ichikawa (1996),
Da Prato and Ianelli (1985), Da Prato and Ichikawa (1985, 1993), Da Prato and
Lunardi (1988, 1990), Flandoli (1987), Lasiecka (1980), Lasiecka et al. (1995),
Lasiecka et al. (1997), Lasiecka and Triggiani (1983a, b, 1987a, b, 1992b), and
McMillan and Triggiani (1994a, b). Systems of hyperbolic type are studied by,
e.g., Chang and Lasiecka (1986), Da Prato et al. (1986), Flandoli et al. (1988),
Hendrickson and Lasiecka (1993, 1995), Lasiecka and Triggiani (1981, 1983c,
1986, 1987c, 1988, 1989a, b, 1990a, b, 1991b, c, d, 1992a, c, 1993a, b), and
Lions (1988).

Above we have described how the theory of well-posed linear systems has
developed out of the theory for the state space system (2.1.1) with bounded
control operator B and observation operator C . In parallel to this development
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an algebraic theory evolved at an early stage, based on the interplay between
the input map, the output map, and the input/output map (see the algebraic
conditions in Definition 2.2.1). In particular the input/output map D and its
Hankel operator π+Dπ− play important roles, and the main objective is of-
ten to construct a (spectrally) minimal realization of a given input/output map
or its transfer function. A good early representative for this class of work is
Kalman et al. (1969, Part 4). The approach in Kalman et al. (1969, Part 4) is
algebraic, somewhat similar in spirit to our definition of a L p|Reg-well-posed
linear system, but it is mainly discrete time, more abstract, and it puts less em-
phasis on the exact continuity requirements of the different parts of the system.
A somewhat different approach was taken by Balakrishnan (1966). He starts
with a system with well-defined initial state, input and output, and constructs
the corresponding semigroup A in roughly the same way as we do in Theorem
9.3.1(iv). Theorem 3.1 in Balakrishnan (1966) describes a Reg-well-posed lin-
ear system with finite-dimensional input and output spaces. Further works in
the same direction have been done by Baras and Brockett (1975) and Baras et al.
(1974) (bounded B and C), Baras and Dewilde (1976) (bounded B and C , and
frequency domain), Dewilde (1971) (frequency domain approach), Fuhrmann
(1974) (discrete and continuous time with bounded B and C), Fuhrmann (1981)
(many different settings), Feintuch (1998) (input/output approach), Feintuch
and Saeks (1982) (a general theory based on Hilbert resolution spaces), Kamen
(1975) (an algebraic approach), and Yamamoto (1981) (very weak continuity
assumptions). In addition, a significant amount of corresponding results have
been obtained for discrete time systems, and these can be turned into contin-
uous time results by use of the Cayley transform (see Theorem 12.3.5). See,
e.g., Arov (1974a, b, 1979a, b, c), Fuhrmann (1981), Helton (1974), Ober and
Montgomery-Smith (1990), and Ober and Wu (1993, 1996).

So far we have primarily discussed publications with a dominating con-
trol theory background (although some of the work in optimal control is quite
mathematically oriented). In the early 1960s a complementary theory evolved
in the field of pure mathematics and mathematical physics. This theory was
infinite-dimensional at the outset, and it uses a very different language. The
book by Sz.-Nagy and Foiaş (1970) can be viewed after a translation of terms
as a treatise on infinite-dimensional discrete-time systems (Chapter 11 can be
regarded as a natural continuous-time analogue of one of the central parts of
Sz.-Nagy and Foiaş (1970), rewritten in the language of L2-well-posed lin-
ear systems). In Section 2.7 we describe the close connection which exists
between the theory of L2-well-posed linear systems and Lax–Phillips scat-
tering theory, as presented in Lax and Phillips (1967, 1973). Adamajan and
Arov (1970) proved the Sz.Nagy–Foiaş and Lax–Phillips theories to be equiv-
alent. The strong connection between the Lax–Phillips theory and the theory of
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well-posed linear systems was brought forward by Helton (1974, 1976), and
their work was continued by Ober and Montgomery-Smith (1990) and Ober
and Wu (1996). This connection was also noticed in the Soviet Union, where
the theory of well-posed linear systems evolved independently of the the work
by Salamon and Weiss in the West (see, e.g., Arov (1974a, b, 1979a, b, c, 1999),
Brodskiı̆ (1971), Livšic (1973), Livšic and Yantsevich (1977), Šmuljan (1986);
further references are found in Arov and Nudelman (1996). For a more detailed
description of the early history of this subject we refer the reader to Arov (1995)
and Helton (1976).

In this book we have chosen to let the input space U , the state space X , and
the output space Y be Banach spaces, and we use either a local L p-norm or
a local sup-norm on the input and output functions. This is less general than
the Fréchet spaces used by, for example, Yamamoto (1981), but more general
than the usual Hilbert space setting where U , X , and Y are Hilbert spaces and
p = 2. There are two main reasons for our choice of setting. We do not want to
leave the Banach space context, because then we lose the finite growth bound
in Theorem 2.5.4 (see Yamamoto, 1981), and this finite growth bound is a very
important technical tool. Among others, it implies the existence of a transfer
function, defined on some half-plane (see Section 4.6). On the other hand, in the
present book we would gain very little by restricting ourselves to the Hilbert
space setting (the vast majority of the formulas and the proofs are the same
in the Banach and Hilbert space cases), and there are applications where it is
quite useful to be able to work in L p with p �= 2. This is, in particular, true for
systems with an analytic semigroup (see Theorem 5.7.3), and in perturbation
theory involving certain types of nonlinearities. However, some of the results
that we present are valid only in the Hilbert space setting.

Section 2.3 Shift groups and semigroups are found in one form or another in
many books on semigroup theory, such as Hille and Phillips (1957). Books on
harmonic analysis often exploit the properties of the shift operator; see, e.g.,
Foiaş and Frazho (1990), Nikol’skiı̆ (1986), Rosenblum and Rovnyak (1985),
and Sz.-Nagy and Foiaş (1970). The delay line example is classical, and it is
found in, e.g., Helton (1976), Salamon (1987), G. Weiss (1989c), G. Weiss
(1994a), and Weiss and Zwart (1998). The systems in Examples 2.3.5–2.3.13
have been modeled after the corresponding classic finite-dimensional examples
(and several of them are also found in Weiss and Curtain (1997)).

Section 2.4–2.5 That every C0-semigroup has a finite growth bound is well-
known; see, e.g., Hille and Phillips (1957) or Pazy (1983). The rest of Theorem
2.5.4 is due to G. Weiss (1989a, b, 1994a) (it is also stated in Salamon (1989)
with a partial proof). Our proof is a rewritten version of G. Weiss’s proof, where
we emphasize the possibility to discretize the time.
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Section 2.6Different versions of the exactly observable and exactly controllable
shift realizations in Example 2.6.5 are found in, e.g., Baras and Brockett (1975),
Baras and Dewilde (1976), Fuhrmann (1974, Theorem 2.6), Fuhrmann (1981,
Section 3.2), Helton (1974, p. 31), Jacob and Zwart (2002, Theorem A.1), Ober
and Montgomery-Smith (1990), and Ober and Wu (1996, Sections 5.2–5.3).
The first time that they appear in (almost) this generality is Salamon (1989,
Theorem 4.3). The bilateral input and output shift realizations are related to the
incoming and outgoing translations representations used by Lax and Phillips
(1967, 1973).

The exactly controllable and the exactly observable shift realizations
have also been known in the integral and functional equations communi-
ties in a somewhat different setting. The ‘initial function semigroup’ in
(Gripenberg et al. 1990, Section 8.2) can be interpreted as a flow-inverted
version of the exactly controllable shift realization, and the ‘forcing function
semigroup’ described there is a flow-inverted version of the exactly observable
shift realization. (Flow-inversion is described in Section 6.3.) Analogously, the
extended semigroups in Gripenberg et al. (1990, Section 8.3) are flow-inverted
versions of the bilateral shift semigroups in Example 2.6.5. See Gripenberg
et al. (1990) for the history of these semigroups.

Section 2.7 Our presentation of the Lax–Phillips scattering model has been
modeled after Helton (1976). (The corresponding discrete time version is given
in Helton (1974).) To make the connection more transparent we have replaced
the right shift used in the shift representations of the incoming and outgoing
subspaces in Lax and Phillips (1967, 1973) and Helton (1976) by a left shift.

As Corollary 2.7.7 shows, there is a very strong connection between the Lax–
Phillips scattering theory and the theory of L p|Reg-well-posed linear systems.
This connection does not seem to have had a significant influence on the work
by Curtain and Weiss (1989), Salamon (1987, 1989) and Weiss (1989a, b, c,
1994a, b), but it has clearly influenced the work by Arov (1979b) and Arov
and Nudelman (1996). We shall use very little of the actual theory from Lax
and Phillips (1967, 1973), although we shall rederive many of the results given
there from the present theory of well-posed linear systems. The main motivation
behind Lax and Phillips (1967, 1973) is quite different from the motivation
behind this book. There the main object is to create a theory which can be
applied to scattering. The incoming and outgoing subspaces are defined in an
abstract way, and they are intrinsically infinite-dimensional. There the typical
incoming and outgoing subspaces consist of initial data for solutions of the wave
equation in free space which vanish in a truncated backward or forward light
cone (the amount of truncation is proportional to the size of the scatterer). In Lax
and Phillips (1967) the incoming and outgoing subspaces are defined in such
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a way that the corresponding well-posed linear system is always controllable
and observable (cf. Chapter 9).

Parts of Corollary 2.7.7 (where either the input operator or output operator
vanishes) were proved by Grabowski and Callier (1996) and Engel (1998). It is
also implicitly contained in Arov and Nudelman (1996) and in Helton (1976).

Section 2.8 The Weiss notation appears for the first time in Weiss (1989a) (the
input operator), Weiss (1989b) (the output operator), and Curtain and Weiss
(1989) (the input/output operator), and has since then been used by many work-
ers in the field. The notation used in Definition 2.2.1 was introduced in Staffans
(1997), and resembles the notation used by Salamon (1989) (and by Fuhrmann
(1981) in the discrete time case). The Weiss notation is convenient as long we
confine ourselves to the initial value problem with initial time zero and positive
final time, but the resulting algebraic conditions (2.8.4) are more complicated
than those used in Definition 2.2.1, and they are less flexible if one wants to
work with some other notions of state and output. These alternative notions
of state are important, for example, in optimal control theory and for some of
the transformations described in Chapter 6. In this work we have throughout
replaced the Weiss notation by that in Definition 2.2.6.



3

Strongly continuous semigroups

The most central part of a well-posed linear system is its semigroup. This
chapter is devoted to a study of the properties of C0 semigroups, both in the
time domain and in the frequency domain. Typical time domain issues are the
generator of a semigroup, the dual semigroup, and the nonhomogeneous initial
value problem. The resolvent of the generator lives in the frequency domain.

3.1 Norm continuous semigroups

We begin by introducing the notion of the generator of a C0 (semi)group
(cf. Definition 2.2.2).

Definition 3.1.1

(i) The generator A of a C0 semigroup A is the operator

Ax := lim
h↓0

1

h
(Ah − 1)x,

defined for all those x ∈ X for which this limit exists.
(ii) The generator A of a C0 group A is the operator

Ax := lim
h→0

1

h
(Ah − 1)x,

defined for all those x ∈ X for which this limit exists.

Before we continue our study of C0 semigroups and their generators, let
us first study the smaller class of uniformly continuous semigroups, i.e., semi-
groups A which satisfy (cf. Definition 2.2.2)

lim
t↓0
‖At − 1‖ = 0. (3.1.1)

Clearly, every uniformly continuous semigroup is a C0 semigroup.

85
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We begin by presenting an example of a uniformly continuous (semi)group.
(As we shall see in Theorem 3.1.3, every uniformly continuous (semi)group is
of this type.)

Example 3.1.2 Let A ∈ B(X ), and define

eAt :=
∞∑

n=0

(At)n

n!
, t ∈ R. (3.1.2)

Then eAt is a uniformly continuous group on X, and its generator is A. This
group satisfies

∥∥eAt
∥∥ ≤ e‖A‖|t | for all t ∈ R. In particular, the growth bounds

of the semigroups t �→ eAt and t �→ e−At (where t ≥ 0) are bounded by ‖A‖
(cf. Definition 2.5.6).

Proof The series in (3.1.2) converges absolutely since

∞∑
n=0

∥∥∥ (At)n

n!

∥∥∥ ≤ ∞∑
n=0

(‖A‖|t |)n

n!
= e‖A‖|t |.

This proves that ‖eAt‖ satisfies the given bounds. Clearly e0A = 1. Being a
power series, the function t �→ eAt is analytic, hence uniformly continuous for
all t . By differentiating the power series (this is permitted since eAt is analytic)
we find that the generator of eAt is A (and the limit in Definition 3.1.1 is
uniform). Thus, it only remains to verify the group property eA(s+t) = eAseAt ,
which is done as follows:

eA(s+t) =
∞∑

n=0

An(s + t)n

n!
=
∞∑

n=0

An

n!

n∑
k=0

(
n

k

)
sktn−k

=
∞∑

n=0

n∑
k=0

Aksk

k!

An−k tn−k

(n − k)!
=
∞∑

k=0

Aksk

k!

∞∑
n=k

An−k tn−k

(n − k)!

= eAseAt .
�

Theorem 3.1.3 Let A be a uniformly continuous semigroup. Then the following
claims are true:

(i) A has a bounded generator A and At = eAt for all t ≥ 0;
(ii) t �→ At is analytic and d

dt A
t = AAt = At A for all t ≥ 0;

(iii) A can be extended to an analytic group on R satisfying
d
dt A

t = AAt = At A for all t ∈ R.
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Remark 3.1.4 Actually a slightly stronger result is true: every C0 semigroup
A satisfying

lim sup
t↓0
‖At − 1‖ < 1 (3.1.3)

has a bounded generator A and At = eAt . Alternatively, every C0 semigroup
A for which the operator

∫ h
0 As ds is invertible for some h > 0 has a bounded

generator A and At = eAt . The proof is essentially the same as the one given
below (it uses strong integrals instead of uniform integrals).

Proof of Theorem 3.1.3 (i) For sufficiently small positive h,
∥∥1−

(1/h)
∫ h

0 As ds
∥∥ < 1, hence (1/h)

∫ h
0 As ds is invertible, and so is

∫ h
0 As ds.

By the semigroup property, for 0 < t < h,

1

t
(At − 1)

∫ h

0
As ds = 1

t

(∫ h

0
As+t ds −

∫ h

0
As ds

)
= 1

t

(∫ t+h

t
As+t ds −

∫ h

0
As ds

)
= 1

t

(∫ t+h

h
As+t ds −

∫ t

0
As ds

)
.

Multiply by
(∫ h

0 As ds
)−1

to the right and let t ↓ 0 to get

lim
t↓0

1

t
(At − 1) = (Ah − 1)

(∫ h

0
As ds

)−1

in the uniform operator norm. This shows that A has the bounded generator
A = (Ah − 1)

(∫ h
0 As ds

)−1
. By Example 3.1.2, the group eAt has the same

generator A as A. By Theorem 3.2.1(vii) below, At = eAt for t ≥ 0.
(ii)–(iii) See Example 3.1.2 and its proof. �

3.2 The generator of a C0 semigroup

We now return to the more general class of C0 semigroups. We already intro-
duced the notion of the generator of a C0 semigroup in Definition 3.1.1. Some
basic properties of this generator are listed in the following theorem.

Theorem 3.2.1 Let At be a C0 semigroup on a Banach space X with generator
A.

(i) For all x ∈ X,

lim
h↓0

1

h

∫ t+h

t
As x ds = At x .
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(ii) For all x ∈ X and 0 ≤ s < t <∞,
∫ t

s Avx dv ∈ D (A) and

At x − As x = A
∫ t

s
Avx dv.

(iii) For all x ∈ D (A) and t ≥ 0, At x ∈ D (A), t �→ At x is continuously
differentiable in X, and

d

dt
At x = AAt x = At Ax, t ≥ 0.

(iv) For all x ∈ D (A) and 0 ≤ s ≤ t <∞,

At x − As x = A
∫ t

s
Avx dv =

∫ t

s
Av Ax dv.

(v) For all n = 1, 2, 3, . . . , if x ∈ D (An), then At x ∈ D (An) for all t ≥ 0,
the function t �→ At x is n times continuously differentiable in X, and for
all k = 0, 1, 2, . . . , n,( d

dt

)n
At x = AkAt An−k x, t ≥ 0.

(vi) A is a closed linear operator and
⋂∞

n=1D (An) is dense in X. For each

x ∈ ∩∞n=1D (An) the function t �→ At x belongs to C∞(R
+

; U ).
(vii) A is uniquely determined by its generator A.

Proof (i) This follows from the continuity of s �→ As x (see Lemma 2.2.13(ii)).
(ii) Let x ∈ X and h > 0. Then

1

h
(Ah − 1)

∫ t

s
Avx dv = 1

h

∫ t

s
(Av+h x − Avx) dv

= 1

h

∫ t+h

t
Avx dv −

∫ s+h

s
Avx dv.

As h ↓ 0 this tends to At x − As x .
(iii) Let x ∈ D (A) and h > 0. Then

1

h
(Ah − 1)At x = At 1

h
(Ah − 1)x → At Ax as h ↓ 0.

Thus, At x ∈ D (A), and AAt x = At Ax is equal to the right-derivative of At x
at t . To see that it is also a left-derivative we compute

1

h
(At x − At−h x)− At Ax = At−h

(1

h
(Ah x − x)− Ax

)
+ (At−h − At )Ax .

This tends to zero because of the uniform boundedness of At−h and the strong
continuity of At (see Lemma 2.2.13).
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(iv) We get (iv) by integrating (iii).
(v) This follows from (iii) by induction.
(vi) The linearity of A is trivial. To prove that A is closed we let xn ∈ D (A),

xn → x , and Axn → y in X , and claim that Ax = y. By part (iv) with s = 0,

At xn − xn =
∫ t

0
As Axn ds.

Both sides converge as n→∞ (the integrand converges uniformly on [0, t]),
hence

At x − x =
∫ t

0
As y ds.

Divide by t , let t ↓ 0, and use part (i) to get Ax = y.
We still need to show that

⋂∞
n=1 D (An) is dense in X . Pick some real-valued

C∞ function η with compact support in (0, 1) and
∫∞

0 η(s) ds = 1. For each
x ∈ X and k = 1, 2, 3, . . . , we define

xk = k
∫ 1

0
η(ks)As x ds.

Then, for each h > 0,

1

h
(Ah − 1)xk = 1

h

∫ 1

0
η(ks)[As+h x − As x] ds

= k
∫ 1+h

0

1

h
[η(k(s − h))− η(ks)]As x ds

→−k2
∫ 1

0
η̇(ks)As x ds as h ↓ 0.

Thus, xk ∈ D (A) and Axk = −k2
∫ 1

0 η̇(ks)As x . We can repeat the same argu-
ment with η replaced by η̇, etc., to get xk ∈ D (An) for every n = 1, 2, 3 . . .
This means that xk ∈

⋂∞
n=1 D (An).

We claim that xk → x as k →∞, proving the density of
⋂∞

n=1 D (An) in X .
To see this we make a change of integration variable to get

xk =
∫ 1

0
η(s)As/k x ds.

The function As/k x tends uniformly to x on [0, 1], hence the integral tends to∫∞
0 η(s)x ds = x as k →∞.

That Ax ∈ C∞(R
+

; U ) whenever x ∈⋂∞n=1 D (An) follows from (iv).
(vii) Suppose that there is another C0 semigroup A1 with the same generator

A. Take x ∈ D (A), t > 0, and consider the function s �→ At−sAs
1x , s ∈ [0, t].
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We can use part (iii) and the chain rule to compute its derivative in the form

d

ds
AsAt−s

1 x = AAsAt−s
1 x − As AAt−s

1 x = AsAt−s
1 Ax − AsAt−s

1 Ax = 0.

Thus, this function is a constant. Taking s = 0 and s = t we get At x = At
1x

for all x ∈ D (A). By the density of D (A) in X , the same must be true for all
x ∈ X . �

To illustrate Definition 3.1.1, let us determine the generators of the shift
(semi)groups τ t , τ t

+, τ t
−, τ t

[0,T ), and τ t
TT

in Examples 2.3.2 and 2.5.3. The do-
mains of these generators are spaces of the following type:

Definition 3.2.2 Let J be a subinterval of R, ω ∈ R, and let U be a Banach
space.

(i) A function u belongs to W n,p
loc (J ; U ) if it is an nth order integral of a

function u(n) ∈ L p
loc(J ; U ) (i.e., u(n−1)(t2)− u(n−1)(t1) = ∫ t2

t1
u(n)(s) ds,

etc.).1 It belongs to W n,p
ω (J ; U ) if, in addition, u(k) ∈ L p

ω(J ; U ) for all
k = 0, 1, 2, . . . , n.

(ii) The space W n,p
c,loc(R; U ) consists of the functions in W n,p

loc (R; U ) whose
support is bounded to the left, and the space W n,p

ω,loc(R; U ) consists of the
functions u in W n,p

loc (R; U ) which satisfy π−u ∈ W n,p
ω (R−; U ).

(iii) The spaces W n,p
0,ω (J ; U ), W n,p

0,ω,loc(R; U ), BCn
ω(J ; U ), BCn

ω,loc(R; U ),
BCn

0,ω(J ; U ), BCn
0,ω,loc(R; U ), BUCn

ω(J ; U ), BUCn
ω,loc(R; U ),

Regn
ω(J ; U ), Regn

ω,loc(R; U ), Regn
0,ω(J ; U ), and Regn

0,ω,loc(R; U ) are
defined in an analogous way, with L p replaced by BC, BC0, BUC, Reg,
or Reg0.

Example 3.2.3 The generators of the (semi)groups τ t , τ t
+, τ t

−, τ t
[0,T ), and τ t

TT

in Examples 2.3.2 and 2.5.3 are the following:

(i) The generator of the bilateral left shift group τ t on L p
ω(R; U ) is the

differentiation operator d
ds with domain W 1,p

ω (R; U ), and the generator of
the left shift group τ t on BUCω(R; U ) is the differentiation operator d

ds
with domain BUC1

ω(R; U ). We denote these generators simply by d
ds .

(ii) The generator of the incoming left shift semigroup τ t
+ on L p

ω(R+; U ) is

the differentiation operator d
ds with domain W 1,p

ω (R
+

; U ), and the

generator of the left shift semigroup τ t
+ on BUCω(R

+
; U ) is the

differentiation operator d
ds with domain BUC1

ω(R
+

; U ). We denote these
generators by d

ds+.

1 Our definition of W n,p
loc implies that the functions in this space are locally absolutely continuous

together with their derivatives up to order n − 1. This is true independently of whether U has
the Radon–Nikodym property or not.
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(iii) The generator of the outgoing left shift semigroup τ t
− on L p

ω(R−; U ) is
the differentiation operator d

ds with domain

{u ∈ W 1,p
ω (R

−
; U ) | u(0) = 0}, and the generator of the left shift

semigroup τ t
− on {u ∈ BUCω(R

−
; U ) | u(0) = 0} is the differentiation

operator d
ds with domain {u ∈ BUC1

ω(R
−

; U ) | u(0) = u̇(0) = 0}. We
denote these generators by d

ds−.
(iv) The generator of the finite left shift semigroup τ t

[0,T ) on L p([0, T ); U ) is
the differentiation operator d

ds with domain
{u ∈ W 1,p([0, T ]; U ) | u(T ) = 0}, and the generator of the left shift
semigroup τ t

[0,T ) on {u ∈ C([0, T ]; U ) | u(T ) = 0} is the differentiation
operator d

ds with domain {u ∈ C1([0, T ]; U ) | u(T ) = u̇(T ) = 0}. We
denote these generators by d

ds [0,T )
.

(v) The generator of the circular left shift group τ t
TT

on L p(TT ; U ) is the
differentiation operator d

ds with domain W 1,p(TT ; U ) (which can be
identified with {u ∈ W 1,p([0, T ]; U ) | u(T ) = u(0)}), and the generator
of the circular left shift group τ t

TT
on C(TT ; U ) is the differentiation

operator d
ds with domain C1(TT ; U ) (which can be identified with the set

{u ∈ C1([0, T ]; U ) | u(T ) = u(0) and u̇(T ) = u̇(0)}). We denote these
generators by d

ds TT
.

Proof The proofs are very similar to each other, so let us only prove, for ex-
ample, (iii). Since the proof for the L p-case works in the BUC-case, too, we
restrict the discussion to the L p-case. For simplicity we take ω = 0, but the
same argument applies when ω is nonzero.

Suppose that u ∈ L p(R−; U ), and that 1
h (τ h
+u − u)→ g in L p(R−; U ) as

h ↓ 0. If we extend u and g to L p(R; U ) by defining them to be zero on R
+

,
then this can be written as 1

h (τ hu − u)→ g in L p(R; U ) as h ↓ 0.
Fix some a ∈ R, and for each t ∈ R, define

f (t) =
∫ t+a

t
u(s) ds =

∫ a

0
u(s + t) ds.

Then

1

h
(τ h f − f ) =

∫ a

0

1

h
(τ hu(s + t)− u(s + t)) ds

=
∫ t+a

t

1

h
(τ hu(s)− u(s)) ds

→
∫ t+a

t
g(s) ds as h ↓ 0.
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On the other hand

1

h
(τ h f − f ) = 1

h

∫ t+a+h

t+h
u(s) ds − 1

h

∫ t+a

t
u(s) ds

= 1

h

∫ t+a+h

t+a
u(s) ds − 1

h

∫ t+h

t
u(s) ds,

and as h ↓ 0 this tends to u(t + a)− u(t) whenever both t and t + a are
Lebesgue points of u. We conclude that for almost all a and t ,

u(t + a) = u(t)+
∫ t+a

t
g(s) ds.

By definition, this means that u ∈ W 1,p(R; U ) and that u̇ = g. Since we ex-
tended u to all of R by defining u to be zero on R

+
, we have, in addition

u(0) = 0 (if we redefine u on a set of measure zero to make it continuous
everywhere).

To prove the converse claim it suffices to observe that, if u ∈ W 1,p(R
−

; U )
and u(0) = 0, then we can extend u to a function in W 1,p(R; U ) by defining u
to be zero on R+, and that

1

h
(τ hu − u)(t) = 1

h
(u(t + h)− u(t)) = 1

h

∫ t+h

t
u̇(s) ds,

which tends to u̇ in L p(R; U ) as h ↓ 0 (see, e.g., Gripenberg et al. (1990, Lemma
7.4, p. 67)). �

Let us record the following fact for later use:

Lemma 3.2.4 For 1 ≤ p <∞, W 1,p
ω (R; U ) ⊂ BC0,ω(R; U ), i.e., every u ∈

W 1,p
ω (R; U ) is continuous and e−ωt u(t)→ 0 as t →±∞.

Proof The continuity is obvious. The function u−ω(t) = e−ωt u(t) belongs to
L p, and so does its derivative −ωu−ω + e−ωu̇. This implies that u−ω(t)→ 0
as t →∞. �

By combining Theorem 3.2.1(vi) with Example 3.2.3 we get the major part
of the following lemma:

Lemma 3.2.5 Let 1 ≤ p <∞, ω ∈ R, and n = 0, 1, 2, . . . Then C∞c (R; U )
is dense in L p

ω(R; U ), L p
loc(R; U ), W n,p(R; U ), W n,p

loc (R; U ), BCn
0(R; U ), and

Cn(R; U ).

Proof It follows from Theorem 3.2.1(vi) and Example 3.2.3 that⋂∞
k=1 W k,p(R; U ) is dense in L p(R; U ) and in W n,p(R; U ). Let u belong to

this space. Then u ∈ C∞. Choose any η ∈ C∞c (R; R) satisfying η(t) = 1 for
|t | ≤ 1, and define um(t) = η(t/m)u(t). Then um ∈ C∞c (R; U ), and um → u in
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L p(R; U ) and in W n,p(R; U ), proving the density of C∞c in L p and in W n,p.
The other claims are proved in a similar manner (see also Lemma 2.3.3). �

Example 3.2.6 Let At be a C0 semigroup on a Banach space X with
generator A.

(i) For each α ∈ C, the generator of the exponentially shifted semigroup
eαtAt , t ≥ 0 (see Example 2.3.5) is A + α.

(ii) For each λ > 0, the generator of the time compressed semigroup Aλt ,
t ≥ 0 (see Example 2.3.6) is λA.

(iii) For each (boundedly) invertible E ∈ B(X1; X ), the generator AE of the
similarity transformed semigroup At

E = E−1At E, t ≥ 0 (see Example
2.3.7) is AE = E−1 AE, with domain D (AE ) = E−1D (A).

We leave the easy proof to the reader.
Theorem 3.2.1 does not say anything about the spectrum and resolvent set

of the generator A. These notions and some related ones are defined as follows:

Definition 3.2.7 Let A : X ⊃ D (A)→ X be closed, and let α ∈ C.

(i) α belongs to the resolvent set ρ(A) of A if α − A is injective, onto, and
has an inverse (α − A)−1 ∈ B(X ). Otherwise α belongs to the spectrum
σ (A) of A.

(ii) α belongs to the point spectrum σp(A), or equivalently, α is an
eigenvalue of A, if (α − A) is not injective. A vector x ∈ X satisfying
(α − A)x = 0 is called an eigenvector corresponding to the eigenvalue α.

(iii) α belongs to the residual spectrum σr (A) if (α − A) is injective but its
range is not dense in X .

(iv) α belongs to the continuous spectrum σc(A) if (α − A) is injective and
has dense range, but the range is not closed.

(v) The resolvent of A is the operator-valued function α �→ (α − A)−1,
defined on ρ(A).

By the closed graph theorem, σ (A) is the disjoint union of σp(A), σr (A), and
σc(A). The different parts of the spectrum need not be closed (see Examples
3.3.1 and 3.3.5), but, as the following lemma shows, the resolvent set is always
open, hence the whole spectrum is always closed.

Lemma 3.2.8 Let A be a (closed) operator X ⊃ D (A)→ X, with a nonempty
resolvent set.

(i) For each α and β in the resolvent set of A,

(α − A)−1 − (β − A)−1 = (β − α)(α − A)−1(β − A)−1. (3.2.1)

In particular, (α − A)−1(β − A)−1 = (β − A)−1(α − A)−1.
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(ii) Let α ∈ ρ(A) and denote ‖(α − A)−1‖ by κ . Then every β in the circle
|β − α| < 1/κ belongs to the resolvent set of A, and

‖(β − A)−1‖ ≤ κ

1− κ|β − α| . (3.2.2)

(iii) Let α ∈ ρ(A). Then δ‖(α − A)−1‖ ≥ 1, where δ is the distance from α to
σ (A).

The identity (3.2.1) in (i) is usually called the resolvent identity. Note that
the closedness of A is a consequence of the fact that A has a nonempty resolvent
set.

Proof of Lemma 3.2.8. (i) Multiply the left hand side by (α − A) to the left and
by (β − A) to the right to get

(α − A)
[
(α − A)−1 − (β − A)−1

]
(β − A) = β − α.

(ii) By part (i), for all β ∈ C,

(β − A) = (1+ (β − α)(α − A)−1
)
(α − A). (3.2.3)

It follows from the contraction mapping principle that if we take |β − α| < 1/κ ,
then

(
1+ (β − α)(α − A)−1

)
is invertible and∥∥(1+ (β − α)(α − A)−1

)−1∥∥ ≤ 1

1− κ|β − α| .

This combined with (3.2.3) implies that β ∈ ρ(A) and that (3.2.2) holds.
(iii) This follows from (ii). �

Our next theorem lists some properties of the resolvent (λ− A)−1 of the
generator of a C0 semigroup. Among others, it shows that the resolvent set of
the generator of a semigroup contains a right half-plane.

Theorem 3.2.9 Let At be a C0 semigroup on a Banach space X with generator
A and growth bound ωA (see Definition 2.5.6).

(i) Every λ ∈ C+ωA
belongs to the resolvent set of A, and

(λ− A)−(n+1)x = 1

n!

∫ ∞
0

sne−λsAs x ds

for all x ∈ X, λ ∈ C+ωA
, and n = 0, 1, 2, . . . In particular,

(λ− A)−1x =
∫ ∞

0
e−λsAs x ds

for all x ∈ X and λ ∈ C+ωA
.
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(ii) For each ω > ωA there is a finite constant M such that∥∥(λ− A)−n
∥∥ ≤ M(
λ− ω)−n

for all n = 1, 2, 3, . . . and λ ∈ C+ω . In particular,∥∥(λ− A)−1
∥∥ ≤ M(
λ− ω)−1

for all λ ∈ C+ω .
(iii) For all x ∈ X, the following limits exist in the norm of X:

lim
λ→+∞

λ(λ− A)−1x = x and lim
λ→+∞

A(λ− A)−1x = 0.

(iv) For all t ≥ 0 and all λ ∈ ρ(A),

(λ− A)−1At = At (λ− A)−1.

Proof (i) Define At
λ = e−λtAt and Aλ = A − λ. Then by Example 3.2.6(i), Aλ

is the generator of Aλ. We observe that Aλ has negative growth bound, i.e., for
all x ∈ X , At

λx tends exponentially to zero as t →∞. More precisely, for each
ωA < ω < 
λ there is a constant M such that for all s ≥ 0 (cf. Example 2.3.5),

‖eλsAs‖ ≤ Me−(
λ−ω)s . (3.2.4)

Apply Theorem 3.2.1(ii) with s = 0 and A and A replaced by Aλ and Aλ to get

At
λx − x = Aλ

∫ t

0
As
λx ds.

Since Aλ is closed, we can let t →∞ to get

x = −Aλ

∫ ∞
0

As
λx ds.

On the other hand, if x ∈ D (A), then we can do the same thing starting from
the identity in Theorem 3.2.1(iv) to get

x = −
∫ ∞

0
As
λAλx ds.

This proves that λ belongs to the resolvent set of A and that

(λ− A)−1x =
∫ ∞

0
e−λsAs x ds, x ∈ X. (3.2.5)

To get a similar formula for iterates of (λ− A)−1 we differentiate this formula
with respect to λ. By the resolvent identity in Lemma 3.2.8(i) with h = β − λ,

lim
h→0

1

h

[
(λ+ h − A)−1x − (λ− A)−1x

] = −(λ− A)−2x .
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The corresponding limit of the right hand side of (3.2.5) is

lim
h→0

∫ ∞
0

1

h

(
e(λ+h)s − eλs

)
As x ds = lim

h→0

∫ ∞
0

1

h

(
ehs − 1

)
eλsAs x ds.

As h → 0, 1
h

(
ehs − 1

)→ s uniformly on compact subsets of R
+

, and

∣∣ 1
h (ehs − 1)

∣∣ = s
1

|hs|
∣∣∣∣∫ hs

0
ey d y

∣∣∣∣ ≤ s
1

|hs|
∫ |hs|

0
e|y| d y ≤ se|hs|.

This combined with (3.2.4) shows that we can use the Lebesgue dominated
convergence theorem to move the limit inside the integral to get

(λ− A)−2x =
∫ ∞

0
se−λsAs x ds, x ∈ X.

The same argument can be repeated. Every time we differentiate the right
hand side of (3.2.5) the integrand is multiplied by a factor −s (but we can still
use the Lebesgue dominated convergence theorem). Thus, to finish the proof
of (i) we need to show that

dn

dλn
(λ− A)−1x = (−1)nn!(λ− A)−(n+1)x . (3.2.6)

To do this we use induction over n, the chain rule, and the fact that the formula
is true for n = 1, as we have just seen. We leave this computation to the reader.

(ii) Use part (i), (3.2.4), and the fact that (cf. Lemma 4.2.10)

1

n!

∫ ∞
0

sne−(
λ−ω)s ds = (
λ− ω)−(n+1), 
λ > ω, n = 0, 1, 2, . . .

(iii) We observe that the two claims are equivalent to each other since (λ−
A)(λ− A)−1x = x . If x ∈ D (A), then we can use part (ii) to get

|λ(λ− A)−1x − x | = |A(λ− A)−1x |
= |(λ− A)−1 Ax | → 0 as λ→∞.

AsD (A) is dense in X and lim supλ→+∞‖λ(λ− A)−1‖ <∞ (this, too, follows
from part (ii)), it must then be true that λ(λ− A)−1x → x for all x ∈ X .

(iv) By Theorem 3.2.1(iii), for all y ∈ D (A),

At (λ− A)y = (λ− A)At y.

Substituting y = (λ− A)−1x and applying (λ− A)−1 to both sides of this iden-
tity we find that

(λ− A)−1At x = At (λ− A)−1x

for all x ∈ X . �
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In this proof we used an estimate on
∣∣ 1

h (ehs − 1)
∣∣ that will be useful later,

too, so let us separate this part of the proof into the following slightly more
general lemma:

Lemma 3.2.10 Let 1 ≤ p ≤ ∞, ω ∈ R, and n = 0, 1, 2, . . .

(i) For all α, β ∈ C,

|eα − eβ | ≤ |α − β|max{e
α, e
β},
|eα − eβ − (α − β)eβ | ≤ 1

2
|α − β|2 max{e
α, e
β}.

(ii) The function α �→ (t �→ eαt , t ∈ R−
)

is analytic on the half-plane C+ω in
the spaces L p

ω(R−; C), W n,p
ω (R−; C), and BCn

0,ω(R−; C) (i.e., it has a
complex derivative with respect to α in these spaces when 
α > ω). Its
derivative is the function t �→ teαt , t ∈ R−.

(iii) The function α �→ (t �→ eαt , t > 0
)

is analytic on the half-plane C−ω in

the spaces L p
ω(R+; C), W n,p

ω (R
+

; C), and BCn
0,ω(R

+
; C). Its derivative is

the function t �→ teαt , t > 0.

Proof (i) Define f (t) = e(α−β)t eβ . Then ḟ (t) = (α − β)e(α−β)t eβ and

|eα − eβ | = | f (1)− f (0)| =
∣∣∣∣∫ 1

0
ḟ (s) ds

∣∣∣∣
≤ |α − β|e
β

∫ 1

0

∣∣e(α−β)s
∣∣ ds

≤ |α − β|e
β sup
0≤s≤1

e
(α−β)s

= |α − β|e
β max{e
(α−β), 1}
= |α − β|max{e
α, e
β)}.

The similar proof of the second inequality is left to the reader. It can be based
on the fact that f̈ (t) = (α − β)2e(α−β)t eβ , and that

eα − eβ − (α − β)eβ = f (1)− f (0)− ḟ (0) =
∫ 1

0

∫ s

0
f̈ (v) dv ds.

(ii) It follows from (i) with α replaced by (α + h)t and β replaced by αt
that the function t �→ 1

h

(
e(α+h)t − eαt

)− teαt tends to zero as t → 0 (as a com-
plex limit) uniformly for t in each bounded interval. Moreover, combining the
growth estimate that (i) gives for this function with the Lebesgue dominated
convergence theorem we find that it tends to zero in L p

ω(R−; C). A similar argu-
ment shows that all t-derivatives of this function also tend to zero in L p

ω(R−; C),
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i.e., the function itself tends to zero in W n,p
ω (R−; C). The proof of the analyticity

in BCn
0(R−; C) is similar (but slightly simpler).

(iii) This proof is completely analogous to the proof of (ii). �

3.3 The spectra of some generators

To get an example of what the spectrum of a generator can look like, let us
determine the spectra of the generators of the shift (semi)groups in Examples
2.3.2 and 3.2.3:

Example 3.3.1 The generators of the (semi)groups τ t , τ t
+, τ t

−, τ t
[0,T ) and τ t

TT

in Examples 2.3.2 and 2.5.3 (see Example 3.2.3) have the following spectra:

(i) The spectrum of the generator d
ds of the left shift bilateral group τ t on

L p
ω(R; U ) with 1 ≤ p <∞ or on BUCω(R; U ) is equal to the vertical

line {
λ = ω}. The whole spectrum is a residual spectrum in the
L1-case, a continuous spectrum in the L p-case with 1 < p <∞, and a
point spectrum in the BUC-case.

(ii) The spectrum of the generator d
ds+ of the incoming left shift semigroup

τ t
+ on L p

ω(R+; U ) with 1 ≤ p <∞ or on BUCω(R
+

; U ) is equal to the

closed half-plane C
−
ω . The open left half-plane C−ω belongs to the point

spectrum, and the boundary {
λ = ω} belongs to the continuous
spectrum in the L p-case with 1 ≤ p <∞ and to the point spectrum in
the BUC-case.

(iii) The spectrum of the generator d
ds− of the outgoing left shift semigroup τ t

−
on L p

ω(R−; U ) with 1 ≤ p <∞ or on {u ∈ BUCω(R
−

; U ) | u(0) = 0} is
equal to the closed half-plane C

−
ω . The open half-plane C−ω belongs to the

residual spectrum, and the boundary {
λ = ω} belongs to the residual
spectrum in the L1-case and to the continuous spectrum in the other
cases.

(iv) The spectrum of the generator d
ds [0,T )

of the finite left shift semigroup
τ t

[0,T ) on L p([0, T ); U ) with 1 ≤ p <∞ or on
{u ∈ C([0, T ]; U ) | u(0) = 0} is empty.

(v) The spectrum of the generator d
ds TT

of the circular left shift group τ t
TT

on
L p(TT ; U ) with 1 ≤ p <∞ or on C(TT ; U ) is a pure point spectrum
located at {2π jm/T | m = 0,±1,±2, . . .}.

Proof For simplicity we take ω = 0. The general case can either be reduced to
the case ω = 0 with the help of Lemma 2.5.2(ii), or it can be proved directly
by a slight modification of the argument below.
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(i) As τ t is a group, both τ t and τ−t are semigroups, and ‖τ t‖ = 1 for
all t ∈ R. It follows from Theorem 3.2.9(i) that every λ /∈ jR belongs to the
resolvent set of d

ds . It remains to show that jR belongs to the residual spectrum
in the L1-case, to the continuous spectrum in the L p-case with 1 < p <∞,
and to the point spectrum in the BUC-case.

Setλ = jβ whereβ ∈ R, and let u ∈ W 1,p(R; U ) = D ( d
ds

)
. If jβu − u̇ = f

for some u ∈ W 1,p(R; U ) and f ∈ L p(R; U ) then, by the variation of constants
formula, for all T ∈ R,

u(t) = e jβ(t−T )u(T )−
∫ t

T
e jβ(t−s) f (s) ds.

By letting T →−∞ we get (see Lemma 3.2.4)

u(t) = − lim
T→−∞

∫ t

T
e jβ(t−s) f (s) ds.

In particular, if f = 0 then u = 0, i.e., jβ − d
ds is injective. By letting t →+∞

we find that

lim
t→∞ lim

T→−∞

∫ t

T
e− jβs f (s) ds = 0.

If p = 1, then this implies that the range of jβ − d
ds is not dense, hence jβ ∈

σr ( d
ds ). If p > 1 then it is not true for every f ∈ L p(R; U ) that the limits above

exist, so the range of jβ − d
ds is not equal to L p(R; U ), i.e., jω ∈ σ ( d

ds ). On the
other hand, if f ∈ C∞c (R; U ) with

∫∞
−∞ e− jβs f (s) ds = 0, and if we define u

to be the integral above, then u ∈ C∞c (R; U ) ⊂ W 1,p(R; U ) and jβy − u̇ = f .
The set of functions f of this type is dense in L p(R; U ) when 1 < p <∞.
Thus jβ − d

ds has dense range if p > 1, and in this case jβ ∈ σc( d
ds ).

In the BUC-case the function e jβ(t) = e jβt is an eigenfunction, i.e.,
(

jβ −
d
ds

)
e jβ = 0; hence jβ ∈ σp

(
d
ds

)
.2

(ii) That C+ ⊂ ρ
(

d
ds+
)

follows from Theorem 3.2.9(i). If 
λ < 0 then

λ ∈ σp

(
d
ds+
)

, because then the function u = eλt belongs to W 1,p(R
+

; U ) and

λu − u̇ = 0. The proof that the imaginary axis belongs either to the singular
spectrum in the L p-case or to the point spectrum in the BUC-case is quite similar
to the one above, and it is left to the reader (in the L p-case, let T →+∞ to get
u(t) = ∫∞t e jβ(t−s) f (s) ds, and see also the footnote about the case p = 1).

2 It is easy to show that the range of jβ − d
ds is not closed in the L1-case and BUC-case either.

For example, in the L1-case the range is dense in { f ∈ L1(R; U ) | ∫
R

f (s) ds = 0}, but it is not
true for every f ∈ L1(R; U ) with

∫
R

f (s) ds = 0 that the function
u(t) = − ∫ t

−∞ e jβ(t−s) f (s) ds belongs to L1(R; U ).
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(iii) That C+ ⊂ λ ∈ ρ
(

d
ds−
)

follows from Theorem 3.2.9(i). If 
λ < 0 or

if 
λ ≤ 0 and p = 1, then every f ∈ R
(
λ− d

ds−
)

satisfies∫ 0

−∞
e−λs f (s) ds = 0,

hence the range is not dense in this case. We leave the proof of the claim that
σc = {λ ∈ C | 
λ = 0} in the other cases to the reader (see the proof of (i)).

(iv) This follows from Theorem 3.2.9(i), since the growth bound of τ[0,T ) is
−∞.

(v) For each m ∈ Z, the derivative of the T -periodic function e2π jmt/T with
respect to t is (2π jm/T )e2π jmt/T , hence 2π jm/T is an eigenvalue of d

ds TT
with

eigenfunction e2π jmt/T .
To complete the proof of (v) we have to show that the remaining points λ

in the complex plane belong to the resolvent set of d
ds TT

. To do this we have to
solve the equation λu − u̇ = f , where, for example, f ∈ L p(TT ; U ). By the
variation of constants formula, a solution of this equation must satisfy

u(s) = eλ(s−t)u(t)−
∫ s

t
eλ(s−v) f (v) dv, s, t ∈ R.

Taking s = t + T , and requiring that u(t + T ) = u(t) (in order to ensure T -
periodicity of u) we get

(1− eλT )u(t) = −
∫ t+T

t
eλ(t+T−v) f (v) dv.

The factor on the left hand side is invertible iff λ does not coincide with any of
the points 2π jm/T , in which case we get the following formula for the unique
T -periodic solution u of λu − u̇ = f :

u(t) = (1− e−λT )−1
∫ t+T

t
eλ(t−v) f (v) dv

= (1− e−λT )−1
∫ T

0
e−λs f (t + s) ds.

The right-hand side of this formula maps L p(TT ; U ) into W 1,p(TT ; U ) and
C(TT ; U ) into C1(TT ; U ), and by differentiating this formula we find that,
indeed, λu − u̇ = f . �

Example 3.3.2 The resolvents of the generators d
ds , d

ds+, d
ds−, d

ds [0,T )
, and d

ds TT

in Example 3.2.3 can be described as follows:

(i) The resolvent
(
λ− d

ds

)−1
of the generator of the bilateral left shift group

τ t on L p
ω(R; U ) and on BUCω(R; U ) maps f into t �→ ∫∞t eλ(t−s) f (s) ds,



3.3 The spectra of some generators 101

t ∈ R, if 
λ > ω, and it maps f into t �→ − ∫ t
−∞ eλ(t−s) f (s) ds, t ∈ R, if


λ < ω.
(ii) For each λ ∈ C+ω the resolvent

(
λ− d

ds+
)−1

of the generator of the

incoming left shift semigroup τ t
+ on L p

ω(R+; U ) and on BUCω(R
+

; U )
maps f into t �→ ∫∞t eλ(t−s) f (s) ds, t ≥ 0.

(iii) For each λ ∈ C+ω the resolvent
(
λ− d

ds−
)−1

of the generator of the
outgoing left shift semigroup τ t

− on L p
ω(R−; U ) and on

{u ∈ BUCω(R
−

; U ) | u(0) = 0} maps f into t �→ ∫ 0
t eλ(t−s) f (s) ds,

t ∈ R
−

.
(iv) For each λ ∈ C the resolvent

(
λ− d

ds [0,T )

)−1
of the generator of the finite

left shift semigroup τ t
[0,T ) on L p([0, T ); U ) and on

{u ∈ C([0, T ]; U ) | u(T ) = 0} maps f into t �→ ∫ T
t eλ(t−s) f (s) ds,

t ∈ [0, T ).
(v) For each λ ∈ C which is not one of the points
{2π jm/T | m = 0,±1,±2, . . .} the resolvent

(
λ− d

ds TT

)−1
of the

generator of the circular left shift group τ t
TT

on L p(TT ; U ) and on

C(TT ; U ) maps f into t �→ (1− e−λT )−1
∫ t+T

t eλ(t−s) f (s) ds.

The proof of this is essentially contained in the proof of Example 3.3.1.
The shift (semi)group examples that we have seen so far have rather ex-

ceptional spectra. They play an important role in our theory, but in typical
applications one more frequently encounters semigroups of the following type:

Example 3.3.3 Let {φn}∞n=1 be an orthonormal basis in a separable Hilbert
space X, and let {λn}∞n=1 be a sequence of complex numbers. Then the sum

At x =
∞∑

n=1

eλn t 〈x, φn〉φn, x ∈ X, t ≥ 0,

converges for each x ∈ X and t ≥ 0 and defines a C0 semigroup if and only if

ωA = sup
n≥0

λn <∞.

The growth bound of this semigroup is ωA, and

‖At‖ = eωAt , t ≥ 0.

It is a group if and only if

αA = inf
n≥0

λn > −∞.

in which case

‖At‖ = eαAt , t ≤ 0.
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In particular, if 
λn = ω for all n, then At is a group, and

‖At‖ = eωt , t ∈ R.

Proof Clearly, the sum converges always if we choose x = φn , in which case
Atφn = eλn tφn , and |Atφn| = e
λn t . If At is to be a semigroup, then ‖At‖ ≥
e
λn t for all n, and by Theorem 2.5.4(i), the number ωA defined above must be
finite and less than or equal to the growth bound of A. If At is to be a group,
then A−t is also a semigroup, and the same argument with t replaced by −t
shows that necessarily αA > −∞ in this case.

Let us suppose that ωA <∞. For each N = 1, 2, 3, . . . , define

At
N x =

N∑
n=1

eλn t 〈x, φn〉φn.

Then it is easy to show that each AN is a C0 group (since φn ⊥ φk when n �= k).
For each t > 0, the sum converges as N →∞ because the norm of the tail of
the series tends to zero (the sequence φn is orthonormal):∣∣∣∣ ∞∑

n=N+1

eλn t 〈x, φn〉φn

∣∣∣∣2 = ∞∑
n=N+1

|eλn t 〈x, φn〉φn|2

=
∞∑

n=N+1

e2
λn t |〈x, φn〉|2

≤ e2ωAt
∞∑

n=N+1

|〈x, φn〉|2

→ 0 as N →∞.

Thus At ∈ B(X ) (as a strong limit of operators in B(X )). The norm estimate
‖At‖ ≤ eωAt follows from the fact that (see the computation above)

|At x |2 =
∣∣∣∣ ∞∑

n=1

eλn t 〈x, φn〉φn

∣∣∣∣2 ≤ e2ωAt |x |2.

Moreover, for each x the convergence is uniform in t over bounded intervals
since

|At x − At
N x |2 ≤ e2ωAt

∞∑
n=N+1

|〈x, φn〉|2.

This implies that t �→ At x is continuous on R
+

for each x ∈ X . Since each AN

satisfies A0
N = 1 and As+t

N = As
N At

N , s, t ≥ 0, the same identities carry over to
the limit. We conclude that A is a C0 semigroup.

If αA > −∞, then we can repeat the same argument to get convergence also
for t < 0. �
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Definition 3.3.4 A (semi)group of the type described in Example 3.3.3 is called
diagonal, with eigenvectors {φn}∞n=1 and eigenvalues {λn}∞n=1.

The reason for this terminology is the following:

Example 3.3.5 The generator A of the (semi)group in Example 3.3.3 is the
operator

Ax =
∞∑

n=1

λn〈x, φn〉φn,

with domain

D (A) =
{

x ∈ X

∣∣∣∣ ∞∑
n=1

(1+ |λn|2)|〈x, φn〉|2 <∞
}
.

The spectrum of A is the closure of the set {λn | n = 1, 2, 3, . . .}: every λn

belongs to the point spectrum and cluster points different from all the λn belong
to the continuous spectrum. The resolvent operator is given by

(α − A)−1x =
∞∑

n=1

(α − λn)−1〈x, φn〉φn.

Proof Suppose that limh↓0
1
h (Ah x − x) exists. Taking the inner product with

φn , n = 1, 2, 3, . . . , we get

lim
h↓0

1

h
〈(Ah x − x), φn〉 = lim

h↓0

1

h

∞∑
k=1

(eλk h − 1)〈x, φk〉〈φk, φn〉

= lim
h↓0

1

h
(eλn h − 1)〈x, φn〉

= λn〈x, φn〉.

Thus, for all x ∈ D (A), we have Ax =∑∞n=1 λn〈x, φn〉φn . The norm of this
vector is finite as is the norm of x =∑∞n=1〈x, φn〉φn , so we conclude that

D (A) ⊂
{

x ∈ X

∣∣∣∣ ∞∑
n=1

(1+ |λn|2)|〈x, φn〉|2 <∞
}
.

To prove the opposite inclusion, let us suppose that

∞∑
n=1

(1+ |λn|2)|〈x, φn〉|2 <∞.
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Then the sum y =∑∞n=1 λn〈x, φn〉φn converges in X , and for each h > 0 we
have ∣∣∣1

h
(Ah x − x)− y

∣∣∣2 = ∣∣∣∣ ∞∑
n=1

(1

h
(eλn h − 1)− λn

)
〈x, φn〉φn

∣∣∣∣2
=
∞∑

n=1

∣∣∣1
h

(eλn h − 1)− λn

∣∣∣2|〈x, φn〉|2.

Take h ≤ 1. Then, by Lemma 3.2.10, 1
h |eλn h − 1| ≤ |λn|Mn(h), where

Mn(h) = max{1, e
λn h} ≤ M = max{1, eωA},
hence ∣∣∣1

h
(eλn h − 1)− λn

∣∣∣2|〈x, φn〉|2 ≤ (1+ M)2|λn|2|〈x, φn〉|2.

Moreover, for each n,
(

1
h (eλn h − 1)− λn

)→ 0 as h ↓ 0. This means that we
can use the discrete Lebesgue dominated convergence theorem to conclude
1
h (Ah x − x)− y → 0 as h ↓ 0, i.e., x ∈ D (A).

Obviously every λn is an eigenvalue since φn ∈ D (A) and Aφn = λnφn . The
spectrum of A contains therefore at least the closure of {λn | n = 1, 2, 3, . . . }
(the spectrum is always closed).

If infn≥0|α − λn| > 0, then there exist two positive constants a and b such
that a(1+ |λn|) ≤ |α − λn| ≤ b(1+ |λn|), and the sum

Bx =
∞∑

n=1

(α − λn)−1〈x, φn〉φn

converges for every x ∈ X and defines an operator B ∈ B(X ) which maps X
onto D (A). It is easy to show that B is the inverse to (α − A), hence α ∈ ρ(A).
Conversely, suppose that (α − A) has an inverse (α − A)−1. Then

1 = |φn| = |(α − A)−1(α − A)φn|
= |(α − A)−1(α − λn)φn| ≤ ‖(α − A)−1‖|α − λn|.

This shows that every α ∈ ρ(A) satisfies infn≥0|α − λn| > 0.
If infn≥0|α − λn| = 0 butα �= λn for all n, thenα is not an eigenvalue because

αx − Ax =∑∞n=1(α − λn)〈x, φn〉φn = 0 only when 〈x, φn〉 = 0 for all n, i.e.,
x = 0. On the other hand, the range of α − A is dense because it contains
all finite linear combinations of the base vectors φn . Thus α ∈ σc(A) in this
case. �

Example 3.3.3 can be generalized to the case where A is an arbitrary normal
operator on a Hilbert space X , whose spectrum is contained in some left half-
plane. The proofs remain essentially the same, except for the fact that the sums
have to be replaced by integrals over a spectral resolution. We refer the reader
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to Rudin (1973, pp. 301–303) for a precise description of the spectral resolution
used in the following theorem (dual operators and semigroups are discussed in
Section 3.5).

Example 3.3.6 Let A be a closed and densely defined normal operator on a
Hilbert space X (i.e., A∗A = AA∗), and let E be the corresponding spectral
resolution of A, so that

〈Ax, y〉X =
∫
σ (A)

λ〈E( dλ)x, y〉, x ∈ D (A) , y ∈ X.

Then the following claims are valid.

(i) For each n = 1, 2, 3, . . . the domain of An is given by

D (An
) = {x ∈ X

∣∣∣∣ ∫
σ (A)

(1+ |λ|2)n〈E( dλ)x, x〉
}
<∞,

and

‖An x‖2
X =

{
x ∈ X

∣∣∣∣ ∫
σ (A)
|λ|2n〈E( dλ)x, x〉

}
.

(ii) For each α ∈ ρ(A), 0 ≤ k ≤ n ∈ {1, 2, 3, . . .}, and x, y ∈ X,

〈Ak(α − A)−n x, y〉X =
∫
σ (A)

λk(α − λ)−n〈E( dλ)x, y〉.

(iii) A generates a C0 semigroup A on X if and only if the spectrum of A is
contained in some left half-plane, i.e.,

ωA = sup
λ∈σ (A)


λ <∞.

In this case,

‖At‖ = eωAt , t ≥ 0,

and

〈At x, y〉 =
∫
σ (A)

eλt 〈E( dλ)x, y〉, t ≥ 0, x ∈ X , y ∈ X. (3.3.1)

(iv) A generates a C0 group A on X if and only if σ (A) is contained in some
vertical strip α ≤ 
λ ≤ ω. In this case, if we define

αA = inf{
λ | λ ∈ σ (A)},
then

‖At‖ = eαAt , t ≤ 0,

and (3.3.1) holds for all t ∈ R.
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(v) A C0 semigroup A on X is normal (i.e., A∗t = At for all t ≥ 0) if and
only if its generator is normal.

Proof (i)–(ii) See Rudin (1973, Theorems 12.21, 13.24 and 13.33).
(iii) See Rudin (1973, Theorem 13.37) and the remark following that theo-

rem.
(iv) The proof of this is analogous to the proof of (iii).
(v) See Rudin (1973, Theorem 13.37).

�

Most of the examples of semigroups that we will encounter in this book are
either of the type described in Example 2.3.2, 3.3.3, or 3.3.6, or a transformation
of these examples of the types listed in Examples 2.3.10–2.3.13.

3.4 Which operators are generators?

There is a celebrated converse to Theorem 3.2.9(i) that gives a complete char-
acterization of the class of operators A that generate C0 semigroups:

Theorem 3.4.1 (Hille–Yosida) A linear operator A is the generator of a C0

semigroup A satisfying ‖At‖ ≤ Meωt if and only if the following conditions
hold:

(i) D (A) is dense in X;
(ii) every real λ > ω belongs to the resolvent set of A, and∥∥(λ− A)−n

∥∥ ≤ M

(λ− ω)n
for λ > ω and n = 1, 2, 3, . . .

Alternatively, condition (ii) can be replaced by

(ii′) every real λ > ω belongs to the resolvent set of A, and∥∥∥ ∂n

∂λn
(λ− A)−1

∥∥∥ ≤ Mn!

(λ− ω)n+1
for λ > ω and n = 0, 1, 2, . . .

Note that the assumption implies that A must be closed, since it has a
nonempty resolvent set.

Proof The necessity of (i) and (ii) follows from Theorems 3.2.1(vi) and 3.2.9
(i)–(ii) (the exact estimate in Theorem 3.2.9(ii) was derived from (3.2.4), which
is equivalent to ‖At‖ ≤ Meωt ). The equivalence of (ii) and (ii′) is a consequence
of (3.2.6).

Let us start the proof of the converse claim by observing that the conclusion
of Theorem 3.2.9(iii) remains valid, since the proof used only (ii) with n = 1
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and the density of D (A) in X . This means that if we define

Aα = αA(α − A)−1 = α2(α − A)−1 − α,

then each Aα ∈ B(X ), and, for each x ∈ D (A), Aαx → Ax in X as α→∞.
Since Aα is bounded, we can define At

α = eAα t as in Example 3.1.2. We claim
that for each x ∈ X , the limit At x = limα→∞ At

αx exists, uniformly in t on any
bounded interval, and that At is a semigroup with generator A.

Define

Bα = Aα + α = α2(α − A)−1.

Then, by (ii), for all n = 1, 2, 3, . . . ,

‖Bn
α‖ ≤

Mα2n

(α − ω)n
, (3.4.1)

and by Theorem 3.2.9(iii) and Example 3.2.6(i),

At
α = e−αt eBα t = e−αt

∞∑
n=0

Bn
α tn

n!
. (3.4.2)

Therefore

‖At
α‖ ≤ e−αt

∞∑
n=0

tn

n!

Mα2n

(α − ω)n

= Me−αt e(α2t)/(α−ω) = Me(αωt)/(α−ω), t ≥ 0.

(3.4.3)

This tends to Meωt as α→∞, and the convergence is uniform in t on
any bounded interval. Since (α − A)−1 and (β − A)−1 commute (see Lemma
3.2.8(i)), also Aα and Aβ commute, i.e., Aα Aβ = Aβ Aα , and this implies that
At
α Aβ = AβA

t
α for all α, β > ω and t ∈ R. Thus, for all x ∈ X and t ∈ R,

At
αx − At

βx =
∫ t

0

d

ds

[
As
αA

t−s
β

]
dsx

=
∫ t

0
As
α(Aα − Aβ)At−s

β x ds =
∫ t

0
As
αA

t−s
β (Aα − Aβ)x ds,

and

|At
αx − At

βx |

≤ M2
∫ t

0
e(αωs)/(α−ω)e(βω(t−s))/(β−ω)|Aαx − Aβx | ds.

(3.4.4)

Let α, β →∞. Then the products of the exponentials tend to eωseω(t−s) =
eωt , uniformly in s and t on any bounded interval, and if x ∈ D (A), then
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|Aαx − Aβx | → 0 since both Aαx → x and Aβx → x . Therefore,

lim
α, β→∞

|At
αx − At

βx | = 0, x ∈ D (A) ,

uniformly in t on any bounded interval. In other words, α �→ At
αx is a Cauchy

family in C(R
+

; X ), and it has a limit in C(R
+

; X ). Since we have a uniform
bound on the norm of At

αx for t in each bounded interval (see (3.4.3)) and
D (A) is dense in X , the limit limα→∞ At

αx must exist in C(R
+

; X ) for all
x ∈ X , uniformly in t on any bounded interval. Let us denote the limit by At x .
For each t ≥ 0 we have At ∈ B(X ) (the strong limit of a family of operators in
B(X ) belongs to B(X )). By construction t �→ At x is continuous, i.e., t �→ At

is strongly continuous. Moreover, At inherits the semigroup properties A0 = 1
and As+t = AsAt from At

α , and it also inherits the bound ‖At‖ ≤ Meωt . We
conclude that At is a C0 semigroup.

The only thing left to be shown is that the generator of A is A. Let x ∈ D (A).
Then by Theorem 3.2.1(iv)

At x − x = lim
α→∞(At

αx − x) = lim
α→∞

∫ t

0
As
α Aαx ds =

∫ t

0
As Ax ds

(the integrand converges uniformly on [0, t] to As Ax). Divide this by t and
let t ↓ 0. This shows that, if we (temporarily) denote the generator of A by B,
then D (A) ⊂ D (B), and Bx = Ax for all x ∈ D (A). In other words, B is an
extension of A. But this extension cannot be nontrivial, because if we take some
common point α in the resolvent sets of A and B (any α > ω will do), then

X = (α − A)D (A) = (α − B)D (A)

which implies that

D (B) = (α − B)−1 X = (α − A)−1 X = D (A) .

�

Corollary 3.4.2 A linear operator A is the generator of a C0 semigroup A

satisfying ‖At‖ ≤ eωt if and only if the following conditions hold:

(i) D (A) is dense in X;
(ii) every real λ > ω belongs to the resolvent set of A, and∥∥(λ− A)−1

∥∥ ≤ 1

(λ− ω)
for λ > ω.

Proof This follows from Theorem 3.4.1 since ‖(α − A)−n‖ ≤ ‖(α − A)−1‖n .
�

The case ω = 0 is of special interest:
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Definition 3.4.3 By a bounded semigroup or group we mean a semigroup or
group A satisfying supt≥0‖At‖ <∞ or supt∈R‖At‖ <∞, respectively. By a
contraction semigroup or group we mean a semigroup or group A satisfying
‖At‖ ≤ 1 for all t ≥ 0 or t ∈ R, respectively.

Corollary 3.4.4 Let A be a linear operator X ⊃ D (A)→ X with dense do-
main and let M <∞. Then the following conditions are equivalent:

(i) A is the generator of a (bounded) C0 semigroup A satisfying ‖At‖ ≤ M
for all t ≥ 0;

(ii) every positive real λ belongs to the resolvent set of A and∥∥(λ− A)−n
∥∥ ≤ Mλ−n for λ > 0 and n = 1, 2, 3, . . . ;

(iii) the right half-plane C+ belongs to the resolvent set of A and∥∥(λ− A)−n
∥∥ ≤ (
λ)−n for 
λ > 0 and n = 1, 2, 3, . . .

Proof By Theorem 3.4.1, (i)⇔ (ii). Obviously (iii)⇒ (ii). To show that (i)⇒
(iii) we split λ ∈ C into λ = α + jβ and apply Theorem 3.4.1 with λ replaced
by α, At replaced by e− jβtAt and A replaced by A − jβ. �

Corollary 3.4.5 Let A be a linear operator X ⊃ D (A)→ X with dense do-
main. Then the following conditions are equivalent

(i) A is the generator of a C0 contraction semigroup;
(ii) every positive real λ belongs to the resolvent set of A and∥∥(λ− A)−1

∥∥ ≤ λ−1 for λ > 0;

(iii) the right-half plane C+ belongs to the resolvent set of A, and∥∥(λ− A)−1
∥∥ ≤ (
λ)−1 for 
λ > 0.

Proof This proof is similar to the proof of Corollary 3.4.4, but we replace
Theorem 3.4.1 by Corollary 3.4.2. �

There is also another characterization of the generators of contraction semi-
groups which is based on dissipativity.

Definition 3.4.6 A linear operator A : X ⊃ D (A)→ X is dissipative if for
every x ∈ D (A) there is a vector x∗ ∈ X∗ with |x∗|2 = |x |2 = 〈x∗, x〉 such
that 
〈x∗, Ax〉 ≤ 0 (if X is a Hilbert space, then we take x∗ = x).3

Lemma 3.4.7 Let A : X ⊃ D (A)→ X be a linear operator. Then the follow-
ing conditions are equivalent:

3 The dual space X∗ is discussed at the beginning of Section 3.5.
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(i) A is dissipative;
(ii) A − jβ I is dissipative for all β ∈ R;

(iii) |(λ− A)x | ≥ λ|x | for all x ∈ D (A) and all λ > 0;
(iv) |(λ− A)x | ≥ 
λ|x | for all x ∈ D (A) and all λ ∈ C+.

Proof (i)⇒ (ii): This follows from Definition 3.4.6 since, with the notation of
that definition, 
〈x∗, jβx〉 = 
(− jβ〈x∗, x〉) = 
(− jβ|x |2) = 0.

(ii) ⇒ (iv): Suppose that (ii) holds. Let x ∈ D (A) and λ = α + jβ with
α > 0 and β ∈ R. Choose some x∗ ∈ X∗ with |x∗|2 = |x |2 = 〈x∗, x〉 such that

〈x∗, Ax〉 ≤ 0 (by the Hahn–Banach theorem, this is possible). Then

|λx − Ax ||x | ≥ |〈x∗, λx − Ax〉| ≥ 
〈x∗, λx − Ax〉
= 
〈x∗, αx〉 − 
〈x∗, (A − jβ)x〉 ≥ α|x |2,

and (iv) follows.
(iv)⇒ (iii): This is obvious.
(iii)⇒ (i): Let x ∈ D (A), and suppose that λ|x | ≤ |(λ− A)x | for all λ > 0.

Choose some z∗λ ∈ X∗ with |z∗λ| = 1 such that 〈z∗λ, (λ− A)x〉 = |(λ− A)x |.
Then, for all λ > 0,

λ|x | ≤ |λx − Ax | = 〈z∗λ, λx − Ax〉
= λ
〈z∗λ, x〉 − 
〈z∗λ, Ax〉 ≤ λ|x | − 
〈z∗λ, Ax〉.

This implies that 
〈z∗λ, Ax〉 ≤ 0 and that

λ
〈z∗λ, x〉 ≥ |λx − Ax | ≥ λ|x | − |Ax |.
For all λ > 0, let Z∗λ be the weak∗ closure of the set {z∗α | α ≥ λ}. Then each Z∗λ
is a weak∗ compact subset of the unit ball in X∗, and for all z∗ ∈ Z∗λ we have


〈z∗, Ax〉 ≤ 0, 
〈z∗, x〉 ≥ |x | − λ−1|Ax |, |z∗| ≤ 1

(the functionals z∗ �→ 
〈z∗, x〉 and z∗ �→ 
〈z∗, Ax〉 are continuous in the
weak∗ topology). The sets Z∗λ obviously have the finite intersection property
and they are weak∗ compact, so their intersection

⋂
λ>0 Z∗λ is nonempty (see,

e.g., Rudin (1987, Theorem 2.6, p. 37)). Choose any z∗ in this intersection.
Then


〈z∗, Ax〉 ≤ 0, 
〈z∗, x〉 ≥ |x |, |z∗| ≤ 1.

The last two inequalities imply that |z∗| = 〈z∗, x〉 = |x |. By taking x∗ = |x |z∗
in Definition 3.4.6 we find that A is dissipative. �

By using the notion of dissipativity we can add one more condition to the
list of equivalent conditions in Corollary 3.4.5.
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Theorem 3.4.8 (Lumer–Phillips) Let A be a linear operator X ⊃ D (A)→
X with dense domain. Then the following conditions are equivalent (and they
are equivalent to the conditions (ii) and (iii) in Corollary 3.4.5):

(i) A is the generator of a C0 contraction semigroup;
(iv) A is dissipative and ρ(A) ∩ C+ �= ∅.
These conditions are, in particular, true if

(v) A is closed and densely defined, and both A and A∗ are dissipative.

If X is reflexive, then (v) is equivalent to the other conditions.

Proof (i)⇒ (iv): This follows from Corollary 3.4.5 and Lemma 3.4.7.
(iv)⇒ (i): Suppose that (iv) holds. Then A is closed (since its resolvent set

is nonempty). Take some λ = α + jβ ∈ ρ(A) with α > 0 and β ∈ R. If A is
dissipative, then we get from Lemma 3.4.7(iv) for all x ∈ D (A), |(λ− A)x | ≥
α|x |. This implies that ‖(λ− A)−1‖ ≤ 1/α. By Lemma 3.2.8, the resolvent set
of A contains an open circle with center λ and radius α = 
λ. We can repeat
this argument with α replaced by first (3/2)α, then (3/2)2α, then (3/2)3α, etc.,
to show that the whole right-half plane belongs to the resolvent set, and that
‖(λ− A)−1‖ ≤ (
λ)−1 for all λ ∈ C+. By Corollary 3.4.5, A is therefore the
generator of a C0 contraction semigroup.

(v)⇒ (iv): By Lemma 3.4.7, |(1− A)x | ≥ |x | for all x ∈ D (A). This im-
plies that 1− A is injective and has closed range (see Lemma 9.10.2(iii)). If
R (1− A) �= X then, by the Hahn–Banach theorem, there is some nonzero x∗ ∈
X∗ such that 〈x∗, x − Ax = 0〉, or equivalently, 〈x∗, Ax〉 = 〈x∗, x〉 for all x ∈
D (A). This implies that x∗ ∈ D (A∗) and that A∗x∗ = x∗, i.e., (1− A∗)x∗ = 0.
By Lemma 3.4.7 and the dissipativity of A∗, |x∗| ≤ |(1− A∗)x∗| = 0, contra-
dicting our original choice of x∗. Thus R (1− A) = X . By the closed graph
theorem, (1− A)−1 ∈ B(X ), so 1 ∈ ρ(A), and we have proved that (iv) holds.

If X is reflexive, then A is a generator of a C0 contraction semigroup if
and only if A∗ is the generator of a C0 contraction semigroup (see Theorem
3.5.6(v)), so (v) follows from (iv) in this case. �

In the Hilbert space case there is still another way of characterizing a gen-
erator of a contraction semigroup.

Theorem 3.4.9 Let X be a Hilbert space, and let A be a linear operator X ⊃
D (A)→ X with dense domain. Then the following conditions are equivalent:

(i) A is the generator of a C0 contraction semigroup,
(vi) there is some λ ∈ C+ ∩ ρ(A) for which the operator

Aλ = (λ+ A)(λ− A)−1 is a contraction,
(vii) all λ ∈ C+ belong to ρ(A), and Aλ = (λ+ A)(λ− A)−1 is a contraction,
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If Aλ is defined as in (i) and (ii), then −1 is not an eigenvalue of Aλ, and
R (1+ Aλ) = D (A). Conversely, if X is a Hilbert space and ifA is a contraction
on X such that−1 is not an eigenvalue of A, then R (1+ A) is dense in X, and,
for all λ ∈ C+, the operator Aλ with D (Aλ) = R (1+ A) defined by

Aλx = λx − 2
λ (1+ A)−1x, x ∈ R (1+ A) ,

is the generator of a C0 contraction semigroup on X (and the operator Aλ in
(vi) and (vii) corresponding to Aλ is A).

Proof (i)⇒ (vii)⇒ (vi)⇒ (i): Let us denote λ = α + jβ where α > 0 and
β ∈ R. For all x ∈ D (A), if we denote B = A − jβ, then

|(λ− A)x |2 = |(α − B)x |2 = α2|x |2 − 2α
〈x, Bx〉 + |Bx |2
|(λ+ A)x |2 = |(α + B)x |2 = α2|x |2 + 2α
〈x, Bx〉 + |Bx |2.

If (i) holds, then by Lemma 3.4.7 and Theorem 3.4.8, B = A − jβ is dissi-
pative, and we get |(λ+ A)x | ≤ |(λ− A)x | for all λ ∈ C+ and all x ∈ D (A).
By Corollary 3.4.5, λ ∈ ρ(A), and by replacing x by (λ− A)−1x we find that
|Aλx | ≤ |x | for all x ∈ X , i.e., Aλ is a contraction. This proves that (i)⇒ (vii).
Obviously (vii) ⇒ (vi). If (vi) holds, then for that particular value of λ, we
have |Aλx | ≤ |x | for all x ∈ X , or equivalently, |(λ+ A)x | ≤ |(λ− A)x | for
all x ∈ D (A). The preceding argument then shows that B = A − jβ is dissi-
pative, hence so is A, and (i) follows from Theorem 3.4.8. This proves that (i),
(vi), and (vii) are equivalent.

Let us next show that −1 cannot be an eigenvalue of Aλ (although −1 ∈
σ (Aλ) whenever A is unbounded) and that R (1+ Aλ) = D (A). This follows
from the (easily verified) identity that

1+ Aλ = 2
λ (λ− A)−1.

Here the right-hand side is injective, hence so is the left-hand side, and the range
of the right-hand side is D (A), hence so is the range of the left-hand side.

It remains to prove the converse part. Let A be a contraction on X such
that −1 is not an eigenvalue of A. Then the operator Aλ is well-defined on
D (Aλ) = R (1+ A), and

(λ1− Aλ)x = 2
λ (1+ A)−1x, x ∈ R (1+ A) .

This implies that λ− Aλ is injective, R (λ− Aλ) = X , and (λ− Aλ)−1 =
2
λ (1+ A)−1. In particular, λ ∈ ρ(Aλ). Arguing as in the proof of the im-
plication (vi)⇒ (i) we find that Aλ is dissipative since A is a contraction (note
that we have the same relationship between Aλ and A as we had between A
and Aλ, namely A = (λ+ Aλ)(λ− Aλ)−1). If we knew that D (A) is dense in
X , then we could conclude from Theorem 3.4.8 that Aλ is the generator of a C0
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contraction semigroup. Thus, to complete the proof, the only thing remaining
to be verified is that R (1+ A) is dense in X . This is true if and only if −1 is
not an eigenvalue of A∗, so let us prove this statement instead. If A∗x = x for
some x ∈ X , then

〈A∗x, x〉 = 〈x,Ax〉 = 〈x, x〉 = |x |2,
hence

|x − Ax |2 = |x |2 − 2
〈x,Ax〉 + |Ax |2 = |Ax |2 − |x |2 ≤ 0,

and we see that Ax = x . This implies that x = 0, because −1 was supposed
not to be an eigenvalue of A. �

The operator Aλ in Theorem 3.4.9 is called the Cayley transform of A with
parameter α ∈ C+. We shall say much more about this transform in Chapter 11.

3.5 The dual semigroup

Many results in quadratic optimal control rely on the possibility of passing
from a system to its dual system. In this section we shall look at the dual of the
semigroup A. The dual of the full system will be discussed in Section 6.2.

In most applications of the duality theory the state space X is a Hilbert
space. In this case it is natural to identify the dual X with X itself. This has
the effect that the mapping from an operator A on X to its dual A∗ becomes
conjugate-linear instead of linear, as is the case in the standard Banach space
theory. To simplify the passage from the Banach space dual of an operator to
the Hilbert space dual we shall throughout use the conjugate-linear dual instead
of the ordinary dual of a Banach space.

As usual, we define the dual X∗ of the Banach space X to be the space of all
bounded linear functionals x∗ : X → C. We denote the value of the functional
x∗ ∈ X∗ acting on the vector x ∈ X alternatively by

x∗x = 〈x, x∗〉 = 〈x, x∗〉(X,X∗).

The norm in X∗ is the usual supremum-norm

|x∗|X∗ := sup
|x |X=1

|〈x, x∗〉|, (3.5.1)

and by the Hahn–Banach theorem, the symmetric relation

|x |X = sup
|x∗|X∗=1

|〈x, x∗〉| (3.5.2)

also holds. On this space we use a nonstandard linear structure, defining the
sum of two elements x∗ and y∗ in X∗ and the product of a scalar λ ∈ C and a
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vector x∗ ∈ X∗ by

〈x, x∗ + y∗〉 := 〈x, x∗〉 + 〈x, y∗〉, x ∈ X,

〈x, λx∗〉 := λ〈x, x∗〉, x ∈ X, λ ∈ C.
(3.5.3)

In other words, the mapping (x, x∗) �→ 〈x, x∗〉 is anti-linear (linear in x and
conjugate-linear in x∗). All the standard results on the dual of a Banach space
and the dual operator remain valid in this conjugate-linear setting, except for
the fact that the mapping from an operator A to its dual operator A∗ becomes
conjugate-linear instead of linear, like in the standard Hilbert space case.

Let A be a closed (unbounded) operator X ⊃ D (A)→ Y with dense domain.
The domain of the dual A∗ of A consists of those y∗ ∈ Y ∗ for which the linear
functional

x �→ 〈Ax, y∗〉(Y,Y ∗), x ∈ D (A) ,

can be extended to a bounded linear functional on X . This extension is unique
since D (A) is dense, and it can be written in the form

x �→ 〈Ax, y∗〉(Y,Y ∗) = 〈x, x∗〉(X,X∗), x ∈ D (A) ,

for some x∗ ∈ X . For y∗ ∈ D (A∗) we define A∗ by A∗y∗ = x∗, where x∗ ∈ X∗

is the element above. Thus,

〈Ax, y∗〉(Y,Y ∗) = 〈x, A∗y∗〉(X,X∗), x ∈ D (A) , y∗ ∈ D (A∗) , (3.5.4)

and this relationship serves as a definition of A∗.

Lemma 3.5.1 Let A : X ⊃ D (A)→ Y be a closed linear operator with dense
domain. Then

(i) A∗ : Y ∗ ⊃ D (A∗)→ U ∗ is a closed linear operator,
(ii) if A ∈ B(X ; Y ), then A∗ ∈ B(Y ∗; X∗), and ‖A‖ = ‖A∗‖,

(iii) D (A∗) weak∗-dense in Y ∗,
(iv) if Y is reflexive, then D (A∗) is dense in Y ∗.

Proof (i) It is a routine calculation to show that A∗ is linear. Let us show that
it is closed. Take some sequence y∗n ∈ D (A∗) such that y∗n → y∗ ∈ Y ∗ and
A∗y∗n → x∗ in X∗ as n→∞. Then, for each x ∈ D (A),

〈x, x∗〉 = lim
n→∞〈x, Ay∗n 〉 = lim

n→∞〈Ax, y∗n 〉 = 〈Ax, y∗〉.

This means that the functional 〈Ax, y∗〉 can be extended to a bounded linear
functional on X , hence y∗ ∈ D (A∗) and x∗ = A∗y∗. Thus, A∗ is closed.
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(ii) If A ∈ B(X ; Y ), then it is clear that D (A∗) = Y ∗. Moreover,

‖A∗‖B(Y ∗;X∗) = sup
|y∗|=1
|A∗y∗|X∗ = sup

|x |=1
|y∗|=1

|〈x, A∗y∗〉(X,X∗)|

= sup
|x |=1
|y∗|=1

|〈Ax, y∗〉(X,X∗)| = sup
|x |=1
|Ax |Y

= ‖A‖B(X ;Y ).

(iii) Let y ∈ Y , y �= 0. As A is closed, the set
{[

Ax
x

] ∣∣ x ∈ D (A)
}

is a closed
subspace of

[
Y
X

]
, and

[ y
0

]
certainly does not belong to this subspace. By the

Hahn–Banach theorem in
[

Y
X

]∗ = [ Y ∗
X∗
]
, there is some x∗1 ∈ X∗ and y∗1 ∈ Y ∗

such that 〈x, x∗1 〉 + 〈Ax, y∗1 〉 = 0 for all x ∈ D (A), but 〈0, x1〉 − 〈y, y∗1 〉 �= 0.
The first equation says that y∗1 ∈ D (A∗) (and that A∗y∗1 = −x∗1 ). Thus, for each
nonzero y ∈ Y , it is possible to find some y∗ ∈ D (A∗) such that 〈y, y∗〉 �= 0,
or equivalently, Y # y = 0 iff 〈y, y∗〉 = 0 for all y∗ ∈ D (A∗). This shows that
D (A∗) is weak∗-dense in Y ∗ (apply the Hahn–Banach theorem (Rudin, 1973,
Theorem 3.5, p. 59) to the weak∗-topology).

(iv) If Y is reflexive, then (iii) implies that D (A∗) is weakly dense in Y ∗,
hence dense in Y ∗ (Rudin 1973, Corollary 3.12(b), p. 65).

�

Lemma 3.5.2 Let A : X ⊃ D (A)→ Y be closed, densely defined, and injec-
tive, and suppose that R (A) = Y . Then A−1 ∈ B(Y ; X ), and (A−1)∗ = (A∗)−1.
We denote this operator by A−∗.

Proof The operator A−1 is closed since A is closed, and by the closed graph
theorem, it is bounded, i.e., A−1 ∈ B(Y ; X ). By Lemma 3.5.1(ii), (A−1)∗ ∈
B(X∗; Y ∗). It remains to show that (A−1)∗ = (A∗)−1.

Take some arbitrary x ∈ D (A) and x∗ ∈ X∗. Then

〈x, x∗〉 = 〈A−1 Ax, x∗〉 = 〈Ax, (A−1)∗x∗〉.
This implies that (A−1)∗x∗ ∈ D (A∗) and that A∗(A−1)∗x∗ = x∗. Thus, (A−1)∗

is a left inverse of A∗. If we instead take some arbitrary x ∈ X and x∗ ∈ D (A∗),
then

〈x, x∗〉 = 〈AA−1x, x∗〉 = 〈A−1x, A∗x∗〉 = 〈x, (A−1)∗A∗x∗〉.
Thus, (A−1)∗ is also a right inverse of A∗. This means that A∗ is invertible, with
(A∗)−1 = (A−1)∗. �

Lemma 3.5.3 Let A : X ⊃ D (A)→ X be densely defined, and let α ∈ ρ(A)
(in particular, this means that A is closed). Then α ∈ ρ(A∗), and ((α −
A)∗)−1 = ((α − A)−1)∗ = (α − A)−∗.
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Proof By the definition of the dual operator, (α − A)∗ = α − A∗. Therefore
Lemma 3.5.3 follows from Lemma 3.5.2, applied to the operator α − A. �

Lemma 3.5.4 Let A : X ⊃ D (A)→ Y be densely defined, and let B ∈
B(Y ; Z ). Then (B A)∗ = A∗B∗ (with D ((B A)∗) = D (A∗B∗) = {z∗ ∈ Z∗ |
B∗z ∈ D (A∗)}).
Proof Let x ∈ D (A) = D (B A) and z∗ ∈ D (A∗B∗) = {z∗ ∈ Z∗ | B∗z ∈
D (A∗)}. Then

〈B Ax, z∗〉(Z ,Z∗) = 〈Ax, B∗z∗〉(Y,Y ∗) = 〈x, A∗B∗z∗〉(X,X∗).

This implies that z∗ ∈ D ((B A)∗), and that (B A)∗z∗ = A∗B∗z∗. To complete
the proof it therefore suffices to show that D ((B A)∗) ⊂ D (A∗B∗). Let z∗ ∈
D ((B A)∗). Then, for every x ∈ D (A) = D (B A),

〈Ax, B∗z∗〉(Y,Y ∗) = 〈B Ax, z∗〉(Z ,Z∗) = 〈x, (B A)∗z∗〉(X,X∗).

This implies that B∗z∗ ∈ D (A∗), and hence z∗ ∈ D (A∗B∗). �

Lemma 3.5.5 Let B ∈ B(X ; Y ) be invertible (with an inverse in B(Y ; X )), and
let A : Y ⊃ D (A)→ Z be densely defined. Then AB is densely defined (with
D (AB) = {x ∈ X | Bx ∈ D (A)}), and (AB)∗ = B∗A∗ (with D (B∗A∗) =
D (A∗)).

Proof The domain of AB is the image under B−1 of D (A) which is dense
in Y , and therefore D (AB) is dense in X (if x ∈ X , and if yn ∈ D (A) and
yn → y := Bx in y, then xn := B−1 yn in D (AB), and xn → B−1 y = x in X ).
Thus AB has an adjoint (AB)∗.

Let x ∈ D (AB) = {x ∈ X | Bx ∈ D (A)} and z∗ ∈ D (A∗). Then

〈ABx, z∗〉(Z ,Z∗) = 〈Bx, A∗z∗〉(Y,Y ∗) = 〈x, B∗A∗z∗〉(X,X∗).

This implies that z∗ ∈ D ((AB)∗), and that (AB)∗z∗ = B∗A∗z∗. To com-
plete the proof it therefore suffices to show that D ((AB)∗) ⊂ D (A∗). Let
z∗ ∈ D ((AB)∗). Then, for every y ∈ D (A), we have B−1 y ∈ D (AB), and

〈Ay, z∗〉(Z ,Z∗) = 〈AB B−1 y, z∗〉(Z ,Z∗) = 〈B−1 y, (AB)∗z∗〉(X,X∗)

= 〈y, B−∗(AB)∗z∗〉(Y,Y ∗).
This implies that z∗ ∈ D (A∗). �

Theorem 3.5.6 Let A be a C0 semigroup on a Banach space X with generator
A.

(i) A∗t = (At )∗, t ≥ 0, is a locally bounded semigroup on X∗ (but it need not
be strongly continuous). This semigroup has the same growth bound as A.
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(ii) Let X$ = {x∗ ∈ X∗ | limt↓0 A∗t x∗ = x∗}. Then X$ is a closed subspace
of X∗ which is invariant under A∗, and the restriction A$ of A∗ to X$ is
a C0 semigroup on X$.

(iii) The generator A$ of the semigroup A$ in (ii) is the restriction of A∗ to
D (A$) = {x∗ ∈ D (A∗) | A∗x∗ ∈ X$}.

(iv) X$ is the closure of D (A∗) in X∗. Thus, D (A∗) ⊂ X$ and D (A∗) is
dense in X$.

(v) If X is reflexive, then X$ = X∗, A$ = A∗, and A∗ is a C0 semigroup on
X∗ with generator A∗.

(vi) If A ∈ B(X ), then X$ = X∗, A$ = A∗, and A∗ is a C0 semigroup on X∗

with generator A∗.

For an example where X$ �= X∗, see Example 3.5.11 with p = 1.

Proof of Theorem 3.5.6 (i) This follows from Lemmas 3.5.1(ii) and 3.5.4.
(ii) The proof of the claim that A∗t maps X$ into X$ is the same as the proof

of Lemma 2.2.13(ii).
To show that X$ is closed we let x∗n ∈ X$, x∗n → x∗ ∈ X∗. Write

‖A∗s x∗ − x∗‖ ≤ ‖A∗s x∗ − A∗s x∗n‖ + ‖A∗s x∗n − x∗n‖ + ‖x∗n − x∗‖.
Given ε > 0, we can make ‖A∗s x∗ − A∗s x∗n‖ + ‖x∗n − x∗‖ < ε/2 for all 0 ≤
s ≤ 1 by choosing n large enough (since ‖A∗s‖ ≤ Meωs for some M > 0 and
ω ∈ R). Next we choose t ≤ 1 so small that‖A∗s x∗n − x∗n‖ ≤ ε/2 for all 0 ≤ s ≤
t . Then ‖A∗s x∗ − x∗‖ ≤ ε for 0 ≤ s ≤ t . This proves that limt↓0 A∗t x∗ = x∗,
hence x∗ ∈ X$. Thus X$ is closed in X∗.

Since X$ is closed in X∗, it is a Banach space with the same norm, and by
definition, A$ is a C0 semigroup on X$.

(iii) Let A$ be the generator of A$. Choose some x ∈ D (A) and x∗ ∈
D (A$) ⊂ X$ ⊂ X∗. Then

〈Ax, x∗〉(X,X∗) = lim
t↓0

〈1
t

(At − 1)x, x∗
〉
(X,X∗)

= lim
t↓0

〈
x,

1

t
(A∗t − 1)x∗

〉
(X,X∗)

= 〈x, A$x∗〉(X,X∗).

This implies that x∗ ∈ D (A∗) and A$x∗ = A∗x∗. In other words, if we let B
be the restriction of A∗ to D (B) = {x∗ ∈ D (A∗) | A∗x∗ ∈ X$}, then A$ ⊂ B,
i.e., D (A$) ⊂ D (B) and A$X∗ = Bx∗ for all x∗ ∈ D (A$).

It remains to show that D (B) = D (A$). Choose some α ∈ ρ(A$) ∩ ρ(A∗)
(by Theorem 3.2.9(i) and Lemma 3.5.3, any α with 
α large enough will do).
Then α − A$ maps D (A$) one-to-one onto X$, hence α − B maps D (B)
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onto X$, i.e.,

X$ = (α − A$)D (A$) = (α − B)D (B) .

But α − B is a restriction of α − A∗ which is one-to-one on X∗; hence α − B
is injective on D (B), and

D (B) = (α − B)−1 X$ = (α − A$)−1 X$ = D (A) .

(iv) Let x∗ ∈ D (A∗). Choose α and M such that ‖As‖ ≤ Meαs for all s ≥ 0.
Then, for all x ∈ X , all t ≥ 0, and all real α > ωA, by Theorem 3.2.1(ii) and
Example 3.2.6(i),∣∣〈x, (e−αtA∗t − 1)x∗

〉∣∣ = ∣∣〈(e−αtAt − 1)x, x∗
〉∣∣

= ∣∣〈(α − A)(α − A)−1(e−αtAt − 1)x, x∗
〉∣∣

= ∣∣〈(α − A)−1(e−αtAt − 1)x, (α − A)x∗
〉∣∣

=
∣∣∣〈∫ t

0
e−αsAs x ds, (α − A)x∗

〉∣∣∣
≤ Mt‖x‖‖(α − A)x∗‖.

Taking the supremum over all x ∈ X with ‖x‖ = 1 and using (3.5.1) we get

‖(e−αtA∗t − 1)x∗‖ ≤ Mt‖(α − A)x∗‖ → 0 as t ↓ 0,

which implies that limt↓0 A∗t x∗ = x∗. This shows that D (A∗) ⊂ X$. That
D (A∗) is dense in X$ follows from the fact that D (A$) ⊂ D (A∗) and D (A$)
is dense in X$.

(v)–(vi) These follow from (iv) and Lemma 3.5.1(ii)–(iv). �

Definition 3.5.7 The C0 semigroup A$ in Theorem 3.5.6 is the dual of the C0

semigroup A, X$ is the$-dual of X (with respect to A), and A$ is the$-dual
of A.

Example 3.5.8 The dual A∗ of the diagonal (semi)group A in Example 3.3.3 is
another diagonal (semi)group where the eigenvectors {φn}∞n=1 stay the same but
the sequence of eigenvalues {λn}∞n=1 has been replaced by its complex conjugate
{λn}∞n=1. Thus

A∗t x =
∞∑

n=1

eλn t 〈x, φn〉φn, x ∈ H, t ≥ 0.

The dual generator A∗ has the same domain as A, and it is given by

Ax =
∞∑

n=1

λn〈x, φn〉φn, x ∈ D (A) .
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In particular,At = A∗t for all t ≥ 0 and A = A∗ if and only if all the eigenvalues
are real.

We leave the proof to the reader as an exercise.
Let us next look at the duals of the shift (semi)groups in Examples 2.3.2 and

2.5.3. To do this we need to determine the dual of an L p-space.

Lemma 3.5.9 Let U be a reflexive Banach space4, let 1 ≤ p <∞, 1/p +
1/q = 1 (with 1/∞ = 0), ω ∈ R, and J ⊂ R (with positive measure).

(i) The dual of L p
ω(J ; U ) can be identified with Lq

−ω(J ; U ∗) in the sense that
every bounded linear functional f on L p

ω(J ; U ) is of the form

〈u, f 〉 =
∫

J
〈u(t), u∗(t)〉(U,U ∗) dt, u ∈ L p

ω(J ; U ),

for some u∗ ∈ Lq
−ω(J ; U ∗). The norm of the functional f is equal to the

Lq
−ω(J )-norm on u∗.

(ii) L p
ω(J ; U ) is reflexive iff 1 < p <∞.

Proof For ω = 0 this lemma is contained in Diestel and Uhl (1977, Theorem 1,
p. 98 and Corollary 2, p. 100). If f is a bounded linear functional on L p

ω(J ; U )
for some ω �= 0, then fω : v �→ 〈v, fω〉 = 〈eωv, f 〉 (where eω(t) = eωt ) is a
bounded linear functional on L p(J ; U ), hence this functional has a representa-
tion of the form

〈v, fω〉 =
∫

J
〈v(t), u∗ω(t)〉 dt

for some u∗ω ∈ Lq (J ; U ∗). Replacing v ∈ L p(J ; U ) by u = eωv ∈ Lq
ω(J ; U )

and u∗ω by u∗ = e−ωu∗ω ∈ Lq
−ω(J ; U ∗) we get the desired representation

〈u, f 〉 = 〈e−ωu, fω〉 =
∫

J
〈e−ωt u(t), u∗ω(t)〉 dt

=
∫

J
〈u(t), e−ωt u∗ω(t)〉 dt =

∫
J
〈u(t), u∗(t)〉 dt.

�

The representation in Lemma 3.5.9 is canonical in the sense that it ‘inde-
pendent of p and ω’ in the following sense:

Lemma 3.5.10 Let U be a reflexive Banach space. If f is a bounded linear
functional on L p1

ω1 (J ; U ) ∩ L p2
ω2 (J ; U ), where 1 ≤ p1 <∞, 1 ≤ p2 <∞, ω1 ∈

R, and ω2 ∈ R, then we get the same representing function u∗ for f if we use

4 In part (i) the reflexivity assumption on U can be weakened to the assumption that U has the
Radon–Nikodym property. See Diestel and Uhl (1977, Theorem 1, p. 98).
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any combination of pi and ω j , i , j = 1, 2, in Lemma 3.5.9. In particular, u∗ ∈
Lq1
−ω1

(J ; U ∗) ∩ Lq2
−ω2

(J ; U ∗), where 1/p1 + 1/q1 = 1 and 1/p2 + 1/q2 = 1.

Proof This follows from the fact that the integral
∫

J 〈u(t), u∗(t)〉 dt does not
depend on either p or ω (as long as it converges absolutely). �

Example 3.5.11 Let U be a reflexive Banach space, let 1 ≤ p <∞, 1/p +
1/q = 1 (with 1/∞ = 0), and ω ∈ R.

(i) The dual of the bilateral left shift group τ t , t ∈ R, on L p
ω(R; U ) is the

right shift group τ−t , t ∈ R, which acts on Lq
−ω(R; U ∗) if 1 < p <∞

and on BUC−ω(R; U ∗) if p = 1.
(ii) The dual of the incoming left shift semigroup τ t

+, t ≥ 0, on L p
ω(R+; U ) is

the right shift semigroup

(τ−t
+ u)(t) = (τ−tπ+u)(s) =

{
u(s − t), s > t,

0, otherwise,

which acts on Lq
−ω(R+; U ∗) if 1 < p <∞ and on

{u∗ ∈ BUC−ω(R
+

; U ∗) | u∗(0) = 0} if p = 1.
(iii) The dual of the outgoing left shift semigroup τ t

−, t ≥ 0, on L p
ω(R−; U ) is

the right shift semigroup

(τ−t
− u)(s) = (π−τ−t u)(s) =

{
u(s − t), s ≤ 0,

0, otherwise,

which acts on Lq
−ω(R−; U ∗) if 1 < p <∞ and on BUC−ω(R

−
; U ∗) if

p = 1.
(iv) The dual of the finite left shift semigroup τ t

[0,T ), t ≥ 0, on L p
ω((0, T ); U ) is

the right shift semigroup

(τ−t
[0,T )u)(s) = (π[0,T )τ

−tπ[0,T )u)(s) =
{

u(s − t), t ≤ s < T,

0, otherwise,

which acts on Lq ((0, T ); U ∗) if 1 < p <∞ and on
{u∗ ∈ C([0, T ]; U ∗) | u∗(0) = 0} if p = 1.

(v) The dual of the circular left shift group τ t
TT

, t ≥ 0, on L p
ω(TT ; U ) is the

circular right shift group

(τ−t
TT

u)(s) = (τ−t u)(s) = u(s − t),

which acts on Lq (TT ; U ∗) if 1 < p <∞ and on C(TT ; U ∗) if p = 1.
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Proof (i) By Lemma 3.5.9, the dual of L p
ω(R; U ) is Lq

−ω(R; U ∗). Let u ∈
L p
ω(R; U ) and u∗ ∈ Lq

−ω(R; U ∗) and t ∈ R. Then

〈τ t u, u∗〉 =
∫ ∞
−∞
〈τ t u(s), u∗(s)〉 ds =

∫ ∞
−∞
〈u(s + t), u∗(s)〉 ds

=
∫ ∞
−∞
〈u(s), u∗(s − t)〉 ds =

∫ ∞
−∞
〈u(s), τ−t u∗(s)〉 ds

= 〈u, τ−t u∗〉.
This shows that τ ∗t = τ−t . The rest of (i) follows from Theorem 3.5.6, Defini-
tion 3.5.7, and Examples 2.3.2 and 2.5.3.

(ii)–(iv) These follow from (i) and Examples 2.3.2 and 2.5.3. �

The new right shift semigroups that we obtained in Example 3.5.11 are sim-
ilar to the left shift semigroups that we have encountered earlier. The similarity
transform is the reflection operator R(in one case combined with a shift), which
we define as follows.

Definition 3.5.12 Let 1 ≤ p ≤ ∞, and let U be a Banach space.

(i) For each function u ∈ L p
loc(R; U ) we define the reflection Ru of u by

( Ru)(s) = u(−s), s ∈ R. (3.5.5)

(ii) For each function u ∈ Regloc(R; U ) we define the reflection Ru of u by

( Ru)(s) = lim
t↓−s

u(t), s ∈ R. (3.5.6)

Observe that these two cases are consistent in the sense that in part (ii) we
have ( Ru)(s) = u(−s) for all but countably many s.

Lemma 3.5.13 Let J ⊂ R, t ∈ R, ω ∈ R, and 1 ≤ p ≤ ∞.

(i) Rmaps L p|Regω(R; U ) onto L p|Reg−ω(R; U ), and
(a) R−1 = R,
(b) Rτ t = τ−t R,
(c) RπJ = π RJ R,5 and
(d) R∗ = R(in L p

ω(J ; U ) with reflexive U and 1 ≤ p <∞).
(ii) π∗J = πJ (in L p

ω(J ; U ) with reflexive U and 1 ≤ p <∞).
(iii) The dual of the time compression operator γλ (see Example 2.3.6) is the

inverse time compression operator γ1/λ (in L p
ω(J ; U ) with reflexive U

and 1 ≤ p <∞).

5 In the Reg-well-posed case we require χJ to be right-continuous and define RJ to be the set
whose characteristic function is χ RJ
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(iv) The right shift (semi)groups in Example 3.5.11 are similar to the
corresponding left shift (semi)groups in Examples 2.3.2 and 2.5.3 as
follows:
(a) τ$ = Rτ R;
(b) τ$+ = Rτ− R;
(c) τ$− = Rτ+ R;
(d) τ$[0,T ) = τ−T Rτ[0,T ) Rτ T ;
(e) τ$

TT
= RτTT R.

We leave the easy proof to the reader.

3.6 The rigged spaces induced by the generator

In our subsequent theory of L p|Reg-well-posed linear systems we shall need
a scale of spaces Xn , n = 0,±1,±2, . . . , which are constructed from X by
means of the semigroup generator A. In particular, the spaces X1 and X−1 will
be of fundamental importance. To construct these spaces we need not even
assume that A generates a C0 semigroup on X ; it is enough if A has a nonempty
resolvent set and dense domain.

We begin with the case n ≥ 0, and define

X0 = X, Xn = D (An
)

for n = 1, 2, 3, . . .

Choose an arbitrary number α from the resolvent set of A. Then (α − A)−n

maps X one-to-one onto D (An) (this can be proved by induction over n), and
we can define a norm in Xn by

|x |n = |x |Xn =
∣∣(α − A)n x

∣∣
X .

With this norm each Xn becomes a Banach space, Xn+1 ⊂ Xn with a dense
injection, and (A − α)n is an isometric (i.e., norm-preserving) isometry (i.e.,
bounded linear operator with a bounded inverse) from Xn onto X . If X is a
Hilbert space, then so are all the spaces Xn .

If we replace α by some other β ∈ ρ(A), then (β − A)−n has the same range
as (α − A)−n , so if we use β instead of α in the definition of Xn then we still
get the same space, but with a different norm. However, the two norms are
equivalent since (α − A)n(β − A)−n is an isomorphism (not isometric) on X :
for n = 1 this follows from the resolvent formula in Lemma 3.2.8(i) which
gives

(α − A)(β − A)−1 = 1+ (α − β)(β − A)−1,
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and by iterating this formula we get the general case. Most of the time the value
of α ∈ ρ(A) which determines the exact norm in Xn is not important.

If A generates a C0 semigroup A, then the restriction A|Xn of A to Xn

is a C0 semigroup on Xn . It follows from Theorem 3.2.1(iii) and Example
3.2.6(i) that A|Xn = (α − A)−nA(α − A)n , i.e., A|Xn and A are (isometrically)
isometric. Thus, all the important properties of these semigroups are identical.
In particular, they all have the same growth bound ωA, and the generator of An

is the restriction A|Xn+1 of A to Xn+1. In the sequel we occasionally write (for
simplicity) A instead of A|Xn and A instead of A|Xn+1 (but we still use the more
complicated notions in those cases where the distinction is important).

It is also possible to go in the opposite direction to get spaces Xn with
negative index n. This time we first define a sequence of weaker norms in X ,
namely

|x |−n =
∣∣(α − A)−n x

∣∣
X for n = 1, 2, 3, . . . ,

and let X−n be the completion of X with respect to the norm |·|−n . Then (α − A)n

has a unique extension to an isometric operator which maps X onto X−n . We
denote this operator by (α − A)n

|X and its inverse by (α − A)−n
|X−n

, or sometimes
simply by (α − A)n , respectively (α − A)−n , if no confusion is likely to arise.
In the case n = 1 we often write (α − A|X )−1 instead of (α − A)−1

|X−1
. Thus, for

all n, l = 0,±1,±2, . . . ,

(α − A)l
|Xn+l

is an isometry of Xn+l onto Xn.

If A generates a C0 semigroup A on X , then we can use the formula

A|X−n = (α − A)n
|XA(α − A)−n

|X−n

to extend (rather than restrict) A to a semigroup on each of the spaces X−n .
In this way we get a full scale of spaces Xn+1 ⊂ Xn for n = 0,±1,±2, . . . ,
and a corresponding scale of isometric semigroups A|X−n . In places where no
confusion is likely to arise we abbreviate A|X−n to A. The generator of A|X−n is
A|X−n+1 . As in the case of the semigroup itself we sometimes abbreviate A|X−n+1

to A.
Above we have defined the norm in X1 by using the fact that (α − A)−1 maps

X one-to-one onto X1 whenever α ∈ ρ(A). Another commonly used norm in
X1 is the graph norm

‖x‖X1 =
(|x |2X + |Ax |2X

)1/2
. (3.6.1)

This is the restriction of the norm
∥∥[ x

y
]∥∥ = (|x |2X + |y|2X )1/2

in
[

X
X

]
to the

graph G (A) = {[ Ax
x

] ∣∣ x ∈ X
}
. This graph is closed since A is closed, so it is

a Banach space in itself (or a Hilbert space if X is a Hilbert space). The map
which takes

[
Ax
x

] ∈ G (A) into x is injective, so we may let x ∈ D (A) inherit
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the norm of
[

Ax
x

] ∈ G (A), and this is the norm ‖·‖X1 in (3.6.1). This norm is
majorized by the earlier introduced norm |·|X1 since

|Ax |X = |(A − α + α)x |X ≤ ‖x‖X1 + |α||x |X ,
and

|x |X = |(α − A)−1(α − A)x |X ≤ ‖(α − A)−1‖|x |X1 ,

so by the open mapping theorem, the two norms |·|X1 and ‖·‖X1 are equivalent.
A similar norm can be used in Xn = D (An) for n = 2, 3, . . ., namely

‖x‖Xn =
(|x |2X + |An x |2X

)1/2
. (3.6.2)

To prove that this is a norm in Xn we can argue as above: the operator An is closed
since it is the restriction of (An)|X := A|X−n+1 A|X−n+2 · · · A|X ∈ B(X ; X−n) to its
natural domain D (An) = {x ∈ X | (An)|X x ∈ X}, and the above norm is the
graph norm of An on D (An). To show that it is equivalent to the norm |·|Xn

we may argue as follows. Take some α ∈ ρ(A). Then, for each x ∈ D (An) we
have (from the binomial formula)

(α − A)n x =
n∑

k=0

(
n

k

)
αk An−k x,

or equivalently,

An x = (α − A)n x −
n∑

k=1

(
n

k

)
αk An−k x

=
(

1−
n∑

k=1

(
n

k

)
αk An−k(α − A)−n

)
(α − A)n x .

Thus, |An x |X ≤ M |x |Xn , where M is the norm of the operator 1−∑n
k=1

(n
k

)
αk An−k(α − A)−n ∈ B(X ), and, of course,

|x |X = |(α − A)−n(α − A)n x |X ≤ ‖(α − A)−n‖|x |Xn .

This shows that the norm ‖·‖Xn is majorized by the norm |·|Xn , so by the open
mapping theorem, the two norms |·|Xn and ‖·‖Xn are equivalent.

Let us illustrate these constructions by looking at Example 3.3.5. In this
example we have

|x |2Xn
=
∞∑

k=1

|α − λk |2n|〈x, φk〉|2H ,

where α ∈ ρ(A), and each Xn is a Hilbert space with the orthogonal basis
{φn}∞n=1 (it becomes orthonormal if we divide φk by |α − λk |). For n ≥ 1 we
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can alternatively use the equivalent norm

|x |2Xn
=
∞∑

k=1

(1+ |λk |)2n|〈x, φk〉|2H ;

cf. Example 3.3.5.

Remark 3.6.1 This remark explains how the spaces Xn interact with duality.
Since Xn+1 ⊂ Xn for all n = 0,±1,±2, . . . , with dense embeddings, the duals
of these embedding maps are injective (see Lemma 9.10.2(ii)), so they define
embeddings (Xn)∗ ⊂ (Xn+1)∗ (which need not be dense). Since (α − A)n is an
isometry of Xn+l onto Xl , it follows that (α − A∗)n is an isometry of (Xl)∗ onto
(Xn+l)∗ for all n, l = 0,±1,±2, . . . . If X is reflexive, then the embeddings
(Xn)∗ ⊂ (Xn+1)∗ are dense, and these spaces are the same as we would get
by repeating the argument leading to the definition of the spaces Xn , with X
replaced by X∗, A replaced by A∗, and using a different subindex (i.e., −n
instead of n). When we discuss the causal and anti-causal dual systems �d and
�† it is convenient to denote the domain of A∗ by X∗1 , and accordingly, in the
sequel we use the notation

X∗−n := (X∗)−n := (Xn)∗, n = 0,±1,±2, . . .

In particular,

〈An x, x∗〉(Xl ,X∗−l ) = 〈x, A∗n x∗〉(Xn+l ,X∗−(n+l)), x ∈ Xn+l , x∗ ∈ X∗−l ,

where by A∗n we mean A∗n := (A∗)n = (An)∗.

In the Hilbert space case one often uses a slightly different construction,
which resembles the one described in Remark 3.6.1. Assume that W ⊂ X are
two Hilbert spaces, with a continuous and dense embedding. Then (x, y) �→
〈x, y〉X is a bounded sesquilinear form on W , and therefore (see, e.g., Kato
1980, pp. 256–257) there is a unique operator E ∈ B(W ) which is positive and
self-adjoint (with respect to the inner product of W ) such that

〈x, y〉X = 〈Ex, y〉W = 〈x, Ey〉W = 〈
√

Ex,
√

E y〉W , x, y ∈ W,

where
√

E is the positive self-adjoint square root of E (cf. Lemma A.2.2). For
all x ∈ W ,

|Ex |2X = 〈E
√

Ex, E
√

Ex〉W ≤ ‖E‖2
B(W )|
√

Ex |2W = ‖E‖2
B(W )|x |2X ,

and this implies that E can be extended to a unique operator in B(X ), which
we still denote by the same symbol E . This operator is still self-adjoint in X
since 〈x, Ey〉X = 〈Ex, Ey〉W = 〈Ex, y〉X for all x , y ∈ W , and W is dense in
X . The space X may be regarded as the completion of W with respect to the
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norm |x |X = |
√

Ex |W , and this means that the extended version of
√

E is an
isometric isomorphism of W onto X .

Let V be the completion of X with respect to the norm |x |V = |
√

Ex |X . By
repeating the same argument that we gave above with W replaced by X and X
replaced by V we find that E can be extended to a self-adjoint operator in V
(which we still denote by the same letter), that

√
E is an isometric isomorphism

of V onto X , and that E is an isometric isomorphism of V onto W . Moreover,

〈x, y〉V = 〈Ex, y〉X = 〈x, Ey〉X = 〈
√

Ex,
√

E y〉X , x, y ∈ X,

〈x, y〉V = 〈Ex, y〉X = 〈Ex, Ey〉W , x, y ∈ W.

The space V can be interpreted as the dual of W with X as pivot space as
follows. Every x ∈ V induces a bounded linear functional on W through the
formula

〈x, y〉(V,W ) = 〈Ex, y〉W ,
and every bounded linear functional on W is of this type since E maps W
one-to-one onto V . This is a norm-preserving mapping of the dual of W onto
V , since the norm of the above functional is |Ex |W = |x |V . That X is a pivot
space means that for all x ∈ X and y ∈ W ,

〈x, y〉(V,W ) = 〈x, y〉X ,
which is true since both sides are equal to 〈Ex, y〉W .

If we apply this procedure (in the Hilbert space case) to the space X1 ⊂ X
described at the beginning of this section, then we get V = X∗−1 and the extended
version of E is given by E = (α − A)−1(α − A∗|X )−1 if we use the norm |x |1 =
|(α − A)x |X in X1. If we instead use the graph norm |x |21 = |x |2X + |Ax |2X in
X1, then the extended version of E is given by E = (1+ A∗|X A)−1.

In this book we shall usually identify X with its dual, and identify the dual of
W with V as described above. However, occasionally it is important to compute
the dual of an operator with respect to the inner product in W or in V instead of
computing it with respect to the inner produce in X . Here the following result
is helpful.

Proposition 3.6.2 Let U, Y , and W ⊂ X ⊂ V be Hilbert spaces, where the
embeddings are continuous and dense, let E ∈ B(V ) be injective, selfadjoint
(with respect to the inner product in V ), and suppose that

√
E maps V iso-

metrically onto X and that
√

E |X maps X isometrically onto W (the operator
E and the space V can be constructed starting from W and X as explained
above). We identify U and Y with their duals.

(i) Let B ∈ B(U ; W ), let B ′ ∈ B(W ; U ) be the adjoint of B with respect to
the inner product in W , and let B∗ ∈ B(X ; U ) be the adjoint of B with
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respect to the inner product in X (note that B ∈ B(U ; X )). Then
B∗ = B ′E|X . In particular, this formula can be used to extend B∗ to
B ′E ∈ B(V ; U ), which is the adjoint of B when we identify the dual of
W with V .

(ii) Let B ∈ B(U ; X ), let B∗ ∈ B(X ; U ) be the adjoint of B with respect to
the inner product in X, and let B ′′ ∈ B(V ; U ) be the adjoint of B with
respect to the inner product in V (note that B ∈ B(U ; V )). Then
B ′′ = B∗E.

(iii) Let B ∈ B(U ; V ), let B∗ ∈ B(W ; U ) be the adjoint of B when we
identify the dual of V with W (with X as pivot space), and let
B ′′ ∈ B(V ; U ) be the adjoint of B with respect to the inner product in
V . Then B ′′ = B∗E.

(iv) Let C ∈ B(V ; Y ), let C ′′ ∈ B(Y ; V ) be the adjoint of C with respect to
the inner product in V , and let C∗ ∈ B(Y ; X ) be the adjoint of C with
respect to the inner product in X (note that C ∈ B(X ; Y )). Then
C∗ = EC ′′. In particular, C∗ ∈ B(Y ; W ).

(v) Let C ∈ B(X ; Y ), let C∗ ∈ B(Y ; X ) be the adjoint of C with respect to
the inner product in X, and let C ′ ∈ B(Y ; W ) be the adjoint of C with
respect to the inner product in W (note that C ∈ B(W ; Y )). Then
C ′ = EC∗.

(vi) Let C ∈ B(W ; Y ), let C ′ ∈ B(Y ; W ) be the adjoint of C with respect to
the inner product in W , and let C∗ ∈ B(Y ; V ) be the adjoint of C when
we identify the dual of W with V (with X as pivot space). Then
C ′ = EC∗.

(vii) Let A ∈ B(V ), and suppose that X is invariant under A. Let A′′ ∈ B(W )
be the adjoint of A with respect to the inner product of V , and let A∗|X be
the adjoint of A|X with respect to the inner product of X. Then
E A′′ = A∗|X E. In particular, W is invariant under A∗|X .

(viii) Let A ∈ B(X ), and suppose that W is invariant under A. Let A∗ be the
adjoint of A with respect to the inner product of X, and let A′|W be the
adjoint of A|W with respect to the inner product of W . Then
A′|W E|X = E A∗. In particular, E X is invariant under A′|W .

(ix) Let A ∈ B(W ), let A′ ∈ B(W ) be the adjoint of A with respect to the
inner product in W , and let A∗ ∈ B(V ) be the adjoint of A when we
identify the dual of W with V . Then A′E = E A∗.

Proof (i) For all x ∈ X and u ∈ U ,

〈u, B∗x〉U = 〈Bu, x〉X = 〈Bu, Ex〉W = 〈u, B ′Ex〉U .

Thus, B∗ = B ′E|X . If we instead let B∗ stand for the adjoint of B when we
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identify the dual of W by V , then for all u ∈ U and x ∈ V ,

〈B∗x, u〉U = 〈x, Bu〉(V,W ) = 〈Ex, Bu〉W = 〈B ′Ex, u〉U .
Thus, B∗ = B ′E .

(ii) Apply (i) with W replaced by X and X replaced by V .
(iii) For all x ∈ V and u ∈ U ,

〈u, B ′′x〉U = 〈Bu, x〉V = 〈E Bu, Ex〉W = 〈Bu, Ex〉(V,W ) = 〈u, B∗Ex〉U .
Thus B ′′ = B∗E .

(iv) For all x ∈ X and y ∈ Y ,

〈x,C∗y〉X = 〈Cx, y〉Y = 〈x,C ′′y〉V = 〈x, EC ′′y〉X .
Thus C∗ = EC ′′.

(v) Apply (iv) with V replaced by X and X replaced by W .
(vi) For all x ∈ W and y ∈ Y ,

〈C ′y, x〉W = 〈y,Cx〉Y = 〈C∗y, x〉(V,W ) = 〈EC∗y, x〉W .
Thus, C ′ = EC∗.

(vii) For all x ∈ X and y ∈ V ,

〈x, E A′′y〉V = 〈AEx, y〉V = 〈A|X Ex, Ey〉X = 〈x, E A∗|X Ey〉X
= 〈x, A∗|X Ey〉V .

Thus, E A′′ = A∗|X E on V . This implies that W is invariant under A∗|X .
(viii) Apply (vii) with V replaced by X and X replaced by W .
(ix) For all x ∈ V and y ∈ W ,

〈A′Ex, y〉W = 〈Ex, Ay〉W = 〈x, Ay〉(V,W ) = 〈A∗x, y〉(V,W )

= 〈E A∗x, y〉W .
Thus A′E = E A∗. �

3.7 Approximations of the semigroup

The approximation Aα to A that we used in the proof of the Hille–Yosida
Theorem 3.4.1 will be quite useful in the sequel, too. For later use, let us record
some of the properties of this and some related approximations:

Theorem 3.7.1 Let A be the generator of a C0 semigroup on X. Define the
space X1 = D (A) as in Section 3.6. For all α ∈ ρ(A) (in particular, for
all α ∈ C+ωA

), define

Jα = α(α − A)−1, Aα = αA(α − A)−1,
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and for all h > 0 and x ∈ X, define

J h x = 1

h

∫ t

0
As x ds, Ah = 1

h
(Ah − 1)x .

Then the following claims are true:

(i) For all α ∈ ρ(A) and h > 0, Jα ∈ B(X ; X1), J h ∈ B(X ; X1), Aα ∈ B(X ),
Ah ∈ B(X ), and

Jα = α(α − A)−1 = 1+ A(α − A)−1,

Aα = AJα = α(Jα − 1) = α2(α − A)−1 − α,

Ah = AJ h = 1

h
(Ah − 1)x = 1

h
A
∫ t

0
As x ds,

Moreover, for α ∈ C+ωA
,

Jαx = α

∫ ∞
0

e−αsAs x ds, x ∈ X.

(ii) For all α, β ∈ ρ(A) and h, k, t > 0, the operators Jα , Jβ , J h, J k , Aα ,
Aβ , Ah, Ak, and At commute with each other.

(iii) Jα and J h approximate the identity and Aα and Ah approximate A in the
sense that the following limits exist:

lim
α→+∞ Jαx = lim

h↓0
J h x = x in X for all x ∈ X,

lim
α→+∞ Aαx = lim

h↓0
Ah x = Ax in X for all x ∈ X1,

lim
α→+∞α

−1 Jαx = lim
α→+∞(α − A)−1x = 0 in X1 for all x ∈ X,

lim
h↓0

h J h x = lim
h↓0

∫ t

0
As x dx = 0 in X1 for all x ∈ X,

lim
α→+∞α

−1 Aαx = lim
h↓0

h Ah x = 0 in X for all x ∈ X .

(iv) A is uniformly continuous (hence analytic) iff Jα has a bounded inverse
for some α ∈ ρ(A), or equivalently, iff J h has a bounded inverse for
some h > 0.

Proof (i) Obviously, Jα ∈ B(X ; X1), Aα ∈ B(X ), and Ah ∈ B(X ). By Theorem
3.2.1(ii), J h ∈ B(X ; X1). The algebraic properties in (i) are easy to verify (see
also Theorem 3.2.1(ii)). The integral formula for Jα is found in Theorem 3.2.9(i).

(ii) This is true since As commutes with At and with (α − A)−1. See also
Theorems 3.2.1 and 3.2.9.
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(iii) That limα→+∞ Jαx = limh↓0 J h x = x in X for all x ∈ X follows from
Theorems 3.2.1(i) and 3.2.9(iii) and that limα→+∞ Aαx = limh↓0 Ah x = Ax in
X for all x ∈ X1 follows from (i), Definition 3.1.1, and Theorem 3.2.9(iii). By
Theorem 3.2.9(iii), for all β ∈ ρ(A), limα→+∞(β − A)(α − A)−1x = 0 in X
for all x ∈ X , and this implies that limα→+∞ α−1 Jαx = 0 in X1 for all x ∈ X .
To prove that limh↓0 h J h x = 0 in X1 for all x ∈ X it suffices to observe that,
for all β ∈ ρ(A),

(β − A)h J h x = (β − A)
∫ h

0
As x ds = β

∫ h

0
As x ds + x − Ah x,

and here the right-hand side tends to zero in X for every x ∈ X . That
limα→+∞ α−1 Aαx = limh↓0 h Ah x = 0 in X for all x ∈ X follows from (i) and
the fact that limα→+∞ Jαx = limh↓0 J h x = x in X for all x ∈ X .

(iv) Obviously A ∈ B(X ) iff Jα has a bounded inverse. That J h has a bounded
inverse for some h > 0 iff A ∈ B(X ) follows from Example 3.1.2 and Remark
3.1.4. By Theorem 3.1.3, the boundedness of A is equivalent to the uniform
continuity of A. �

Definition 3.7.2 The operators Jα and Aα in Theorem 3.7.1 are called the
Yosida (or Abel) approximations of the identity 1 and of A, respectively (with
parameter α). The operators J h and Ah in Theorem 3.7.1 are called the Cesàro
approximations (of order one) of the identity 1 and of A, respectively (with
parameter h).

Theorem 3.7.3 Let A be the generator of a C0 semigroup A on X, and let
Aα = αA(α − A)−1 be the Yosida approximation of A. Then for each x ∈ X
and t ≥ 0, limα→+∞ eAα t x = At x , and the convergence is uniform in t on any
bounded interval.

The proof of this theorem is contained in the proof of Theorem 3.4.1.
The same result is true if we replace the Yosida approximation by the Cesàro

approximation:

Theorem 3.7.4 Let A be the generator of a C0 semigroup A on X, and let
Ah = 1

h (Ah − 1) be the Cesàro approximation of A. Then for each x ∈ X and

t ≥ 0, limh↓0 eAh t x = At x , and the convergence is uniform in t on any bounded
interval.

Proof The proof follows the same lines as the proof of Theorem 3.4.1 with Aα

replaced by Ah , At
α replaced by At

h = eAh t , and Bα replaced by Bh = Ah + 1
h =

1
h Ah . We can choose M and ω so that ‖At‖ ≤ Meωt for all t ≥ 0. Then (3.4.1)
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is replaced by

‖(Bh)n‖ =
∥∥∥(1

h
Ah
)n∥∥∥ ≤ Meωhn

hn
,

and (3.4.3) is replaced by

‖At
h‖ ≤ e−t/h

∞∑
n=0

tn

n!

Meωhn

hn

= Me−t/he(t/h)eωh = Met/h(eωh−1), t ≥ 0.

This tends to Meωt as h ↓ 0, uniformly in t on any bounded interval. The new
version of estimate (3.4.4) is (for all h, k > 0)

|At
h x − At

k x | ≤ M2
∫ t

0
es/h(eωh−1)e(t−s)/k(eωk−1)|Ah x − Ak x | ds,

and the remainder of the proof of Theorem 3.4.1 stays the same. �

Theorem 3.7.5 Let A be the generator of a C0 semigroup A on X. Then, for
all t ≥ 0,

At x = lim
n→∞

(
1− t

n
A
)−n

x, x ∈ X,

and the convergence is uniform in t on each bounded interval.

Proof By Theorem 3.2.9(i), for all x ∈ X and (n − 1)/t > ωA,(
1− t

n
A
)−(n+1)

x =
(n

t

)n+1(n

t
− A
)−(n+1)

x

=
(n

t

)n+1 1

n!

∫ ∞
0

sne−ns/tAs x ds

= nn+1

n!

∫ ∞
0

(
ve−v

)n
Atvx dv.

As nn+1

n!

∫∞
0 (ve−v)n dv = 1, this implies that∣∣∣(1− t

n
A
)−(n+1)

x − At x
∣∣∣

=
∣∣∣nn+1

n!

∫ ∞
0

(
ve−v

)n
(Atvx − At x) dv

∣∣∣
≤ nn+1

n!

∫ ∞
0

vne−nv
∣∣Atvx − At x

∣∣ dv.
For each T > 0, the function v �→ Av is uniformly continuous on [0, T ]. Thus,
for every ε > 0 it is possible to find a δ > 0 such that |Atvx − At x | ≤ ε for
all t ∈ [0, T ] and 1− δ ≤ v ≤ 1+ δ. We split the integral above into three
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parts I1, I2, and I3, over the intervals [0, 1− δ), [1− δ, 1+ δ), and [1+ δ,∞),
respectively. Then∣∣∣(1− t

n
A
)−(n+1)

x − At x
∣∣∣ = I1 + I2 + I3.

The function v �→ ve−v is increasing on [0, 1], so we can estimate for all t ∈
[0, T ] (choose M > 0 and ω > 0 so that ‖At‖ ≤ Meωt ≤ MeωT )

I1 ≤ nn+1((1− δ)e−(1−δ))n

n!

∫ 1−δ

0

∣∣Atvx − At x
∣∣ dv

≤ 2MeωT nn+1((1− δ)e−(1−δ))n

n!
,

I2 ≤ ε
nn+1

n!

∫ 1+δ

1−δ

(
ve−v

)n
dv < ε,

I3 = nn+1

n!

∫ ∞
1+δ

(
ve−v

)n∣∣Atvx − At x
∣∣ dv

≤ 2M
nn+1

n!

∫ ∞
1+δ

(
ve−v

)n
eωT v dv

= 2M
nn+1

n!

∫ ∞
1+δ

(
ve−(1−(1+ωT )/n)v

)n
e−v dv.

We recall Stirling’s formula

lim
n→∞

nn+ 1
2

n! en
=
√

2π, (3.7.1)

which together with the fact that (1− δ)e1−δ < 1/e implies that I1 → 0 as
n→∞. The function v �→ ve−(1−(1+ωT )/n)v is decreasing for v ≥ (1− (1+
ωT )/n)−1, so for n large enough, we can estimate I3 by

I3 ≤ 2M
nn+1

n!

(
(1+ δ)e−(1−(1+ωT )/n)(1+δ)

)n ∫ ∞
1+δ

e−v dv

≤ 2M
nn+1

n!

(
(1+ δ)e−(1−(1+ωT )/n)(1+δ)

)n
.

Since

lim
n→∞(1+ δ)e−(1−(1+ωT )/n)(1+δ) = (1+ δ)e−(1+δ) < 1/e,

we can use Stirling’s formula (3.7.1) once more to conclude that I3 tends to
zero as n→∞. Thus,

lim
n→∞

(
1− t

n
A
)−(n+1)

x = At x,
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uniformly in t ∈ [0, T ]. As furthermore

lim
n→∞

(
1− t

n
A
)−1

x = x

uniformly in t ∈ [0, T ] (see Theorem 3.7.1(iii)), this implies that

lim
n→∞

(
1− t

n
A
)−n

x = At x,

uniformly in t on any bounded interval. �

3.8 The nonhomogeneous Cauchy problem

It is time to study the relationship between the differential equation

ẋ(t) = Ax(t)+ f (t), t ≥ s,

x(s) = xs,
(3.8.1)

and the variation of constants formula

x(t) = At−s xs +
∫ t

s
At−v f (v) dv. (3.8.2)

It is possible to do this in several different settings, but we choose a setting that
is relevant for the full system

[A B

C D

]
. Here the spaces Xn and the extended

semigroups A|Xn and generators A|Xn+1 (with n ≤ 0) introduced in Section 3.6
become important.

Definition 3.8.1 Let s ∈ R, xs ∈ X , n = 0,±1,±2, . . . , and f ∈
L1

loc([s,∞); Xn−1). A function x is a strong solution of (3.8.1) in Xn

(on the interval [s,∞)) if x ∈ C([s,∞); Xn) ∩W 1,1
loc ([s,∞); Xn−1), x(s) = xs ,

and ẋ(t) = A|Xn x(t)+ f (t) in Xn−1 for almost all t ≥ s. By a strong solution
of (3.8.1) (without any reference to a space Xn) we mean a strong solution of
(3.8.1) in X (= X0).

Below we shall primarily look for sufficient conditions which imply that
we have a strong solution (in X ). This means that we must take xs ∈ X and
f ∈ L1

loc([s,∞); X−1), and that (3.8.1) should be interpreted as an equation in
X−1 (valid for almost all t ≥ s). Thus, it should really be written in the form
(recall that A|X maps X = X0 into X−1)

ẋ(t) = A|X x(t)+ f (t), t ≥ s,

x(s) = xs .
(3.8.3)
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The integration in (3.8.2) should be carried out in X−1, so that this identity
should really be written in the form

x(t) = At−s xs +
∫ t

s
At−v
|X−1

f (v) dv. (3.8.4)

In order for (3.8.1) and (3.8.2) (or more precisely, (3.8.3) and (3.8.4)) to be
equivalent we need some sort of smoothness assumptions on f : it should be
either smooth in time or smooth in the state space (see parts (iv) and (v) below).

Theorem 3.8.2 Let s ∈ R, xs ∈ X, and f ∈ L1
loc([s,∞); X−1).

(i) The function x given by (3.8.4) is a strong solution of (3.8.1) in X−1

(hence in Xn for every n ≤ −1).
(ii) Equation (3.8.1) has at most one strong solution x in X, namely the

function x given by (3.8.4).
(iii) The function x given by (3.8.4) is a strong solution of (3.8.1) in Xn for

some n ≥ 0 if and only if x ∈ C([s,∞); Xn) and
f ∈ L1

loc([s,∞); Xn−1). (In particular, this implies that xs ∈ Xn.)
(iv) If f ∈ L1

loc([s,∞); X ) then the function x given by (3.8.2) is a strong
solution of (3.8.1) in X.

(v) If f ∈ W 1,1
loc ([s,∞); X−1) then the function x given by (3.8.4) is a strong

solution of (3.8.1) in X, x ∈ C1([s,∞); X−1), and z = ẋ is a strong
solution of the equation

ż(t) = Az(t)+ ḟ (t), t ≥ s,

z(s) = Axs + f (s)
(3.8.5)

in X−1. In particular, ẋ(t) = A|X x(t)+ f (t) in X−1 for all t ≥ s (and
not just almost all t ≥ s).

(vi) If f = π[α,β) f1, where s ≤ α < β ≤ ∞ and f1 ∈ W 1,1
loc ([s,∞); X−1)

then the function x given by (3.8.4) is a strong solution of (3.8.1) in X.
(vii) If f is any finite linear combination of functions of the type presented in

(iv)–(vi), then the function x given by (3.8.4) is a strong solution of
(3.8.1) in X.

Proof (i) Define x by (3.8.4). The term t �→ At−s xs belongs to C([s,∞); X ) ∩
C1([s,∞); X−1) ∩ C2([s,∞); X−2) and it is a strong solution of (3.8.1) with
f = 0 in X . Subtracting this term from x we reduce the problem to the case
where xs = 0. (The same reduction is valid in the proofs of (ii)–(vii), too.)

That x ∈ C([s,∞); X ) follows from Proposition 2.3.1 with X replaced by
X−1, C = 0, and D = 0.

Suppose for the moment that f ∈ C([s,∞); X−1). Since A|X−1 ∈
B(X−1; X−2), we can then easily justify the following computation for t ≥ 0
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(the double integrals are computed in X−1, and the other integrals in X−2 or
X−1; see Theorem 3.2.1(ii) for the last step):∫ t

s
A|X−1 x(v) dv = A|X−1

∫ t

s

∫ v

s
Av−w
|X−1

f (w) dw dv

= A|X−1

∫ t

s

∫ t

w

Av−w
|X−1

f (w) dv dw

= A|X−1

∫ t

s

∫ t−w

0
Av
|X−1

f (w) dv dw

=
∫ t

s
A|X−1

∫ t−w

0
Av
|X−1

f (w) dv dw

=
∫ t

s
(At−w
|X−1
− 1) f (w) dw.

As the set of continuous functions is dense in L1, the same identity must then
be true for all f ∈ L1

loc([s,∞); X−1). Rewriting this in terms of the function x
in (3.8.4) (with xs = 0) we get

x(t) =
∫ t

s
(A|X−1 x(v)+ f (v)) dv.

Thus, x ∈ W 1,1
loc ([s,∞); X−2) and ẋ(t) = A|X−1 x(t)+ f (t) in X−2 for almost

all t ≥ s. Clearly x(s) = 0. This implies that x is a strong solution of (3.8.1) in
X−1 with xs = 0.

(ii) If z is an arbitrary function in C1([s,∞); X ), then it is easy to show (using
Theorem 3.2.1(ii)) that, for each t > s, the function v �→ At−vz(v) is continu-
ously differentiable in X−1, with derivative At−v(ż(v)− A|X z(v)). Integrating
this identity (in Xn−1) we get

z(t) = At−s z(s)+
∫ t

s
At−v(ż(v)− A|X z(v)) dv.

Since C1([s,∞); X ) is dense in W 1,1
loc ([s,∞); X−1) ∩ C([s,∞); X ), and since

both sides of the above identity depend continuously in X−1 on z in the norm
of W 1,1

loc ([s,∞); X−1) ∩ C([s,∞); X ), the same identity must hold for every
z ∈ W 1,1

loc ([s,∞); X−1) ∩ C([s,∞); X ). In particular, it is true whenever z is a
strong solution of (3.8.1) in Xn , in which case we furthermore have ż(v)−
A|X z(v) = f (v) for almost all v ≥ s. This means that z coincides with the
function x given by (3.8.4).

(iii) The necessity of the condition x ∈ C([s,∞); Xn) is part of the definition
of a strong solution in Xn . The necessity of the condition f ∈ L1

loc([s,∞); Xn−1)
follows from the fact that f = ẋ − A|Xn x , where ẋ ∈ L1

loc([s,∞); Xn−1) and
A|Xn x ∈ C([s,∞); Xn−1).

Conversely, suppose that x ∈ C([s,∞); Xn) and that f ∈
L1

loc([s,∞); Xn−1). By (i), we have ẋ = A|X x + f = A|Xn x + f in X−2; in
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particular, the derivative ẋ is computed in X−2. However, the right-hand side of
this identity belongs to L1

loc([s,∞); Xn−1), so its integral (which is x) belongs
to W 1,1

loc ([s,∞); Xn−1), and the same identity is true a.e. in Xn−1. Thus, x is a
strong solution in Xn .

(iv)–(vii) In the remainder of the proof we take xs = 0, without loss of
generality (see the proof of (i)).

(iv) The proof of (iv) is identical to the proof of (i), with X−1 replaced by X .
(v) Since A|X−1 ∈ C1(R

+
;B(X−1; X−2)) and f ∈ C([s,∞); X−1), we can

differentiate under the integral sign to get (as an identity in X−2)

ẋ(t) = f (t)+ A|X−1

∫ t

s
At−v
|X−1

f (v) dv, t ≥ s.

Integrate by parts (or alternatively, write f (v) = f (s)+ ∫ vs ḟ (w) dw and use
Fubini’s theorem) to show that we can write this (still as an identity in X−2) as

ẋ(t) = At−s
|X−1

f (s)+
∫ t

s
At−v
|X−1

ḟ (v) dv, t ≥ s.

By (i), the right-hand side of this expression is the strong solution of (3.8.5)
in X−1, so from the definition of a strong solution we conclude that ẋ ∈
C([s,∞); X−1) ∩W 1,1

loc ([s,∞); X−2). The continuity of ẋ in X−1 implies that,
although we originally computed the derivative ẋ of x as a limit in the norm of
X−2, this limit actually exists in the norm of X−1 (i.e., x is differentiable in the
stronger norm of X−1), and that x ∈ C1([s,∞); X−1) ∩W 2,1

loc ([s,∞); X−2).
We proceed to show that x ∈ C([s,∞); X ) and that ẋ(t) = A|X x(t)+ f (t)

in X−1 for all t ≥ s. We know from (i) that ẋ(t) = A|X−1 x(t)+ f (t) in X−2 for
almost all t ≥ s, and, since both sides are continuous in X−2, we must actually
have equality for all t ≥ s. Choose some α in the resolvent set of A|X−1 (or
equivalently, from the resolvent set of A) and subtract αx(t) from both sides of
this identity to get (as an identity in X−2)

αx(t)− ẋ(t) = (α − A|X−1 )x(t)− f (t),

that is

x(t) = (α − A|X−1 )−1
(

f (t)+ αx(t)− ẋ(t)
)
.

As (α − A|X−1 )−1 ∈ B(X−1; X ), and x , ẋ and f belong to C([s,∞); X−1), the
latter equation shows that x ∈ C([s,∞); X ), and that ẋ(t) = A|X x(t)+ f (t) in
X−1 for all t ≥ s. Thus, x is a strong solution of (3.8.1) in X .

(vi) Since π[α,β) f1 = π[α,∞) f1 − π[β,∞) f1, we can without loss of generality
suppose that β = ∞ (cf. (vii)).
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Clearly, the restriction of x to [s, α) is the zero function, so in or-
der to prove the theorem it suffices to show that π[α,∞)x ∈ C([α,∞); X ) ∩
W 1,1

loc ([α;∞); X−1) and that x(α) = 0, because this implies that x ∈
C([α,∞); X ) ∩W 1,1

loc ([α;∞); X−1). But this follows from (v) with s replaced
by α (and xα = 0).6

(vii) This follows from the linearity of (3.8.1) and (3.8.4). �

Sometimes we need more smoothness of a solution than we get from Theo-
rem 3.8.2.

Theorem 3.8.3 Let s ∈ R, xs ∈ X, f ∈ W 2,1
loc ([s,∞); X−1), and A|X xs +

f (s) ∈ X. Then the strong solution x of (3.8.1) satisfies x ∈ C2([s,∞); X−1) ∩
C1([s,∞); X ), ẋ = z is the strong solution of (3.8.5) in X, and ẍ = y is the
strong solution of

ẏ(t) = Ay(t)+ f̈ (t), t ≥ s,

y(s) = Aẋ(s)+ ḟ (s)
(3.8.6)

in X−1. In particular, ẋ = A|X x + f ∈ C1([s,∞); X−1) ∩ C([s,∞); X ) and
the identities ẋ(t) = A|X−1 x(t)+ f (t) and ẍ(t) = A|X−1 ẋ(t)+ ḟ (t) hold X−1

for all t ≥ s.

Proof By Theorem 3.8.2(v), x ∈ C([s,∞); X ) ∩ C1([s,∞); X−1), and, of
course,

ẋ(t) = A|X x(t)+ f (t), t ≥ s.

Arguing as in the proof of Theorem 3.8.2(v) (using the density of C2 in
W 2,1) we can use the extra differentiability assumption on u to show that
x ∈ C2([s,∞); X−2), and that

ẍ(t) = A|X−1 ẋ(t)+ ḟ (t), t ≥ s.

Let z = ẋ . Then z(s) = A|X xs + f (s) ∈ X , and z is the strong solution of the
equation (3.8.5) in X−1. However, by Theorem 3.8.2(v), this solution is ac-
tually a strong solution in X , i.e., z ∈ C([s,∞); X ), and it has some addi-
tional smoothness, namely z ∈ C1([s,∞); X−1). Since z = ẋ , this means that
x ∈ C2([s,∞); X−1) ∩ C1([s,∞); X ), as claimed. �

Above we have only looked at the local smoothness of a strong solution of
(3.8.1) (or more generally, of the function x defined by the variation of constants
formula (3.8.2)). There are also some corresponding global growth bounds on
the solution and its derivatives.

6 Although x is continuous, there will be a jump discontinuity in ẋ at the cutoff point. Thus, we
will not in general have x ∈ C1([s,∞); X−1) in this case, but we will still have
x ∈ Reg1

loc([s,∞); X−1) and ẋ − f ∈ C([s,∞); X−1).
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Theorem 3.8.4 Let A be the generator of a C0 semigroup A with growth bound
ωA. Let ω > ωA, and let 1 ≤ p <∞. Under the following additional assump-
tions on the function f in Theorems 3.8.2 and 3.8.3 we get the following ad-
ditional conclusions about the strong solution x of (3.8.1) (and all the listed
derivatives exist in the given sense):

(i) If f ∈ L p
ω([s,∞); X ), then

x ∈ BC0,ω([s,∞); X ) ∩ L p
ω([s,∞); X ),

ẋ ∈ L p
ω([s,∞); X−1).

(ii) If f ∈ W 1,p([s,∞); X−1), then

x ∈ BC0,ω([s,∞); X ) ∩ L p
ω([s,∞); X ),

ẋ ∈ BC0,ω([s,∞); X−1) ∩ L p
ω([s,∞); X−1),

ẍ ∈ L p
ω([s,∞); X−2).

(iii) If f ∈ W 2,p([s,∞); X−1), then

x ∈ BC0,ω([s,∞); X ) ∩ L p
ω([s,∞); X ),

ẋ ∈ BC0,ω([s,∞); X ) ∩ L p
ω([s,∞); X ),

ẍ ∈ BC0,ω([s,∞); X−1) ∩ L p
ω([s,∞); X−1),

...
x ∈ L p

ω([s,∞); X−2).

Proof (i) Let � be the L p-well-posed linear system on (X, X, X ) described in
Proposition 2.3.1 with B = 1, C = 1, and D = 0. Then, according to Theorem
3.8.2(iv), the strong solution x of (3.8.1) can be interpreted as the state trajectory
of this system, and furthermore, its output y satisfies y(t) = x(t) for all t ≥ s. By
Theorem 2.5.4, x ∈ BC0,ω([s,∞); X ) and x = y ∈ L p

ω([s,∞); X ). This implies
that ẋ = A|X x + f ∈ L p

ω([s,∞); X−1).
(ii) We again consider the same system as above, but this time on

(X−1, X−1, X−1). As above we first conclude that x ∈ BC0,ω([s,∞); X−1) ∩
L p
ω([s,∞); X−1). We can also apply the same argument with x replaced by

ẋ (recall that, by Theorem 3.8.2(v), ẋ is the strong solution of (3.8.5) in
X−1) to get ẋ ∈ BC0,ω([s,∞); X−1) ∩ L p

ω([s,∞); X−1) and ẍ = A|X−1 ẋ + ḟ ∈
L p
ω([s,∞); X−2). Finally, we choose some α ∈ ρ(A) = ρ(A|X ) and write the

equation ẋ = A|X x + f in the form (α − A|X )−1(αx − ẋ + f ) to conclude that
ẋ ∈ BC0,ω([s,∞); X ) ∩ L p

ω([s,∞); X ).
(iii) Apply (ii) both to the function x itself and to the function ẋ . �

Another instance where we need a global growth bound on the solution, this
time on R−, is when we want to study the existence and uniqueness of strong
solutions of the equation ẋ(t) = Ax(t)+ f (t) on all of R.
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Definition 3.8.5 Let n = 0,±1,±2, . . . , and f ∈ L1
loc(R; Xn−1). A function x

is a strong solution of the equation

ẋ(t) = Ax(t)+ f (t), t ∈ R, (3.8.7)

in Xn (on all of R) if x ∈ C(R; Xn) ∩W 1,1
loc (R; Xn−1), and ẋ(t) = A|Xn x(t)+

f (t) in Xn−1 for almost all t ∈ R. By a strong solution of (3.8.7) (without any
reference to a space Xn) we mean a strong solution of (3.8.7) in X (= X0).

Without any further conditions we cannot expect a strong solution of (3.8.7)
to be unique. For example, if A generates a C0 group on X , then for every
x0 ∈ X , the function x(t) = At x0, t ∈ R, is a strong solution of (3.8.7). We can
rule out this case by, e.g., imposing a growth restriction on x at −∞.

Lemma 3.8.6 Let ω ∈ R, and suppose that the semigroup A generated by A is
ω-bounded (see Definition 2.5.6). Then, for each f ∈ L1

loc(R; X−1), the equation
(3.8.7) can have at most one strong solution x satisfying limt→−∞ e−ωt x(t) = 0.

If such a solution exists, then we refer to it as the strong solution of (3.8.7)
which vanishes at −∞.

Proof The difference of two strong solutions of (3.8.7) is a strong solution
of the equation ẋ(t) = Ax(t) on R, so it suffices to show that the only strong
solution of (3.8.7) which satisfies limt→−∞ e−ωt x(t) = 0 is the zero solution.
Since it is a strong solution on R, it is also a strong solution on [s,∞) with
initial state x(s) for every s ∈ R, hence by Theorem 3.8.2(iv), x(t) = At−s x(s)
for every t ≥ s. By the ω-boundedness of A, there is a constant M such that
|x(t)| ≤ Meω(t−s)|x(s)|, or equivalently, e−ωt |x(t)| ≤ Me−ωs)|x(s)|. Let s →
−∞ to conclude that x(t) = 0 for all t ∈ R. �

Theorem 3.8.7 Let A be the generator of a C0 semigroup A with growth bound
ωA. Let ω > ωA, and let 1 ≤ p <∞. In all the cases (i)–(iii) listed below the
equation (3.8.7) has a unique strong solution x satisfying limt→−∞ e−ωt x(t) =
0, namely the function

x(t) =
∫ t

−∞
At−v f (v) dv, (3.8.8)

and this solution has the additional properties listed below.

(i) f ∈ L p
ω,loc(R; X ). In this case

x ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẋ ∈ L p
ω,loc(R; X−1).
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(ii) f ∈ W 1,p
ω,loc(R; X−1). In this case

x ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẋ ∈ BC0,ω,loc(R; X−1) ∩ L p
ω,loc(R; X−1),

ẍ ∈ L p
ω,loc(R; X−2).

(iii) f ∈ W 2,p
ω,loc(R; X−1). In this case

x ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẋ ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẍ ∈ BC0,ω,loc(R; X−1) ∩ L p
ω,loc(R; X−1),

...
x ∈ L p

ω,loc(R; X−2).

Proof (i) (This proof is very similar to the proof of Theorem 3.8.4.) Let � be
the L p-well-posed linear system on (X, X, X ) described in Proposition 2.3.1
with B = 1, C = 1, and D = 0. It follows from Theorems 2.5.7 and 3.8.2(iv)
and Example 2.5.10 that the function x defined by (3.8.8) is a strong solution
of (3.8.7) satisfying limt→−∞ e−ωt x(t) = 0, hence the strong solution satis-
fying this growth bound. Moreover, by Theorem 2.5.7 and Example 2.5.10,
x ∈ BC0,ω,loc(R; X ) and x = y ∈ L p

ω,loc(R; X ). Since ẋ = A|X x + f , this im-
plies that ẋ ∈ L p

ω,loc(R; X−1).
(ii)–(iii) The proofs of (ii)–(iii) are analogous to the proofs of parts (ii)–(iii)

of Theorem 3.8.4, and we leave them to the reader. �

Remark 3.8.8 Theorem 3.8.4 remains valid if we replace L p
ω by L∞0,ω or Reg0,ω

throughout. Theorem 3.8.7 remains valid if we delete the subindex ‘loc’, or if
we replace L p

ω,loc by L∞0,ω,loc or Reg0,ω,loc throughout, or if we do both of these
operations at the same time. The proofs remain the same.

3.9 Symbolic calculus and fractional powers

In this section we shall develop a basic symbolic calculus for the generators of C0

semigroups.7 We shall here consider only two classes of mappings of generators.
The first class is the one where the generator A is mapped conformally into f (A)
where f is a complex-valued function which is analytic at the spectrum of A
(including the point at infinity if A is unbounded). The other class of mapping
is the one which gives us the fractional powers of γ − A where γ ∈ C+ωA

. In

7 With some trivial modifications this functional calculus can be applied to any closed operator
with a nonempty resolvent set.
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Section 3.10 we shall use a similar calculus to construct the semigroup generated
by A in a special (analytic) case.

Let us begin with the simplest case where A is bounded. Let � be a piece-
wise continuously differentiable Jordan curve which encircles σ (A) counter-
clockwise, i.e., the index of σ (A) with respect to � is one. If f is analytic on �
and inside �, then we define f (A) by

f (A) = 1

2π j

∮
�

(λ− A)−1 f (λ) dλ. (3.9.1)

This integral converges in the operator norm topology, e.g., as a Riemann in-
tegral (but it can, of course, also be interpreted in the strong sense, where we
apply each side to a vector x ∈ X ). The definition of f (A) given is standard,
and it is found in most books on functional analysis (see, e.g., Rudin 1973,
p. 243).

Let us check that the definition (3.9.1) of f (A) coincides with the standard
definition in the case where f (z) =∑n

k=0 ak zk is a polynomial. In this case we
expect to have f (A) =∑n

k=0 ak Ak . By the linearity of the integral in (3.9.1),
to prove this it suffices to verify the special case where f (z) = zn for some
n = 0, 1, 2, . . .. In this case we get

1

2π j

∮
�

λn(λ− A)−1 dλ = 1

2π j

∮
�

(λ− A + A)n(λ− A)−1 dλ

=
n∑

k=0

(
n

k

)
Ak 1

2π j

∮
�

(λ− A)n−k−1 dλ

= An,

where the last step uses Lemma 3.9.2 below. Thus (3.9.1) is consistent with the
standard definition of f (A) in terms of powers of A when f is a polynomial.

If A is unbounded, then (3.9.1) must be slightly modified. In the following
discussion, we denote the compactified complex plane C ∪ {∞} by C, and
we let σ (A) be the (extended) spectrum of A in C, i.e., σ (A) = σ (A) if A is
bounded, and σ (A) = σ (A) ∪ {∞} if A is unbounded.

Let A be the generator of a C0 semigroup A with growth boundωA. Then we
know from Theorem 3.2.9(ii) that σ (A) ⊂ C

−
ωA
∪ {∞} (where we can remove

the point at infinity if A is bounded). Let f be a complex-valued function which
is analytic on C

−
ωA
∪ {∞} ( f need not be analytic at infinity if A is bounded).

We denote the set of points λ ∈ C in which f is not analytic by σ ( f ) (this
includes the point at infinity if f is not analytic there).

If A and f satisfy the conditions listed in the preceding paragraph, then
it is possible to choose a piecewise continuously differentiable Jordan curve
� in the complex plane which separates σ (A) from σ ( f ), with σ (A) ‘to the
left’ of � and σ ( f ) ‘to the right’ of �. If A is bounded, then we can choose



142 Strongly continuous semigroups

� to be a curve encircling σ (A) counter-clockwise with σ ( f ) on the outside,
and if f is analytic at infinity, then we can choose � to be a curve encircling
σ ( f ) clockwise with σ (A) on the outside. If both of these conditions hold, then
both choices are possible. Unfortunately, they do not produce exactly the same
result, so before we try this approach we have to modify (3.9.1) slightly.

Before proceeding further, let us recall two different versions of the Cauchy
formula for the derivatives of a function.

Lemma 3.9.1 Let U be a Banach space, and let � be a positively oriented
piecewise continuously differentiable Jordan curve in C (i.e., the index of the
inside is one).

(i) If f is a U-valued function which is analytic on � and inside �, then, for
every λ0 inside �,

1

2π j

∮
�

f (λ)

(λ− λ0)n+1
dλ =

{
0, n < 0,

1/(n!) f (n)(λ0), n ≥ 0.

(ii) If instead f is analytic on � and outside � (including the point at
infinity), then for every λ0 inside �,

1

2π j

∮
�

(λ− λ0)n−1 f (λ) dλ =
{

0, n < 0,

1/(n!) dn

dzn f (λ0 + 1/z)|z=0, n ≥ 0.

Proof (i) In the scalar case this is the standard Cauchy formula for the derivative
found in all textbooks (if n ∈ Z− then the integrand is analytic inside �, so the
result is zero). The operator-valued case can be reduced to the scalar-valued
case: if f is B(X ; Y )-valued, then we choose arbitrary x ∈ X and y∗ ∈ Y ∗ and
apply the scalar case to y∗ f x .

(ii) We make a change of integration variable from λ to z = 1/(λ− λ0),
(λ− λ0)−1 dλ = −z−1 dz. If �′ is the image of � under the mapping λ �→
1/(λ− λ0), then �′ is negatively oriented (the outside of � is mapped onto the
inside of �′), and it encircles the origin. Part (i) gives (if we take the negative
orientation of �′ into account)

1

2π j

∮
�

f (λ)

(λ− λ0)−n+1
dλ = − 1

2π j

∮
�′

f (λ0 + 1/z)

zn+1
dz

=
{

0, n < 0,

1/(n!) dn

dzn f (λ0 + 1/z)|z=0, n ≥ 0.

�
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Lemma 3.9.2 Let A ∈ B(X ), and let � be a positively oriented piecewise con-
tinuously differentiable Jordan curve which encircles ρ(A). Then,

1

2π j

∮
�

(λ− A)−k dλ =
{

1, k = 1,

0, k ∈ Z, k �= 1.

Proof If k ∈ Z−, then the integrand is analytic inside �, and the result is zero.
If k ∈ Z+, then the integrand is analytic outside �, including the point at in-
finity, and the result follows from Lemma 3.9.1(ii) with n = 1 and f (λ) =
(λ− A)−k . �

By Lemma 3.9.2, if A is bounded and if f is analytic at infinity, then (3.9.1)
is equivalent to

f (A) = f (∞)+ 1

2π j

∮
�

(λ− A)−1( f (λ)− f (∞)) dλ. (3.9.2)

The function inside the integral has a second order zero at infinity, so if we
replace � by a curve encircling both σ (A) and σ ( f ), then it follows from
Lemma 3.9.1(ii) (with n = 1 and f (λ) replaced by (λ− A)−1( f (λ)− f (∞))
that the resulting integral is zero. Thus, in (2.9.2) we may replace the positively
oriented curve � which encircles σ (A) with σ ( f ) on the outside by a negatively
oriented curve which encircles σ ( f ) with σ (A) on the outside. If we do so, then∮
�

(λ− A)−1 dλ = 0, and (3.9.2) can alternatively be written in the form

f (A) = f (∞)+ 1

2π j

∮
�

(λ− A)−1 f (λ) dλ. (3.9.3)

Here it does not matter if A is bounded or unbounded, as long as� and the inside
of � belong to ρ(A), and f is analytic on � and the outside of �, including the
point at infinity.

From (3.9.3) we immediately conclude the following:

Lemma 3.9.3 Let A be the generator of a C0 semigroup A with growth rate
ωA, let f be analytic on C

−
ωA
∪ {∞}, and define f (A) as explained above. Then

f (A)− f (∞) ∈ B(X ; X1).

Proof This follows from (3.9.3): for an arbitrary α ∈ ρ(A) we have

f (A)− f (∞) = (α − A)−1 1

2π j

∮
�

(α − A)(λ− A)−1 f (λ) dλ

= (α − A)−1 1

2π j

∮
�

[
(α − λ)(λ− A)−1 − 1

]
f (λ) dλ,

where the integral defines an operator in B(X ). �

As we already mentioned above, the definition of f (A) given in (3.9.1) in
the case where A is bounded is standard, but the definition of f (A) in (3.9.3)
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with unbounded A is less common. However, (3.9.3) can be reduced to (3.9.1)
by, e.g., a linear fractional transformation. For example, we can take some
α ∈ C+αA

∩ C+, and define ϕ(λ) = 1/(α − λ). The inverse transformation is
z �→ ϕ−1(z) = α − 1/z. Note that α ∈ ρ(A), that α is mapped into∞, and that
∞ is mapped into zero. Let �′ be the image of � under this mapping. If � is
negatively oriented, then the orientation of �′ is positive and it encircles the
origin (assuming that α lies inside �). By changing the integration variable in
(3.9.3) we get (note that dλ = z−2 dz and that 1/(2π j)

∮
�′ z
−1 f (α − 1/z) dz =

f (∞))

f (A) = f (∞)+ 1

2π j

∮
�′

(α − 1/z − A)−1z−2 f (α − 1/z) dz

= 1

2π j

∮
�′

[
1+ (αz − 1− z A)−1

]
z−1 f (α − 1/z) dz

= 1

2π j

∮
�′

(α − A)
(
αz − 1− z A

)−1
f (α − 1/z) dz.

Let Bα = (α − A)−1 (thus, formally Bα = ϕ(A)). Then Bα ∈ B(X ), and a short
algebraic computation shows that

(z − Bα)−1 = (α − A)
(
αz − 1− z A

)−1
.

Substituting this into the expression for f (A) given above we get

f (A) = 1

2π j

∮
�′

(z − Bα)−1 f (α − 1/z) dz, Bα = (α − A)−1. (3.9.4)

Here �′ is a positively oriented piecewise continuously differentiable Jordan
curve which encircles σ (Bα), and the function z �→ f (α − 1/z) is analytic on
�′ and inside �′. Since we have obtained this from (3.9.3) (which does not
depend on α) through a change of integration variable, the right-hand side of
(3.9.4) does not depend on α, and it can be used as an alternative definition of
f (A).

If f is a rational function whose poles are located in C+ωA
and which is

analytic at infinity, then there is still another way of defining f (A). Each such
function can be written as a constant plus a linear combination of terms of the
type (αi − λ)−ki , where each αi ∈ C+ωA

and ki > 0. It is then natural to define
f (A) to be the corresponding linear combination of (αi − A)−ki . Let us check
that this definition is consistent with the one given earlier. To do this it suffices
to show that, for all α ∈ C+ωA

and all k = 1, 2, 3 . . .,

(α − A)−k = 1

2π j

∮
�

(λ− A)−1(α − λ)−k dλ, (3.9.5)

where � is a negatively oriented piecewise continuously differentiable Jordan
curve which encirclesαwith σ (A) on the outside. We begin with the case k = 1.
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Then Lemmas 3.2.8 and 3.9.1 give

1

2π j

∮
�

(λ− A)−1(α − λ)−1 dλ− (α − A)−1

= 1

2π j

∮
�

[(λ− A)−1 − (α − A)−1](α − λ)−1 dλ

= 1

2π j

∮
�

(λ− A)−1(α − A)−1 dλ

= (α − A)−1 1

2π j

∮
�

(λ− A)−1 dλ = 0.

The case k ≥ 2 follows from the case k = 1 if we differentiate the special case
k = 1 of (3.9.5) k − 1 times with respect to α.

We shall next look at the related problem of how to define fractional powers
of (γ − A), where A is the generator of a C0 semigroup A and γ > ωA. This can
be done in several different ways, see Pazy (1983). Usually one starts with the
negative fractional powers of (γ − A), and then inverts these to get the positive
fractional powers. One method, explained, e.g. in Pazy (1983), is to imitate
(3.9.1) with f (λ) = (γ − λ)−α , and to let � be a path from ∞e− jε to ∞e jε ,
where 0 < ε < π/2, passing between σ (A) and the interval [γ,∞).8 Here we
shall use a different approach and instead extend the formula for (γ − A)−n

given in Theorem 3.2.9(i) to fractional values of n.

Definition 3.9.4 Let A be the generator of a C0 semigroup A with growth
bound ωA. For each γ ∈ C+ωA

and α ≥ 0 we define (γ − A)−α by

(γ − A)0 = 1,

(γ − A)−αx = 1

�(α)

∫ ∞
0

tα−1e−γ tAt x dt, α > 0, x ∈ X.

Lemma 3.9.5 The operators (γ − A)−α introduced in Definition 3.9.4 are
bounded linear operators on X, and α �→ (γ − A)−α is a semigroup, i.e.,

(γ − A)−(α+β) = (γ − A)−α(γ − A)−β

for all α, β > 0. Moreover, (γ − A)−α is injective for all α ≥ 0.

Proof By assumption, the growth bound of A is less than γ , hence the integral
used in the definition of (γ − A)−α converges absolutely, and it defines an
operator in B(X ).

To simplify the notation in our verification of the semigroup property we
take γ = 0 (i.e., we denote (A − γ ) by A and e−γ tAt by At ). We take x ∈ X

8 This method is quite general, and it can be used even in some cases where A is not a generator
of a C0 semigroup.
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and make two changes of integration variable to get:

(−A)−α(−A)−βx = 1

�(α)�(β)

∫ ∞
0

∫ ∞
0

sα−1tβ−1As+t x ds dt

= 1

�(α)�(β)

∫ ∞
0

∫ ∞
0

sα−1(v − s)β−1Avx dv ds

= 1

�(α)�(β)

∫ ∞
0

(∫ v

0
sα−1(v − s)β−1 ds

)
Avx dv

= 1

�(α)�(β)

∫ 1

0
sα−1(1− s)β−1 ds

∫ ∞
0

vα+β−1Avx dv

= (−A)−(α+β)x ;

here the last equality follows from Definition 3.9.4 and the fact that the Beta
function satisfies (for all α, β > 0)

B(α, β) =
∫ 1

0
sα−1(1− s)β−1 ds = �(α + β)

�(α)�(β)
.

To show that (γ − A)−α is injective we can use the semigroup property in
the following way. We choose β so that α + β = n is an integer. The operator
(γ − A)−n = (γ − A)−β(γ − A)−α in injective since γ ∈ ρ(A) (recall that we
take γ > γA), hence (γ − A)−α in injective. �

The semigroupα �→ (γ − A)−α is actually a C0 semigroup (i.e., it is strongly
continuous). See Pazy (1983, Corollary 6.5, p. 72).

Since (γ − A)−α is injective, it has an inverse defined on its range:

Definition 3.9.6 Let A be the generator of a C0 semigroup A with growth bound
ωA. For each γ ∈ C+ωA

and α ≥ 0 we define (γ − A)α to be the inverse of the
operator (γ − A)−α defined in Definition 3.9.4, with domain D ((γ − A)α) =
R ((γ − A)−α

)
.

Lemma 3.9.7 With the notation of Definitions 3.9.4 and 3.9.6, let γ ∈ C+ωA
and

δ ∈ C+ωA
. Then the fractional powers of (γ − A) and (δ − A) have the following

properties:

(i) (γ − A)α ∈ B(X ) if α ≤ 0, and (γ − A)α is closed if α > 0;
(ii) (δ − A)α(γ − A)β = (γ − A)β(δ − A)α if α ≤ 0 and β ≤ 0;

(iii) D ((γ − A)α) ⊂ D ((γ − A)β
)

if α ≥ β;
(iv) D ((γ − A)α) is dense in X for all α > 0 (and equal to X for all α ≤ 0);
(v) D ((γ − A)α) = D ((δ − A)α) and (δ − A)α(γ − A)−α ∈ B(X ) if α ≥ 0.

Proof (i) The case α ≤ 0 is contained in Lemma 3.9.5, and the inverse of a
bounded (hence closed) operator is closed.

(ii) Use Fubini’s theorem in Definition 3.9.4.
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(iii) This is trivial if β ≤ 0 or α = β. Otherwise, by Lemma 3.9.5,

(γ − A)−α = (γ − A)−β(γ − A)−(α−β),

hence R ((γ − A)−α
) ⊂ R ((γ − A)−β

)
, or equivalently, D ((γ − A)α) ⊂

D ((γ − A)β
)
.

(iv) This follows from (iii), since D ((γ − A)α) contains D ((γ − A)n) for
some positive integer n, and by Theorem 3.2.1(vi), D ((γ − A)n) = D (An) is
dense in X .

(v) The boundedness of the operator (δ − A)α(γ − A)−α follows from
the closed graph theorem as soon as we have shown that D ((γ − A)α) =
D ((δ − A)α), or equivalently, that R ((γ − A)−α

) = R ((δ − A)−α
)
. This is

true for integer values of α, so it suffices to consider the case where 0 < α < 1.
Moreover, by (iii), it suffices to show that

R ((γ − A)−α − (δ − A)−α
) ⊂ X1.

By Definition 3.9.4, for all x ∈ X ,

(γ − A)−αx − (δ − A)−αx = 1

�(α)

∫ ∞
0

tα−1[1− e−(δ−γ )t ]e−γ tAt x dt.

Therefore, for x ∈ X1 we have [(γ − A)−α − (δ − A)−α]x ∈ X1 and (integrate
by parts)

[(γ − A)−α − (δ − A)−α]x = 1

�(α)
(γ − A)−1

∫ ∞
0

ḣ(t)e−γ tAt x dt,

where h(t) = −tα−1[1− e−(δ−γ )t ]. Without loss of generality, suppose that
δ > γ . Then ḣ ∈ L1([0, 1]) ∩ L∞([1,∞) and t �→ e−γ t‖At‖ ∈ L∞([0, 1]) ∩
L1([1,∞), so the integral converges absolutely for all x ∈ X . This implies that
R ((γ − A)−α − (δ − A)−α

) ⊂ X1, as claimed. �

With the fractional powers of (γ − A) at our disposal, we can construct a
continuous scale of Banach spaces Xα , α ∈ R, in the same way as we con-
structed the spaces Xn with integral indices n in Section 3.6. For α > 0 we let
Xα be the range of (γ − A)−α (i.e., the image of X under (γ − A)−α), with
norm

|x |α = |x |Xα
= ∣∣(γ − A)αx

∣∣
X
.

For α < 0 we let Xα be the completion of X with the weaker norm

|x |−α =
∣∣(γ − A)−αx

∣∣
X , α > 0.
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All the earlier conclusions listed in Section 3.6 remain valid. In particular, for
all γ ∈ C+, all α, β, δ ∈ R, and all t ≥ 0,

(γ − A)β|Xα+β is an isometry of Xα+β onto Xα,

(γ − A)α+β|Xδ
= (γ − A)α|Xδ−β (γ − A)β|Xδ

,

(γ − A)α|Xδ
At
|Xδ
= At

|Xδ−α (γ − A)α|Xδ
.

Different choices of γ give identical spaces with equivalent norms, and (γ −
A)α commutes with (δ − A)β for all α, β ∈ R, and all γ , δ ∈ C+ωA

,
The spaces Xα can be interpreted as interpolation spaces between the spaces

Xn with integral indices; see Lunardi (1995, Chapters 1,2). The following
lemma is related to this fact:

Lemma 3.9.8 Define the fractional space Xα as above. Then, there is a constant
C > 0 such that for all 0 < α < 1, all x ∈ X1 = D (A), and all ρ > 0,

|x |Xα
≤ C
(
ρα|x |X + ρα−1|x |X1

)
,

|x |Xα
≤ 2C |x |1−αX |x |αX1

.
(3.9.6)

The proof of this lemma is based on the following representation of (γ −
A)−α , valid for 0 < α < 1:

Lemma 3.9.9 For 0 < α < 1 the operator (γ − A)−α defined in Definition
3.9.4 has the representation

(γ − A)−α = sinπα

π

∫ ∞
0

s−α
(
s + γ − A

)−1
ds,

where the integral converges absolutely in operator norm.

Proof The absolute convergence in operator norm follows from the Hille–
Yosida Theorem 3.4.1 and the assumption that γ ∈ C+ωA

. By using Theorem
3.2.9(i), Fubini’s theorem, a change of integration variable s = v/t , and the
fact that the Gamma-function

�(α) =
∫ ∞

0
tα−1e−t dt (3.9.7)

satisfies (for 0 < α < 1) the reflection formula �(α)�(1− α) = sinπα
π

, we get
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for all x ∈ X ,

sinπα

π

∫ ∞
0

s−α
(
s + γ − A

)−1
x ds

= 1

�(α)�(1− α)

∫ ∞
0

s−α
∫ ∞

0
e−(s+γ )tAt x dt ds

= 1

�(α)�(1− α)

∫ ∞
0

(∫ ∞
0

s−αe−st ds
)

e−γ tAt x dt

= 1

�(α)�(1− α)

(∫ ∞
0

v−αev dv
) ∫ ∞

0
tα−1e−γ tAt x dt

= 1

�(α)

∫ ∞
0

tα−1e−γ tAt x dt

= (γ − A)−αx .

�

Proof of Lemma 3.9.8. Let α ∈ (0, 1), ρ > 0, x ∈ X1, and recall that |x |Xα
=

|(γ − A)αx |X and that |x |X1 is (equivalent to) |(γ − A)x |X . Since 0 < α <

1, we have 0 < 1− α < 1, hence by Lemma 3.9.9, Theorem 3.4.1, and the
assumption that γ ∈ C+ωA

(observe that sinπ (1− α) = sinπα and sinπα ≤
πα)

|x |Xα
= |(γ − A)−(1−α)(γ − A)x |X

≤ sinπ (1− α)

π

∫ ∞
0

sα−1
∣∣((s + γ )− A

)−1
(γ − A)x

∣∣ ds

≤ sinπα

π

∫ ρ

0
sα−1
∥∥(s + γ − A

)−1
(γ − A)

∥∥|x |X ds

+ sinπ (1− α)

π

∫ ∞
ρ

sα−1
∥∥(s + γ − A

)−1∥∥|x |X1 ds

≤ |x |Xα
∫ ρ

0
sα−1
∥∥1− s

(
s + γ − A

)−1∥∥ ds

+ |x |X1 (1− α)
∫ ∞
ρ

sα−1
∥∥(s + γ − A

)−1∥∥ ds

≤ (1+ C)|x |Xα
∫ ρ

0
sα−1 ds + C |x |X1 (1− α)

∫ ∞
ρ

sα−2 ds

= (1+ C)|x |Xρα + C |x |X1ρ
α−1.

This proves the first inequality (with C + 1 instead of C) in (3.9.6). To get
the second inequality in (3.9.6) for nonzero x we simply take ρ = |x |X1/

|x |X . �
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3.10 Analytic semigroups and sectorial operators

Semigroups obtained from the Cauchy problem for partial differential equa-
tions of parabolic type have some extra smoothness properties. They are of the
following type.

Definition 3.10.1 Let X be a Banach space, let 0 < δ ≤ π/2, and let�δ be the
open sector �δ = {t ∈ C | t �= 0, |arg t | < δ} (see Figure 3.1). The family of
operators At ∈ B(X ), t ∈ �δ , is an analytic semigroup (with uniformly bounded
growth bound ω) in � if the following conditions hold:

(i) t �→ At is analytic in �δ;
(ii) A0 = 1 and AsAt = As+t for all s, t ∈ �δ;

(iii) there exist constants M ≥ 1 and ω ∈ R such that

‖At‖ ≤ Meωt , t ∈ �δ;

(iv) for all x ∈ X , lim t→0
t∈�δ

At x = x .

A semigroup A is analytic if it is analytic in some sector� of the type described
above.

We warn the reader that the sector �δ in Definition 3.10.1 need not be
maximal: if A is analytic on some sector �δ , then it can often be extended to
an analytic semigroup on a larger sector �δ′ with δ′ > δ. If we take the union
of all the sectors �δ where At is analytic (with a uniformly bounded growth
bound), then the constants M and ω in (iii) typically deteriorate as we approach
the sector boundary.

Ft

d Rt

Figure 3.1 The sector �δ
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(γ, 0)

Rλ
q

Fλ

Figure 3.2 The sector �θ,γ

As we shall see in a moment, the generators of the analytic semigroups in
Definition 3.10.1 are sectorial operators, which are defined as follows.

Definition 3.10.2 For each γ ∈ R and π/2 < θ < π , let �θ,γ be the open
sector (see Figure 3.2)

�θ,γ = {λ ∈ C | λ �= γ, |arg(λ− γ )| < θ}.
A (closed) densely defined linear operator X ⊃ D (A)→ X is sectorial on�θ,γ

(with a uniform bound) if the resolvent set of A contains �θ,γ , and if

‖(λ− A)−1‖ ≤ C

|λ− γ | , λ ∈ �θ,γ , (3.10.1)

for some C ≥ 1. The operator A is sectorial if it is sectorial on some sector
�θ,γ (with π/2 < θ < π).

Again we warn the reader that the constant θ in Definition 3.10.2 is not
maximal: it can always be replaced by a larger constant θ ′:

Lemma 3.10.3 If A is sectorial on some sector�θ,γ with π/2 < θ < π then it
is also sectorial on some bigger sector �θ ′,γ with θ ′ > θ . More precisely, this
is true for every θ ′ satisfying θ < θ ′ < π and sin(θ ′ − θ ) < 1/C, where C is
the constant in (3.10.1).

Proof Without loss of generality we can take γ = 0 (i.e., we replace A − γ I
by A).

By Lemma 3.2.8(ii), the rays {λ �= 0 | arg λ = ±θ} bounding the sector�θ,0

belong to the resolvent set of A, and (by continuity) (3.10.1) holds for these λ,
too. Let 0 < k < 1. By (3.10.1) and Lemma 3.2.8(ii), if we take λ close enough
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to α ∈ �θ,0 so that |λ− α| ≤ k|α|
C , then λ ∈ ρ(A) and∥∥(λ− A)−1

∥∥ ≤ C

(1− k)|α| .

Choose θ ′ to satisfy θ < θ ′ < π and sin(θ ′ − θ ) = k/C . By letting α vary over
the rays {λ �= 0 | arg λ = ±θ} and taking λ− α orthogonal to λ (and
λ < 
α)
we reach all λ in �θ ′,0\�θ,0. Moreover, with this choice of λ and α, we have
|λ| < |α|, hence ∥∥(λ− A)−1

∥∥ ≤ C

(1− k)λ
.

Thus, A is sectorial on �θ ′,0 with C in (3.10.1) replaced by C/(1− k). �

Lemma 3.10.3 (and its proof) implies that the constant C in (3.10.1) must
satisfy C ≥ 1, because if C < 1, then the proof of Lemma 3.10.3 shows that
(λ− A)−1 is a bounded entire function vanishing at infinity, hence identically
zero. The optimal constant for A = γ is C = 1. A similar argument shows that
(3.10.1) holds with θ = π if and only if A = γ .

It is sometimes possible to increase the sector �θ,γ in which A is sectorial
in a different way: we keep θ fixed, but replace γ by γ ′ < γ . This is possible
under the following assumptions:

Lemma 3.10.4 Let A be a closed linear operator on X, and let γ ∈ R and
π/2 < θ < π . Then the following conditions are equivalent:

(i) A is sectorial on �θ,γ and γ ∈ ρ(A);
(ii) A is sectorial on some sector �θ,γ ′ with γ ′ < γ .

Proof (i)⇒ (ii): It follows from Lemma 3.10.3 and the assumption γ ∈ ρ(A)
that the distance from σ (A) to the boundary of the sector �θ, γ is strictly
positive, hence ρ(A) ⊃ �θ,γ ′ for some γ ′ < γ . The norm of the resolvent (λ−
A)−1 is uniformly bounded for all λ ∈ �θ,γ ′ satisfying |λ− γ | ≤ |γ − γ ′|, and
for |λ− γ | > |γ − γ ′| we can estimate

‖(λ− A)−1‖ ≤ C

|λ− γ | =
C

|λ− γ ′|
|λ− γ ′|
|λ− γ | <

2C

|λ− γ ′| .

(ii)⇒ (i): This proof is similar to the one above (but slightly simpler). �

Our next result is a preliminary version of Theorem 3.10.6, and we refer the
reader to that theorem for a more powerful result.

Theorem 3.10.5 Let A : X → X be a (densely defined) sectorial operator on
the sector�θ,γ . Then A is the generator of a C0 semigroup A satisfying ‖At‖ ≤
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Meγ t for some M ≥ 1 which is continuous in the uniform operator norm on
(0,∞). This semigroup has the representation

At = 1

2π j

∫
�

eλt (λ− A)−1 dλ, (3.10.2)

where � is a smooth curve in �θ,γ running from ∞e− jϑ to ∞e jϑ , where
π/2 < ϑ < θ . For each t > 0 the integral converges in the uniform operator
topology.

Proof Throughout this proof we take, without loss of generality, γ = 0. (If
γ �= 0, then we replace A − γ by A and e−γ tAt by At ; see Examples 2.3.5 and
3.2.6.)

The absolute convergence in operator norm of the integral in (3.10.2) is a
consequence of (3.10.1) and the fact that |ee jθ r | = e
e jθ r = er cos θ for all r ∈ R

(observe that cos θ < 0 for π/2 < |θ | < π ). The continuity in the uniform
operator topology on (0,∞) follows from a straightforward estimate (and the
Lebesgue dominated convergence theorem). Since the integrand is analytic, we
can deform the path of integration without changing the value of the integral to
�t = �1 ∪ �2 ∪ �3 (see Figure 3.3), where

�1 = {re− jϑ | ∞ > r ≥ 1/t},
�2 = {t−1e jθ | −ϑ ≤ θ ≤ ϑ},
�3 = {re jϑ | 1/t ≤ r <∞}.

Rλ

Fλ

q

Γ3

Γ2

Γ1

Figure 3.3 The path in the proof of Theorem 3.10.5
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Then, by (3.10.1),∥∥∥ 1

2π j

∫
�1

eλt (λ− A)−1 dλ
∥∥∥ ≤ 1

2π

∫
�1

∥∥eλt (λ− A)−1
∥∥ dλ

≤ C

2π

∫ ∞
1/t

er t cosϑr−1 dr

= C

2π

∫ ∞
1

es cosϑs−1 ds

= M1.

The same estimate is valid for the integral over �3. On �2 we estimate∥∥∥ 1

2π j

∫
�2

eλt (λ− A)−1 dλ
∥∥∥ ≤ 1

2π

∫
�2

∥∥eλt (λ− A)−1
∥∥ dλ

≤ C

2π

∫ ϑ

−ϑ
ecos θ dθ

= M2.

Together these estimates prove that ‖At‖ ≤ M with M = 2M1 + M2.
Next we claim that for all α > 0,

(α − A)−1 =
∫ ∞

0
e−αtAt dt. (3.10.3)

To prove this we choose the curve � as we did above, but replace �2 by
�2 = {εe− jθ | ϑ ≤ θ ≤ ϑ}, where 0 < ε < α is fixed, and adjust �1 and �3

accordingly. We repeat the calculations presented above for this choice of �,
and find that

1

2π

∫
�

‖eλt (λ− A)−1‖ dλ ≤ M(|log t | + eεt )

for some finite M (the logarithm comes from �1 and �3, and the exponent from
�2). Thus, with this choice of �, if we multiply (3.10.2) by e−αt and integrate
over (0,∞), then the resulting double integral also converges absolutely. By
Fubini’s theorem, we may change the order of integration to get∫ ∞

0
e−αtAt dt = 1

2π j

∫
�

(α − λ)−1(λ− A)−1 dλ.

By (3.10.1), this integral is the limit as n→∞ of the integral over �̃n , where
�̃n is the closed curve that we get by restricting the variable r in the definition of
�1 and �3 to the interval ε ≤ r ≤ n, and connecting the points ne−iϕ and neiϕ

with the arc �4 = {ne− jθ | ϑ ≥ θ ≥ −ϑ}. However, by the residue theorem,
this integral is equal to (α − A)−1. This proves (3.10.3).

Equation (3.10.3) together with the bound ‖At‖ ≤ M enables us to repeat
the argument that we used in the proof of Theorem 3.2.9(i)–(ii) (starting with
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formula (3.2.5)) to show that∥∥(α − A)−n
∥∥ ≤ Mα−n

for all n = 1, 2, 3, . . . and α > 0. According to Theorem 3.4.1, this implies
that A generates a C0 semigroup A1. Thus, to complete the proof it suffices to
show that At

1 = At for all t > 0. However, by (3.10.3) and Theorem 3.2.9(i),
for every x∗ ∈ X∗, x ∈ X , and α > 0,∫ ∞

0
e−αt x∗(At x − At

1x) dt = 0.

Thus, since the Laplace transform of a (scalar continuous) function determines
the function uniquely (see Section 3.12), we must have x∗At x = At

1x for all
x∗ ∈ X∗, x ∈ X , and t ≥ 0. Thus, At

1 = At for all t > 0. In particular, A is
strongly continuous. �

As the following theorem shows, the class of semigroups generated by sec-
torial operators can be characterized in several different ways.

Theorem 3.10.6 Let A be a closed operator on the Banach space X, and let
γ ∈ R. Then the following conditions are equivalent:

(i) A is the generator of an analytic semigroup At with uniformly bounded
growth bound γ on a sector �δ = {t ∈ C | |arg t | < δ} (with δ > 0; see
Definition 3.10.1);

(ii) every λ ∈ C+γ belongs to the resolvent set of A, and there is a constant C
such that

‖(λ− A)−1‖ ≤ C

|λ− γ | , 
λ > γ ;

(iii) A is sectorial on some sector �θ,γ (with π/2 < θ < π; see Definition
3.10.2);

(iv) A is the generator of a semigroup A which is differentiable on (0,∞),
and there exist finite constants M0 and M1 such that

‖At‖ ≤ M0eγ t , ‖(A − γ )At‖ ≤ M1eγ t

t
, t > 0.

Proof Throughout this proof we take, without loss of generality, γ = 0. (If
γ �= 0, then we replace A − γ by A and e−γ tAt by At ; see Examples 2.3.5 and
3.2.6.)

(i) ⇒ (ii): Let 0 < ϕ < δ. Let Aϕ be the generator of the semigroup t �→
Ae jϕ t . Then, by Theorem 3.2.9(i), every (real) α > 0 belongs to the resolvent
set of Aϕ , and

(α − Aϕ)−1x =
∫ ∞

0
e−αsAe jϕs x ds.
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By the estimate that we have on A in (i), we can make a change of integration
variable from s to t = e jϕs, s = e− jϕ t to get

(α − Aϕ)−1x = e− jϕ
∫ ∞

0
e−αe− jϕ tAt x ds

= e− jϕ(αe− jϕ − A)−1

= (α − e jϕ A)−1,

where the second equality follows from Theorem 3.2.9(i). Thus, Aϕ = e jϕ A.
The estimate in (ii) then follows from (i) and Theorem 3.2.9(ii).

(ii)⇒ (iii): See Lemma 3.10.3.
(iii)⇒ (iv): We know from Theorem 3.10.5 that A generates a C0 semigroup

A, which has the integral representation (3.10.2). Thus, for all h > 0,

1

h

(
At − 1

) = 1

2π j

∫
�

h−1(eλh − 1)eλt (λ− A)−1 dλ.

The same type of estimates that we developed in the proof of Theorem 3.10.5
(where we split � into �1 ∪ �2 ∪ �3) together with Lemma 3.2.10 and the
Lebesgue dominated convergence theorem show that this has a limit as h ↓ 0.
Thus, At is differentiable (in operator norm), and

AAt = d

dt
(At ) = 1

2π j

∫
�

λeλt (λ− A)−1 dλ. (3.10.4)

As in the proof of Theorem 3.10.5 we again split � into �1 ∪ �2 ∪ �3 and
estimate. We leave it to the reader to check that the final estimate that we get in
this way is of the type

‖AAt‖ ≤ M/t,

with the same constant M = 2M1 + M2 as we get in the proof of Theorem
3.10.5.

(iv)⇒ (i): We first claim that, for each t > 0, At maps X into
⋂∞

n=1 D (An),
and prove this as follows. By the differentiability assumption on At , for each
x ∈ X , the function x(t) = At x is differentiable for t > 0. By the semigroup
property,

ẋ(t) = lim
h↓0

1

h
(At+h − At )x,= lim

h↓0

1

h
(Ah − 1)At x,

hence x(t) = At x ∈ D (A), and d
dt (At ) = AAt . The same argument shows that
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At maps D (Ak
)

into D (Ak+1
)

for all n = 0, 1, 2, . . . (because AkAt x =
At Ak x for all x ∈ D (Ak

)
; see Theorem 3.2.1(iii)). By the semigroup property,

At = (At/n)n , and this together with our earlier observation that At/n maps
D (Ak

)
into D (Ak+1

)
implies that At maps X into D (An) for each t > 0 and

n = 1, 2, 3, . . . Thus, At maps X into
⋂∞

n=1 D (An). This together with Theo-
rem 3.2.1(vi) implies that x(t) = At x is infinitely many times differentiable on
(0,∞), and that

x (n)(t) = (At )(n) = AnAt x, t > 0.

Since A commutes with At on
⋂∞

n=1 D (An), and since At = (At/n)n , this im-
plies that

(At )(n) = AnAt = (AAt/n)n, t > 0. (3.10.5)

Observe that the operators AnAt are closed with D (AnAt
) = X , hence, by the

closed graph theorem, they are bounded.
So far we have only used the differentiability of At and not the norm estimate

in (iv). This norm estimate, combined with (3.10.5) and the fact that en > nn/n!
(this is one of the terms in the power series expansion of en) gives∥∥∥ (At )(n)

n!

∥∥∥ = ∥∥∥ AnAt

n!

∥∥∥ ≤ (M1e

t

)n
, t > 0, n = 1, 2, 3, . . . (3.10.6)

For each t > 0 we can define a formal power series

Ãz =
∞∑

n=0

(At )(n)

n!
(z − t)n. (3.10.7)

The estimate (3.10.6) shows that this power series converges in operator norm
for |z − t | < t/(M1e). Being the limit of a power series, the function Ãz is
analytic in the circle |z − t | < t/(M1e).

We claim Ãz = Az for real z satisfying −t/(1+ M1e) < z − t < t/(M1e).
This is obvious for z = t . To see that it is true for other values of z we fix x ∈ X
and use a Taylor expansion of order N − 1 with Lagrangian remainder term for
Az , i.e.,

Az x =
N−1∑
n=0

(At )(n)x

n!
(z − t)n + (Aξ )(N )x

N !
(z − t)N ,

where z < ξ < t or t < ξ < z, depending on whether z < t or z > t . By
(3.10.6), the remainder term can be estimated by (M1e)N |z − t |N (min{t, z})−N ,
which tends to zero in the given interval. Thus, Ãz = Az for real z satisfy-
ing−t/(1+ M1e) < z − t < t/(M1e). Letting t > 0 vary we conclude that Ãt

is an analytic extension of At to the sector �δ , where 0 < δ ≤ π/2 satisfies
sin δ = 1/(M1e) (we choose z perpendicular to z − t , and assume, without loss
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of generality, that M1e ≥ 1). The analyticity of Ã implies that Ã inherits the
semigroup property Ãs+t = ÃsÃt from A (two analytic functions which co-
incide on the real axis coincide everywhere). In each smaller subsector �ϕ

with ϕ < δ we can choose z and t (with z still perpendicular to z − t) so that
(|z − t |M1e)/t ≤ k < 1 (uniformly in z and t), and this implies that

‖Ãz‖ ≤ ‖At‖ +
∞∑

n=1

‖(At )(n)‖
n!

|z − t |n ≤ M0 + k/(1− k).

Thus, the extended semigroup is uniformly bounded in each proper subsector
�ϕ of �δ . If we rename ϕ to δ, then we have shown that Ã satisfies conditions
(i)–(iii) in Definition 3.10.1.

The only thing that remains to be proved is the strong continuity, i.e., con-
dition (iv) in Definition 3.10.1. Because of the density of D (A) in X and the
uniform bound that we have on ‖Ãz‖ for all z ∈ �δ , it suffices to show that, for
all x ∈ D (A),

lim
t→0
t∈�δ

At x = x . (3.10.8)

By using (3.10.6) and (3.10.7) we can estimate, for all x ∈ D (A),

|Ãz x − x | ≤ |At x − x | + |Ãz x − At x |

≤ |At x − x | +
∞∑

n=1

|AnAt x |
n!

|z − t |n

≤ |At x − x | + |z − t |
∞∑

n=1

‖An−1At‖|Ax |
n(n − 1)!

|z − t |n−1

≤ |At x − x | + |z − t ||Ax |
∞∑

n=1

( |z − t |M1e

t

)n−1

≤ |At x − x | + |z − t ||Ax |
1− k

,

where the last inequality is true provided we choose z and t to satisfy (|z −
t |M1e)/t ≤ k < 1. As before, we take z perpendicular to z − t . Let ϕ = arg z.
Then |ϕ| < δ, |z − t |/t = |sinϕ| < sin δ ≤ 1, and

t cos δ < t cosϕ = |z| ≤ t.

Thus, with this choice of z and t , the condition z → 0, z ∈ �δ , is equivalent to
t ↓ 0, and

|Ãz x − x | ≤ |At x − x | + t |Ax |
1− k

.
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Because of the strong continuity of At , this tends to zero as t ↓ 0. Thus, (3.10.8)
holds, and the proof is complete. �

Let us record the following facts, which were established as a part of the
proof of Theorem 3.10.6:

Corollary 3.10.7 If the equivalent conditions listed in Theorem 3.10.6 hold,
then, for each ϕ ∈ (0, δ), the generator of the semigroup Ae jϕ t , t ≥ 0, is e jϕ A,
where A is the generator of A.

This was established as a part of the proof that (i)⇒ (ii).

Corollary 3.10.8 Condition (iv) in Theorem 3.10.6 implies that

‖(A − γ )nAt‖ ≤ (nM1)neγ t

t n
, t > 0, n = 1, 2, 3, . . .

This follows from (3.10.5) (with A replaced by A − γ and At replaced by
e−γ tAt ).

In our applications to well-posed linear systems we are especially interested
in the following extension of the estimates in Definition 3.10.2 and Corollary
3.10.8 to fractional powers of (γ − A):

Lemma 3.10.9 Let A be sectorial on some sector �θ,γ ′ , let γ > γ ′, and let A

be the analytic semigroup generated by A. Then there exist constants M and C
such that, for all 0 ≤ α ≤ 1,

‖(γ − A)αAt‖ ≤ M(1+ t−α)eγ
′t , t > 0,

‖(γ − A)α(λ− A)−1‖ ≤ C |λ− γ ′|−1
(
1+ |λ− γ ′|α), λ ∈ �θ,γ ′ .

Proof For α = 0 and α = 1 these estimates follow from Definition 3.10.2 and
Theorem 3.10.6(iv). For intermediate values of α we interpolate between these
two extreme values by using Lemma 3.9.8 as follows. By that lemma and
Theorem 3.10.6(iv), we have for all x ∈ X and t > 0 (recall that At x ∈ D (A)
for t > 0)

‖(γ − A)αAt x‖ ≤ 2C |At x |1−αX |(γ ′ − A)At x + (γ − γ ′)At x |αX
≤ 2C M1−α

0 (M1/t + |γ − γ ′|M0)αeγ
′t |x |X

≤ C1(1+ t−α)eγ
′t |x |X .
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To get the second inequality we argue essentially in the same way but replace
Theorem 3.10.6(iv) by Definition 3.10.2:

‖(γ − A)α(λ− A)−1x‖
≤ 2C |(λ− A)−1x |1−αX |(γ − A)(λ− A)−1x |αX
≤ C1|λ− γ ′|α−1

(
1+ |λ− γ |/|λ− γ ′|)α|x |X

≤ C2|λ− γ ′|−1
(
1+ |λ− γ ′|α)|x |X .

�

Lemma 3.10.9 enables us to add the following conclusion to Theorem 3.8.2
in the case of an analytic semigroup:

Theorem 3.10.10 Let A be an analytic semigroup on X, and define the
spaces Xα , α ∈ R as above. Let s ∈ R, xs ∈ X, 1 < p ≤ ∞, and f ∈
L p

loc([s,∞); X−α), with

α < 1− 1/p.

Then the function x given by (3.8.2) is a strong solution of (3.8.1) in X.

Proof This follows from (3.8.2), Lemma 3.10.9, and Hölder’s inequality. �

Let us end this section with a perturbation result. The feedback transform
studied in Chapter 7 leads to a perturbation of the original semigroup of the
system, so that the generator A of this semigroup is replaced by A + T for
some operator T . In the analytic case we are able to allow a fairly large class of
perturbations T without destroying the analyticity of the perturbed semigroup.

Theorem 3.10.11 Let A be the generator of an analytic semigroup on the
Banach space X, and define the fractional spaces Xα , α ∈ R, as in Section 3.9.
If T ∈ B(Xα; Xβ) for some α, β ∈ R with α − β < 1, then the operator (A +
T )|Xα

generates an analytic semigroup AT
|Xα−1

on Xα−1. For γ ∈ [α − 1, β + 1],
the spaces Xγ are invariant under AT

|Xα−1
, and the restriction AT

|Xγ
of AT

|Xα−1
to

Xγ is an analytic semigroup on Xγ . The generator of AT
|Xγ

is (A + T )|Xγ+1 if

γ ∈ [α − 1, β], and it is the part of A + T in Xγ if γ ∈ (β, β + 1].9Moreover,
if 0 ∈ [α − 1, β + 1] (so that AT

|X is an analytic semigroup on X) and if we let
X T
α , α ∈ R, be the analogues of the spaces Xα with A replaced by A + T , then

X T
γ = Xγ for all γ ∈ [α − 1, β + 1].

Proof We begin by studying the special case where α = 1 and 0 < β ≤ 1. By
Theorem 3.10.6, every λ in some half-plane C+µ belongs to the resolvent set of

9 See Definition 3.14.12 and Theorem 3.14.14.
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A, and for all λ ∈ C+µ ,

‖(λ− A)−1‖ ≤ C

|λ− µ| . (3.10.9)

We claim that A + T has the same property on some other half-plane C+ν . For
all λ ∈ C+µ we may write λ− A − T in the form

λ− A − T = (λ− A)(1− (λ− A)−1T ).

Here λ− A maps X1 one-to-one onto X , so to show that λ− A − T is invertible
it suffices to show that 1− (λ− A)−1T is invertible in B(X1). Fix some δ ∈
ρ(A). Then (δ − A)−βT ∈ B(X1), and

‖(λ− A)−1T ‖B(X1) = ‖(δ − A)β(λ− A)−1(δ − A)−βT ‖B(X1)

≤ ‖(δ − A)β(λ− A)−1‖B(X1)‖(δ − A)−βT ‖B(X1).

By Lemma 3.10.9 (with X replaced by X1), we can make the right-hand side less
than 1

2 by choosing |λ| large enough, and then it follows from the contraction
mapping principle that 1− (λ− A)−1T is invertible in B(X1) and ‖(1− (λ−
A)−1T )−1‖B(X1) ≤ 2. This proves that, for some sufficiently largeµ1 ≥ µ, every
C+µ1
⊂ ρ(A + T ), and that for allλ ∈ C+µ1

,λ− A − T maps X1 one-to-one onto
X and

‖(λ− A − T )−1‖B(X ;X1) ≤ 2‖(λ− A)−1‖B(X ;X1).

Fix some ν ∈ C+µ1
. Then both ν − A and ν − A − T are boundedly invertible

maps of X1 onto X , so the above inequality implies the existence of some C > 0
such that, for all λ ∈ C+µ1

,

‖(ν − A − T )(λ− A − T )−1‖B(X ) ≤ C‖(ν − A)(λ− A)−1‖B(X ).

Equivalently,

‖(ν − λ)(λ− A − T )−1 + 1‖B(X ) ≤ C‖(ν − λ)(λ− A)−1 + 1‖B(X ),

hence, by the triangle inequality,

‖(λ− A − T )−1‖B(X ) ≤ C‖(λ− A)−1‖B(X ) + C + 1

|λ− ν| . (3.10.10)

This, together with (3.10.9) and Theorem 3.10.6, implies that A + T generates
an analytic semigroup.

Still assuming that α = 1 and 0 < β ≤ 1, let us show that X T
γ = Xγ for all

γ ∈ (0, 1) (we already know that this is true for γ = 0 and γ = 1). This is
equivalent to the claim that (ν ′ − A − T )−γ has the same range as (ν ′ − A)−γ ,
where, for example, ν ′ > ν, and ν is the same constant as in the proof above.
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A short algebraic computation shows that, for s ≥ 0,

(s + ν ′ − A)−1(1+ T (s + ν ′ − A − T )−1) = (s − A)−1,

and therefore, by Lemma 3.9.9,

(ν ′ − A − T )−γ − (ν ′ − A)−γ

= c
∫ ∞

0
s−γ
(
s + ν ′ − A

)−1
T
(
s + ν ′ − A − T

)−1
ds,

(3.10.11)

where c = sinπα
π

. Since T ∈ B(X1; Xβ), we get by a computation similar to the
one leading to (3.10.10) that there exist constants C1, C2 > 0 such that for all
s ≥ 0 (see also (3.10.9)),∥∥T

(
s + ν ′ − A − T

)−1∥∥
B(X ;Xβ ) ≤ C1

∥∥s(s + ν ′ − A)−1 + 1
∥∥
B(X ) ≤ C2.

If γ ≤ β, then we can estimate∥∥(s + ν ′ − A
)−1∥∥

B(Xβ ;Xγ ) ≤ C3

∥∥(s + ν ′ − A
)−1∥∥

B(Xβ ) ≤ C4(s + ν ′ − ν)−1,

and if γ > β then we get from Lemma 3.10.9 (with α = γ − β)∥∥(s + ν − A
)−1∥∥

B(Xβ ;Xγ ) ≤ C((s + ν ′ − ν)−1 + (s + ν ′ − ν)γ−β−1).

In either case we find that the operator norm in B(X ; Xγ ) of the integrand
in (3.10.11) is bounded by a constant times s−γ

(
(s + ν ′ − ν)−1 + (s + ν ′ −

ν)γ−β−1
)
, and this implies that the integral converges in B(X ; Xγ ). Since

also (ν ′ − A)−γ ∈ B(X ; Xγ ), this implies that R ((ν ′ − A − T )−γ
) ⊂ Xγ , or

in other words, X T
γ ⊂ Xγ . To prove the opposite inclusion it suffices to apply

the same argument with A replaced by A + T and T replaced by −T (i.e., we
interchange the roles of A and A + T .

Let us recall what we have proved so far. If α = 1 and 0 < β ≤ 1, then
A + T generates an analytic semigroup on X , and X T

γ = Xγ for all γ ∈ [0, 1].
The restriction β ≤ 1 is irrelevant, because if β ≥ 1, then T ∈ B(X1), and we
can repeat the same argument with β replaced by one. Thus, the conclusion that
we have established so far is valid for all β > 0 when α = 1.

Next we look at another special case, namely the one where β = 0 and
0 ≤ α < 1. The proof is very similar to the one above, so let us only indicate
the differences, and leave the details to the reader. The estimate (3.10.9) is still
valid. This time we write λ− A − T in the form

λ− A − T = (1− T (λ− A)−1)(λ− A),

where λ− A still maps X1 one-to-one onto X . To prove that λ− A − T maps
X1 one-to-one onto X it suffices to show that 1− T (λ− A)−1 is invertible
in B(X ) for sufficiently large |λ|, and this is done by using the same type of
estimates as we saw above. In particular, we find that ‖T (λ− A)−1‖B(X ) ≤ 1

2
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and that (3.10.10) holds for |λ| large enough. Thus, A + T generates an analytic
semigroup on X .

If α < 0 and β = 0, then T ∈ B(X ), and we may simply replace α by zero
in the preceding argument. Thus, A + T generates an analytic semigroup on X
whenever α < 1 and β = 0.

Let us finally return to the general case where α, β ∈ R with α − β < 1. To
deal with this case we replace X by the new state space X ′ = Xβ−ε , where ε is an
arbitrary number satisfying 0 < ε ≤ β − α + 1. With respect to this new state
space the index α is replaced by α′ = α − β + ε ≤ 1, β is replaced by β ′ =
ε > 0, and T ∈ B(X ′α′ ; X ′β ′ ). This implies that T ∈ B(X ′1; X ′β ′ ) (since α′ ≤ 1),
so we can apply the first special case where we had α = 1 and β > 0 (replacing
X by X ′). We conclude that (A + T )|X ′1 generates an analytic semigroup AT

|X ′
on X ′ = Xβ−ε and that X ′γ ′

T = X ′γ ′ for all γ ′ ∈ [0, 1], where X ′γ ′
T are the

fractional spaces constructed by means of the semigroup AT
|X ′ as described in

Section 3.9. Moreover, by restricting AT
|X ′ to X ′γ ′

T = X ′γ ′ we get an analytic
semigroup AT

|X ′
γ ′

on X ′γ ′ for all γ ′ ∈ [0, 1]. The above ε could be any number in
(0, β − α + 1]. In particular, taking ε = β − α + 1 we get a semigroup AT

|Xα−1

generated by (A + T )|Xα
on Xα−1.

One drawback with the above construction is that the fractional spaces X ′γ ′
T

that we get depend on X ′, hence on the choice of the parameter ε. However,
as we saw in Section 3.9, we get the same spaces if we replace X ′ by any of
the spaces X ′γ ′

T , and adjust the index accordingly. Since X ′γ ′
T = X ′γ ′ for all

γ ′ ∈ [0, 1], this means that we may fix one particular value of the parameter ε
(for example, ε = β − α + 1 which gives X ′ = Xα−1), and base the definition
of the fractional spaces induced by A + T on this fixed value of ε. After that, by
letting ε vary in (0, β − α + 1] we find that for all γ ∈ [α − 1, β), the operator
(A + T )|Xγ+1 generates the analytic semigroup AT

|Xγ
on Xγ , where AT

|Xγ
is the

restriction of AT
|Xα−1

to Xγ . Moreover, for γ ∈ [β, β + 1), the restriction AT
|Xγ

of AT
|Xα−1

to Xγ is an analytic semigroup on Xγ . By Theorem 3.14.14, the
generator of this semigroup is the part of A + T in Xγ . If 0 ∈ [α − 1, β + 1),
then we may base our definition of the fractional spaces induced by A + T on
the original state space X .

We have now proved most of Theorem 3.10.11. The only open question is
whether we can also take γ = β (instead of γ < β). To deal with this case we
replace the state space X by X ′ = Xβ . Then α is replaced by α′ = α − β < 1
and β is replaced by β ′ = 0. By the second of the two special cases that we
studied above, (A + T )|X ′1 generates an analytic semigroup AT

|Xβ
on X ′ = Xβ

and X ′1
T = X ′1 = Xβ+1. Thus, (A + T )|Xβ+1 generates an analytic semigroup

on Xβ and X T
β+1 = Xβ+1. Furthermore, the restriction of AT

|Xβ
to Xβ+1 is an

analytic semigroup on this space. �
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3.11 Spectrum determined growth

One of the most important properties of a semigroup A is its growth bound ωA.
We defined ωA in Definition 2.5.6 in terms of the behavior of ‖At‖ as t →∞.
In practice it is often more convenient to use characterizations of ωA which
refer to the generator A of A and not directly to A.

There is one obvious condition that the generator A of A must satisfy: by
Theorem 3.4.1 the half-plane C+ωA

belongs to the resolvent set of A. Thus, it is
always true that

ωA ≥ sup{
λ | λ ∈ σ (A)}. (3.11.1)

If the converse inequality also holds, then we say that A has the spectrum
determined growth property:

Definition 3.11.1 The C0 semigroup A has the spectrum determined growth
property if

ωA = sup{
λ | λ ∈ σ (A)}. (3.11.2)

Example 3.11.2 Suppose that the semigroup A on X has the spectrum de-
termined growth property. Then so do the following semigroups derived from
A:

(i) the exponentially shifted semigroup t �→ eαtAt for every α ∈ C (see
Example 2.3.5);

(ii) the time compressed semigroup t �→ Aλt for every λ > 0 (see Example
2.3.6;

(iii) the similarity transformed semigroup t �→ E−1At E for every invertible
E ∈ B(X1; X ) (see Example 2.3.7).

The easy proof is left to the reader.
Some other classes of semigroups which have the spectrum determined

growth property are the following:

Example 3.11.3 The following semigroups have the spectrum determined
growth property:

(i) the left shift semigroups τ , τ+, τ−, τ[0,T ), and τTT in Examples 2.3.2 and
2.5.3;

(ii) diagonal semigroups (see Example 3.3.3 and Definition 3.3.4);
(iii) analytic semigroups (see Definition 3.10.1).

Proof (i) See Examples 2.5.3 and 3.3.1.
(ii) See Examples 3.3.3 and 3.3.5.
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(iii) We know that (3.11.1) holds for all semigroups, so it suffices to prove
the opposite inequality. Choose ω ∈ R so that 
λ < ω − ε for some ε > 0
and all ω ∈ σ (A). The fact that A is sectorial on some sector �θ,ω′ for some
π/2 < θ < π and some ω′ ∈ R then implies that condition (ii) in Theorem
3.10.6 holds. By the same theorem, the growth bound of A is at most ω. Since
ε > 0 is arbitrary we get ωA ≤ sup{
λ | λ ∈ σ (A)}. �

Example 3.11.3(iii) is a special case of the following theorem:

Theorem 3.11.4 A semigroup At on a Banach space which is continuous in
the operator norm on an interval [t0,∞), where t0 ≥ 0, has the spectrum de-
termined growth property.

Proof Let ωA = sup{
λ | λ ∈ σ (A)}. By Theorem 2.5.4(i), it suffices to show
that, for some t > 0, the spectral radius of At is equal to eωAt . However, this
follows from the operator norm continuity of At which implies that etσ (A) ⊂
σ (At ) ⊂ {0} ∪ etσ (A); see Davies (1980, Theorems 2.16 and 2.19). �

Corollary 3.11.5 The semigroup At on the Banach space X has the spectrum
determined growth property (at least) in the following cases:

(i) t �→ At x is differentiable on [t0,∞) for some t0 ≥ 0 and all x ∈ X, or
equivalently, R (At0

) ⊂ D (A) for some t0 ≥ 0.
(ii) At is compact for all t ≥ t0, where t0 ≥ 0, or equivalently, At0 is compact

for some t0 ≥ 0.

Proof This follows from Theorem 3.11.4 and the fact that in both cases, t �→ At

is continuous in the operator norm on [t0,∞). See, for example, Pazy (1983,
Theorem 3.2 and Lemma 4.2). �

One way of looking at the spectrum determined growth property is to inter-
pret it as a condition that the generator A must not have a spectrum ‘at infinity’
in the right half-plane C+ωA

. This idea can be made more precise. Theorem 3.4.1
not only implies that the half-plane C+ωA

belongs to the resolvent set of A, but
in fact,

sup

λ≥ωA+ε

‖(λ− A)−1‖ <∞, ε > 0.

As the following theorem shows, this condition can be used to determine ωA

whenever the state space is a Hilbert space.

Theorem 3.11.6 Let A be the generator of a C0 semigroup A on a Hilbert
space X. Then

ωA = inf
{
ω ∈ R

∣∣∣ sup

λ≥ω
‖(λ− A)−1‖ <∞

}
.
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The proof of this theorem will be given in Section 10.3 (there this theorem
is reformulated as Theorem 10.3.7).

This theorem has the following interesting consequence:

Lemma 3.11.7 Let A be the generator of a C0 semigroup A on a Hilbert space
X, and suppose that, for some ω ∈ R, some M > 0, and some 0 < ε ≤ 1, the
half-plane C+ω belongs to the resolvent set of A, and

‖(λ− A)−1‖ ≤ M(
λ− ω)ε−1, 
λ > ω. (3.11.3)

Then the growth bound ωA of A satisfies

ωA ≤ ω − δ,

where δ > 0 is given by

δ =
{

1/M, ε = 1,

ε(1− ε)1/ε−1 M−1/ε, 0 < ε < 1.

In particular, we conclude that (3.11.3) cannot possibly hold with ω = ωA

(because that would imply ωA < ωA). (It cannot hold for ε > 1, either.)

Proof The proof is based on Lemma 3.2.8(ii) and Theorem 3.11.6. The case
ε = 1 follows directly from these two results (the line 
λ = ω must belong to
the resolvent set in this case, and, by continuity, (3.11.3) holds for 
λ = ω,
too).

If 0 < ε < 1, then we take α in Lemma 3.2.8(ii) to lie on the line


α = ω + (1− ε)1/εM−1/ε

(this is the choice that will maximize the constant δ), and takeλ to have
λ ≤ 
α
and 'λ = 'α. Then, by Lemma 3.2.8(ii), λ will belong to the resolvent set of
A if


(α − λ) = α − λ < 1/‖(α − A)−1‖,
which by (3.11.3) is true whenever 
(α − λ) < 1/κ , where

κ = M−1(
α − ω)ε−1 = (1− ε)1/ε−1 M−1/ε.

This can equivalently be rewritten as


α − 1/κ = ω − δ < 
λ ≤ ω + (1− ε)1/εM−1/ε.

Moreover, by the same lemma, ‖(λ− A)−1‖ is bounded by

‖(λ− A)−1‖ ≤ ‖(λ− A)−1‖
1− ‖(λ− A)−1‖(α − λ)

≤ κ

1− κ(α − λ)
= 1


λ− (ω − δ)
.
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The conclusion now follows from Theorem 3.11.6. �

There is a related result which connects the growth bound of a semigroup to
some L p-estimates in the time domain:

Theorem 3.11.8 Let A be a C0 semigroup on the Banach space X and let
ω ∈ R. Then the following conditions are equivalent:

(i) ωA < ω;
(ii) e−ωt‖At‖ → 0 as t →∞;

(iii) ‖At‖ < eωt for some t > 0;
(iv) for all x0 ∈ X, the function x(t) = At x0, t ≥ 0, belongs to L p

ω(R+; X )
for all p ∈ [1,∞];

(v) for some p ∈ [1,∞) and all x0 ∈ X, the function x(t) = At x0, t ≥ 0,
belongs to L p

ω(R+; X );
(vi) for all q ∈ [1,∞], there is a finite constant Mq such that, for all

u ∈ Cc(R−; X ), ∣∣∣∣∫ 0

−∞
A−su(s) ds

∣∣∣∣
X

≤ Mq‖u‖Lq
ω(R−;X );

(vii) for some q ∈ (1,∞], some finite constant Mq, and all u ∈ C1
c (R−; X1),∣∣∣∣∫ 0

−∞
A−su(s) ds

∣∣∣∣
X

≤ Mq‖u‖Lq
ω(R−;X );

(viii) for all p ∈ [1,∞], there is a finite constant Mp such that, for all
u ∈ Cc(R; X ),∥∥∥∥t �→ ∫ t

−∞
At−su(s) ds

∥∥∥∥
L p
ω(R;X )

≤ Mp‖u‖L p
ω(R;X );

(ix) for some p ∈ [1,∞], some finite constant Mp, and all u ∈ C1
c (R+; X ),∥∥∥∥t �→ ∫ t

0
At−su(s) ds

∥∥∥∥
L p
ω(R+;X )

≤ Mp‖u‖L p
ω(R+;X ).

In particular, if ω = 0, then all the preceding conditions are equivalent to the
exponential stability of A.

Proof Without loss of generality, we takeω = 0 (see Examples 2.3.5 and 3.2.6).
(i)⇒ (ii) and (i)⇒ (iv): These follow from Theorem 2.5.4(i).
(i)⇒ (vi): Use Theorem 2.5.4(i) and Hölder’s inequality.
(i)⇒ (viii): Apply Theorem 2.5.4(ii) to the system in Proposition 2.3.1 with

B = C = 1 and D = 0.
(ii)⇒ (iii), (iv)⇒ (v), (vi)⇒ (vii), and (viii)⇒ (ix): These implications

are obvious.
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(iii)⇒ (i): Clearly, the spectral radius of At is less than one, and Theorem
2.5.4(i) implies that ωA < 0.

(v) ⇒ (ii): The operator x0 �→ x is continuous X → C(R
+

; X ), hence it
is closed X → L p(R+; X ). By the closed graph theorem, there is a constant
Mp > 0 such that(∫ ∞

0
|As x0|pX ds

)1/p
≤ Mp|x0|X , x0 ∈ X. (3.11.4)

By Theorem 2.5.4(i), there are constants α > 0 and M > 0 such that ‖At‖ ≤
Meαt . Therefore, for all x0 ∈ X and t > 0,

1− e−pαt

pα
|At x0|pX =

∫ t

0
e−pαs ds|At x0|pX =

∫ t

0
e−pαs |AsAt−s x0|pX ds

≤
∫ t

0
‖e−αsAs‖p|At−s x0|pX ds ≤ M p

∫ t

0
|At−s x0|pX ds

≤ M p M p
p |x0|px .

This implies that there is a finite constant M∞ such that ‖At‖ ≤ M∞ for t ≥ 0.
We can now repeat the same computation with α = 0 to get

t‖At x0‖p
X =

∫ t

0
|At x0|pX ds ≤

∫ t

0
‖As‖p|At−s x0|pX ds

≤ M p
∞

∫ t

0
|At−s x0|pX ds ≤ M p

∞M p
p |x0|px ,

which implies that

‖At‖ ≤ (Mp M∞)t−1/p.

(vii) ⇒ (ii): Let t > 0. If q <∞ then we can use the density of
C1([−t, 0); X1) in Lq ([−t, 0); X ), and if q = ∞ then we can use a simple
approximation argument and the Lebesgue dominated convergence theorem to
show that, for all t > 0 and all u ∈ C([0, t); X ),∣∣∣∣∫ t

0
Asu(s) ds

∣∣∣∣
X

=
∣∣∣∣∫ 0

−t
A−su(−s) ds

∣∣∣∣
X

≤ Mq‖u‖Lq ([0,t);X ).

In particular, taking u(s) = eαsAt−s x0, where α > 0 and x0 ∈ X we get

eαt − 1

α
|At x0|X =

∣∣∣∣∫ t

0
eαsAt x0 ds

∣∣∣∣
X

=
∣∣∣∣∫ t

0
AseαsAt−s x0 ds

∣∣∣∣
X

≤ eαt Mq Kq |x0|X ,
where Kq is the (finite) Lq -norm over R of the function s �→ e−αs‖As‖. This
implies that ‖At‖ ≤ M1 for some finite M1 and all t ≥ 0. We then repeat the
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same computation with α = 0 to get

t |At x0|X =
∣∣∣∣∫ t

0
At x0 ds

∣∣∣∣
X

=
∣∣∣∣∫ t

0
AsAt−s x0 ds

∣∣∣∣
X

≤ Mq

∥∥(s �→ ‖As‖)∥∥Lq ([0,t))|x0|X ≤ Mq M1t1/q |x0|X ,
i.e., ‖At‖ ≤ Mq M1t1/q−1.

(ix) ⇒ (i): First we consider the case p = ∞. In (ix) we can replace
C1

c (R+; X ) by C1
c (R; X ) if we at the same time replace L∞(R+; X ) by

L∞(R; X ) and
∫ t

0 At−su(s) ds by
∫ t
−∞ At−su(s) ds since the convolution op-

erator t �→ ∫ t
−∞ At−su(s) ds is time-invariant (shift u ∈ C1

c (R; X ) to the right
until it is supported on R+, apply the convolution operator, and then shift the
result back). The integral

∫ t
−∞ At−su(s) ds is continuous in t , and by evaluating

this integral at zero we conclude that (vii) holds with q = ∞. As we saw above,
this implies (i).

In the case p <∞we argue as follows. As C1
c (R+; X ) is dense in L p(R+; X ),

we can weaken the condition u ∈ C1
c (R+; X ) to u ∈ L p(R+; X ), and the same

estimate still holds. Let x0 ∈ X , and define

u(t) =
{

At x0, 0 ≤ t < 1,

0, t ≥ 1,

and y(t) = ∫ t
0 At−su(s) ds. Then

y(t) =
{

tAt x0, 0 ≤ t < 1,

At x0, t ≥ 1,

and by (ix), y ∈ L p(R+; X ). In particular, t �→ At x0 ∈ L p(R+; X ) for every
x0 ∈ X . Thus (v) is satisfied, hence so is (i). �

3.12 The Laplace transform and the frequency domain

Some of the shift semigroups in Examples 2.3.2 and 2.5.3 and their generators
and resolvents described in Examples 3.3.1 and 3.3.2 have simple frequency
domain descriptions, which will be presented next. When we say ‘frequency
domain description’ we mean a description given in terms of Laplace transforms
of the original functions.

Definition 3.12.1 The (right-sided) Laplace transform of a function u ∈
L1

loc(R+; U ) is given by

û(z) =
∫ ∞

0
e−zt u(t) dt
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for all z ∈ C for which the integral converges (absolutely). The left-sided
Laplace transform of a function u ∈ L1

loc(R−; U ) is given by

û(z) =
∫ 0

−∞
e−zt u(t) dt

for all z ∈ C for which the integral converges (absolutely). The bilateral Laplace
transform of a function u ∈ L1

loc(R; U ) is given by

û(z) =
∫ ∞
−∞

e−zt u(t) dt

for all z ∈ C for which the integral converges (absolutely). The finite Laplace
transform over the interval [0, T ] of a function u ∈ L1([0, T ]; U ) is given by

û(z) =
∫ T

0
e−zt u(t) dt

for all z ∈ C.

The finite Laplace transform is always an entire function. It is easy to see
that the domains of definition of the other Laplace transforms, if nonempty,
are vertical strips {z ∈ C | 
z ∈ J }, where J is an interval in R (open, closed,
or semi-closed, bounded or unbounded). The one-sided, left-sided, and finite
Laplace transforms can be interpreted as special cases of the bilateral Laplace
transform, namely, the case where u vanishes on the complements of R+, R−,
or [0, T ]. For the one-sided Laplace transform, either J is empty or the right
end-point of J is +∞, and for the left-sided Laplace transform, either J is
empty or the left end-point of J is −∞. In the case of the bilateral Laplace
transform J may be bounded or unbounded, and it may consist of one point
only. In the interiors of their domains all the different Laplace transforms are
analytic. For example, if u ∈ L1

c(R; U ), then the bilateral Laplace transform of
u is entire (as in the case of the finite Laplace transform).

All the Laplace transforms listed above determine the original function u
uniquely (on its given domain), whenever the domain of the Laplace transform is
nonempty. To prove this it suffices to consider the case of the bilateral transform
(since the others can be reduced to this one). If û(z) is defined for some z ∈ C,
then u ∈ L1

α(C; U ) where α = 
z. Under some further conditions we can get
the following explicit formula for u in terms of û.

Proposition 3.12.2 Let u ∈ L1
α(R; U ), whereU is a Banach space, and suppose

that the bilateral Laplace transform û of u satisfies û ∈ L1(α + jR; U ). Define

v(t) = 1

2π

∫ ∞
−∞

e(α+ jω)t û(α + jω) dω, t ∈ R.

Then u = v almost everywhere, v ∈ BCα,0(R; U ), and û ∈ BC0(α + jR; U ).
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Proof In the scalar case with α = 0 this is shown in Rudin (1987, Theorem
9.12, p. 185). We can introduce a general α ∈ R by applying the same result
with u(t) replaced by e−αt u(t). The proof of the vector-valued case is identical
to the proof of the scalar case given in Rudin (1987). �

It follows from Proposition 3.12.2 that the Laplace transform is injective:
if two functions u and v have the same Laplace transform, defined on the
same vertical line 
z = α, then they must be equal almost everywhere (apply
Proposition 3.12.2 to the difference u − v).

In the case of the left-sided or right-sided Laplace transform, the most restric-
tive condition in Proposition 3.12.2 is the requirement that û ∈ L1(α + jR; U ).
If u is continuous with u(0) �= 0, then Proposition 3.12.2 cannot be applied to
the one-sided transforms, due to the fact that π+u and/or π−u will have a jump
discontinuity at zero. The following proposition has been designed to take care
of this problem.

Proposition 3.12.3 Let U be a Banach space.

(i) Suppose that u ∈ L1
α(R+; U ) and that there exists some u0 ∈ C such that

the function ω �→ û(α + jω)− (1+ jω)−1u0 belongs to L1(R; U ),
where û is the (right-sided) Laplace transform of u. Let β ∈ C−α , and
define for all t ∈ R+,

v(t) = eβt u0 + 1

2π

∫ ∞
−∞

e(α+ jω)t
[
û(α + jω)− (α + jω − β)−1u0

]
dω.

Then v is independent of β, v ∈ BCα,0(R+; U ), v(0+) = u0, and u = v

almost everywhere on R+.
(ii) Suppose that u ∈ L1

α(R−; U ) and that there exists some u0 ∈ C such that
the function ω �→ û(α + jω)− (1+ jω)−1u0 belongs to L1(R; U ),
where û is the left-sided Laplace transform of u. Let β ∈ C+α , and define
for all t ∈ R−,

v(t) = −eβt u0 + 1

2π

∫ ∞
−∞

e(α+ jω)t
[
û(α + jω)− (α + jω − β)−1u0

]
dω.

Then v is independent of β, v ∈ BCα,0(R−; U ), v(0−) = −u0, and u = v

almost everywhere on R+.

Proof The proof is essentially the same in both cases. First we observe that the
function ω �→ û(α + jω)+ (α + jω − β)−1u0 belongs to L1

α(R; U ) since the
difference

1

α + jω − β
− 1

1+ jω
= 1− α + β

(α + jω − β)(1+ jω)
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belongs to L1(R). We get the conclusion of (i) by applying Proposition 3.12.2
to the function t �→ u(t)− eβt u0 (whose right-sided Laplace transform is
û(λ)− (λ− β)−1u0 for
λ ≥ α), and we get the conclusion of (ii) by applying
Proposition 3.12.2 to the function t �→ u(t)+ eβt u0 (whose left-sided Laplace
transform is û(λ)− (λ− β)−1u0 for 
λ ≤ α). �

In the proof of Proposition 3.12.3 given above we observe that, although
the Laplace transform is injective in the sense that we explained earlier, it is
possible to have two functions, one supported on R+ and another supported
on R−, which have ‘the same’ one-sided Laplace transforms in the sense that
the two Laplace transforms are analytic continuations of each other. As our
following theorem shows, this situation is not at all unusual.

Theorem 3.12.4 Let U be a Banach space, and let f be a U-valued function
which is analytic at infinity with f (∞) = 0. Let � be a positively oriented
piecewise continuously differentiable Jordan curve such that f is analytic on
� and outside of �, and define

u(t) = 1

2π j

∮
�

eλt f (λ) dλ.

Then u is entire, u(0) = limλ→∞ λ f (λ), u(t) = O(eβt ) as t →∞ and u(t) =
O(e−αt ) as t →−∞, where β = sup{
λ | λ ∈ �} and α = inf{
λ | λ ∈ �}.
Moreover, the restriction of f to C+ω is the (right-sided) Laplace transform of
π+u, and the restriction of f to C−α is the (left-sided) Laplace transform of
−π−u.

Proof That u is entire and satisfies the two growth bounds follows immediately
from the integral representation. The expression for u(0) follows from Lemma
3.9.1(ii). Thus, it only remains to prove that f , suitably restricted, is the right-
sided Laplace transform of π+u and the left-sided Laplace transform of−π−u.

We begin with the case where f (λ) = (λ− γ )−1u0, where γ is encircled by
� (in particular, α < 
γ < β). Then a direct inspection shows that the theorem
is true with u(t) = eγ t u0. Since f is analytic at infinity with f (∞) = 0, it has
an expansion of the type f (λ) = u0/λ+ O(λ−2) as λ→∞. After subtracting
(λ− γ )−1u0 from f , the new function f satisfies f (λ) = O(λ−2) as λ→∞.
Thus, we may, without loss of generality, assume that f (λ) = O(λ−2) as λ→
∞. Then u(0) = 0. (By subtracting off further terms it is even possible to assume
that f (λ) = O(λ−k) as λ→∞ for any finite k.)
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Choose some β ′ > β and α′ < α, and define, for all t ∈ R,

v(t) = 1

2π

∫ ∞
−∞

e(β ′+ jω)t f (β ′ + jω) dω,

w(t) = 1

2π

∫ ∞
−∞

e(α′+ jω)t f (α′ + jω) dω.

We claim that v(t) = 0 for t ≤ 0, thatw(t) = 0 for t ≥ 0, and that v(t)− w(t) =
u(t) for all t ∈ R. Suppose that this is true. Then v = π+u,w = −π−u, v is the
inverse right-sided Laplace transform of the restriction of f to the line
λ = β ′,
and w is the inverse left-sided Laplace transform of the restriction of f to the
line 
λ = α′. Since the inverse Laplace transform is injective (the proof of
this is identical to the proof of the fact that the bilateral Laplace transform is
injective), the right-sided Laplace transform of π+u must coincide with u on
C+β ′ and the left-sided Laplace transform of−π−u must coincide with u on C−α′ .
Thus, it only remains to verify the claim that v(t) = 0 for t ≤ 0, that w(t) = 0
for t ≥ 0, and that v(t)− w(t) = u(t) for all t ∈ R.

We begin with the claim that v(t) = 0 for all t ≤ 0. For each R > 0, by
Cauchy’s theorem, we have

1

2π j

∮
�R

eλt f (λ) dλ = 0,

where �R is the closed path running from β ′ − j R to β ′ + j R along the line

λ = β ′, and then back to β ′ − j R along a semi-circle in C

+
β ′ centered at β ′. If

t ≤ 0, then eλt is bounded on C+β , and we can use the fact that f (λ) = O(λ−2)
as λ→∞ to let R →∞ (the length of the semi-circle is πR, hence this part
of the integral tends to zero), and get

v(t) = 1

2π

∫ ∞
−∞

e(β ′+ jω)t f (β ′ + jω) dω = lim
R→∞

1

2π j

∮
�R

eλt f (λ) dλ = 0.

This proves that v(t) = 0 for t ≤ 0. An analogous proof shows that w(t) = 0
for t ≥ 0.

Finally, let us show that v(t)− w(t) = u(t) for all t ∈ R. By analyticity, for
sufficiently large values of R, we can deform the original path � given in the
theorem to a rectangular path �R , running from β ′ − j R to β ′ + j R to α′ + j R
to α′ − j R, and back to β ′ − j R, and get for all t ∈ R,

u(t) = 1

2π j

∮
�R

eλt f (λ) dλ.
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Letting again R →∞ we get

u(t) = lim
R→∞

1

2π j

∮
�R

eλt f (λ) dλ

= 1

2π

∫ ∞
−∞

e(β ′+ jω)t f (β ′ + jω) dω

− 1

2π

∫ ∞
−∞

e(α′+ jω)t f (α′ + jω) dω

= v(t)− w(t).

�

Corollary 3.12.5 Let U be a Banach space.

(i) Suppose that u ∈ L1
α(R+; U ) and that û is analytic at infinity. For all

t ∈ R+, define

v(t) = 1

2π j

∮
�

eλt û(λ) dλ,

where � is a positively oriented piecewise continuously differentiable
Jordan curve which encircles σ (û). Then v is the restriction to R+ of an
entire function, and u = v almost everywhere on R+.

(ii) Suppose that u ∈ L1
α(R−; U ) and that û is analytic at infinity. For all

t ∈ R−, define

v(t) = 1

2π j

∮
�

eλt û(λ) dλ,

where � is a negatively oriented piecewise continuously differentiable
Jordan curve which encircles σ (û). Then v is the restriction to R− of an
entire function, and u = v almost everywhere on R−.

Proof This follows from Theorem 3.12.4. �

By combining the symbolic calculus developed in Section 3.9 with Corollary
3.12.5 we get the following result.

Theorem 3.12.6 Let A be the generator of a C0 semigroup A on X with growth
boundωA. Let u ∈ L1

ω(R−; C) for someω > ωA, and suppose that the left-sided
Laplace transform û of u is analytic at infinity. Then û(A) ∈ B(X ; X1) and

û(A)x =
∫ 0

−∞
u(t)A−t x dt, x ∈ X.

Proof The assumptions imply that û is analytic on C−ω ∪∞with û(∞) = 0. In
particular, by Lemma 3.9.3, û(A) ∈ B(X ; X1).
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Let � be a negatively oriented piecewise continuously differentiable Jordan
curve which encircles σ (û) with σ (A) on the outside. Then Theorem 3.2.9,
Corollary 3.12.5, Fubini’s theorem, and (3.9.3) give, for all x ∈ X ,∫ 0

−∞
u(t)A−t x dt = 1

2π j

∫ 0

−∞

∮
�

eλt û(λ) dλ A−t x dt

= 1

2π j

∮
�

û(λ)
∫ 0

−∞
eλtA−t x dt dλ

= 1

2π j

∮
�

û(λ)
∫ ∞

0
e−λtAt x dt dλ

= 1

2π j

∮
�

û(λ)(λ− A)−1x dλ

= û(A)x .

�

Corollary 3.12.7 Let A be the generator of a C0 semigroup A on X with growth
bound ωA. Let u ∈ L1

−ω(R+; C) for some ω > ωA, and suppose that the right-
sided Laplace transform û of u is analytic at infinity. Then û(−A) ∈ B(X ; X1)
and

û(−A)x =
∫ ∞

0
u(t)At x dt, x ∈ X. (3.12.1)

Proof This follows from Theorem 3.12.6 through a change of integration vari-
ables (i.e., we apply Theorem 3.12.6 to the function t �→ u(−t)). �

It is possible to use (3.12.1) as a definition of û(−A), and in this way it is
possible to extend the functional calculus presented in the first half of Section
3.9 to a larger class of functions of A, namely those that correspond to functions
u ∈ L1

loc(R+) satisfying ∫ ∞
0
|u(t)|‖At‖ dt <∞ (3.12.2)

(thus, u should be integrable with respect to the weight function ‖A‖). One
such example was the definition of the fractional powers of γ − A given in the
second half of Section 3.9.

Theorem 3.12.8 Let A be the generator of a C0 semigroup A on X with growth
bound ωA. Let u, v ∈ L1

ω(R−; C) for some ω > ωA, and suppose that the left-
sided Laplace transforms of u and v are analytic at infinity. Define w(t) =∫ 0

t u(t − s)v(s) ds for all those t ∈ R− for which the integral converges. Then
w ∈ L1

ω(R−; C) (in particular, w is defined for almost all t), ŵ(λ) = û(λ)v̂(λ)
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for λ ∈ C−ω , and

ŵ(A) = û(A)v̂(A).

Proof The function (s, t) �→ u(t − s)v(s) is measurable (see, e.g., Hewitt and
Stromberg (1965, pp. 396–397)). By Fubini’s theorem and a change of integra-
tion variable,∫ 0

−∞
eωt |w(t)| dt ≤

∫ 0

−∞

∫ 0

t
|eω(t−s)u(t − s)||eωsv(s)| ds dt

=
∫ 0

−∞

∫ s

−∞
|eω(t−s)u(t − s)| dt |eωsv(s)| ds

=
∫ 0

−∞
|eωt u(t)| dt

∫ 0

−∞
|eωsv(s)| ds <∞.

This proves thatw ∈ L1
ω(R−; C). Using Fubini’s theorem once more we get for

all λ ∈ C−ω ,

ŵ(λ) =
∫ 0

−∞
e−λtw(t) dt

=
∫ 0

−∞

∫ 0

t
e−λ(t−s)u(t − s)e−λsv(s) ds dt

=
∫ 0

−∞

∫ s

−∞
e−λ(t−s)u(t − s) dt e−λsv(s) ds

=
∫ 0

−∞
e−λt u(t) dt

∫ 0

−∞
e−λsv(s) ds

= û(λ)v̂(λ).

In particular, ŵ is analytic at infinity. To show that û(A) = û(A)v̂(A) it suffices
to repeat the computation above with e−λt replaced by A−t (and use Theorem
3.12.6). �

Theorem 3.12.9 Let A be the generator of a C0 semigroup A on X with growth
bound ωA. Let u ∈ L1

ω(R−; C) and v ∈ L1
ω(R−; X ) for some ω > ωA, and sup-

pose that the left-sided Laplace transforms of u and v are analytic at infinity.
Define w(t) = ∫ 0

t u(t − s)v(s) ds for all those t ∈ R− for which the integral
converges. Then w ∈ L1

ω(R−; X ) (in particular, w is defined for almost all t),
ŵ(λ) = û(λ)v̂(λ) for λ ∈ C−ω , and∫ 0

−∞
A−tw(t) dt = û(A)

∫ 0

−∞
A−tv(t) dt.

Proof The proof of this theorem is the same as the proof of Theorem 3.12.8.
�
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Lemma 3.12.10 Let β ∈ R and α > 0, and define

f (t) = 1

�(α)
eβt tα−1, t ∈ R+.

Then the (right-sided) Laplace transform of f is given by

f̂ (λ) = (λ− β)−α, λ ∈ C+β .

We leave the proof to the reader (one possibility is to make a (complex)
change of variable from t to u = t/(λ− β) in (3.9.7)).

If U is a Hilbert space and p = 2, then it is possible to say much more about
the behavior of the various Laplace transforms. Some results of this type are
described in Section 10.3.

3.13 Shift semigroups in the frequency domain

The following proposition describes how the shift semigroups introduced in
Examples 2.3.2 and 2.5.3 behave in the terms of Laplace transforms.

Proposition 3.13.1 Let U be a Banach space, let 1 ≤ p ≤ ∞, let ω ∈ R, and
let T > 0.

(i) Let τ t be the bilateral shift (τ t u)(s) = u(s + t) for all s, t ∈ R and all
u ∈ L1

loc(R; U ). Then, for all t ∈ R and all u ∈ L1
loc(R; U ), the bilateral

Laplace transforms τ̂ t u and û of τ t u, respectively u, have the same
domain (possibly empty), and for all z in this common domain,

τ̂ t u(z) = ezt û(z).

(ii) Let τ t
+ = π+τ t for all t ≥ 0, where τ t is the bilateral shift defined in (i).

Then, for all t ≥ 0 and all u ∈ L1
loc(R+; U ), the (one-sided) Laplace

transforms τ̂ t+u and û of τ t
+u, respectively u, have the same domain

(possibly empty), and for all z in this common domain,

τ̂ t+u(z) = ezt
∫ ∞

t
e−zsu(s) ds.

In particular, if u ∈ L p
ω(R+; U ), then τ̂ t u and û are defined at least for

all z ∈ C+ω and the above formula holds.
(iii) Let τ t

− = τ tπ− for all t ≥ 0, where τ t is the bilateral shift defined in (i).
Then, for all t ≥ 0 and all u ∈ L1

loc(R−; U ), the left-sided Laplace
transforms τ̂ t−u and û of τ t

−u, respectively u, have the same domain
(possibly empty), and for all z in this common domain,

τ̂ t−u(z) = ezt û(z).
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In particular, if u ∈ L p
ω(R−; U ), then τ̂ t u and û are defined at least for

all z ∈ C−ω and the above formula holds.
(iv) Let τ t

[0,T ), t ≥ 0, be the finite left shift introduced in Example 2.3.2(iv).
Then, for all u ∈ L1([0, T ]; U ), the finite Laplace transform of τ t

[0,T )u
over [0, T ] is given by (for all z ∈ C))

τ̂ t
[0,T )u(z) =

{
ezt
∫ T

t e−zsu(s) ds, 0 ≤ t ≤ T,

0, otherwise.

(v) Let τ t
TT

, t ∈ R, be the circular left shift introduced in Example 2.3.2(v).
Then, for all u ∈ L1(TT ; U ), the finite Laplace transform of τ t

TT
u over

[0, T ] is given by (for all z ∈ C))

τ̂ t
TT

u(z) = ezt
∫ t+T

t
e−zsu(s) ds.

In particular, this Laplace transform is a T -periodic function of t .

Proof The proof is the same in all cases: it suffices to make a change of variable
v = s + t in the integral defining the Laplace transform of the shifted u (and
adjust the bounds of integration appropriately):∫

e−zsu(s + t) ds = ezt
∫

e−zvu(v) dv.

�

From Proposition 3.13.1 we observe that especially the bilateral shift τ t

and the outgoing shift τ t
− have simple Laplace transform descriptions, whereas

the descriptions of the other shifts are less transparent. Fortunately, all the
generators and the resolvents of the various shifts have simple descriptions.

Proposition 3.13.2 The generators of the (semi)groups τ t , τ t
+, τ t

−, τ t
[0,T ), and

τ t
TT

in Examples 2.3.2 and 2.5.3 (see Example 3.2.3), have the following de-
scriptions in terms of Laplace transforms:

(i) For all u in the domain of the generator d
ds of the bilateral left shift group

τ t on L1
ω(R; U ), the bilateral Laplace transforms of u and u̇ = d

ds u are
defined (at least) on the vertical line 
z = ω, and̂̇u(z) = zû(z), 
z = ω.

(ii) For all u in the domain of the generator d
ds+ of the incoming left shift

semigroup τ t
+ on L p

ω(R+; U ) or on BUCω(R+; U ), the Laplace transforms
of u and u̇ = d

ds+u are defined (at least) on the half-plane C+ω , and

̂̇u(z) = zû(z)− u(0), 
z > ω.
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(iii) For all u in the domain of the generator d
ds− of the outgoing left shift

semigroup τ t
− on L p

ω(R−; U ) or on {u ∈ BUCω(R
−

; U ) | u(0) = 0}, the
left-sided Laplace transforms of u and u̇ = d

ds+u are defined (at least) on
the half-plane C−ω , and̂̇u(z) = zû(z), 
z < ω.

(iv) For all u in the domain of the generator d
ds [0,T )

of the finite left shift
semigroup τ t

[0,T ) on L p([0, T ); U ) or on {u ∈ C([0, T ]; U ) | u(T ) = 0},
the finite Laplace transforms over [0, T ] of u and u̇ = d

ds [0,T )
u are

related as follows: ̂̇u(z) = zû(z)− u(0), z ∈ C.

(v) For all u in the domain of the generator d
ds TT

of the circular left shift
group τ t

TT
on L p(TT ; U ) or on C(TT ; U ), the finite Laplace transforms

over [0, T ] of u and u̇ = d
ds TT

u are related as follows:

̂̇u(z) = zû(z)+ (e−zT − 1)u(0), z ∈ C.

Proof All the proofs are identical: it suffices to integrate by parts in the integral
defining the particular Laplace transform, and to take into account possible
nonzero boundary terms (i.e., the terms −u(0) and (e−zT − 1)u(0) in (ii), (iv)
and (v)). �

Proposition 3.13.3 The resolvents of the generators d
ds , d

ds+, d
ds−, d

ds [0,T )
, and

d
ds TT

in Examples 3.2.3 and 2.5.3 (see Example 3.3.2), have the following de-
scriptions in terms of Laplace transforms:

(i) For all f ∈ L1
ω(R; U ) and all λ with 
λ �= ω, the bilateral Laplace

transforms of f and u = (λ− d
ds

)−1
f are defined (at least) on the

vertical line 
z = ω, and

û(z) = (λ− z)−1 f̂ (z), 
z = ω.

(ii) For all f ∈ L p
ω(R+; U ) or f ∈ BUCω(R+; U ) and all λ ∈ C+ω , the

Laplace transforms of f and u = (λ− d
ds+
)−1

f are defined (at least) on
the half-plane C+ω , and

û(z) = (λ− z)−1( f̂ (z)− f̂ (λ)), 
z > ω.

(iii) For all f ∈ L p
ω(R−; U ) or f ∈ BUCω(R−; U ) with f (0) = 0 and all λ

with 
λ > ω, the left-sided Laplace transforms of f and
u = (λ− d

ds−
)−1

f are defined (at least) on the half-plane C−ω , and

û(z) = (λ− z)−1 f̂ (z), 
z < ω.
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(iv) For all f ∈ L p
ω([0, T ]; U ) or f ∈ Cω([0, T ]; U ) with f (T ) = 0 and all

λ ∈ C, the finite Laplace transforms over [0, T ] of f and
u = (λ− d

ds [0,T )

)−1
f are related as follows:

û(z) = (λ− z)−1( f̂ (z)− f̂ (λ)), z �= λ.

(v) For all f ∈ L p(TT ; U ) or f ∈ C(TT ; U ) and all
λ /∈ {2π jm/T | m = 0,±1,±2, . . .}, the finite Laplace transforms over
[0, T ] of f and u = (λ− d

ds TT

)−1
f are related as follows:

û(z) = (λ− z)−1( f̂ (z)− (1− e−zT )(1− e−λT )−1 f̂ (λ)), z �= λ.

Proof Throughout this proof the convergence of the indicated Laplace trans-
forms is obvious, so let us only concentrate on the formulas relating û(z) to
f̂ (z).

(i) This follows from Proposition 3.13.2(i), which given f̂ (z) = λû(z)−̂̇u(z) = (λ− z)û(z).
(ii) By Proposition 3.13.2(ii), f̂ (z) = λû(z)− ̂̇u(z) = (λ− z)û(z)+ u(0).

Taking z = λ we get u(0) = f̂ (λ), and so

(λ− z)û(z) = f̂ (z)− f̂ (λ).

(iii)–(iv) These proofs are identical to the proofs of (i) and (ii), respectively.
(v) By Proposition 3.13.2(v),

f̂ (z) = λû(z)− ̂̇u(z) = (λ− z)û(z)+ (1− e−zT )u(0).

Taking z = λ we get u(0) = (1− e−λT )−1 f̂ (λ), and so

(λ− z)û(z) = f̂ (z)− (1− e−zT )(1− e−λT )−1 f̂ (λ).

�

3.14 Invariant subspaces and spectral projections

We begin by introducing some terminology.

Definition 3.14.1 We say that the Banach space X is the direct sum of Y and
Z and write either X = Y +̇ Z or X = [ Y

Z

]
if Y and Z are closed subspaces of

X and every x ∈ X has a unique representation of the form x = y + z where
y ∈ Y and z ∈ Z . A subspace Y of X is complemented if X is the direct sum
of Y and some other subspace Z .

Instead of writing x = y + z (corresponding to the notation X = Y +̇ Z ) as
we did above we shall also use the alternative notation x = [ y

z

]
(corresponding

to the notation X = [ Y
Z

]
), and we identify y ∈ Y with

[ y
0

] ∈ X . Note that
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every closed subspace Y of a Hilbert space X is complemented: we may take
the complement of Y ⊂ X to be Z = Y⊥.

Lemma 3.14.2 Let X be a Banach space.

(i) If π is an arbitrary projection on X (i.e., π ∈ B(X ) and π = π2), then
X = N (π ) +̇R (π ). (In particular, the range of a projection operator is
closed.)

(ii) Conversely, to each splitting of X into a direct sum X = Y +̇ Z there is a
unique projection π such that Y = N (π ) and Z = R (π ). We call π the
projection of X onto Z along Y .

Proof (i) Clearly, every x ∈ X can be split into x = πx + (1− π )x whereπx ∈
R (π ) and (1− π )x ∈ N (π ) (since π (1− π )x = πx − π2x = 0). Obviously,
if x ∈ N (1− π ), then x = πx , so x ∈ R (π ), and conversely, if x ∈ R (π ),
then x = πy for some y ∈ X , so πx = π2 y = πy = x , i.e., x ∈ N (1− π ).
This means that R (π ) = N (1− π ), hence R (π ) is closed.

(ii) For each x ∈ X , split x (uniquely) into x = y + z where y ∈ Y and
z ∈ Z . Define πx = y. Then πx = x iff x ∈ Y and πx = 0 iff x ∈ Z . It is easy
to see that the operator π defined in this way is linear and closed, and that it
satisfies π = π2. By the closed graph theorem, π ∈ B(X ). �

Definition 3.14.3 Let X be a Banach space, and let A : X ⊃ D (A)→ X be a
linear operator.

(i) A subspace Y of X is an invariant subspace of A if Ax ∈ Y for every
x ∈ D (A) ∩ Y .

(ii) A pair of subspaces Y and Z of X are reducing subspaces of A if
X = Y +̇ Z , every x ∈ D (A) is of the form x = y + z where
y ∈ D (A) ∩ Y and z ∈ D (A) ∩ Z , and both Y and Z are invariant
subspaces of A.

(iii) By an invariant subspace of a C0 semigroup A on X we mean a subspace
Y which is an invariant subspace of At for every t ≥ 0.

(iv) By a pair of reducing subspaces of a C0 semigroup A on X we mean a
pair of subspaces which are reducing subspaces of At for every t ≥ 0.

Theorem 3.14.4 Let A be a C0 semigroup on a Banach space X with gener-
ator A and growth bound ωA, and let Y be a closed subspace of X. Denote
the component of ρ(A) which contains an interval [ω,∞) by ρ∞(A) (by Theo-
rem 3.2.9(i) such an interval always exists). Then the following conditions are
equivalent.
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(i) Y is an invariant subspace of A.
(ii) Y is an invariant subspace of (λ− A)−1 for some λ ∈ ρ∞(A).

(iii) Y is an invariant subspace of (λ− A)−1 for all λ ∈ ρ∞(A).
(iv) Y is an invariant subspace of A and ρ(A|D(A)∩Y ) ∩ ρ∞(A) �= ∅.

If these equivalent conditions hold, then it is also true that

(v) A|Y is a C0 semigroup on Y whose generator is A|D(A)∩Y .

Here it is important that Y is closed. For example, D (A) is an invariant
subspace of A but not of A.

Proof (i)⇒ (ii): If (i) holds, then by Theorem 3.2.9(i), for all λ ∈ ω+A and all
x ∈ Y ,

(λ− A)−1x =
∫ ∞

0
e−λsAs x ∈ Y.

(ii)⇒ (iii): Take an arbitrary x∗ ∈ Y⊥, where

Y⊥ = {x∗ ∈ X∗ | 〈x, x∗〉(X,X∗) = 0 for all x ∈ Y }.

Fix x ∈ Y , and take someλ0 ∈ ρ∞(A) such that Y is invariant under (λ0 − A)−1.
Then (λ0 − A)−n x ∈ Y for all n = 1, 2, 3, . . ., hence 〈(λ0 − A)−n x, x∗〉(X,X∗) =
0 for all n = 1, 2, 3, . . .Define f (λ) = 〈(λ− A)−n x, x∗〉(X,X∗). Then f is an-
alytic in ρ∞(A), and all its derivatives vanish at the point λ0 (see (3.2.6)).
Therefore f (λ) = 〈(λ− A)−n x, x∗〉(X,X∗) = 0 for all λ ∈ ρ∞(A). Taking the
intersection over all x∗ ∈ Y⊥ we find that (λ− A)−n x ∈ Y .

(iii)⇒ (i): If (iii) holds, then by Theorem 3.7.5, for all t ≥ 0 and all x ∈ Y ,

At x = lim
n→∞

(
1− t

n
A
)−n

x ∈ Y.

(i)⇒ (iv): For all x ∈ D (A) ∩ Y ,

Ax = lim
h↓0

1

h
(Ah − 1)x ∈ Y.

That ρ(A|D(A)∩Y ) ∩ ρ∞(A) �= ∅ follows from (v) and Theorem 3.2.9(i).
(i)⇒ (v): Trivially, A|Y is a C0 semigroup on Y (since Y is invariant, and

we use the same norm in Y as in X ). Let us denote its generator by Ã. We
have just seen that x ∈ D ( Ã) whenever x ∈ D (A) ∩ Y , and that Ãx = Ax for
all x ∈ D (A) ∩ Y . Conversely, if x ∈ D ( Ã), then x ∈ Y and 1

h (Ah − 1)x has a
limit in Y as h ↓ 0, so x ∈ D (A) ∩ Y .
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(iv)⇒ (ii): Assume (iv). Let λ ∈ ρ(A|D(A)∩Y ) ∩ ρ∞(A). Then λ− A maps
D (A) ∩ Y one-to-one onto Y (since λ ∈ ρ(A|D(A)∩Y ) and (λ− A|D(A)∩Y )y =
(λ− A)y for every y ∈ D (A) ∩ Y ). This implies that (λ− A)−1 maps Y one-
to-one onto D (A) ∩ Y . In particular, Y is invariant under (λ− A)−1. �

Invariance is preserved under the symbolic calculus described at the begin-
ning of Section 3.9.

Lemma 3.14.5 Let A ∈ B(X ), let � be a piecewise continuously differentiable
Jordan curve which encircles σ (A) counter-clockwise, and let f be analytic on
� and inside �. Define f (A) by (3.9.1). Then the following claims are true.

(i) If Y is a closed invariant subspace of A, then Y is also invariant under
f (A).

(ii) If Y and Z are a pair of reducing subspaces of A, then they are also
reducing for f (A).

Proof This follows from (3.9.1), the fact that Y and Z are closed, and Theorem
3.14.4. �

In the decomposition of systems into smaller parts we shall encounter closed
invariant subspaces contained in the domain of the generator.

Theorem 3.14.6 Let A : X ⊃ D (A)→ X be a closed linear operator, and
let Y be an invariant subspace of A which is contained in D (A) and closed
in X. Then Y ⊂⋂∞n=1 D (An), A|Y ∈ B(Y ), and (An)|Y = (A|Y )n for all n =
1, 2, 3, . . .. If A is the generator of a C0 semigroup A on X, then Y is invariant
under A and A|Y is a uniformly continuous semigroup on Y whose generator
is A|Y .

Proof The operator A|Y is closed since A is closed. Its domain is all of Y , and
therefore, by the closed graph theorem, A|Y ∈ B(Y ).

Let x ∈ Y . Then x ∈ D (A) (since Y ⊂ D (A)), and Ax ∈ Y (since Y is in-
variant). Repeating the same argument with x replaced by Ax we find that
Ax ∈ D (A), i.e, x ∈ D (A2

)
, and that (A2)|Y = (A|Y )2. Continuing in the

same way we find that Y ⊂⋂∞n=1 D (An) and that (An)|Y = (A|Y )n for all
n = 1, 2, 3, . . .

That Y is invariant under A follows from Theorem 3.14.4 (every λwith |λ| >
‖A|Y‖ belongs to the resolvent set of A|Y ). That A|Y is uniformly continuous
follows from the fact that its generator A|Y is bounded. �

We now turn our attention to subspaces which are reducing and not just
invariant.
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Lemma 3.14.7 Let X = Y +̇ Z, let π be the projection of X onto Y along Z,
and let A : X ⊃ D (A)→ X be a linear operator. Then Y and Z is a pair of
reducing subspaces of A if and only if π maps D (A) into D (A) and π Ax =
Aπx for all x ∈ D (A).

Proof Assume that π maps D (A) into itself and that π Ax = Aπx for all
x ∈ D (A). Then every x ∈ D (A) can be split into x = πx + (1− π )x where
πx ∈ D (A) ∩ Y and (1− π )x ∈ D (A) ∩ Z . Moreover, for all y ∈ D (A) ∩ Y ,
π Ay = Aπy = Ay, hence Ay ∈ Y , and for all z ∈ D (A) ∩ Z , π Az = Aπ z =
0, hence Az ∈ Z . Thus both Y and Z are invariant subspaces of A, and Y and
Z is a pair of reducing subspaces of A.

Conversely, suppose that Y and Z is a pair of reducing subspaces of A.
Then π maps D (A) into D (A) (since every x ∈ X has a unique representation
x = y + z with y ∈ D (A) ∩ Y and z ∈ D (A) ∩ Z , and πx = y). Moreover,
for all x ∈ D (A), π A(1− π )x = 0 and (1− π )Aπ = 0 (since 1− π is the
complementary projection of X onto Z along Y ), and

π A = π Aπ = Aπ.

�

Theorem 3.14.8 Let X = Y +̇ Z, let π be the projection of X onto Y along Z,
and let A : X ⊃ D (A)→ X be a linear operator with a nonempty resolvent
set. Then the following conditions are equivalent:

(i) Y and Z are reducing subspaces of A,
(ii) Y and Z are reducing subspaces of (λ− A)−1 for some λ ∈ ρ(A),

(iii) Y and Z are reducing subspaces of (λ− A)−1 for all λ ∈ ρ(A).

If, in addition, A is the generator of a C0 semigroup A, then (i)–(iii) are equiv-
alent to

(iv) Y and Z are reducing subspaces of A.

Proof Let π denote the projection of X onto Y along Z .
(i)⇒ (iii): Assume (i). By Lemma 3.14.7, (λ− A)πx = π (λ− A)x for all

λ ∈ C and all x ∈ D (A). In particular, if we take λ ∈ ρ(A), then we can apply
(λ− Ã)−1 to both sides of this identity and replace x by (λ− A)−1x to get for
all x ∈ X ,

π (λ− A)−1x = (λ− A)−1πx .

By Lemma 3.14.7, this implies (iii).
(iii)⇒ (ii): This is trivial.
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(ii)⇒ (i): Assume (ii). Then, for all x ∈ D (A),

πx = (λ− A)−1π (λ− A)x .

This implies that π maps D (A) into itself. Applying (λ− A) to both sides of
this identity we get (λ− A)πx = π (λ− A)x , or equivalently, π Ax = Aπx .
By Lemma 3.14.7, this implies (i).

(iv)⇒ (ii): This follows from the fact that (i) implies (ii) in Theorem 3.14.4.
(iii)⇒ (iv): If (iii) holds, then by Theorem 3.7.5, for all t ≥ 0 and all x ∈ X ,

Atπx = lim
n→∞

(
1− t

n
A
)−n

πx = π lim
n→∞

(
1− t

n
A
)−n

x = πAt x .

By Lemma 3.14.7, this implies (iv). �

Corollary 3.14.9 If the equivalent conditions (i)–(iii) in Theorem 3.14.8 hold,
then ρ(A) = ρ(A|Y ) ∩ ρ(A|Z ), and for all λ ∈ ρ(A),

(λ− A|Y )−1 = (λ− A)−1
|Y , (λ− A|Z )−1 = (λ− A)−1

|Z ,

(λ− A)−1 = (λ− A|Y )−1π + (λ− A|Z )−1(1− π ),
(3.14.1)

where π is the projection of X onto Y along Z.

Proof Let λ ∈ C. Then λ ∈ ρ(A) if and only if the equation (λ− A)x = w has
a unique solution x for every w ∈ X , and x depends continuously on w. By
projecting this equation onto Y and Z (i.e., we multiply the equation by π and
1− π , where π is the projection onto Y along Z , and recall that π commutes
with A) we get the two independent equations

(λ− A|Y )y = πw, (λ− A|Y )z = (1− π )w,

where y = πx ∈ Y and z = x − y ∈ Z . The original equation is solvable if
and only if both of these equations are solvable, and this implies that ρ(A) =
ρ(A+) ∩ ρ(A−). Furthermore,

x = (λ− A)−1w = y + z

= (λ− A|Y )−1πw + (λ− A|Y )−1(1− π )w,

which gives us (3.14.1). �

One common way to construct invariant subspaces of a semigroup is to use
a spectral projection. This is possible whenever the spectrum of the generator
is not connected.

Theorem 3.14.10 Let A : X ⊃ D (A)→ X be a densely defined linear opera-
tor with a nonempty resolvent set ρ(A). Let� be a positively oriented piecewise
continuously differentiable Jordan curve contained in ρ(A) which separates
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σ (A) into two nontrivial parts σ (A) = σ+(A) ∪ σ−(A), where σ+(A) lies in-
side � and σ−(A) lies outside � (in particular,∞ /∈ σ+(A)). Then the operator
π ∈ B(X ) defined by

π = 1

2π j

∮
�

(λ− A)−1 dλ. (3.14.2)

is a projection which maps X intoD (A). Denote X+ = R (π ) and X− = N (π ),
A+ = A|X+ and A− = A|X− . Then the following claims are true.

(i) X = X+ +̇ X−, and X+ and X− are reducing subspaces of A and of
(λ− A)−1 for all λ ∈ ρ(A).

(ii) X+ ⊂
⋂∞

n=1 D (An), A+ ∈ B(X+), and for all n = 1, 2, 3, . . .,
(A+)n = An

|X+ and (A−)n = An
|D(An )∩X− .

(iii) σ (A+) = σ+(A) and σ (A−) = σ−(A).
(iv) If A is the generator of a C0 semigroup A, then A+ is the generator of the

norm-continuous semigroup A+ = A|X+ and A− is the generator of the
C0 semigroup A− = A|X− .

The projectionπ constructed above is often referred to as the Riesz projection
corresponding to the part σ+(A) of σ (A).

Proof As in Section 3.6, let us denote D (A) by X1. Then the function λ �→
(λ− A)−1 is bounded and (uniformly) continuous on�with values inB(X ; X1),
so π ∈ B(X ; X1).

Let µ ∈ ρ(A). Then (µ− A)−1 is analytic on �, so

(µ− A)−1π = (µ− A)−1 1

2π j

∮
�

(λ− A)−1 dλ

= 1

2π j

∮
�

(µ− A)−1(λ− A)−1 dλ = π (µ− A)−1,

since (µ− A)−1 and (λ− A)−1 commute. Thus, π commutes with (µ− A)−1.
Furthermore, by the resolvent identity (3.2.1),

(µ− A)−1π = 1

2π j

∮
�

(µ− A)−1 − (λ− A)−1

λ− µ
dλ

= (µ− A)−1

2π j

∮
�

(λ− µ)−1 dλ− 1

2π j

∮
�

(λ− A)−1

λ− µ
dλ

=
{

(µ− A)−1 − 1
2π j

∮
�

(λ−A)−1

λ−µ dλ, if µ lies inside �,

− 1
2π j

∮
�

(λ−A)−1

λ−µ dλ, if µ lies outside �.
(3.14.3)

We next show that π is a projection. If we perturb the path � in such a way
that the new path �1 lies outside �, and so that both �1 and � together with the
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area in between lie in ρ(A), then, by the analyticity of the resolvent (λ− A)−1

in this area,

π = 1

2π j

∮
�1

(µ− A)−1 dµ.

Therefore, by (3.14.2), (3.14.3) (note that the index of λ with respect to �1 is
one)

π2 = 1

2π j

∮
�1

(µ− A)−1π dµ

= − 1

2π j

∮
�1

1

2π j

∮
�

(λ− A)−1

λ− µ
dλ dµ

= − 1

2π j

∮
�

(λ− A)−1 1

2π j

∮
�1

dµ

λ− µ
dλ

= 1

2π j

∮
�

(λ− A)−1 dλ = π.

Thus π2 = π , and we have proved that π is a projection. By Lemma 3.14.2,
X = X+ +̇ X−. (In particular, X+ and X− are closed.)

We now proceed to verify properties (i)–(iv).
(i) We know from the argument above that π commutes with (λ− A)−1 for

all λ ∈ ρ(A), and we get (i) from Lemma 3.14.7 (applied to (λ− A)−1) and
Theorem 3.14.8.

(ii) This follows from Theorem 3.14.6.
(iii) By Corollary 3.14.9, ρ(A) = ρ(A+) ∩ ρ(A−). Thus, to prove (iii) it

suffices to show that A+ has no spectrum outside� and that A− has no spectrum
inside �.

Let µ ∈ ρ(A) lie outside �. Then µ ∈ ρ(A+), and by (3.14.3) and Corollary
3.14.9, for all x ∈ X+,

(µ− A+)−1x = − 1

2π j

∮
�

(λ− A)−1

λ− µ
x dλ.

Thus, in particular,∥∥(µ− A+)−1
∥∥ ≤ 1

2π

∮
�

|λ− µ|−1
∥∥(λ− A)−1

∥∥| dλ|.
We know that neither A nor A+ has any spectrum in a neighborhood of �
(since � ∈ ρ(A)), and away from � the right-hand side of the above inequality
is bounded, uniformly in µ. This implies that A+ cannot have any spectrum
outside �, because by Lemma 3.2.8(iii),

∥∥(µ− A+)−1
∥∥→∞ asµ approaches

a point in σ (A+). In the same way it can be shown that A− cannot have any
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spectrum inside �: note that by (3.14.3),

(µ− A−)−1x = 1

2π j

∮
�

(λ− A)−1

λ− µ
x dλ

for all x ∈ X− and all µ ∈ ρ(A) which lie inside �.
(iv) See Theorems 3.14.6 and 3.14.8. �

In the case of a normal semigroup it is possible to use a different type of
spectral projection, which does not require the spectrum of the generator to be
disconnected.

Theorem 3.14.11 Let A be a closed and densely defined normal operator on
a Hilbert space X (i.e., A∗A = AA∗), and let E be the corresponding spectral
resolution of A, so that

〈Ax, y〉X =
∫
σ (A)

λ〈E( dλ)x, y〉, x ∈ D (A) , y ∈ X.

Let F be a bounded Borel set in C, and let π = E(F), i.e.,

〈πx, y〉X =
∫
σ (A)∩F

〈E( dλ)x, y〉, x ∈ X, y ∈ X.

Then π is an orthogonal projection which maps X into D (A). Denote X+ =
R (π ) and X− = N (π ), A+ = A|X+ and A− = A|X− . Then the claims (i), (ii),
and (iv) in Theorem 3.14.10 hold, and the claim (iii) is replaced by

(iii′) σ (A+) = σ (A) ∩ F, and σ (A−) = σ (A) \ F.

We leave the proof of this theorem to the reader. (That π is a self-adjoint
projection follows from the definition of a spectral resolution, and the rest
follows either directly from the properties of a spectral resolution or from an
argument similar to the one used in the proof of Theorem 3.14.10. Note, in
particular, that R (π ) ⊂ D (A) since F is bounded.)

So far we have primarily looked at closed invariant subspaces. There is also
another class of subspaces that play an important role in the theory, namely
invariant Banach spaces which are continuously embedded in the state space.
An example of this is the spaces Xα with α > 0 introduced in Sections 3.6 and
3.9. These spaces are typically invariant under the semigroup A, but not under
its generator A.

Definition 3.14.12 Let A : X ⊃ D (A)→ A be a linear operator, and let Y be
a subspace of X (not necessarily dense). By the part of A in Y we mean the
operator Ã which is the restriction of A to

D ( Ã) = {x ∈ D (A) ∩ Y | Ax ∈ Y }.
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Definition 3.14.13 Let A be a C0 semigroup on the Banach space X with
generator A, and let Y be another Banach space embedded in X (not necessarily
densely). We call Y A-admissible if Y is invariant under A and the restriction
of A to Y is strongly continuous in the norm of Y (i.e, A|Y is a C0 semigroup
on Y ).

Theorem 3.14.14 Let A be a C0 semigroup on the Banach space X with gener-
ator A and growth bound ωA, and let Y be another Banach space embedded in
X (not necessarily densely). Then Y is A-admissible if and only if the following
two conditions hold:

(i) Y is an invariant subspace of (λ− A)−1 for all real λ > ωA,
(ii) the part of A in Y is the generator of a C0 semigroup on Y .

When these conditions hold, then the generator of A|Y is the part of A in Y .

Proof Assume that Y is A-admissible. Then Theorem 3.2.9(i) (applied to A|Y )
implies (i) (and it is even true that Y is an invariant subspace of (λ− A)−1 for
all real λ ∈ C+ωA

). Denote the generator of A|Y by A1, and denote the part of A
in Y by Ã. Since the norm in Y is stronger than the norm in X , it follows easily
that D (A1) ⊂ D (A) ∩ Y , and that for x ∈ D (A1), Ax = A1x ∈ Y . Thus, Ã is
an extension of A1. On the other hand, if x ∈ D ( Ã), then Ax ∈ Y , and each
term in the identity

At x − x =
∫ t

0
As Ax ds, t ≥ 0,

belongs to Y . Dividing by t and letting t ↓ 0 we find that x ∈ D (A1). Thus,
A1 = Ã, and Ã is the generator of the C0 semigroup A|Y on Y .

Conversely, suppose that (i) and (ii) hold. Denote the C0 semigroup generated
by Ã by Ã. For all x ∈ D ( Ã) and all λ > ωA we have (since λ ∈ ρ(A))

(λ− A)−1(λ− Ã)x = (λ− A)−1(λ− A)x = x,

and for all y ∈ Y we have (because of (ii))

(λ− Ã)(λ− A)−1x = (λ− A)(λ− A)−1x = x .

Thus, (λ− Ã) maps D ( Ã) one-to-one onto Y , and (λ− Ã)−1 is the restriction
of (λ− A)−1 to Y . Fix t > 0, and choose n so large that n/t > ωA. Then, for
all λ > ωA and all y ∈ Y ,(

1− t

n
A
)−n

y =
(

1− t

n
Ã
)−n

y.

Let n→∞. By Theorem 3.7.5, the left-hand side tends to At y in X and the
right-hand side tends to Ãt y in Y , hence in X . Thus, Ã = A|Y . This implies
both that Y is invariant under A, and that A|Y is strongly continuous. �
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Let us end this section by proving the following extension of Theorem 3.14.8
(to get that theorem we take X̃ = X , E = π , Ã = A, and Ã = A).

Theorem 3.14.15 Let A be the generator of a C0 semigroup A on X, let Ã
be the generator of a C0 semigroup Ã on X̃ , and let E ∈ B(X ; X̃ ). Then the
following conditions are equivalent.

(i) EAt = Ãt E for all t ≥ 0.
(ii) E(λ− A)−1 = (λ− Ã)−1 E for some λ ∈ ρ(A) ∩ ρ( Ã).

(iii) E(λ− A)−1 = (λ− Ã)−1 E for all λ ∈ ρ(A) ∩ ρ( Ã).
(iv) E maps D (A) into D ( Ã), and E Ax = AEx for all x ∈ D (A).

If, in addition, A and Ãt are groups, then these conditions are further equivalent
to

(v) EAt = Ãt E for all t ∈ R.

Proof (i)⇒ (ii): If (i) holds, then by Theorem 3.2.9(i), for allλ > max{ωA, ωÃ}
and all x ∈ X ,

E(λ− A)−1x =
∫ ∞

0
e−λs EAs x =

∫ ∞
0

e−λsÃs Ex = (λ− Ã)−1 Ex .

(ii)⇒ (iv): By (ii), for all x ∈ D (A),

Ex = (λ− Ã)−1 E(λ− A)x .

This implies that E maps D (A) into D ( Ã). Applying (λ− Ã) to both sides of
this identity we get (λ− Ã)Ex = E(λ− A)x , or equivalently, E Ax = ÃEx .

(iv)⇒ (iii): If (iv) holds, then (λ− Ã)Ex = E(λ− A)x for all λ ∈ C and
all x ∈ D (A). In particular, if we take λ ∈ ρ(A) ∩ ρ( Ã), then we can apply
(λ− Ã)−1 to both sides of this identity and replace x by (λ− A)−1x to get for
all x ∈ X ,

E(λ− A)−1x = (λ− Ã)−1 Ex .

(iii)⇒ (i): If (iii) holds, then by Theorem 3.7.5, for all t ≥ 0 and all x ∈ X ,

At Ex = lim
n→∞

(
1− t

n
A
)−n

Ex = E lim
n→∞

(
1− t

n
Ã
)−n

x = EÃt x .

(v) We get EA−t = Ã−t E for all t ≥ 0 by multiplying the identity in (i) by
Ã−t to the left and by A−t to the right.

�
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3.15 Comments

By now, most of the results in this chapter are classic. We refer the reader to
Davies (1980), Dunford and Schwartz (1958, 1963, 1971), Goldstein (1985),
Lunardi (1995), Nagel (1986), Hille and Phillips (1957), Pazy (1983), and
Yosida (1974) for the history and theory of C0 semigroups beyond what we
have presented here.

Sections 3.2–3.3 The generators of the shift semigroups and their resolvents
have been studied in, e.g., Hille and Phillips (1957, Sections 19.2–19.4). Diag-
onal semigroups appear frequently in the theory of parabolic and hyperbolic
partial differential equations. Sometimes the basis of eigenvectors of the gen-
erator is not orthonormal, but instead a Riesz basis in the sense of Curtain
and Zwart (1995, Definition 2.3.1). However, a Riesz basis can be transformed
into an orthonormal basis by means of a similarity transformation of the type
described in Example 2.3.7. This makes it easy to extend the theory for diag-
onal semigroups presented in Examples 3.3.3 and 3.3.5 to semigroups whose
generator has a set of eigenvectors which are a Riesz basis for the state space.
These types of semigroups are studied in some detail by Curtain and Zwart
(1995).

Sections 3.4, 3.7, and 3.8 See, for example, Pazy (1983), for the history of
the Hille–Yosida and Lumer–Phillips theorems, the different approximation
theorems, and the Cauchy problem.

Section 3.5 Our presentation of the dual semigroup follows roughly Hille and
Phillips (1957, Chapter 14), except for the fact that we use the conjugate-linear
dual instead of the linear dual.

Section 3.6 Rigged spaces of the type discussed in Section 3.6 are part of the tra-
ditional semigroup formulation of partial differential equations of parabolic and
hyperbolic type. See, for example, Lions (1971), Lunardi (1995), and Lasiecka
and Triggiani (2000a, b). In the reflexive case the space X−1 is usually defined
to be the dual of the domain of the adjoint operator (see Remark 3.6.1). The
spaces X1 and X−1 have been an important part of the theory of well-posed lin-
ear systems since Helton (1976). Spaces Xα of fractional order are introduced
in Section 3.9.

Section 3.9 This section is based in part on Dunford and Schwartz (1958,
Section VII.9), Rudin (1973, Chapter 10), and Pazy (1983, Section 2.6).

Section 3.10 The results of this section are fairly standard. Analytic semi-
groups most frequently arise from the solution of parabolic or heavily damped
hyperbolic partial differential equations. Theorem 3.10.11 has been modeled
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after Lunardi (1995, Proposition 2.4.1) and Mikkola (2002, Lemma 9.4.3). For
further results about analytic semigroups we refer the reader to standard text
books, such as Goldstein (1985, Sections 1.5, 2.4 and 2.5), Hille and Phillips
(1957, Chapter 17), Lunardi (1995), Lasiecka and Triggiani (2000a, b), and
Pazy (1983, Sections 2.5, 7.2 and 7.3).

Section 3.11 The proof of Theorem 3.11.4 is based on Davies (1980, Theorem
2.19), which goes back to Hille and Phillips (1957, Theorem 16.4.1, p. 460).
This theorem is also found in Nagel (1986, p. 87). The reduction of the spectrum
determined growth property to the corresponding spectral inclusion that we use
in the proof of Theorem 3.11.4 is classic; see, e.g., Slemrod (1976, pp. 783–784),
Triggiani (1975, p. 387), Zabczyk (1975), or Nagel (1986, p. 83). Corollary
3.11.5(i) is due to Triggiani (1975, pp. 387–388) and Corollary 3.11.5(ii) is
due to Zabczyk (1975). Theorem 3.11.6 was proved independently by Herbst
(1983), Huang (1985), and Prüss (1984). Lemma 3.11.7 has been modeled after
G. Weiss (1988b, Theorem 3.4). The implication (v)⇒ (i) in Theorem 3.11.8
is often called Datko’s theorem after Datko (1970, p. 615) who proves this
implication in the Hilbert space case with p = 2. The general version of the
same implication was proved by Pazy (1972) (see Pazy (1983, Theorem 4.1
and p. 259)). Our proof follows the one given by Pritchard and Zabczyk (1981,
Theorem 3.4). In the reflexive case the implication (vii)⇒ (i) can be reduced
to the implication (v) ⇒ (i) through duality, but we prefer to give a direct
proof, which is valid even in the non reflexive case (the non reflexive part of the
implication (vii)⇒ (i) may be new). Our proof of the implication (ix)⇒ (i)
in Theorem 3.11.8 has been modeled after G. Weiss (1988b, Theorem 4.2) (we
have not been able to find this explicit implication in the existing literature).
Examples of semigroups which do not have the spectrum determined growth
property are given in Curtain and Zwart (1995, Example 5.1.4 and Exercise
5.6), Greiner et al. (1981, Example 4.2), Davies (1980, Theorem 2.17), Hille
and Phillips (1957, p. 665), and Zabczyk (1975). For additional results about the
spectrum determined growth property, and more generally, the spectral mapping
property, we refer the reader to van Neerven (1996), which is devoted to this
very question.

Section 3.12 The frequency domain plays a very important role in many texts,
including this one. Most mathematical texts use the Fourier transform instead of
the Laplace transform, and they replace the right half-plane by the upper half-
plane. However, we prefer to stick to the engineering tradition at this point. It
is possible to develop a symbolic calculus for generators of semigroups based
on the representation of û(A) in Theorem 3.12.6 (this is done in Dunford and
Schwartz (1958, Section VIII.2) in the case where A generates a group rather
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than a semigroup), and our definition of (γ − A)−α given in Section 3.9 is based
on a special case of that calculus.

Section 3.13 Most books on operator theory define the shift semigroups using
the characterization given in Propositions 3.13.1 and 3.13.2 (and they com-
pletely ignore the time-domain versions of these semigroups). This is especially
true in the Hilbert space L2-well-posed case. In our context the time-domain
versions are more natural to work with.

Section 3.14 The results in this section are classic (but not always that easy
to find in the literature). Our presentation follows loosely Curtain and Zwart
(1995) and Pazy (1983).



4

The generators of a well-posed linear system

In Chapter 2 we introduced the notion of a well-posed linear system by de-
scribing the algebraic and continuity properties of the mappings from the initial
state and the input function to the final state and the output function. Here we
develop an alternative approach which replaces the algebraic ‘integral level’
description of a system by a ‘differential level’ description involving one dif-
ferential equation and one algebraic equation. We also introduce the transfer
function of a well-posed linear system. Furthermore, by using the ‘differential
level’ we are able to introduce an even more general class of systems which
need not be well-posed.

4.1 Introduction

We started out in Section 1.1 with a system of the type

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t), t ≥ s,

x(s) = xs .

(4.1.1)

where A is the generator of a semigroup A on X , B ∈ B(U ; X ), C ∈ B(X ; Y ),
and D ∈ B(U ; Y ). Then we constructed the operators B, C, and D, that together
determine both a Reg-well-posed and an L p-well-posed linear system for all p,
1 ≤ p ≤ ∞ (see Proposition 2.3.1). Here we investigate the converse question:
Given a L p|Reg-well-posed linear system � = [A B

C D

]
, is it possible to find

operators B, C and D (possibly unbounded) in such a way that the operators
B, C, and D can be reconstructed from A, B, C and D by the use of the

194
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formulas

Bu =
∫ 0

−∞
A−vBu(v) dv,

Cx = (t �→ CAt x, t ≥ 0
)
,

Du =
(

t �→
∫ t

−∞
CAt−vBu(v) dv + Du(t), t ∈ R

)
,

(4.1.2)

and such that the state trajectory x and the output function y in some sense are
given by the variation of constants formula

x(t) = At−s xs +
∫ t

s
At−vBu(v) dv, t ≥ s,

y(t) = CAt−s xs + C
∫ t

s
At−vBu(v) dv + Du(t), t ≥ s?

(4.1.3)

The major question presented above about the existence of generating oper-
ators B, C , and D can be split into several minor ones.

We have already discussed the generator A of the semigroup A in Chapter
3. For this we did not need any of the other operators B, C, and D of the
system. The same separation of a system into independent components can be
continued. For example, the relationship between B and B does not involve the
operators C and D, so it should be possible to ignore C and D in the study of
‘how B is generated by B’. Similarly, B and D are not needed in the study of
the relationship between C and C . For this reason we introduce the following
more detailed version of Definition 2.2.1:

Definition 4.1.1 Let U , X , and Y be Banach spaces, let A be a C0 semigroup
on X , and let 1 ≤ p ≤ ∞.

(i) A continuous operator B : L p
c (R−; U )→ X is a L p-well-posed input

map for A with input space U if AtBu = Bτ t
−u for all u ∈ L p

c (R−; U )
and t ≥ 0.

(ii) A continuous operator B : Regc(R−; U )→ X is a Reg-well-posed input
map for A with input space U if AtBu = Bτ t

−u for all u ∈ Regc(R−; U )
and t ≥ 0.

(iii) A continuous operator C : X → L p
loc(R+; Y ) is a L p-well-posed output

map for A with output space Y if CAt x = τ t
+Cx for all x ∈ X and t ≥ 0.

(iv) A continuous operator C : X → Regloc(R
+

; Y ) is a Reg-well-posed output
map for A with output space Y if CAt x = τ t

+Cx for all x ∈ X and t ≥ 0.
(v) By a L p|Reg-well-posed input or output map of A we mean an input or

output map that is either Reg-well-posed or L p-well-posed for some p,
1 ≤ p ≤ ∞. (Thus, the case p = ∞ is included, except when explicitly
excluded.)



196 The generators

(vi) By a well-posed input or output map of A we mean an input or output
map that is either Reg-well-posed or L p-well-posed for some p,
1 ≤ p <∞. (Thus, the case p = ∞ is excluded.)

Note that the relevant parts of Definition 2.2.6, Definition 2.2.7, Lemma
2.2.8, Theorem 2.2.11, Theorem 2.2.12, Theorem 2.4.1, Lemma 2.4.3, Theorem
2.4.4, Theorem 2.5.4, and Theorem 2.5.7 still apply. In the L p-case, for every
ω > ωA, C maps X continuously into L p

ω(R+; Y ), and B can be extended to
a continuous operator L p

ω(R−; U )→ X . The same statement is true with L p

replaced by Reg0, too.

4.2 The control operator

Let us now return to the question of how to find generators B and C for B and
C. We begin with B. Here we notice for the first time a significant difference
between the cases of L∞-well-posedness and Reg-well-posedness (see Section
3.6 for the notations A|X−1 and A|X ):

Theorem 4.2.1 Let U and X be Banach spaces, let A be a C0 semigroup on
X with growth bound ωA, let B be a L p|Reg-well-posed input map for A with
input space U, and let ω > ωA. Then the following claims are true:

(i) There is a unique operator B ∈ B(U ; X−1) such that

Bu =
∫ 0

−∞
A−s
|X−1

Bu(s) ds; (4.2.1)

this equation is valid as an equation in X−1 for all u ∈ L p
ω(R−; U ) if B is

L p-well-posed for some p <∞, and for all u ∈ Reg0,ω(R−; U ) if B is
L∞-well-posed or Reg-well-posed.

(ii) If B is L p-well-posed for some p <∞, then B is uniquely determined
by B and A, and if B is L∞-well-posed or Reg-well-posed then the
restriction of B to Reg0,ω(R−; U ) is uniquely determined by B and A.

(iii) Define eλ,n(s) = (1/n!)(−s)neλs . Then, for all u ∈ U, λ ∈ CωA
, and

n = 0, 1, 2, . . . ,

(λ− A)−(n+1)
|X−1

Bu = (1/n!)
∫ ∞

0
sne−λsAs

|X−1
Bu ds = B(eλ,nu).

In particular,

(λ− A|X )−1 Bu =
∫ ∞

0
e−λsAs

|X−1
Bu ds = B(eλ,0u).

Proof (i) Fix some α ∈ C+ωA
, and let eα(s) = eαs , s ∈ R. Then τ t eα = eαt eα

for all t ∈ R and eα ∈ L p
ω,loc(R; R) ∩ BC0,ω,loc(R; R) for all ωA < ω < 
α and
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n = 1, 2, 3, . . . We define

Bu = (α − A|X )B(eαu), u ∈ U,

where A|X is the generator of A|X−1 (that the above integral is well-defined
follows from Theorem 2.5.4). The operator u �→ B(eαu) is continuous U → X ,
hence B ∈ B(U ; X−1).

We claim that (4.2.1) holds for this operator B. We begin the proof of (4.2.1)
with the case where u is replaced by π(−∞,t)(eαu) for some fixed u ∈ U and
t ≤ 0. Then (4.2.1) becomes

Bπ(−∞,t)(eαu) =
∫ 0

−∞
A−s
|X−1

Bπ(−∞,t)(eα(s)u) ds.

To see that this identity is true for all t ≤ 0 we can use Definition 4.1.1(i),
Theorem 3.2.9(i), and Lemma 2.2.9 to get∫ t

−∞
A−s
|X−1

B(eα(s)u) ds =
∫ ∞

0
eα(t−v)Av−t

|X−1
Bu dv

= eαtA−t
|X−1

∫ ∞
0

e−αvAv
|X−1

Bu dv

= eαtA−t
|X−1

(α − A|X )−1 Bu

= eαtA−tB(eαu)

= eαtBτ−tπ−(eαu)

= eαtBπ(−∞,t)τ
−t (eαu)

= Bπ(−∞,t)(eαu).

Thus, (4.2.1) holds when u is replaced by π(−∞,t)(eαu) for some fixed u ∈ U
and t ≤ 0.

By linearity, (4.2.1) must then also hold for all functions of the type
π[t1,t2)(eαu) = π(−∞,t2)(eαu)− π(−∞,t2)(eαu), for all u ∈ U and −∞ < t1 <
t2 ≤ 0, hence for all linear combinations of such functions. This class of func-
tions is dense in L p

ω(R−; U ) if p <∞ and in Reg0,ω(R−; U ) if p = ∞, so by the
continuity of both sides of (4.2.1) with respect to convergence in L p

ω(R−; U ),
this formula must be true even for this larger class of functions.

The uniqueness of B follows from part (iii).
(ii) This follows from (i).
(iii) Use (4.2.1) and Theorem 3.2.9(i). �

Definition 4.2.2 The operator B in Theorem 4.2.1 is called the control operator
(induced by A and B).
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Corollary 4.2.3 In the setting of Theorem 4.2.1, the input operators Bt and
Bt

s ,−∞ < s < t <∞, introduced in Definition 2.2.6 have the representations

Bt u =
∫ t

−∞
At−s
|X−1

Bu(s) ds, (4.2.2)

Bt
su =

∫ t

s
At−v
|X−1

Bu(v) dv. (4.2.3)

The representation (4.2.2) is valid for all u ∈ L p
ω((−∞, t); U ) if B is L p-well-

posed for some p <∞, and for all u ∈ Reg0,ω((−∞, t); U ) if B is L∞-well-
posed or Reg-well-posed; here ω > ωA. The representation (4.2.2) is valid
for all u ∈ L p([s, t); U ) if B is L p-well-posed for some p <∞, and for all
u ∈ Reg([s, t); U ) if B is L∞-well-posed or Reg-well-posed. (In both cases the
integrals are computed in X−1, but the final results belongs to X.)

Proof This follows immediately from Definition 2.2.6 and Theorem 4.2.1(i).
�

There is a simple converse to Theorem 4.2.1(i):

Theorem 4.2.4 Let A be a C0 semigroup on X, and let 1 ≤ p <∞. Then B is
the control operator of a L p|Reg-well-posed input map for A with input space
U if and only if B ∈ B(U ; X−1) and the map B : L1

c(R−; U )→ X−1 defined
by

Bu =
∫ 0

−∞
A−s
|X−1

Bu(s) ds

maps L p|Regc(R−; U ) into X.

Proof The necessity follows from Theorem 4.2.1(i). For the converse claim we
can use the closed graph theorem to get the continuity of B as an operator with
values in X . The intertwining property in Definition 4.1.1(i)–(ii) is proved as
follows:

Bτ t
−u =

∫ −t

−∞
A−s
|X−1

Bu(s + t) ds =
∫ 0

−∞
A−s+t
|X−1

Bu(s) ds

= At
∫ 0

−∞
A−s
|X−1

Bu(s) ds = AtBu.

�

Example 4.2.5 Let A be the semigroup generator and B the control operator
of the delay line in Example 2.3.4. Then, for each λ ∈ C and u ∈ U, the function
(λ− A|X )−1 Bu ∈ W 1,p([0, T ]) is given by(

(λ− A|X )−1 Bu
)
(t) = eλ(t−T )u, 0 ≤ t ≤ T .
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In particular, B can be (formally) interpreted as the distribution-valued oper-
ator Bu = uδT , where δT represents the Dirac delta (a unit point mass) at T .

We prefer to use only a formal interpretation of B as a delta-function, and
avoid the introduction of the notion of a U -valued distribution or measure.

Proof By Theorem 4.2.1(iii) with n = 1,

(λ− A|X )−1 Bu = B(eλu),

where eλ(t) = eλt for all t ≤ 0. By the definition of B in Example 2.3.4, the
right hand side is the restriction of the function t �→ eλ(t−T )u to the interval
[0, T ]. By Example 3.3.2(iv), for each f ∈ L p|Reg([0, T ); U ), (λ− A)−1 f is
the restriction of the function t �→ ∫ T

t eλ(t−s) f (s) ds to the interval [0, T ]. We
get formally the same result by taking f = uδT . �

The same argument can be used to find the control operators of the realiza-
tions in Example 2.6.5:

Example 4.2.6 In parts (i)–(iv) below we let A be the semigroup generator
and B the control operator of the realizations listed in Example 2.6.5(i)–(iv),
respectively.

(i) In the exactly controllable shift realization in Example 2.6.5(i), for each
λ ∈ C+ω and u ∈ U, the function (λ− A|X )−1 Bu ∈ L p

ω(R−; U ) is given by

(λ− A|X )−1 Bu = eλt u, t ≤ 0.

Thus, the control operator B for this system can be (formally) interpreted
as the distribution-valued operator Bu = uδ0, where δ0 represents the
Dirac delta at zero.

(ii) In the exactly observable shift realization in Example 2.6.5(ii), for each
λ ∈ C+ω and u ∈ U, the function (λ− A|X )−1 Bu ∈ L p

ω(R+; Y ) is given by

(λ− A|X )−1 Bu = π+Dπ−eλu,

where eλ(t) = eλt for t ∈ R.
(iii) In the bilateral input shift realization in Example 2.6.5(iii), for each

λ ∈ C+ω and u ∈ U, the function (λ− A|X )−1 Bu ∈ L p
ω(R; U ) is given by

(λ− A|X )−1 Bu =
{

0, t ≥ 0,

eλt u, t < 0.

Thus, the control operator B for this system can be (formally) interpreted
as the distribution-valued operator Bu = uδ0, where δ0 represents the
Dirac delta at zero.
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(iv) In the bilateral output shift realization in Example 2.6.5(iv), for each
λ ∈ C+ω and u ∈ U, the function (λ− A|X )−1 Bu ∈ L p

ω(R; Y ) is given by

(
(λ− A|X )−1 Bu

)
(t) =

{(
π+Dπ−eλu

)
(t), t ≥ 0,

D̂(λ)eλt u, t < 0,

where eλ(t) = eλt for t ∈ R.

The proof is the same as the proof of Example 4.2.5.
The case p = 1 is special in the following sense:

Theorem 4.2.7 If p = 1 and X is reflexive, then the operator B in Theorem
4.2.1 maps U continuously into X, i.e., B ∈ B(U ; X ).

Proof For each u ∈ U , define

un(t) =
{

nu, −1/n ≤ t < 0,

0, otherwise.

Then un ∈ L1(R−,U ), and ‖un‖L1 = |u|U . In particular, this norm is bounded
uniformly in n. Therefore, by the continuity of B, the norm of Bun is bounded
uniformly in n. If X is reflexive, then the unit ball of X is weakly sequentially
compact, hence there is some subsequence Bunk which converges to a limit
in X . However, by using the representation formula for B given in Theorem
4.2.1(i) we find that the whole sequence converges to Bu in X−1. Thus, B maps
U into X . The continuity of B : U → X follows from the closed graph theorem
(B is closed from U to X since it is continuous from U to X−1). �

We remark that the assumption that X is reflexive cannot be removed from
Theorem 4.2.7. For example, the control operator of the shift line in Example
2.3.4 has a distribution interpretation as the operator which maps u ∈ U into
uδT , where δT represents a unit point mass at the point T (see Example 4.2.5).
This is a distribution which belongs to X−1 in all L p-cases with 1 ≤ p <∞,
but it does not belong to X even when p = 1. See also Example 4.5.13.

Corollary 4.2.8 Let A be a C0 semigroup on a reflexive state space X. Then B
is the control operator of an L1-well-posed input map for A with input space
U if and only if B ∈ B(U ; X ).

Proof The necessity follows from Theorem 4.2.7, and the proof of the suffi-
ciency is trivial (cf. Example 2.5.10). �

From Theorem 4.2.1(iii) it is possible to derive the following growth esti-
mates involving B and the resolvent of A.
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Proposition 4.2.9 In the setting of Theorem 4.2.1, for each ω > ωA there is a
finite constant M such that∥∥(λ− A|X )−n B

∥∥ ≤ M

n(1−1/p)/2(
λ− ω)n−1+1/p

for all n = 1, 2, 3, . . . and all λ ∈ C+ω in the case where B is L p-well-posed
with 1 ≤ p <∞, and such that∥∥(λ− A|X )−n B

∥∥ ≤ M√
n (
λ− ω)n−1

for all n = 1, 2, 3, . . . and all λ ∈ C+ω in the case where B is L∞-well-posed
or Reg-well-posed. In particular, taking n = 1 we get∥∥(λ− A|X )−1 B

∥∥ ≤ M

(
λ− ω)1/p

in the case where B is L p-well-posed with 1 ≤ p <∞, and∥∥(λ− A|X )−1 B
∥∥ ≤ M

in the case where B is L∞-well-posed or Reg-well-posed.

Proof By Theorems 4.2.1(iii) and 2.5.4(ii), there is a finite constant M such
that ∣∣∣(λ− A|X )−(n+1) Bu

∣∣∣
X
= |B(eλ,nu)|X ≤ M‖eλ,n‖L p

ω(R−)|u|U
for all u ∈ U and all λ ∈ C+ω . The desired estimate then follows from the esti-
mate on ‖eλ,n‖L p

ω(R−) that we get from Lemma 4.2.10 below. �

Lemma 4.2.10 Let α > 0, n ≥ 0. Then there is a constant K such that

1

�(n + 1)

(∫ ∞
0

(
sne−αs

)p
ds

)1/p

= �(pn + 1)1/p

�(n + 1)(αp)(n+1/p)

≤ K

n(1−1/p)/2α(n+1/p)

for 1 ≤ p <∞, and

sup
s≥0

sne−αs

�(n + 1)
= nne−n

�(n + 1)αn
≤ K√

n αn
.

We leave the proof of this lemma to the reader (the integral can be reduced to
the standard integral defining the�-function by a change of integration variable,
and the inequality follows from Stirling’s formula (3.7.1)).

The following theorem presents two different extensions of Theorem
4.2.1(iii).
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Theorem 4.2.11 We use the same setting as in Theorem 4.2.1 (in particular,
we take ω > ωA).

(i) Let v ∈ L p
ω(R−; C) if B is L p-well-posed for some p <∞ and let

v ∈ Reg0,ω(R−; C) if B is L∞-well-posed or Reg-well-posed. In addition,
suppose that the left-sided Laplace transform v̂ of v is analytic at infinity.
Then, for all u0 ∈ U,

B(vu0) = v̂(A|X )Bu0.

(ii) Let v ∈ L1
ω(R−; C), and let u ∈ L p

ω(R−; U ) if B is L p-well-posed for
some p <∞ and u ∈ Reg0,ω(R−; U ) if B is L∞-well-posed or
Reg-well-posed. In addition, suppose that the left-sided Laplace
transforms of v and u are analytic at infinity. Define
w(t) = ∫ 0

t v(t − s)u(s) ds for all those t ∈ R− for which the integral
converges. Then w ∈ L p|Regω(R−; U ), and

Bw = v̂(A)Bu.

Proof Note that, in both parts of the theorem, v ∈ L1
ω′ (R

−; C) and u ∈
L1
ω′ (R

−; U ) for every ω′ ∈ (ωA, ω). Part (i) then follows from Theorems 3.12.6
and 4.2.1(i), and part (ii) from Theorems 3.12.9, 4.2.1(i), and A.3.4. �

4.3 Differential representations of the state

As the following theorem shows, the state trajectory x(t) = At−s xs +Bt
su is

the strong solution of the appropriate differential equation:

Theorem 4.3.1 Let U and X be Banach spaces, let A be a C0 semigroup on
X, and let B be a L p|Reg-well-posed input map for A with input space U, and
let B be the corresponding control operator (see Definition 4.2.2). Then the
following claims are true:

(i) If B is L p-well-posed for some p <∞, then for each s ∈ R, xs ∈ X, and
u ∈ L p

loc([s,∞); U ), the function

x(t) = At−s xs +Bt
su = At−s xs +

∫ t

s
At−v
|X−1

Bu(v) dv (4.3.1)

is the unique strong solution of the equation

ẋ(t) = Ax(t)+ Bu(t), t ≥ s,

x(s) = xs .
(4.3.2)
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Moreover, if ω > ωA, and if u ∈ L p
ω([s,∞); U ), then

x ∈ BC0,ω([s,∞); X ).
(ii) If B is L∞-well-posed or Reg-well-posed, then for each s ∈ R, xs ∈ X,

and u ∈ Regloc([s,∞); U ), the function x defined in (4.3.1) is the unique
strong solution of the equation (4.3.2) (i.e., x(t) is a continuous function
of t in X). Moreover, if ω > ωA, and if u ∈ Reg0,ω([s,∞); U ), then
x ∈ BC0,ω([s,∞); X ).

Proof (i) This follows from Corollary 4.2.3 and Theorems 2.2.12, 2.5.4(iii),
and 3.8.2(ii),(iii).

(ii) As in the proof of (i), most of this follows from Theorems 4.2.1(i),
2.5.4(iv), and 3.8.2(ii),(iii), but this time we need a separate argument showing
that the solution is continuous in t since we cannot appeal to Theorem 2.2.12.
This argument goes as follows.

The state x consists of two parts,

x(t) = At xs +Bt
su = At xs +Bτ tπ[s,∞)u.

The first term is continuous and has the right growth bound at infinity, so it can
be ignored. We can also ignore the projectionπ[s,∞) by simply replacingπ[s,∞)u
by u. Thus, it suffices to show that Bt u = Bτ t u is a continuous function of t
for every u ∈ Regc,loc(R; U ). To do this we use a boot-strap argument, starting
from the case where u is continuous.

If u is continuous, then Bt u = Bτ t u is continuous, since τ t u depends con-
tinuously on t in Cc(R; U ).

Suppose next that u is continuous on (−∞, t1) and vanishes on [t1,∞).
Then u = π(−∞,t1)u. Clearly Bt u = Bτ t u is continuous on (−∞, t1) and has
the left-hand limit Bτ t1 u at t1 (because Bτ t u = Bπ−τ t u and the function
π−τ t u depends continuously on t in Cc(R−; U ) for t ≤ t1). For t ≥ t1 we have

Bπ−τ t u = Bπ−τ t−t1π−τ t1 u = At−t1Bτ t1 u.

This term is continuous on [t1,∞) and has the value Bτ t1 u at t1. Thus, also for
this class of functions Bt u is continuous in t .

If u is continuous on (−∞, t1) and [t1,∞), then we can write u as the sum
of two functions, one of which is continuous on R, and the other continuous on
(−∞, t1) and zero on [t1,∞). Thus, by linearity, Bt u is a continuous function
of t .

If u has a finite number of discontinuities, then u can be written as a finite
sum of functions with only one discontinuity, and, by linearity, the function
Bt u is continuous in X .

If u is an arbitrary function in Regc,loc(R; U ), then it can be written as a
locally uniformly convergent limit of functions un with a finite number of
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discontinuities. But then Bt un converges locally uniformly to Bt u, hence the
limit function must be continuous.

In particular, we observe that

lim
t↓s

Bt
su = lim

t↑s
Bτ tπ[s,∞)u = lim

t↑s
Bπ−τ tπ[s,∞)u = 0,

hence the state x(t) of � satisfies x(s) = xs . �

It is also possible to prove a similar result for the state trajectory of �
corresponding to the initial time−∞ (this type of state trajectory was introduced
in Definition 2.5.8).

Theorem 4.3.2 Let U and X be Banach spaces, let A be a C0 semigroup on
X, let B be a L p|Reg-well-posed input map for A with input space U, and
let ω > ωA. Let B be the corresponding control operator. Then the following
claims are true:

(i) Let B be L p-well-posed for some p <∞ and let u ∈ L p
ω,loc(R; U ). Then

the function

x(t) = Bt u =
∫ t

−∞
At−s
|X−1

Bu(s) ds, t ∈ R,

is the unique strong solution of the equation

ẋ(t) = Ax(t)+ Bu(t), t ∈ R

satisfying BC0,ω,loc(R; X ). If u ∈ L p
ω(R; U ), then x ∈ BC0,ω(R; X ).

(ii) If instead B is L∞-well-posed or Reg-well-posed, then (i) remains true if
we replace the conditions u ∈ L p

ω,loc(R; U ) and u ∈ L p
ω(R; U ) by

u ∈ Reg0,ω,loc(R; U ), respectively u ∈ Reg0,ω(R; U ).

Proof The proof is the same in both cases, so let us only prove, e.g., (ii).
That x is a strong solution of the equation ẋ(t) = Ax(t)+ u(t) follows from
Theorems 2.5.7 and 4.3.1. If the support of u is bounded to the left, then The-
orem 4.3.1(ii) gives x ∈ BCc,loc(R; X ) ⊂ BC0,ω,loc(R; X ). The continuous de-
pendence of x ∈ BC0,ω,loc(R; X ) on u ∈ Reg0,ω,loc(R; U ) (with support bounded
to the left) follows from Example 2.5.3 and Theorem 2.5.4(ii). This set of
functions u is dense in Reg0,ω,loc(R; U ), hence x ∈ BC0,ω,loc(R; X ) whenever
u ∈ Reg0,ω,loc(R; U ). The uniqueness of x follows from Lemma 3.8.6. �

By analogy to Definition 2.5.8 we introduce the following terminology:

Definition 4.3.3 We call the function t �→ x(t) = Bt u in Theorem 4.3.2 the
state trajectory of the pair

[
A B

]
with initial time −∞ and input u.
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With the help of Theorem 4.3.1 we can prove that if we have a semigroup
A and an L p|Reg-well-posed input map B for A, then it is always possible to
embed these operators in a L p|Reg-well-posed system:

Theorem 4.3.4 Let A be a C0 semigroup on X, and let B be a L p|Reg-well-
posed input map for A with input space U. Let C ∈ B(X ; Y ) and D ∈ B(U ; Y ).
For each x ∈ X and u ∈ L p|Regc,loc(R; U ), define

(Cx)(t) =
{

CAt x, t ≥ 0,

0, t < 0,
(Du)(t) = CBt u + Du(t).

Then
[A B

C D

]
is a Reg-well-posed linear system if B is L∞-well-posed or Reg-

well-posed, and it is an Lq-well-posed linear system for all q, p ≤ q <∞
if B is L p-well-posed for some p <∞. (The observation operator of this
system is C and the feedthrough operator is D; see Definitions 4.4.3 and 4.5.11,
respectively.)

Proof Let us begin by inspecting the algebraic properties required by Def-
inition 2.2.1. Obviously τ t

+Cx = π+(s �→ CAs+t x) = π+(s �→ CAsAt x) =
CAt x . The time-invariance and causality of D are also obvious. Thus, it
only remains to compute the Hankel operator of D. For all t > 0 and all
u ∈ L p|Regc,loc(R

+
; U ), we have

(π+Dπ−u)(t) = π+CBtπ−u = π+CBτ t
−u = π+CAtBu.

Thus, π+Dπ− = CB as required.
Obviously, C is continuous X → Regloc(R

+
; Y ) and X → L p

loc(R+; Y ).
That D is continuous L p

c,loc(R; U )→ L p
c,loc(R; Y ) (or Regc,loc(R; U )→

Regc,loc(R; Y ) in the L∞-well-posed and Reg-well-posed case) follows from
Theorem 4.3.1. The additional claim about the Lq -well-posedness follows from
Theorem 2.4.4. �

As the following lemma shows, the input map converts smoothness in time
to smoothness in the state space.

Lemma 4.3.5 Let U and X be Banach spaces, let A be a C0 semigroup on X,
let B be a L p|Reg-well-posed input map for A with input space U, let ω > ωA,
and let n = 1, 2, 3, . . . Then the following claims are true:

(i) If B is L p-well-posed for some p <∞, then B maps the set
{u ∈ W n,p

ω (R
−

; U ) | u(0) = u̇(0) = · · · = u(n−1)(0) = 0} continuously
into Xn = D (An), and Bu̇ = ABu for all u ∈ W 1,p

ω (R
−

; U ) with
u(0) = 0.

(ii) If B is L∞-well-posed or Reg-well-posed, then B maps the set
{u ∈ Regn

0,ω(R
−

; U ) | u(0) = u̇(0) = · · · = u(n−1)(0) = 0} continuously
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into Xn = D (An), and Bu̇ = ABu for all u ∈ Reg1
0,ω(R

−
; U ) with

u(0) = 0.
(iii) If B is L p-well-posed for some p <∞ and u ∈ W 1,p

ω (R
−

; U ), then
A|XBu + Bu(0) ∈ X and Bu̇ = A|XBu + Bu(0).

(iv) If B is L∞-well-posed or Reg-well-posed and u ∈ Reg1
0,ω(R

−
; U ), then

A|XBu + Bu(0) ∈ X and Bu̇ = A|XBu + Bu(0).

Proof In the proofs of both (i) and (iii) it suffices to prove the case n = 1, which
can then be iterated to give the general case.

(i) If u ∈ W 1,p
ω (R

−
; U ) with u(0) = 0, then, by Example 3.2.3(iii), the func-

tion t �→ Bt
0u = Bτ t

−u has a right derivative at zero. We differentiate this func-
tion, and use the identity Bτ t

−u = AtBu from Definition 2.2.1 to conclude that
Bu ∈ X1 = D (A), and that ABu = Bu̇.

(ii) The proof is otherwise the same as the proof of (i), but we have to
work harder to show that t �→ Bt

0u = Bτ t
−u has a right derivative at zero when

u ∈ Reg1
0,ω(R

−
; U ) and u(0) = 0. To do this we use the representation formula

in Theorem 4.2.1(i), which gives for h > 0 (define u(t) = 0 for t > 0)

1

h
B(τ hu − u) = 1

h

∫ 0

−∞
A−s B(u(s + h)− u(s)) ds

= 1

h

∫ 0

−∞

∫ h

0
A−s Bu̇(s + v) ds dv

= 1

h

∫ h

0

∫ 0

−∞
A−s Bu̇(s + v) ds dv

= 1

h

∫ h

0
Bτ v u̇ dv.

By Theorem 4.3.2, Bτ v u̇ is continuous in v, so the integral tends to (Bu̇)(0)
as h ↓ 0.

(iii) Let α > ω, and define eα(t) = eαt , t ∈ R. Define v = u − eαu(0). Then
(i) with n = 1 applies to v, and we get B(u − eαu(0)) ∈ X1 and

B(u̇ − αeαu(0)) = AB(u − eαu(0)).

This, together with the fact that Beαu(0) = (α − A|X )−1 Bu(0) (see Theorem
4.2.1(iii)) gives

Bu̇ = A|XBu − A|X (α − A|X )−1 Bu(0)+ α(α − A|X )−1 Bu(0)

= A|XBu + Bu(0).

(iv) The proof of (iv) is identical to the proof of (iii). �

By using Lemma 4.3.5 we can strengthen the conclusion of Theorem 4.3.2
in the case where u has additional smoothness.
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Theorem 4.3.6 Let U and X be Banach spaces, let A be a C0 semigroup on
X, let B be a L p|Reg-well-posed input map for A with input space U, and let
ω > ωA. Then the following claims are true:

(i) Let B be L p-well-posed for some p <∞, let u ∈ W 1,p
ω,loc(R; U ), and let x

be the unique strong solution of

ẋ(t) = Ax(t)+ Bu(t), t ∈ R,

in BC0,ω,loc(R; X ) (cf. Theorem 4.3.2). Then x ∈ BC1
0,ω,loc(R; X ) and

x(t) = Bt u and ẋ(t) = Bt u̇, t ∈ R. In particular,
ẋ = A|X x + Bu ∈ BC0,ω,loc(R; X ), and ẋ is the unique strong solution of

ẍ(t) = Aẋ(t)+ Bu̇(t), t ∈ R,

in BC0,ω,loc(R; X ). If u ∈ W 1,p
ω (R; U ), then x ∈ BC1

0,ω(R; X ), and
A|X x + Bu ∈ BC0,ω(R; X ).

(ii) If instead B is L∞-well-posed or Reg-well-posed, then the conclusion of
(i) remains valid if we replace the conditions u ∈ W 1,p

ω,loc(R; U ) and

u ∈ W 1,p
ω (R; U ) by u ∈ Reg1

0,ω,loc(R; U ) respectively u ∈ Reg1
0,ω(R; U ).

Proof Most of this follows from Theorem 4.3.2. The only significant new
claims are that ẋ ∈ BC0,ω,loc(R; X ) and that ẋ(t) = Bt u̇ for all t ∈ R. If this
is true, then ẋ = A|X x + Bu ∈ BC0,ω,loc(R; X ). Thus, it remains to show that
ẋ ∈ BC0,ω,loc(R; X ) and that ẋ(t) = Bt u̇, t ∈ R.

(i) The differentiability of x follows from the fact that 1
h (τ t+h − τ t )u → u̇ in

L p
ω,loc(R; U ) as h → 0 (see Example 3.2.3), hence x is continuously differen-

tiable and ẋ(t) = Bτ t u̇ = Bt u̇ for all t ≥ 0. This together with Theorem 4.3.2
implies that ẋ ∈ BC0,ω,loc(R; X ).

(ii) Apply the argument given in the proof of Lemma 4.3.5 with u replaced
by τ t u to show that ẋ(t) = Bτ t u̇, and proceed as above. �

By using Lemma 4.3.5 and Theorem 4.3.6 we can likewise strengthen the
conclusion of Theorem 4.3.1 in the case where u has additional smoothness.

Theorem 4.3.7 Let U and X be Banach spaces, let A be a C0 semigroup on
X, let B be a L p|Reg-well-posed input map for A with input space U, and let
ω > ωA.

(i) If B is L p-well-posed for some p <∞, then for each s ∈ R, xs ∈ X, and
u ∈ W 1,p

loc ([s,∞); U ) satisfying A|X xs + Bu(s) ∈ X, the function

x(t) = At−s xs +Bt
su = At−s xs +

∫ t

s
At−v
|X−1

Bu(v) dv (4.3.1)
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is continuously differentiable in X with respect to t on [s,∞), and

ẋ(t) = A|X x(t)+ Bu(t), t ≥ s,

x(s) = xs .
(4.3.2)

Moreover,

ẋ(t) = At−s[A|X xs + Bu(s)]+Bt
s u̇

= At−s[A|X xs + Bu(s)]+
∫ t

s
At−v
|X−1

Bu̇(v) dv, t ≥ s,
(4.3.3)

ẋ = A|X x + Bu ∈ C([s,∞); X ), and ẋ is the unique strong solution of

ẍ(t) = Aẋ(t)+ Bu̇(t), t ≥ s,

ẋ(s) = A|X xs + Bu(s).
(4.3.4)

If u ∈ W 1,p
ω ([s,∞); U ), then x ∈ BC1

0,ω([s,∞); X ), and
A|X x + Bu ∈ BC0,ω([s,∞); X ).

(ii) If instead B is L∞-well-posed or Reg-well-posed, then the conclusion of
(i) remains valid if we replace the conditions u ∈ W 1,p

ω,loc([s,∞); U ) and

u ∈ W 1,p
ω ([s,∞); U ) by u ∈ Reg1

0,ω,loc([s,∞); U ), respectively
u ∈ Reg1

0,ω([s,∞); U ).

Proof Most of this follows from Theorem 4.3.1, and arguing as in the proof of
Theorem 4.3.6 we find that the only new thing which we have to prove is that x
is continuously differentiable in X and that ẋ is the strong solution of (4.3.4).
Without loss of generality, let us take s = 0, because otherwise we may replace
s by 0, u by τ−su, y by τ−s y, and x(t) by x(t − s).

Take someα ∈ C+ωA
(whereωA is the growth bound of A), and define eα(s) =

eαs , s ∈ R, and

v = π+u + π−eαu(0).

Then v ∈ W 1,p
ω,loc(R; U ) in case (i), v ∈ Reg1

0,ω,loc(R; U ) in case (ii), and

x(t) = At x0 +Bt
0u

= At x0 −Bτ t
−eαu(0)+Btv

= At (x0 −Beαu(0))+Btv

= x1(t)+ x2(t).

Recall that, by Theorem 4.2.1(iii),

Beαu0 = (α − A|X )−1 Bu0

for all u0 ∈ U . The assumptions x0 ∈ X and A|X x0 + Bu(0) ∈ X imply (α −
A|X )x0 − Bu(0) ∈ X , hence x0 − (α − A|X )−1 Bu(0) = x0 −Beαu(0) ∈ X1.
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Thus, x1(t) = At (x0 −Beαu(0)) is continuously differentiable in X with ẋ1 =
Ax1. By Theorem 4.3.6, also x2 is continuously differentiable in X with ẋ2 =
A|X x2 + Bu. Thus x is continuously differentiable in X and ẋ = A|X x + Bu
(in X ). �

Corollary 4.3.8 Let U and X be Banach spaces, let A be a C0 semigroup on
X, and let B be a L p|Reg-well-posed input map for A with input space U. Let
s ∈ R, xs ∈ X, and us ∈ U.

(i) If B is L p-well-posed for some p <∞, then the following conditions are
equivalent:
(a) A|X xs + Bus ∈ X;
(b) for each u ∈ W 1,p

loc ([s,∞); U ) satisfying u(s) = us the strong solution
x of (4.3.2) is continuously differentiable in X;

(c) for some u ∈ W 1,p
loc ([s,∞); U ) satisfying u(s) = us the strong solution

x of (4.3.2) is continuously differentiable in X.
(ii) If B is L∞-well-posed or Reg-well-posed, then the following conditions

are equivalent:
(a) A|X xs + Bus ∈ X;
(b) for each u ∈ Reg1

loc([s,∞); U ) satisfying u(s) = us the strong
solution x of (4.3.2) is continuously differentiable in X;

(c) for some u ∈ Reg1
loc([s,∞); U ) satisfying u(s) = us the strong

solution x of (4.3.2) is continuously differentiable in X.

Proof The proof is the same in both cases. By Theorem 4.3.7, (a) ⇒ (b),
and obviously (b) ⇒ (c). If the strong solution x of (4.3.2) is continuously
differentiable in X , then ẋ(s) = A|X x(s)+ Bu(s) = A|X xs + Bus ∈ X , so
(c)⇒ (a). �

Occasionally we shall need a version of Corollary 4.3.8 where we do not
know that B is L p|Reg-well-posed, but only that the control operator B satisfies
B ∈ B(U ; X−1). As the following theorem shows, the conclusion of Corollary
4.3.8 remains valid in this case, too, provided we increase the regularity of the
input function slightly.

Theorem 4.3.9 Let U and X be Banach spaces, let A be a C0 semigroup on
X, and let B ∈ B(U ; X−1). Let s ∈ R, xs ∈ X, and us ∈ U. Then the following
conditions are equivalent:

(i) A|X xs + Bus ∈ X;
(ii) for each u ∈ W 2,1

loc ([s,∞); U ) satisfying u(s) = us the strong solution x
of (4.3.2) is continuously differentiable in X;

(iii) for some u ∈ W 2,1
loc ([s,∞); U ) satisfying u(s) = us the strong solution x

of (4.3.2) is continuously differentiable in X.
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Proof That (i)⇒ (ii) follows from Theorem 3.8.3. Obviously, (ii)⇒ (iii). If
(iii) holds, then ẋ(s) = A|X x(s)+ Bu(s) = A|X xs + Bus ∈ X ; hence (iii) ⇒
(i). �

It is possible to reformulate parts of the conclusions of Theorems 4.3.6, 4.3.7
and 4.3.9 by introducing some additional spaces, namely

D (A&B) = {[ wu ] ∈ [ X
U

] ∣∣ A|Xw + Bu ∈ X
}
, (4.3.5)

(X + BU )1 = {w ∈ X | A|Xw + Bu ∈ X for some u ∈ U }. (4.3.6)

The former of the above spaces becomes important in Section 4.6 in connection
with the definition of a system node. The latter is important in the theory of
compatible systems and boundary control systems presented in Chapter 5.

Lemma 4.3.10 Let A be a densely defined operator on X with a nonempty re-
solvent set, and let B ∈ B(U ; X−1). DefineD (A&B) by (4.3.5). ThenD (A&B)
is dense in

[
X
U

]
, and the restriction A&B of

[
A|X B

]
:
[

X
U

]→ X−1 to
D (A&B) is closed (as an unbounded operator from

[
X
U

]
to X). The domain

D (A&B) of A&B is a Banach space with the graph norm∣∣[ wu ]
∣∣
D(A&B) =

(|A|Xw + Bu|2X + |w|2X + |u|2U
)1/2

, (4.3.7)

and it is a Hilbert space if both X and U are Hilbert spaces.

Proof We begin by showing thatD (A&B) is dense in
[

X
U

]
. Take some arbitrary[

x
u

] ∈ [ X
U

]
, and fix some α ∈ ρ(A|X ) = ρ(A). Then x − (α − A|X )−1 Bu ∈ X ,

so we can find a sequence wn ∈ X1 which converges to x − (α − A|X )−1 Bu in
X . Define xn = wn + (α − A|X )−1 Bu. Then xn → x ∈ X and

A|X xn + Bu = A|Xwn + A|X (α − A|X )−1 Bu + Bu

= A|Xwn + α(α − A|X )−1 Bu ∈ X,

so
[

xn
u

] ∈ D (A&B). This proves the density of D (A&B) in
[

X
U

]
.

The closedness of A&B follows from the continuity of
[
A|X B

]
:
[

X
U

]→
X−1: if

[ xn
un

]→ [ x
u

]
in
[

X
U

]
and A|X xn + Bun → z in X , then we have both

A|X xn + Bun → z and A|X xn + Bun → A|X x + Bu in X−1, so z = A|X x +
Bu. �

Theorem 4.3.11 (i) The pair of functions
[

x
u

]
in Theorem 4.3.6(i)–(ii)

belongs to BC0,ω,loc(R;D (A&B)). If u ∈ W 1,p
ω (R; U ), respectively

u ∈ Reg1
0,ω(R; U ), then

[
x
u

] ∈ BC0,ω(R;D (A&B)).
(ii) Also the pair of functions

[
x
u

]
in Theorem 4.3.7(i)–(ii) belongs to

C([s,∞);D (A&B)). If u ∈ W 1,p
ω ([s,∞); U ), respectively

u ∈ Reg1
0,ω([s,∞); ), then

[
x
u

] ∈ BC0,ω([s,∞);D (A&B)).



4.3 Differential representations 211

(iii) The pair of functions
[

x
u

]
in Theorem 4.3.9 belongs to

C([s,∞);D (A&B)) as well. If u ∈ W 2,1
ω ([s,∞); U ) , then[

x
u

] ∈ BC0,ω([s,∞);D (A&B)).

Proof This follows from Lemma 4.3.10 and the listed theorems. (A pair of
functions

[
x
u

]
is continuous in D (A&B) if and only if x and A|X x + Bu are

continuous in X and u is continuous in U . Similar statements are valid for the
needed estimates of the size of the norm of

[
x
u

]
in D (A&B).) �

Lemma 4.3.12 Let A be a densely defined operator on X with a nonempty
resolvent set, let α ∈ ρ(A), and let B ∈ B(U ; X−1).

(i) Define

X + BU = {z ∈ X−1 | z = x + Bu for some x ∈ X and u ∈ U }.
Then X + BU is a Banach space with the norm

|z|X+BU = inf
x+Bu=z

(|x |2X + |u|2U )1/2
,

satisfying X ⊂ X + BU ⊂ X−1, and it is a Hilbert space if both X and
U are Hilbert spaces. The operator

[
1 B

]
maps

[
X
U

]
continuously onto

X + BU.
(ii) Define

(X + BU )1 = (α − A|X )−1(X + BU ).

Then (X + BU )1 is a Banach space with the norm

|w|(X+BU )1 = |(α − A|X )w|X+BU

= inf
(α−A|X )−1(x+Bu)=w

(|x |2X + |u|2U )1/2
,

satisfying X1 ⊂ (X + BU )1 ⊂ X, and it is a Hilbert space if both X and
U are Hilbert spaces. The operator (α − A|X )−1

[
1 B

]
maps

[
X
U

]
continuously into (X + BU )1.

(iii) The space (X + BU )1 in (ii) can alternatively be defined as

(X + BU )1 = {w ∈ X | A|Xw + Bu ∈ X for some u ∈ U }.
An equivalent norm in (X + BU )1 is given by

‖w‖(X+BU )1 = inf
A|Xw+Bu∈X

(|w|2X + |A|Xw + Bu|2X + |u|2U
)1/2

.

See Sections 5.1 and 5.2 for additional results on the spaces X + BU and
(X + BU )1. In particular, although the embeddings X + BU ⊂ X−1 and (X +
BU )1 ⊂ X are dense, the embeddings X ⊂ X + BU and X1 ⊂ (X + BU )1

need not be dense.
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The proof of Lemma 4.3.12 is based on the following construction:

Lemma 4.3.13 Let E ∈ B(U ; Y ), where U and Y are Banach spaces. For each
y ∈ R (E), let |y|Z = inf

{|u|U ∣∣ y = Eu
}
. This defines a norm on R (E) that

makes R (E) a Banach space Z, and this norm is (not necessarily strictly)
stronger than the norm of Y . The operator E is a contraction from U into Z,
and it induces an isometric isomorphism of the quotient U/N (E) onto Z. If
U is a Hilbert space, then so is Z, and then E is an isometric isomorphism of
N (E)⊥ onto Z.

See Section 9.1 for a further discussion of the quotient space U/N (E) and
the factorization of E through U/N (E).

Proof of Lemma 4.3.13 Fix some y ∈ R (E). Then the set of all u ∈ U satis-
fying Eu = y is an equivalence class in the quotient space W = U/N (E) (the
difference of any two elements in this set belong to N (E)). The norm in W of
this equivalence class is infv∈U ;Ev=y |v|U , which is the same number which we
denoted by |y|Z above. The space W is a Banach space, and it is a Hilbert space
if U is a Hilbert space (and in the latter case we can identify W with N (E)⊥).
We factor E into E = [ F

πW

]
, where πW is the (continuous and open) quotient

map of U onto W (see Definition 9.1.5). Then F ∈ B(W ; Y ), F is injective,
and R (F) = R (E). We can therefore let a point in R (E) = R (F) inherit the
norm of its preimage in W , i.e., if y = Fw, then we define (as we did above)
|y|Z = |w|W . This is a norm in R (E), and we denote R (E) equipped with this
norm by Z . Then Z is a Banach space which is an isometrically isomorphic
image of W = U/N (E) under F , and Z is a Hilbert space whenever U is a
Hilbert space. The continuity of F implies that the norm of Z is stronger than
the norm of Y . �

Proof of Lemma 4.3.12 (i) We get (i) from Lemma 4.3.13 by replacing U by[
X
U

]
, Y by X−1, and E by

[
1 B

] ∈ B ([ X
U

]
; X−1

)
.

(ii) We get (ii) from Lemma 4.3.13 by replacing U by
[

X
U

]
, Y by X , and E

by (α − A|X )−1
[
1 B

] ∈ B ([ X
U

]
; X
)
. Alternatively, we may apply the same

construction that we used in the definition of the spaces Xn in Section 3.6.
(iii) Suppose that w ∈ X , u ∈ U , and A|Xw + Bu ∈ X . Then x :=

αw − (A|Xw + Bu) ∈ X and (α − A|X )w = x + Bu ∈ X + BU , so w =
(α − A|X )−1(x + Bu) ∈ (X + BU )1. Conversely, if w ∈ (X + BU )1, then
there exist x ∈ X and u ∈ U such that w = (α − A|X )−1(x + Bu), or equiv-
alently, (α − A|X )w = x + Bu. This implies that A|Xw + Bu = αw − x ∈ X .
This establishes the alternative description of (X + BU )1 given in (iii).

To prove that ‖·‖(X+BU )1 is a norm we use Lemma 4.3.13 with U replaced
by D (A&B), Y replaced by X , and E replaced by the bounded linear operator
which maps [ wu ] ∈ D (A&B) into w ∈ X .



4.4 The observation operator 213

Let us finally prove that the two norms on (X + BU )1 are equivalent. In the
definition of both norms we minimize over the same set of vectors u ∈ U : the
vector x in the definition of |w|(X+BU )1 is uniquely determined by w ∈ (X +
BU )1 and u ∈ U since x = (α − A|X )w − Bu, and for all w ∈ (X + BU )1

and u ∈ U , with x defined in this way, A|Xw + Bu ∈ X iff x ∈ X . Thus, it
suffices to show that there is a finite constant K such that, for all u ∈ U with
(α − A|X )−1(x + Bu) = w, we have estimates of the type

|x |X ≤ K (|w|X + |A|Xw + Bu|x ),

|w|X ≤ K (|x |X + |u|U ),

|A|Xw + Bu|X ≤ K (|x |X + |u|U ).

But this follows from the assumed continuity properties of (α − A|X )−1 and B
and the facts that

x = αw − (A|Xw + Bu),

w = (α − A|X )−1(x + Bu),

Aw + Bu = −x + α(α − A|X )−1(x + Bu).

�

Theorem 4.3.14 (i) The pair of functions
[

x
u

]
in Theorem 4.3.6(i)–(ii)

belongs to BC0,ω,loc(R; (X + BU )1). If u ∈ W 1,p
ω (R; U ), respectively

u ∈ Reg1
0,ω(R; U ), then

[
x
u

] ∈ BC0,ω(R; (X + BU )1).
(ii) Also the pair of functions

[
x
u

]
in Theorem 4.3.7(i)–(ii) belongs to

C([s,∞); (X + BU )1). If u ∈ W 1,p
ω ([s,∞); U ), respectively

u ∈ Reg1
0,ω([s,∞); ), then

[
x
u

] ∈ BC0,ω([s,∞); (X + BU )1).
(iii) The pair of functions

[
x
u

]
in Theorem 4.3.9 belongs to

C([s,∞); (X + BU )1) as well. If u ∈ W 2,1
ω ([s,∞); U ) , then[

x
u

] ∈ BC0,ω([s,∞); (X + BU )1).

Proof This follows from Theorem 4.3.7 and part (iii) of Lemma 4.3.12. �

4.4 The observation operator

We proceed with a study of the output map C, and start with a preliminary result
which resembles Lemma 4.3.5. It says that the output map converts smoothness
in the state space into smoothness in time.

Lemma 4.4.1 Let X and Y be Banach spaces, let A be a C0 semigroup on X
with growth bound ωA, let C be a L p|Reg-well-posed output map for A with
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output space Y , let ω > ωA, and let n = 1, 2, 3, . . . . Then the following claims
are true:

(i) If C is L p-well-posed for some p <∞, then C maps Xn = D (An)
continuously into W n,p

ω (R
+

; Y ) ⊂ BC(n−1)
0,ω (R

+
; Y ), and (Cx)′ = CAx for

x ∈ X1.
(ii) If C is L∞-well-posed or Reg-well-posed, then C maps X continuously

into BC0,ω(R
+

; Y ) and Xn = D (An) continuously into BCn
0,ω(R

+
; Y ),

and (Cx)′ = CAx for x ∈ X1.

Proof (i) Let x ∈ X1. Then, by Theorem 3.2.1(iii), At x is continuously differ-
entiable in X . Since τ t

+Cx = CAt x , this implies that the function t �→ τ t
+Cx

is continuously differentiable in L p|Regω(R
+

; Y ). In the L p-case with p <∞
we find that Cx ∈ W 1,p

ω (R
+

; Y ) (see Example 3.2.3(ii)); in particular, Cx ∈
BC0,ω(R

+
; Y ) (see Lemma 3.2.4). Moreover, by differentiating both sides of

the identity τ t
+Cx = CAt x with respect to t and then setting t = 0 we get

(Cx)′ = CAx for x ∈ X1. By repeating the same argument with x replaced
by Ax , etc. we find that Cx ∈ W n,p

ω (R
+

; Y ) whenever x ∈ Xn .
(ii) If C is L∞-well-posed or Reg-well-posed, then the identity τ t

+Cx = CAt x
combined with the strong continuity of A and Examples 2.3.2(ii) and 2.5.3
shows that C maps X continuously into BCω(R

+
; Y ). As this is true also when we

replace ω by ω′ with ωA < ω′ < ω, we must in fact have Cx ∈ BC0,ω(R
+

; Y ).
But then the same argument that we used to prove (i) shows that C also maps
Xn continuously into Cx ∈ BCn

0,ω(R
+

; Y ) and that (Cx)′ = CAx . �

With the help of Lemma 4.4.1 it is easy to prove the following basic result
on the existence of an observation operator.

Theorem 4.4.2 Let X and Y be Banach spaces, let A be a C0 semigroup on
X with growth bound ωA, let C be a L p|Reg-well-posed output map for A with
output space Y , and let ω > ωA. Then the following claims are true:

(i) There exists a unique operator C ∈ B(X1; Y ) such that

(Cx)(t) = CAt x (4.4.1)

for all x ∈ X1 and all t ≥ 0.
(ii) If C is L∞-well-posed or Reg-well-posed, then the operator C in (i) can

be extended to a unique operator C|X in B(X ; Y ), and (4.4.1) holds for
all x ∈ X and all t ≥ 0 with C replaced by C|X .

(iii) The operator C is uniquely determined by A and C.
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(iv) For all x ∈ X, λ ∈ C+ωA
, and n = 0, 1, 2, . . . ,

C(λ− A)−(n+1)x = 1

n!

∫ ∞
0

sne−λs(Cx)(s) ds.

In particular,

C(λ− A)−1x =
∫ ∞

0
e−λs(Cx)(s) ds.

Thus, in terms of the Laplace transform introduced in Definition 3.12.1,
Theorem 4.4.2(iii) implies that (̂Cx0)(λ) = C(λ− A)−1x0 for all λ ∈ C+ωA

and
all x0 ∈ X .

Proof (i)–(ii) For each x ∈ X1 (or x ∈ X if A is L∞-well-posed or Reg-well-
posed) we define Cx = (Cx)(0). Then, by Lemma 4.4.1, C ∈ B(X1; Y ) (or
C ∈ B(X ; Y )), and, for all t ≥ 0,

(Cx)(t) = (τ t
+Cx)(0) = (CAt x)(0) = CAt x .

The uniqueness of C follows from the fact that, necessarily, Cx = (Cx)(0) for
x ∈ X1.

(iii) This follows from (i) and the fact that X1 is dense in X .
(iv) By part (i) and Theorem 3.2.9(i), the identity in (iv) is true if x ∈ X1. As

X1 is dense in X and both sides of this identity depend continuously on x ∈ X ,
the same identities must then be true for all x ∈ X . �

Definition 4.4.3

(i) The operator C in Theorem 4.4.2 is called the observation operator
(induced by A and C).

(ii) The observation operator C is bounded if it can be extended to an
operator C|X in B(X ; Y ).

The output map C has the following representation in terms of the semigroup
A and the observation operator C :

Theorem 4.4.4 Let A be a C0 semigroup on the Banach space X, and let C

be a L p|Reg-well-posed output map for A with output space Y . Then, for each
x ∈ X, the function t �→ ∫ t

0 As x ds, t ≥ 0, is continuous with values in X1, the

function t �→ C
∫ t

0 As x ds, t ≥ 0, belongs to W 1,p
loc (R

+
; Y ) if C is L p-well-posed

for some p <∞ and to C1(R
+

; Y ) if C is L∞-well-posed or Reg-well-posed,
and

(Cx)(t) = d

dt
C
∫ t

0
As x ds for almost all t ≥ 0. (4.4.2)
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Proof By Theorem 3.2.1(ii),
∫ t

0 As x ds ∈ X1 for all t ≥ 0, and, for allα ∈ ρ(A)
and t ≥ 0,∫ t

0
As x ds = (α − A)−1(α − A)

∫ t

0
As x ds

= (α − A)−1

(
α

∫ t

0
As x ds − At x + x

)
.

(4.4.3)

This implies that x1 is continuous with values in X1, as claimed.
In the L∞-well-posed case and the Reg-well-posed case the remainder of the

conclusion of Theorem 4.4.4 can be proved as follows. We first use Theorem
4.4.2(ii) and integrate (4.4.1) with C replaced by C|X to get

∫ t
0 (Cx)(s) ds =∫ t

0 C|XAs x ds = C|X
∫ t

0 As x ds for t ≥ 0. The restriction of C|X to X1 is C , so
this implies that the function t �→ C

∫ t
0 As x ds is continuously differentiable,

and that (4.4.2) holds.
In the L p-well-posed case with p <∞ the function Cx belongs to

L p
loc(R

+
; Y ), so the function t �→ ∫ t

0 (Cx)(s) ds belongs to W 1,p
loc (R

+
; Y ). Thus,

to complete the proof it suffices to show that
∫ t

0 (Cx)(s) ds = C
∫ t

0 As x ds
for t ≥ 0. Indeed, it follows from Theorem 4.4.2(i) that this identity is true
whenever x ∈ X1, because then (Cx)(s) = CAs x , and hence

∫ t
0 (Cx)(s) ds =∫ t

0 CAs x ds = C
∫ t

0 As x ds. If x /∈ X1, then we approximate x by a se-
quence xn → x in X , with each xn ∈ X1. By the continuity of C from X to
L p

loc(R+; U ), the restriction of Cxn to [0, t) converges to Cx in L p([0, t); Y ),
so
∫ t

0 (Cxn)(s) ds → ∫ t
0 (Cx)(s) ds as n→∞. It follows from (4.4.3) that∫ t

0 As xn ds → ∫ t
0 As x ds in X1, hence C

∫ t
0 As xn ds → C

∫ t
0 As x ds in Y

as n→∞. Thus, also in this case
∫ t

0 (Cx)(s) ds = C
∫ t

0 As x ds for all
t ≥ 0. �

Example 4.4.5 The observation operator of the delay line in Example 2.3.4 is
the point evaluation operator Cx = x(0).

Example 4.4.6 The observation operators of the exactly controllable shift real-
ization in Example 2.6.5(i) and the bilateral input shift realization in Example
2.6.5(iii) are the operators Cu = (Du)(0). The observation operators of the
exactly observable shift realization in Example 2.6.5(ii) and the bilateral out-
put shift realization in Example 2.6.5(iv) are the point evaluation operators
Cy = y(0).

This follows from Theorem 4.4.2(i) and the definition of A and C in Example
2.6.5.

There is also an easy converse to Theorem 4.4.2:
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Theorem 4.4.7 Let A be a C0 semigroup on X, and let 1 ≤ p <∞. Then

(i) C is the observation operator of an L p-well-posed output map for A with
output space Y if and only if C ∈ B(X1; Y ) and the map
C : X1 → C(R

+
; Y ) defined by

(Cx)(t) = CAt x, t ≥ 0,

can be extended to a continuous map X → L p
loc(R+; Y ).

(ii) C is the observation operator of an L∞-well-posed or Reg-well-posed
output map for A with output space Y if and only if C ∈ B(X ; Y ).

We leave the easy proof to the reader (the necessity part is contained in
Theorem 4.4.2(i)–(ii)).

The following theorem is the analogue of Theorem 4.3.4 for output maps.

Theorem 4.4.8 Let A be a C0 semigroup on X, and let C be a L p|Reg-well-
posed output map for A with input space Y . Let B ∈ B(U ; X ) and D ∈ B(U ; Y ).
For each u ∈ L1

c(R−; U ), define

Bu =
∫ 0

−∞
A−s Bu(s) ds,

and let D be the unique continuous time-invariant causal operator which maps
L1

c,loc(R; U ) continuously into L p
c,loc(R; Y ) and satisfies

(D(uv))(t) =
∫ t

−∞
(CBu)(t − s)v(s) ds + Duv(t) (4.4.4)

for all u ∈ U and v ∈ L1
c,loc(R; C) and almost all t ∈ R (see Theorem A.3.8).

Then
[A B

C D

]
is a well-posed linear system on (Y, X,U ) for all q, 1 ≤ q ≤ p, if

the original system is L p-well-posed, and for all q, 1 ≤ q ≤ ∞, if the original
system is Reg-well-posed. It is, in addition, Reg-well-posed if C is L∞-well-
posed or Reg-well-posed. (The control operator of this system is B and the
feedthrough operator is D; see Definitions 4.2.2 and 4.5.11, respectively.)

Proof The proof of the claim that B is an L1-well-posed input map for A is
the same as in Proposition 2.3.1, and we leave this proof to the reader. For each
simple function u with compact support (simple means that u takes only finitely
many values) it follows from (4.4.4) and the linearity of D that τ tDu = Dτ t u
for all t ∈ R, and that π−Dπ+u = 0. The set of simple functions is dense in
L1

c,loc(R; U ), so the same identities must be true for all u ∈ L1
c,loc(R; U ). By the

same argument, to show that the Hankel operator of D is CB it suffices to show
that for all u ∈ U , v ∈ L1

c,loc(R; C), and almost all t ≥ 0, it is true that

(D(uπ−v))(t) = (CB(uπ−v))(t).
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By linearity and density, it suffices to show that this is true when we take v to
be of the form v = π(−∞,s)eα where α > ωA and s ≤ 0. First, take v = π−eα .
Then, for almost all t ≥ 0, By Definition 4.1.1(iii)–(iv) and Theorem 3.2.9(i),

(D(uπ−eα))(t) =
∫ 0

−∞
(CBu)(t − s)eαs ds

=
∫ ∞

0
(CBu)(t + s)e−αs ds

=
∫ ∞

0
τ t
+(CBu)(s)e−αs ds

=
∫ ∞

0
(CAt Bu)(s)e−αs ds

= C(α − A)−1At Bu.

By the time-invariance of D, this means that for all s ≤ 0 and almost all t ≥ 0
(see also Lemmas 2.2.9 and 2.5.2(ii) and Theorem 3.2.9(i))

(D(uπ(−∞,s)eα))(t) = eαs(D(uτ−sπ−eα))(t)

= eαsτ−s(D(uπ−eα))(t)

= eαsC(α − A)−1At−s Bu

= eαsCAtA−s(α − A)−1 Bu

= eαsCAtA−sB(ueα)

= eαs(C(B(uπ−τ−seα)))(t)

= (C(B(uπ(−∞,s)eα)))(t).

Thus, the claim is true for this class of functions. As we already observed above,
by linearity and density, D = CB. �

From Theorem 4.4.2(iv) it is possible to derive the following growth esti-
mates involving C and the resolvent of A.

Proposition 4.4.9 In the setting of Theorem 4.4.2, for each ω > ωA there is a
finite constant M such that∥∥C(λ− A)−n

∥∥ ≤ M

n1/2p(
λ− ω)n−1/p

for all n = 1, 2, 3, . . . and all λ ∈ C+ω in the case where C is L p-well-posed
with 1 ≤ p <∞, and such that∥∥C(λ− A)−n

∥∥ ≤ M

(
λ− ω)n
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for all n = 1, 2, 3, . . . and all λ ∈ C+ω in the case where C is L∞-well-posed or
Reg-well-posed. In particular, taking n = 1 we get∥∥C(λ− A)−1

∥∥ ≤ M

(
λ− ω)1−1/p

in the case where B is L p-well-posed with 1 ≤ p <∞, and∥∥C(λ− A)−1
∥∥ ≤ M


λ− ω

in the case where B is L∞-well-posed or Reg-well-posed.

Proof In the L∞-case and Reg-case this follows from Theorems 3.2.9(ii) and
4.4.2(ii). By Theorem 2.5.4(ii), there is a constant M <∞ such that∥∥e−ωCx

∥∥
L p(R+) ≤ M |x |,

where e−ω(s) = e−ωs , s > 0. By Theorem 4.4.2(ii), for all n = 0, 1, 2, . . . ,

|C(λ− A)−(n+1)x | ≤ 1

n!

∫ ∞
0

sne−(
λ−ω)s
∣∣e−ωs(Cx)(s)

∣∣.
The given estimate then follows from Hölder’s inequality and Lemma
4.2.10. �

The following theorem is an extension of Theorem 4.4.2(iv).

Theorem 4.4.10 We use the same setting as in Theorem 4.4.2 (in particular, we
take ω > ωA). Define q by 1/q + 1/p = 1 if C is L p-well-posed with p <∞,
and let q = 1 if C is L∞-well-posed or Reg-well-posed. Let v ∈ Lq

−ω(R+; C),
and suppose that the (right-sided) Laplace transform v̂ of v is analytic at infinity.
Then, for all x0 ∈ X, ∫ ∞

0
v(s)(Cx0)(s) ds = C v̂(−A)x0. (4.4.5)

Proof It suffices to prove this in the case where x0 ∈ X1, because X1 is dense
in X and both sides of (4.4.5) depend continuously on x0 ∈ X (cf. Lemma
3.5.9, and observe that v̂(−A) ∈ B(X ; X1) since v̂(∞) = 0). For x0 ∈ X1 for-
mula (4.4.5) follows from Corollary 3.12.7 and Theorem 4.4.2(i) (note that
v ∈ L1

−ω′ (R
+; C) for all ω′ ∈ (ωA, ω)). �

4.5 The feedthrough operator

We have now developed representations for A (the semigroup generated by A),
B (the input map generated by A and B), and C (the output map generated
by A and C). We are still facing the most difficult part of the major question
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that we posed at the beginning of this chapter, namely the development of a
representation for the input/output map D. There are some special cases where
such a representation is easy to obtain, so let us begin with these cases and return
to the more general case later. However, before that, let us prove the following
smoothness result for D, which is analogous to those given in Lemmas 4.3.5
and 4.4.1 for B and C.

Lemma 4.5.1 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, let ω > ωA, and let n = 0, 1, 2, . . .

(i) If � is L p-well-posed for some p <∞, then D maps W n,p
ω (R; U ) and

W n,p
ω,loc(R; U ) continuously into W n,p

ω (R; Y ), respectively W n,p
ω,loc(R; Y ).

(ii) If � is L∞-well-posed or Reg-well-posed, then D maps BUCn
0,ω(R; U )

and BUCn
0,ω,loc(R; U ) continuously into BUCn

0,ω(R; Y ), respectively
BUCn

0,ω,loc(R; Y ).

In both cases, (Du)(k) = Du(k) for 0 ≤ k ≤ n.

Proof As long as we are only interested in the values of D on some interval
(−∞, M] we may without loss of generality assume that u ∈ W n,p

ω (R; U ) or
u ∈ BUCn

0,ω(R; U ) (because of the causality of D). The claims (i) and (ii) then
the follow from Examples 2.5.3 and 3.2.3 since

1

h
(τ hDu − u) = D

1

h
(τ hu − u),

and 1
h (τ hu − u)→ u̇ in L p

ω(R; U ) or BUCω(R; U ) as h → 0 whenever u ∈
W 1,p

ω (R; U ) or u ∈ BUC1
ω(R; U ). �

Our first ‘easy’ representation theorem for the input/output operator D deals
with the case where the observation operator is bounded:

Theorem 4.5.2 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, let ω > ωA, and suppose that the obser-
vation operator C is bounded, i.e., it can be extended to an operator C|X in
B(X ; Y ) (this is true, for example, if � is L∞-well-posed or Reg-well-posed).
Then there is a unique1 operator D ∈ B(U ; Y ) such that

(Du)(t) = C|XBt u + Du(t) = C|X
∫ t

−∞
At−s
|X−1

Bu(s) ds + Du(t), t ∈ R;

(4.5.1)

1 For the uniqueness of D it is important that we have extended C to the whole space X , and not
just to some other intermediate space W lying between X1 and X , e.g., to the space (X + BU )1
described in Lemma 4.3.12. In the latter situation D may depend on the space W and the
particular extension of C to W , which may not be unique. This question is discussed at length
in Chapter 5.
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this equation is valid a.e. for all u ∈ L p
ω,loc(R; U ) if � is L p-well-posed for

some p <∞, and for all u ∈ Reg0,ω,loc(R; U ) if � is L∞-well-posed or Reg-
well-posed.

Compare this result to Theorem 4.3.4.
In the proof of this theorem we use the following lemma:

Lemma 4.5.3 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA. For each λ ∈ C+ωA
we define eλ(t) = eλt for

t ∈ R. Then, for each u0 ∈ U, there is a y0 ∈ Y such that the function D(eλu)
is (a.e.) equal to eλy0. Thus, we may write y0 = (D(eλu))(0). The mapping
u0 �→ y0 = (D(eλu))(0) is a bounded linear operator U → Y .

Proof of Lemma 4.5.3 By Lemma 4.5.1, D(eλu) is continuous. As D commutes
with translations, we have

D(eλu)(t) = (τ tD(eλu))(0) = (Dτ t (eλu))(0) = eλt (D(eλu))(0).

That the mapping u �→ (D(eλu))(0) is linear and continuous follows from The-
orem 2.5.4 (since the norm in L p

ω(R−; Y ) of t �→ eλt (D(eλu))(0) is a constant
times |(D(eλu))(0)|Y ). �

Proof of Theorem 4.5.2 We begin by observing that C is bounded if � is
L∞-well-posed or Reg-well-posed; see Theorem 4.4.7(ii). Moreover, the two
different formulas for D in (4.5.1) are equivalent because of Theorem 4.2.1
(and a change of integration variable).

Next we prove uniqueness of D. Fix α > ω, and apply (4.5.1) to the function
eαu, where u ∈ U and eα(t) = eαt for t ∈ R. Then, by Theorem 4.2.1(iii) and
Lemmas 4.5.1 and 4.5.3, for all t ∈ R and u ∈ U ,

eαt (D(eαu))(0) = eαt C|X (α − A|X )−1 Bu + eαt Du.

Taking t = 0 and solving this equation for D we get

Du = (D(eαu))(0)− C|X (α − A|X )−1 Bu, u ∈ U.

Thus, D is unique. It is also clear that if we use the formula above to define D,
then D ∈ B(U ; Y ). We claim that (4.5.1) holds for this operator D.

We first want to check that (4.5.1) holds when u is replaced by π(−∞,s)eαu
for some fixed u ∈ U and s ∈ R. For t < s the left hand side of (4.5.1) becomes
in this case

(D(π(−∞,s)eαu))(t) = (D(eαu))(t) = eαt (D(eαu))(0)

= eαt (C|X (α − A|X )−1 Bu + Du),
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whereas the right hand side is

C|XBτ t (π(−∞,s)eαu)+ D(π(−∞,s)eαu)(t) = eαt C|XB(eαu)+ D(eαu)(t)

= eαt (C|X (α − A|X )−1 Bu + Du).

Thus, the two functions agree for t < s. For t ≥ s we make a similar computa-
tion: the left hand side is then given by

(π[s,∞)D(π(−∞,s)eαu))(t) = (τ−sπ+Dπ−τ s(eαu))(t) = (τ−sCBτ s(eαu))(t)

= eαs(τ−sCB(eαu))(t) = eαs(CB(eαu))(t − s)

= eαsC|XAt−sB(eαu),

whereas the right hand side is

C|XBτ t (π(−∞,s)eαu)+ D(π(−∞,s)eαu)(t) = C|XBτ t−sπ−(τ seαu)

= eαsC|XBτ t−sπ−(eαu) = eαsC|XAt−sB(eαu).

Thus, the two functions agree on all of R.
The proof is completed in the same way as the proof of Theorem 4.2.1(i)

(use linearity, density, and continuity). �

Theorem 4.5.2 has several important consequence, some of which will be
presented next.

Theorem 4.5.4 If
[A B

C D

]
is an L∞-well-posed linear system on (Y, X,U ),

and if we restrict the domains of B and D to Regc(R−; U ) and Regc,loc(R; U ),
respectively, then the resulting system is Reg-well-posed.

Proof By Theorems 4.4.2 and 4.5.2, C maps X continuously into BCω(R
+

; U ),
C|X ∈ B(X ; Y ), and the representation formula (4.5.1) is valid. It follows from
this formula that if u is piecewise constant and right-continuous, then Du is
right-continuous and has a left hand limit at each point. If u ∈ Regc,loc(R; loc)
is arbitrary, then we can choose a sequence un of functions of this type that
converge locally uniformly to u. But then Dun converges locally uniformly
to Du, so Du must be right-continuous and have a left hand limit at each
point. �

Corollary 4.5.5 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, let ω > ωA, and let s ∈ R and xs ∈ X.

(i) If � is L p-well-posed for some p <∞, and if the observation operator
C is bounded, then for each u ∈ L p

loc([s,∞); U ), the output y of � with
initial time s ∈ R, initial value xs ∈ X and input u is given by

y(t) = C|X x(t)+ Du(t), t ≥ s, (4.5.2)
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where x is the strong solution of the equation

ẋ(t) = Ax(t)+ Bu(t), t ≥ s,

x(s) = xs .
(4.5.3)

Moreover, if u ∈ L p
ω([s,∞); U ), then x ∈ BC0,ω([s,∞); X ) and

y − Du ∈ BC0,ω([s,∞); Y ). In particular, � can be extended to an
L∞-well-posed linear system on (Y, X,U ).

(ii) If � is L∞-well-posed or Reg-well-posed, then for each
u ∈ Regloc([s,∞); U ), the output y of � with initial time s ∈ R, initial
value xs ∈ X, and input u is given by (4.5.2) where x is the strong
solution of (4.5.3). Moreover, if u ∈ Reg0,ω([s,∞); U ), then
x ∈ BC0,ω([s,∞); X ) and y − Du ∈ BC0,ω([s,∞); Y ).

Proof Combine Theorems 4.2.1, 4.3.1, and 4.5.2. �

Corollary 4.5.6 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, and let ω > ωA.

(i) If � is L p-well-posed for some p <∞, and if the observation operator
C is bounded, then the operator u �→ Du − Du maps L p

ω(R; U )
continuously into BC0,ω(R; Y ).

(ii) If � is L∞-well-posed or Reg-well-posed, then the operator
u �→ Du − Du maps Reg0,ω(R; U ) continuously into BC0,ω(R; Y ).

Proof Combine Theorem 4.3.2 with Theorem 4.5.2. �

Example 4.5.7 The input/output map u �→ τ−T u of the delay line in Example
2.3.4 is not the input/output map of a Reg-well-posed or L∞-well-posed linear
system.

This follows from Corollary 4.5.6, because there is no operator D ∈ B(U ; Y )
that would make τ−T u − Du continuous for all u ∈ Reg0,ω(R; U ).

Theorem 4.5.8 Every static operator D ∈ TICloc(U ; Y ) (cf. Definitions 2.6.1
and 2.6.2) has a representation of the type

(Du)(t) = Du(t), t ∈ R,

for some D ∈ B(U ; Y ). This representation is valid for all u ∈ L p
c,loc(R; U ) and

almost all t ∈ R ifD ∈ TICp
loc(U ; Y ) with p <∞, and for all u ∈ Regc,loc(R; U )

and all t ∈ R if D ∈ TIC∞loc(U ; Y ) or D ∈ TICReg
loc (U ; Y ). (Thus, D can be ex-

tended to a bounded operator L p
loc(R; U )→ L p

loc(R; Y ) with the same repre-
sentation.)

Proof Trivially, D can be realized as the input/output map of a well-posed
linear system of the form

[A 0
0 D

]
, where A is an arbitrary C0 semigroup on an

arbitrary state space. The result then follows from Theorem 4.5.2. �
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By using Corollary 4.5.6 we can extend Lemma 4.5.1 in the following way.

Proposition 4.5.9 Let � = [A B

C D

]
be an L∞-well-posed or Reg-well-posed

linear system on (Y, X,U ) with growth bound ωA, let ω > ωA, let D be the
feedthrough operator of � (see Theorem 4.5.2), and let n = 0, 1, 2, . . . Then

(i) D maps Regn
0,ω(R; U ) and Regn

0,ω,loc(R; U ) continuously into
Regn

0,ω(R; Y ), respectively Regn
0,ω,loc(R; Y ), and

(ii) u �→ Du − Du maps Regn
0,ω(R; U ) and Regn

0,ω,loc(R; U ) continuously
into BCn

0,ω(R; Y ), respectively BCn
0,ω,loc(R; Y ).

Moreover, (Du)(k) = Du(k) for 0 ≤ k ≤ n.

Proof Clearly, (i) follows from (ii). Case (ii) with n = 0 is contained in Corol-
lary 4.5.6. If n > 0 then we use the representation

(Du)(t)− Du(t) = C|X
∫ t

−∞
At−s Bu(s) ds

found in Theorem 4.5.2. By the boundedness of C|X , it suffices to show that the
operator

(Fu)(t) =
∫ t

−∞
At−s Bu(s) ds

maps Regn
0,ω(R; U ) continuously into BCn

0,ω(R; X ). This operator is the in-
put/output map of an L1-well-posed system on (X−1, X−1,U ) with semi-
group A, bounded control operator B, bounded observation operator 1, and
zero feedthrough; cf. Proposition 2.3.1. By Theorem 4.3.4, the same system
is Reg-well-posed on (X, X,U ). If u ∈ Regn

0,ω(R; U ), then u ∈ W 1,n
β,loc(R; U )

for all β ∈ (ωA, ω), and we conclude from part (i) that Fu ∈ W 1,n
β,loc(R; X−1)

and that (Fu)(k) = Fu(k) for all 0 ≤ k ≤ n. But u(k) ∈ Reg0,ω(R; U ), and by
the case n = 0 proved above, we have (Fu)(k) = Fu(k) ∈ BC0,ω(R; X ). This
shows that F maps Regn

0,ω(R; U ) continuously into BCn
0,ω(R; X ), hence CF

maps Regn
0,ω(R; U ) continuously into BCn

0,ω(R; Y ). �

The other relatively easy case where we can construct a feedthrough operator
D is the one where the control operator B is bounded.

Theorem 4.5.10 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, let ω > ωA, and suppose that the control
operator is bounded, i.e., B ∈ B(U ; X ) (this is, in particular, true if X is reflexive
and � is L1-well-posed). Then there is a unique operator D ∈ B(U ; Y ) such
that

(Du)(t) = CBt u + Du(t) = C
∫ t

−∞
At−s Bu(s) ds + Du(t), t ∈ R;

(4.5.4)
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this equation is valid a.e. for all u that belong piecewise to W 1,1
ω,loc(R; U ) (i.e.,

there should exist −∞ < t0 < t1 < t2 < . . . , with tn →∞ as n→∞, such
thatπ(−∞,t0)u ∈ W 1,1

ω ((−∞, t0); U ) andπ[tn−1,tn )u ∈ W 1,1([tn−1, tn); U ) for n ≥
1). Thus, for such u, the output y of � with initial time s ∈ R, initial value
xs ∈ X, and input u is given by

y(t) = Cx(t)+ Du(t), t ≥ s, (4.5.5)

where x is the strong solution of (4.5.3).

Proof The major part of the proof of this theorem is identical to the proof of
Theorem 4.5.2 with one small correction: we replace X−1 by X and X by X1

throughout. Then, with the exception of the last two lines, all the statements in
the proof of Theorem 4.5.2 remain valid. Observe, in particular, that B(eαu) =
(α − A)−1 Bu ∈ X1 in this case.

As in the proof of Theorem 4.5.2, we conclude that (4.5.4) is valid for all finite
linear combination of functions of the type eαu and π[s,∞)(eαu). By subtracting
such a linear combination from u we can assume that u ∈ W 1,1

ω,loc(R; U ) (i.e, we
can remove the possible discontinuities of u).

We observe that both sides of (4.5.4) with u replaced by π[s,∞)(eαu)
are infinitely many times differentiable with respect to α, as long as α < ω

(see Lemma 3.2.10). Differentiation with respect to α replaces eαt by teαt , and
we conclude that (4.5.4) is valid for functions u of the type π[s,∞)(eα P) where
s ∈ R is arbitrary and P is an arbitrary polynomial with vector coefficients in
U . This class of functions is dense in W 1,1

ω,loc(R; U ), so (4.5.4) must hold for all

functions u that belong piecewise to W 1,1
ω,loc(R; U ). �

Definition 4.5.11 The operator D in Theorems 4.5.2 and 4.5.10 is called the
feedthrough operator of �.

The input/output map has the following interesting representation in the case
where the control operator is bounded (compare this theorem to Theorem 4.4.8):

Theorem 4.5.12 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, let ω > ωA, and suppose that the control
operator is bounded, i.e., B ∈ B(U ; X ) (this is, in particular, true if X is reflexive
and � is L1-well-posed). Then

(D(uv))(t) =
∫ t

−∞
(CBu)(t − s)v(s) ds + Duv(t) (4.4.4)

for all u ∈ U and v ∈ L p|Regω,loc(R); here D is the operator in Theorem 4.5.2.
Moreover, B can be extended to a continuous mapping L1

ω(R−; U )→ X and D

can be extended to a continuous mapping L1
ω,loc(R; U )→ L p

ω,loc(R; Y ). Thus,
� can be extended to an L1-well-posed linear system on (Y, X,U ).
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Proof Obviously, if B is bounded, then we can use the representation of B given
in Theorem 4.2.1(i) to extend B to an operator in B(L1

ω(R−; U ); X ). Thus, it
suffices to prove (4.4.4), because the rest of the claims follow from Theorem
4.4.8. Moreover, by continuity, it suffices to prove (4.4.4) for v ∈ W 1,p

c,loc(R).

Let u ∈ U and v ∈ W 1,p
c,loc(R; R). Then, by Theorem 3.8.2(v) with X replaced

by X1,
∫ t
−∞ At−s Buv(s) ds ∈ X1. By Theorem 3.7.1(iii) with X replaced by X1,

if we let Jα = α(α − A)−1 be the Yosida approximation of the identity, then
Jα ∈ B(X ; X1), Jα commutes with As for all s ≥ 0, and

Jα

∫ t

−∞
At−s Buv(s) ds →

∫ t

−∞
At−s Buv(s) ds

in X1 as α→∞. Thus, by Theorem 4.5.10,

(Duv)(t) = C
∫ t

−∞
At−s Buv(s) ds + Duv(t)

= lim
α→∞C Jα

∫ t

−∞
At−s Buv(s) ds + Duv(t)

= lim
α→∞

∫ t

−∞
C JαA

t−s Buv(s) ds + Duv(t)

= lim
α→∞

∫ t

−∞
CAt−s JαBuv(s) ds + Duv(t)

= lim
α→∞

∫ t

−∞
(CJαBu)(t − s)v(s) ds + Duv(t)

=
∫ t

−∞
(CBu)(t − s)v(s) ds + Duv(t),

where in the last line we have used the Lebesgue dominated convergence
theorem and the fact that JαBu → Bu in X as α→∞ (see Theorem
3.7.1(iii)). �

Example 4.5.13 The input/output map u �→ τ−T u of the delay line in Example
2.3.4 is not the input/output map of an L1-well-posed linear system with reflexive
state space.

This follows from Theorems 4.2.7 and 4.5.12, since this input/output map
does not have a representation of the type (4.4.4).

4.6 The transfer function and the system node

Let us begin by giving a name to the operator u �→ (D(ezu))(0) that we encoun-
tered in Lemma 4.5.3.
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Definition 4.6.1 The operator-valued function z �→ (u �→ (D(ezu))(0)
)

in
Lemma 4.5.3, defined on C+ωA

, is called the transfer function of �, and it is
denoted by D̂(z).2

Lemma 4.6.2 The transfer function D̂ is an analytic B(U ; Y )-valued function
on C+ωA

, and, for each ω > ωA, it is uniformly bounded in the closed half-plane

C
+
ω .

Proof Choose some ωA < α < ω. Then the family ezu is bounded in
W 1,p

α ((−∞, 1]; U ) for every p, 1 ≤ p ≤ ∞, and in BC0,ω(R; C), uniformly over

all z ∈ C
+
ω and all u ∈ U with |u| ≤ 1. Therefore D̂(z) is uniformly bounded on

the half-plane C
+
ω as claimed. The analyticity of D̂u(z) for each u ∈ U follows

from the fact that ezu has a complex derivative with respect to z (see Lemma
3.2.10). Thus D̂ is analytic in the strong topology, hence in the uniform operator
topology (see Hille and Phillips 1957, Theorem 3.10.1). �

In the situation discussed in Theorems 4.5.2 and 4.5.10 the transfer function
has the following representation in terms of the the control, observation, and
feedthrough operators:

Theorem 4.6.3 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system.

(i) If the observation operator C of � is bounded, then the transfer function
D̂ is given by

D̂(z) = C|X (z − A|X )−1 B + D, 
z > ωA. (4.6.1)

In particular, this is true if � is L∞-well-posed or Reg-well-posed.
(ii) If the control operator B is bounded, then the transfer function D̂ is

given by

D̂(z) = C(z − A)−1 B + D, 
z > ωA. (4.6.2)

In particular, this is true if � is L1-well-posed and X is reflexive.

This follows from Theorems 4.2.1(iii), 4.5.2, and 4.5.10.

2 In Definition 4.7.4 we extend the domain of D̂ to the whole resolvent set of A. See also Lemma
4.7.5.
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If neither B nor C is bounded, then the representation formula for D̂ becomes
more complicated. One way to prove this more general formula is to first prove
a representation formula for the output y, where neither B nor C is assumed to
be bounded. This representation formula contains a new operator, the combined
observation/feedthrough operator C&D, which is defined a follows.

Definition 4.6.4 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with semigroup generator A, control operator B, observation operator
C , and growth bound ωA. The combined observation/feedthrough operator
C&D :

[
X
U

] ⊃ D (C&D)→ Y and the system node S :
[

X
U

] ⊃ D (S)→ [ X
Y

]
of � are defined by

C&D

[
x
u

]
= C
[
x − (α − A|X )−1 Bu

]+ D̂(α)u, (4.6.3)

S =
[

A&B
C&D

]
, (4.6.4)

where α is an arbitrary point in C+ωA
,3and A&B is the restriction of[

A|X B
]

:
[

X
U

]→ X−1 to D (A&B). The three operators A&B, C&D and
S have the same domain (described in Lemma 4.3.10), namely

D (S) = D (A&B) = D (C&D)

= {[ x
u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}
.

(4.6.5)

The motivation for the notation C&D that we have introduced above is
that in the case where the observation operator C is bounded (i.e., it has a
bounded extension to X ), the operator C&D is the restriction to D (C&D) of
the operator

[
C D

]
:
[

X
U

]→ Y . This follows from Theorems 4.5.2 and 4.6.3.
(In particular, at least in this case C&D does not depend on α; see Theorem
4.6.7 for the general statement.)

Theorem 4.6.5 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system with

semigroup generator A, control operator B, observation operator C, trans-
fer function D̂, and growth bound ωA. Let ω > ωA and 
α > ωA. Define
C&D and S as in Definition 4.6.4 (using the particular value of α specified
above).

(i) Let � be L p-well-posed for some p, 1 ≤ p <∞, let u ∈ W 1,p
ω,loc(R; U ),

and let x(t) = Bt u, t ∈ R, and y = Du be the state trajectory and
output function of � with initial time −∞ and input function u (cf.
Definition 2.5.8). Then x ∈ BC1

0,ω,loc(R; X ),
[

x
u

] ∈ BC0,ω,loc(R;D (S)),

3 We shall see in Theorem 4.6.7 that C&D does not depend on α.
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y ∈ W 1,p
ω,loc(R; Y ) (in particular, y is continuous), and[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R. (4.6.6)

If u ∈ W 1,p
ω (R; U ), then x ∈ BC1

0,ω(R; X ),
[

x
u

] ∈ BC0,ω(R;D (S)), and

y ∈ W 1,p
ω (R; Y ).

(ii) Let � be L∞-well-posed or Reg-well-posed, and denote the feedthrough
operator of � by D (cf. Theorem 4.5.2). Let u ∈ Reg1

0,ω,loc(R; U ), and
define x and y as in (i). Then x ∈ BC1

0,ω,loc(R; X ),[
x
u

] ∈ BC0,ω,loc(R;D (S)), y − Du ∈ BC1
0,ω,loc(R; Y ), and (4.6.6) holds.

In this case we can alternatively write (4.6.6) in the form[
ẋ(t)
y(t)

]
=
[

A|X B
C|X D

] [
x(t)
u(t)

]
, t ∈ R, (4.6.7)

where C|X stands for the unique extension of C to B(X ; Y ). If
u ∈ Reg1

0,ω(R; U ), then x ∈ BC1
0,ω(R; X ),

[
x
u

] ∈ BC0,ω(R;D (S)), and
y − Du ∈ BC1

0,ω(R; Y ).

Proof The claims concerning the differentiability and growth rate of the
function x are taken from Theorem 4.3.6, and also the claim that ẋ(t) =
A&B

[
x(t)
u(t)

]
= A|X x(t)+ Bu(t) for all t ∈ R is found in the same place.

The claims about the continuity and growth rate of
[

x
u

]
are found in The-

orem 4.3.11. By Lemma 4.5.1, Du ∈ W 1,p
ω,loc(R; Y ) or Du ∈ W 1,p

ω (R; Y ) (de-
pending on the assumption on u) in case (i), and by Proposition 4.5.9(ii),
y − Du ∈ BC1

0,ω,loc(R; Y ) or y − Du ∈ BC1
0,ω(R; Y ) in case (ii) (again depend-

ing on the assumption on u). The bottom half of (4.6.7) is a rewritten version

of (4.5.2). Thus, it only remains to prove that y(t) = C&D
[

x(t)
u(t)

]
for all t ∈ R

in case (i). In this proof we may, without loss of generality, take t = 0: to
get a nonzero t we simply replace u by τ t u and x(0) by x(t) in the argument
below.

Define eα(s) = eαs for s ∈ R. The function π−(u − eαu(0)) belongs to
W 1,p

ω,loc(R; U ), hence by Lemma 4.5.1, Dπ−(u − eαu(0)) ∈ W 1,p
ω,loc(R; Y ). By

causality, this function coincides with D(u − eαu(0)) on R−, so necessarily(
Dπ−(u − eαu(0))

)
(0) = (D(u − eαu(0))

)
(0) = y(0)− D̂(α)u(0).

On the other hand, by Definition 2.2.1,

π+Dπ−(u − eαu(0)) = CB(u − eαu(0)),
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where, by Lemma 4.3.5, B(u − eαu(0)) ∈ X1. By Theorems 4.4.2(i) and
4.2.1(i),(iii), for all s ≥ 0,(

Dπ−(u − eαu)
)
(s) = (CB(u − eαu(0))

)
(s)

= CAsB(u − eαu(0))

= CAs
(
x(0)− (α − A)−1 Bu(0)

)
.

Taking s = 0 we get

y(0) = C
(
x(0)− (α − A)−1 Bu(0)

)+ D̂(α)u(0) = C&D

[
x(0)
u(0)

]
.

�

Corollary 4.6.6 A well-posed linear system is determined uniquely by its semi-
group generator A, its control operator B, its observation operator C, and its
transfer function D̂, evaluated at one point α ∈ C+ωA

(where ωA is the growth
bound of the semigroup).

Proof See Definition 2.2.4 and Theorems 3.2.1(vii), 4.2.1(ii), 4.4.2(iii), 4.5.2,
and 4.6.5 (the space W 1,p

ω,loc(R; U ) is dense in L p
ω,loc(R; U ) for p <∞). �

Another consequence of Theorem 4.6.5 is the following representation for-
mula for the transfer function of a system.

Theorem 4.6.7 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system with

semigroup generator A, control operator B, observation operator C, transfer
function D̂, and growth bound ωA. Let ω > ωA and 
α > ωA. Define C&D
and S as in Definition 4.6.4 (using the particular value of α specified above).
Then,

D̂(z) = C&D

[
(z − A|X )−1 B

1

]
, 
z > ωA. (4.6.8)

Moreover, for all α ∈ C+ωA
and z ∈ C+ωA

,

D̂(z)− D̂(α) = C[(z − A|X )−1 − (α − A|X )−1]B

= (α − z)C(z − A)−1(α − A|X )−1 B,
(4.6.9)

and C&D does not depend on the particular value of α which is used in its
definition.

Proof We apply Theorem 4.6.5 to the function u = ezv, where v ∈ U , ez(t) =
ezt for t ∈ R and 
z > ωA, and evaluate y at zero. By Definition 4.6.1, y(0) =
D̂(z)v. On the other hand, by Theorem 4.6.5, y(0) = C&D

[
x(0)
u(0)

]
, where (by

Theorem 4.2.1(iii)) x(0) = (z − A|X )−1 Bv and u(0) = v. This proves (4.6.8).
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Formula (4.6.9) follows from (4.6.3), (4.6.8) and the resolvent identity (3.2.1).
That C&D does not depend on the value used in its definition follows from
(4.6.9), which shows that for all

[
x
u

] ∈ D (S) we have

C[x − (α − A|X )−1 Bu]+ D̂(α) = C[x − (z − A|X )−1 Bu]+ D̂(z).

�

Corollary 4.6.8 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with semigroup generator A, control operator B, and observation
operator C. Then the operator-valued function

(λ− α)C(λ− A)−1(α − A|X )−1 B

is analytic both in λ for λ ∈ C+ωA
and in α for α ∈ C+ωA

, and for each ω > ωA

it is uniformly bounded in 
λ ≥ ω and 
α ≥ ω.

This follows from Lemma 4.6.2 and Theorem 4.6.7.
At this point we ask the reader to recall Definition 3.12.1 of the Laplace

transform of a function.

Theorem 4.6.9 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, let ω > ωA, and let u ∈ L p
ω(R+; U ) if �

is L p-well-posed for some 1 ≤ p <∞, and u ∈ Reg0,ω(R
+

; U ) if � is L∞-
well-posed or Reg-well-posed. Let x be the state trajectory and let y be the
output of � with initial time zero, initial state x0, and input function u. Then
x ∈ BC0,ω(R+; X ), y ∈ L p|Reg0,ω(R+; Y ), and the Laplace transforms of x and
y satisfy

x̂(z) = (z − A)−1x0 + (z − A|X )−1 Bû(z),

ŷ(z) = C(z − A)−1x0 + D̂(z)û(z), z ∈ Cω.
(4.6.10)

Proof Both the solution x and the output y can be split into two parts, x =
x1 + x2, and y = y1 + y2, where

x1(t) = At x0, x2(t) = Bt
0u, t ≥ 0,

y1 = Cx0, y2 = Dπ+u.

It follows from Theorem 2.5.4 that both x1 and x2 belong to BC0,ω(R+; X ),
and that both y1 and y1 belong to L p|Reg0,ω(R+; Y ). In particular, the Laplace
transforms of all these functions converge absolutely in the half-plane C+ω . Let
z ∈ C+ω . By Theorem 3.2.9(i), x̂1(z) = (z − A)−1x0, and by Theorem 4.4.2(iv),
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ŷ1(z) = C(z − A)−1x0. Using the representation (4.2.3) for Bt
0 and Theorem

3.2.9(i) (with X replaced by X−1) we get (after two changes of the order of
integration and a change of integration variable)

x̂2(z) =
∫ ∞

0
e−zt
∫ t

0
At−v
|X−1

Bu(v) dv dt

=
∫ ∞

0

∫ ∞
v

e−zt At−v
|X−1

Bu(v) dt dv

=
∫ ∞

0

∫ ∞
0

e−z(s+v) As
|X−1

Bu(v) ds dv

=
∫ ∞

0
e−zs As

|X−1
B
∫ ∞

0
e−zvu(v) dv ds

= (z − A|X )−1 Bû(z).

Thus, it only remains to prove that

D̂π+u(z) = D̂(z)û(z), z ∈ C+ω . (4.6.11)

We first investigate the validity of (4.6.11) for functions u of the type u =
π[0,s)eαv, where 0 < s ≤ ∞, ωA < α < ω, v ∈ U are fixed, and eα(t) = eαt ,
t ∈ R. Then, for 
z > ω > α,

û(z) =
∫ s

0
e(α−z)t dt v = (z − α)−1(1− e(α−z)s)v.

To compute Du we write u in the form

u = π(−∞,s)eαv − π(−∞,0)eαv = u1 − u2.

Let (cf. Theorem 4.2.1(iii))

x = B(eαv) = (α − A|X )−1 Bv.

Then,

π[0,s)Du1 = π[0,s)eαD̂(α)v,

π[s,∞)Du1 = τ−sπ+Dπ−τ su1 = τ−sCB(τ seαv)

= eαsτ−sCB(eαv) = eαsτ−sCx,

π[0,∞)Du2 = CBu2 = Cx .

We multiply this by the function e−z , integrate over R+, and use Theorems
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4.4.2(iv) and 4.6.7 to get

̂(Dπ+u)(z) =
∫ s

0
e(α−z)tD̂(α)v dt

+
∫ ∞

s
eαse−zt (Cx)(t − s) dt −

∫ ∞
0

e−zt (Cx)(t)

= (z − α)−1(1− e(α−z)s)D̂(α)v

− (1− e(α−z)s)
∫ ∞

0
e−zt (Cx)(t) dt

= (z − α)−1(1− e(α−z)s)D̂(α)v

− (1− e(α−z)s)C(z − A)−1(α − A|X )−1 Bv

= (1− e(α−z)s)(z − α)−1D̂(z)v

= D̂(z)û(z).

Thus, (4.6.11) holds for this class of functions u.
The proof is completed using the standard density argument (cf. the proof

of Theorem 4.2.1(i)). �

Corollary 4.6.10 A causal time-invariant operator which either maps
L p
ω(R; U ) continuously into L p

ω(R; Y ) for some ω ∈ R and p, 1 ≤ p <∞,
or satisfies the assumptions of Theorem 2.6.7, has a transfer function D̂ with
the following properties:

(i) D̂(z)u = (D(ezu))(0) for all u ∈ U and z ∈ C+ω . Here ez(t) = ezt for all
t ∈ R.

(ii) D̂ is an analytic B(U ; Y )-valued function on C+ω , and, for each α > ω it

is bounded in the closed half-plane C
+
α .

(iii) If u ∈ L p|Regω(R
+

; U ), then the Laplace transform of Dπ+u is given by

̂(Dπ+u)(z) = D̂(z)û(z), z ∈ C+ω . (4.6.12)

(iv) D is determined uniquely by D̂.

Proof (i)–(ii) This follows from Definition 4.6.1, Lemma 4.6.2 and Theorems
2.6.6, 2.6.7, and 4.6.9.

(iii) Since the Laplace transform is injective, (ii) implies that u and D̂ deter-
mine Du uniquely whenever u vanishes on R−. By the time-invariance of D,
this implies that u and D̂ determine Du uniquely whenever the support of u is
bounded from the left. This set of functions is dense in the domain of D, so D̂

determines D uniquely. �
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Theorem 4.6.5 can also be used to develop the following formula for the
output function of a L p|Reg-well-posed linear system for a restricted class of
input functions and initial states.

Theorem 4.6.11 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system with

system node S and growth bound ωA.

(i) Let � be L p-well-posed for some p <∞, s ∈ R, xs ∈ X,
u ∈ W 1,p

loc ([s,∞); U ), and let
[ xs

u(s)

] ∈ D (S) (i.e., A|X xs + Bu(s) ∈ X).
Let x and y be the state trajectory and output function of � with initial
time s, initial state xs , and input function u. Then x ∈ C1([s,∞); X ),[

x
u

] ∈ C([s,∞);D (S)), y ∈ W 1,p
loc ([s,∞); Y ) (in particular, y is

continuous), and [
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ s. (4.6.13)

If u ∈ W 1,p
ω ([s,∞); U ) for some ω > ωA, then x ∈ BC1

0,ω([s,∞); X ),[
x
u

] ∈ BC0,ω([s,∞);D (S)), and y ∈ W 1,p
ω ([s,∞); Y ).

(ii) If � is L∞-well-posed or Reg-well-posed, then all the claims in (i) are
valid if we replace the condition u ∈ W 1,p

loc ([s,∞); U ) by
u ∈ Reg1

loc([s,∞); U ), the condition u ∈ W 1,p
ω ([s,∞); U ) by

u ∈ Reg1
0,ω([s,∞); U ), the condition y ∈ W 1,p

loc ([s,∞); Y ) by

y − Du ∈ C1([s,∞); Y ), and the condition y ∈ W 1,p
ω ([s,∞); Y ) by

y − Du ∈ BC1
0,ω([s,∞); Y ). In addition, in this case 4.6.13 can be

written in the form[
ẋ(t)
y(t)

]
=
[

A|X B
C|X D

] [
x(t)
u(t)

]
, t ≥ s, (4.6.14)

where C|X stands for the unique extension of C to B(X ; Y ).

Proof All the claims concerning the state x are taken from Theorem 4.3.7, which
also contains the top half of (4.6.13) (i.e., the equation ẋ(t) = A|X x(t)+ Bu(t)
for t ≥ s). The representation (4.6.14) is taken from Corollary 4.5.5. Together
with Theorem 4.6.3 this implies (4.6.13) in case (ii). The claim that y − Du ∈
C1([s,∞); Y ) in case (ii) follows from the boundedness of C and the fact
that y − Du = Cx where x ∈ C1([s,∞); X ). Thus, it remains to show that

y ∈ W 1,p
loc ([s,∞); Y ) and that y(t) = C&D

[
x(t)
u(t)

]
for t ≥ s in case (i).

For simplicity we take s = 0 (i.e., we replace s by 0, u by τ−su, y by τ−s y,
and x(t) by x(t − s).
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According to Definition 2.2.7 with s = 0,

x(t) = At x0 +Bt0u, t ≥ 0,

y = Cx0 +D0u.

Fix some α with 
α > ω > ωA, let eα(t) = eαt , t ∈ R, and define

v = π+u + π−eαu(0).

Then v ∈ W 1,p
ω,loc(R,U ). As in the proof of Theorem 4.3.7 we write x in the

form x(t) = x1(t)+ x2(t) where x1(t) = At (x0 −Beαu(0)) ∈ X1 for all t ≥ 0
and x2(t) = Btv. We split y accordingly into

y = Cx0 +Dπ+u

= Cx0 +Dv − π+Dπ−eαu(0)

= C(x0 −Beαu(0))+Dv

= y1 + y2.

By Lemma 4.4.1 and Theorem 4.4.2(i), y1 ∈ W 1,p
loc (R

+
; Y ) and y1(t) = Cx1(t)

for all t ≥ 0. By Theorem 4.6.5, also y2 ∈ W 1,p
loc (R

+
; Y ), and the representation

for y2 given there (with u replaced by v) is valid. This, together with Theorem
4.2.1(iii), gives for all t ≥ 0,

y(t) = Cx1(t)+ CB
(
τ tv − eαv(t)

)+ D̂(α)v(t)

= Cx1(t)+ C
(
x2(t)−Beαu(t)

)+ D̂(α)u(t)

= C
(
x(t)−Beαu(t)

)+ D̂(α)u(t)

= C
[
x(t)− (α − A|X )−1 Bu(t)

]+ D̂(α)u(t)

= C&D

[
x(t)
u(t)

]
.

�

It is also possible to develop a representation for the output of a well-posed
linear system in the general case, which is based on the representation described
in Theorem 4.6.11.

Theorem 4.6.12 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system with

system node S = [ A&B
C&D

]
and control operator B. Let x and y be the state

trajectory and output function of � with initial time s ∈ R, initial state xs ∈ X,
and input function u, where u ∈ L p

loc([s,∞); U ) if� is L p-well-posed for some
p <∞ and u ∈ Regloc([s,∞); U ) if � is L∞-well-posed or Reg-well-posed.
Let [

x1(t)
u1(t)

]
=
∫ t

s

[
x(v)
u(v)

]
dv, t ≥ s,
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be the integral of
[

x
u

]
. Then

x(t) = At−s xs +
∫ t

s
At−v
|X−1

Bu(v) dv, t ≥ s, (4.6.15)

[ x1
u1

] ∈ W 1,p
loc ([s,∞);D (S)) if� is L p-well-posed for some p <∞ and

[ x1
u1

] ∈
Reg1

loc([s,∞);D (S)) if � is L∞-well-posed or Reg-well-posed, and

y(t) = d

dt
C&D

[
x1(t)
u1(t)

]
for almost all t ≥ s. (4.6.16)

See Theorem 4.7.11 for a related result.

Proof That x is given by (4.6.15) follows from (4.3.1).
By the linearity of the problem, it suffices to prove the theorem in the two

cases where either xs = 0 or u = 0. If u = 0, then the conclusion follows im-
mediately from Definition 2.2.7 and Theorem 4.4.4, since

[
X1
0

] ⊂ D (S) and
C&D

[
x
0

] = Cx for every x ∈ X1. Thus, in the sequel we may assume that
xs = 0.

If xs = 0, then (according to Definition 2.2.7) y = Dπ[s,∞)u. Define y1(t) =∫ t
s y(v) dv = ∫ t

s (Dπ[s,∞)u)(v) dv for t ≥ s. Then y1 = Dπ[s,∞)u1 since these
functions coincide at the point s, and, according to Proposition 4.5.9, they have
the same derivative. Thus, y1 is the output function of � with initial time s,
initial state zero and input function u1. The corresponding state trajectory is
x1 (this follows from the variation of constants formula (4.6.15)). By Theorem
4.6.11,

[ x1
u1

] ∈ W 1,p
loc ([s,∞);D (S)) or

[ x1
u1

] ∈ Reg1
loc([s,∞);D (S)) (depending

on which case of well-posedness we consider), and y1(t) = C&D
[

x1(t)
u1(t)

]
for

all t ≥ s. Differentiating this equation we get (4.6.16). �

It is possible to reformulate Theorems 4.6.5 and 4.6.11 by making a change of
variable, and replacing the state x by z = x − (α − A|X )−1 Bu. (This particular
combination of x and u appears in the definition of C&D, too.)

Corollary 4.6.13 Let� = [A B

C D

]
be an L p|Reg-well-posed linear system with

semigroup generator A, control operator B, observation operator C, transfer
function D̂, and growth bound ωA. Let ω > ωA and α ∈ C+ωA

.

(i) Let � be L p-well-posed for some p, 1 ≤ p <∞. Then, for each
u ∈ W 1,p

ω,loc(R; U ), the function Du belongs to W 1,p
ω,loc(R; Y ) (in particular,

it is continuous), and it is given by

y(t) = Cz(t)+ D̂(α)u(t), t ∈ R, (4.6.17)



4.6 Transfer function and system node 237

where z is the unique strong solution (with initial time −∞) in
BC0,ω,loc(R; X1) of the equation

ż(t) = Az(t)+ (α − A|X )−1 B(αu − u̇), t ∈ R. (4.6.18)

If u ∈ W 1,p
ω (R; U ), then z ∈ BC0,ω(R; X1).

(ii) If � is L p-well-posed for some p <∞, then for each s ∈ R, xs ∈ X, and
u ∈ W 1,p

loc ([s,∞); U ) satisfying A|X xs + Bu(s) ∈ X, the output y of �
with initial time s, initial value xs and input u satisfies
y ∈ W 1,p

loc ([s,∞); Y ), and it is given by

y(t) = Cz(t)+ D̂(α)u(t), t ≥ s, (4.6.19)

where z is the strong solution in X1 of

ż(t) = Az(t)+ (α − A|X )−1 B(αu − u̇), t ≥ s,

z(s) = xs − (α − A|X )−1 Bu(s)

= (α − A|X )−1
(
αxs − (A|X xs + Bu(s)

)
.

(4.6.20)

If u ∈ W 1,p
ω ([s,∞); U ), then z ∈ BC0,ω([s,∞); X1).

(iii) If instead � is L∞-well-posed or Reg-well-posed, then the conclusions of
(i) and (ii) remain valid if we replace W 1,p

ω,loc by Reg1
0,ω,loc, W 1,p

ω by

Reg1
0,ω, and W 1,p

loc by Reg1
loc throughout.

Proof (i) By Theorem 4.6.5, if we define z(t) := Bτ t u − (α − A|X )−1 Bu(t)
for t ∈ R, then z ∈ BC1

0,ω,loc(R; X ) and (4.6.17) holds. The control operator
(α − A|X )−1 B in (4.6.18) is bounded, so by Proposition 2.3.1 and Theorem
4.3.2(i), equation (4.6.18) has a unique strong solution in BC0,ω,loc(R; X ). Thus,
(i) follows as soon as we show that z is a strong solution in X of (4.6.18). This is
easy: recall that (by Theorem 4.3.2) x := Bτu is a strong solution in X of ẋ =
Ax + Bu and that z = x − (α − A|X )−1 Bu, hence z is a strong solution of the
equation

ż = ẋ − (α − A|X )−1 Bu̇

= A|X
(
z + (α − A|X )−1 Bu

)+ Bu − (α − A|X )−1 Bu̇

= A|X z + (α − A|X )−1(αu − u̇).

(ii)–(iii) The proofs of (ii)–(iii) are essentially the same as the proof of (i)
given above, with Theorem 4.3.2(i) replaced by Theorem 4.3.1 and Theorem
4.6.5 replaced by Theorem 4.6.11. �

There is another, equivalent version of Corollary 4.6.13 which is based on a
slightly different change of state variable:



238 The generators

Corollary 4.6.14 Let� = [A B

C D

]
be an L p|Reg-well-posed linear system with

semigroup generator A, control operator B, observation operator C, transfer
function D̂, and growth bound ωA. Let ω > ωA and α ∈ C+ωA

.

(i) Let � be L p-well-posed for some p, 1 ≤ p <∞. Then, for each
u ∈ W 1,p

ω,loc(R; U ), the function Du belongs to W 1,p
ω,loc(R; Y ) (in particular,

it is continuous), and it is given by

y(t) = C(α − A)−1w(t)+ D̂(α)u(t), t ∈ R, (4.6.21)

where w is the unique strong solution (with initial time −∞) in
BC0,ω,loc(R; X ) of the equation

ẇ(t) = Aw(t)+ B(αu − u̇), t ∈ R. (4.6.22)

If u ∈ W 1,p
ω (R; U ), then w ∈ BC0,ω(R; X ).

(ii) If � is L p-well-posed for some p <∞, then for each s ∈ R, xs ∈ X, and
u ∈ W 1,p

loc ([s,∞); U ) satisfying A|X xs + Bu(s) ∈ X, the output y of �
with initial time s, initial value xs and input u satisfies
y ∈ W 1,p

loc ([s,∞); Y ), and it is given by

y(t) = C(α − A)−1w(t)+ D̂(α)u(t), t ≥ s, (4.6.23)

where w is the strong solution in X of

ẇ(t) = Aw(t)+ B(αu − u̇), t ≥ s,

w(s) = αxs − A|X xs − Bu(s).
(4.6.24)

If u ∈ W 1,p
ω ([s,∞); U ), then w ∈ BC0,ω([s,∞); X ).

(iii) If instead � is L∞-well-posed or Reg-well-posed, then the conclusions of
(i) and (ii) remain valid if we replace W 1,p

ω,loc by Reg1
0,ω,loc, W 1,p

ω by

Reg1
0,ω, and W 1,p

loc by Reg1
loc throughout.

Proof This follows from Corollary 4.6.13 since w = (α − A)z = αx −
A|X x − Bu is a strong solution of (4.6.22) or (4.6.24) in X if and only if z
is a strong solution of (4.6.18) or (4.6.20) in X1. �

4.7 Operator nodes

In the preceding section we arrived at the notion of system node induced by
a L p|Reg-well-posed linear system. This node is an unbounded operator S
of the type S = [ A&B

C&D

]
:
[

X
U

] ⊃ D (S)→ [ X
Y

]
, where A&B is the restriction

of
[
A|X B

]
:
[

X
U

]→ X−1 to D (S) = {[ x
u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}
, and

C&D is the combined observation/feedthrough operator. In this section we give
some necessary conditions and some sufficient conditions for an unbounded
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operator S :
[

X
U

] ⊃ D (S)→ [ X
Y

]
to be the system node of a L p|Reg-well-

posed linear system. We begin by listing some necessary conditions.

Proposition 4.7.1 Let S :
[

X
U

] ⊃ D (S)→ [ X
Y

]
be the system node of an

L p|Reg-well-posed linear system on (Y, X,U ). Denote the two complemen-
tary projections of

[
X
Y

]
onto X respectively Y by πX and πY , and write S in

the form S = [ A&B
C&D

]
, where A&B = πX S and C&D = πY S (withD (A&B) =

D (C&D) = D (S)). Then S has the following properties.

(i) S is closed
(
as an operator

[
X
U

]→ [ X
Y

])
.

(ii) The operator A : X ⊃ D (A)→ X defined by Ax = A&B
[

x
0

]
on

D (A) = {x ∈ X
∣∣ [ x

0

] ∈ D (S)
}

is the generator of a C0 semigroup on
X.

(iii) The operator A&B (with D (A&B) = D (S)) can be extended to an
operator

[
AX B

] ∈ B([ X
U

]
; X−1

)
, where X−1 is defined as in Section 3.6.

(iv) D (S) = {[ x
u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}
.

Proof The decomposition S = [ A&B
C&D

]
is part of the definition of S given in

Definition 4.6.4 (and the same decomposition can be carried out for all possi-
ble linear operators S :

[
X
U

] ⊃ D (S)→ [ X
Y

]
). The claims (ii)–(iv) are part of

Definition 4.6.4.
It remains to show that S is closed. Recall from Lemma 4.3.10 that

the operator A&B is closed. Let
[
wn
un

]→ [ wu ] in
[

X
U

]
, and suppose that[ xn

yn

] = S
[
wn
un

]→ [ x
y
]

in
[

X
Y

]
. Equivalently, xn = A&B

[
wn
un

] = A|X xn +
Bun → x in X and yn = C&D

[
wn
un

]→ y in Y . Since A&B is closed, this im-
plies that A&B [ wu ] = x , or equivalently, that A|Xw + Bu = x . Fix some α ∈
C+ωA

(= the growth bound of the system). Then wn − (α − A|X )−1 Bun = (α −
A|X )−1[αwn − (A|Xwn + Bun)]→ (α − A|X )−1[αw − A|Xw + Bu] = w −
(α − A|X )−1 Bu in X1, so yn = C&D

[
wn
un

] = C[wn − (α − A|X )−1 Bun]+
D̂(α)un → C[w − (α − A|X )−1 Bu]+ D̂(α)u = C&D [ wu ] in Y . Thus, y =
C&D [ wu ], and this proves that S is closed. �

The conditions (i)–(iv) in Proposition 4.7.1 contain no direct reference to
the L p|Reg-well-posedness of the underlying system, apart from the require-
ment that A generates a C0 semigroup. This makes it possible to introduce the
following class of operators, which we call operator nodes.

Definition 4.7.2 By an operator node on a triple of Banach spaces (Y, X,U ) we
mean an operator S :

[
X
U

] ⊃ D (S)→ [ X
Y

]
which satisfies the following con-

ditions. Denote the two complementary projections of
[

X
Y

]
onto X , respectively

Y , by πX and πY , and write S in the form S = [ A&B
C&D

]
, where A&B = πX S and

C&D = πY S (with D (A&B) = D (C&D) = D (S)). Then we require that

(i) S is closed
(
as an operator

[
X
U

]→ [ X
Y

])
.
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(ii) The operator A : X ⊃ D (A)→ X defined by Ax = A&B
[

x
0

]
on

D (A) = {x ∈ X
∣∣ [ x

0

] ∈ D (S)
}

has a nonempty resolvent set, and D (A)
is dense in X .

(iii) The operator A&B (with D (A&B) = D (S)) can be extended to an
operator

[
AX B

] ∈ B([ X
U

]
; X−1

)
, where X−1 is defined as in Section 3.6.

(iv) D (S) = {[ x
u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}
.

If, in addition, A is the generator of a C0 semigroup, then we call S a system
node. Finally, we call a system node L p|Reg-well-posed if it is the system node
of a L p|Reg-well-posed linear system (as in Definition 4.6.4).

Indeed, by Proposition 4.7.1, the system node of a L p|Reg-well-posed linear
system is a system node in the sense of Definition 4.7.2.

Lemma 4.7.3 An operator node S on (Y, X,U ) has the following additional
properties (in addition to those listed in Definition 4.7.2):

(v) The operator A&B is closed (as an operator
[

X
U

]→ X).
(vi) For every u ∈ U, the set

{
x ∈ X

∣∣ [ x
u

] ∈ D (S)
}

is dense in X. (Thus, in
particular, D (S) is dense in

[
X
U

]
.)

(vii) The operator C&D is continuous from D (S) with the graph norm to Y ,
and the operator C defined by Cx = C&D

[
x
0

]
for all x ∈ X1 = D (A)

is continuous from X1 to Y .

(viii) For every α ∈ ρ(A) = ρ(A|X ), the operator
[

1 −(α−A|X )−1 B
0 1

]
maps D (S)

one-to-one onto
[

X1
U

]
and it is bounded and invertible on

[
X
U

]
. The

inverse of this operator (which maps
[

X1
U

]
one-to-one onto D (S) and[

X
U

]
one-to-one onto itself) is

[
1 (α−A|X )−1 B
0 1

]
.

(ix) The graph norm in D (S) is equivalent to the graph norm in D (A&B)
described in Lemma 4.3.10, and it is also equivalent to the norm∥∥[ x

u

]∥∥ := (|x − (α − A|X )−1 Bu|2X1
+ |u|2U

)1/2
,

for each α ∈ ρ(A).

Proof (v)–(vi) For the proofs of (v) and (vi) we refer the reader to the proof of
Lemma 4.3.10.

(vii) Every closed operator is continuous from its domain with the graph
norm into its range space, so S is continuous from D (S) to

[
X
Y

]
. Therefore also

C&D is continuous from D (S) to Y . The space
[

X1
0

]
is a closed subspace of

D (S), and C is the restriction of C&D to this subspace, so C is continuous
from X1 to Y .

(viii) As (α − A|X )−1 B ∈ B(U ; X ), the operator Eα :=
[

1 −(α−A|X )−1 B
0 1

]
maps

[
X
U

]
one-to-one onto itself, with inverse E−1

α =
[

1 (α−A|X )−1 B
0 1

]
(and both
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Eα and E−1
α are bounded). If

[
x
u

] ∈ D (S), then A|X x + Bu ∈ X and

x − (α − A|X )−1 Bu = (α − A|X )−1[αx − (A|X x + Bu)] ∈ X1,

so Eα maps D (S) into
[

X1
U

]
. Conversely, if

[
x
u

] ∈ [ X1
U

]
, then

A|X [x + (α − A|X )−1 Bu]+ Bu = Ax + α(α − A|X )−1 Bu ∈ X,

so E−1
α maps

[
X1
U

]
into D (S).

(ix) The graph norm in D (S) is given by∣∣[ x
u

]∣∣ := (∣∣A&B
[

x
u

]∣∣2
X
+ ∣∣C&D

[
x
u

]∣∣2
Y
+ |x |2X + |u|2U

)1/2
,

so it appears to be stronger than the graph norm inD (A&B) (which is otherwise
the same, but the term involving C&D is missing). However, since D (S) =
D (A&B), it follows from the open mapping theorem that these two norms are
equivalent. The third equivalent norm given in (ix) is the norm of the image of[

x
u

]
under Eα . The norm of this image is equivalent to the norm of

[
x
u

]
in D (S)

since Eα maps D (S) one-to-one onto
[

X1
U

]
(and Eα is closed as an operator

from D (S) to
[

X1
U

]
since it is bounded as an operator from

[
X
U

]
to itself). �

Each operator node has a main operator, a control operator, an observation
operator, and a transfer function:

Definition 4.7.4 Let S = [ A&B
C&D

]
be an operator node.

(i) The operator A in Definition 4.6.4 is called the main operator of S. If S
is a system node, then we shall also refer to A as the semigroup generator
of S.

(ii) The operator B in Definition 4.6.4 is called the control operator of S.
(iii) The operator C : X1 defined by Cx = C&D

[
x
0

]
is called the observation

operator of S.
(iv) The transfer function of S is the operator-valued function

D̂(z) = C&D

[
(z − A|X )−1 B

1

]
, z ∈ ρ(A). (4.7.1)

Lemma 4.7.5 Let S = [ A&B
C&D

]
be an operator node with main operator A.

(i) The transfer function of S is analytic on ρ(A), and for all α ∈ ρ(A) and
z ∈ ρ(A),

D̂(z)− D̂(α) = C[(z − A|X )−1 − (α − A|X )−1]B

= (α − z)C(z − A)−1(α − A|X )−1 B.
(4.7.2)
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(ii) For all α ∈ ρ(A) and all
[

x
u

] ∈ D (S),

C&D

[
x
u

]
= C
[
x − (α − A|X )−1 Bu

]+ D̂(α)u. (4.7.3)

(iii) Suppose that S is a L p|Reg-well-posed system node, and denote the
corresponding L p|Reg-well-posed linear system by �. Then the
semigroup generator A, the control operator B, and the observation
operator C coincide with the corresponding operators of �. The transfer
function D̂ of S is an extension to ρ(A) of the transfer function of �
(which is defined in Definition 4.6.1 only on the half-plane CωA

, where
ωA is the growth bound of the semigroup generated by A).

In the sequel we shall throughout use this extended version of D̂ also in
the non-well-posed case, and regard D̂ as a function defined on all of ρ(A) by
(4.7.1).

Proof of Lemma 4.7.5 (i) By Lemma 4.7.3(viii), for each z ∈ ρ(A|X ) = ρ(A),

the operator
[

(z−A|X )−1 B
1

]
maps U into D (S). Furthermore, it is an analytic

function of z. This implies that D̂ is well-defined and analytic on ρ(A). Formula
(4.7.2) follows from (4.7.1) and the resolvent identity (3.2.1).

(ii) By (4.7.1), for all α ∈ ρ(A) and all
[

x
u

] ∈ D (S),

C&D

[
x
u

]
− D̂(α)u = C&D

[
x − (α − A|X )−1 Bu

0

]
= C
[
x − (α − A|X )−1 Bu

]
.

(iii) That the semigroup generator A, the control operator B, and the obser-
vation operator C coincide with the corresponding operators of� follows from
Definitions 4.6.4, 4.7.2, and 4.7.4. That D̂ is an extension in the L p|Reg-well-
posed case of the transfer function defined in Definition 4.6.1 follows from
Theorem 4.6.7. �

Above we started with an operator S which satisfies the conditions (i)–(iv)
listed in Definition 4.6.4, and from this operator we extracted the main operator
A, the control operator B, the observation operator C , and the transfer function
D̂. Conversely, it is possible to start with A, B, C , and the transfer function
D̂ evaluated at one point in ρ(A), and from this set of data construct a system
node as follows.

Lemma 4.7.6 Let A be a densely defined operator on a Banach space X with
a nonempty resolvent set, let α ∈ ρ(A), let X−1 be the completion of X under
the norm |x |X−1 := |(α − A)−1x |X , and let X1 = D (A), with norm |x |X1 :=
|(α − A)x |X . Denote the extension of A to an operator in B(X ; X−1) by A|X .
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Let B ∈ B(U ; X−1), let C ∈ B(X1; Y ), and let D ∈ B(U ; Y ), where U and Y
are two more Banach spaces. Define S :

[
X
U

] ⊃ D (S)→ [ X
Y

]
by S := [ A&B

C&D

]
,

where

D (S) : = D (A&B) = D (C&D)

=
{[

x
u

]
∈
[

X
U

] ∣∣∣∣ A|X x + Bu ∈ X

}
,

A&B : = [A|X B
]
|D(S)

,

C&D

[
x
u

]
: = C(x − (α − A|X )−1 Bu)+ Du,

[
x
u

]
∈ D (S) .

Then S is an operator node on (Y, X,U ). The main operator of S is A, the
observation operator of S is B, the control operator of S is C, and the transfer
function of S satisfies D̂(α) = D.

Proof Most of this is obvious. The only thing which needs to be checked is that
S is closed, but this proof is essentially the same as the proof of Proposition
4.7.1(i) with D̂(α) replaced by D (the only properties of C and D̂(α) that were
used in that proof were the facts that C ∈ B(X1; Y ) and D̂(α) ∈ B(U ; Y )). �

We have now two different characterizations of operator nodes, the original
one in Definition 4.7.2, and the alternative one in Lemma 4.7.6. There is still
a third way of characterizing an operator node which has the advantage that it
contains no explicit reference to the rigged spaces X1 and X−1, to the control
operator, to the observation operator, and to the transfer function.

Lemma 4.7.7 Let U, X and Y be Banach spaces and let S : D (S)→ [ X
Y

]
be a linear operator with D (S) ⊂ [ X

U

]
. We decompose S into S = [ A&B

C&D

]
,

where A&B : D (S)→ X and C&D : D (S)→ Y . We denote D (A) = {x ∈
X
∣∣ [ x

0

] ∈ D (S)
}
, and we define A : D (A)→ X by Ax = A&B

[
x
0

]
. Then S

is an operator node on (Y, X,U ) if and only if the following conditions hold:

(i) S is closed as an operator
[

X
U

]
to
[

X
Y

]
(with domain D (S)).

(ii) A&B is closed as an operator
[

X
U

]
to X (with domain D (S)).

(iii) A has a nonempty resolvent set, and D (A) is dense in X.
(iv) For every u ∈ U there exists an x ∈ X with

[
x
u

] ∈ D (S).

Proof The necessity of (i)–(iv) is more or less obvious: (i) and (iii) are part of
Definition 4.7.2, (ii) is part (v) of Lemma 4.7.3, and (iv) follows from part (vi)
of the same lemma.

Next we turn to the sufficiency part. For this we have to construct the oper-
ator B in Definition 4.6.4. Take u ∈ U and let x ∈ X be as in (ii). We define
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Bu = A&B
[

x
u

]− A|X x . It is easy to see that Bu does not depend on the choice
of x and that B is linear.

To prove the boundedness of B (from U to X−1), we show that it is closed.
Take a sequence un in U such that un → u and Bun → z in X−1. We have
to show that Bu = z. Take α ∈ ρ(A) and define xn = (α − A|X )−1 Bun . Then
A|X xn + Bun = α(α − A|X )−1 Bun ∈ X , so

[ xn
un

] ∈ D (S). Moreover,
[ xn

un

]→[
(α−A|X )−1z

u

]
in
[

X
U

]
and A&B

[ xn
un

] = A|X xn + Bun → α(α − A|X )−1z in X .
By the closedness of A&B,

A&B

[
(α − A|X )−1z

u

]
= α(α − A|X )−1z.

This implies that Bu = A&B
[

(α−A|X )−1z
u

]− A|X (α − A|X )−1z = z. By the
closed graph theorem, B is bounded.

We still have to show that D (S) = V , where V := {[ x
u

] ∈ [ X
U

] ∣∣ A|X x +
Bu ∈ X

}
. By construction, A|X x + Bu = A&B

[
x
u

] ∈ X for all
[

x
u

] ∈ D (S).
Thus D (S) ⊂ V . Conversely, suppose that

[
x
u

] ∈ V . Then, by condition (iv),
there exists x0 ∈ X such that

[
x0
u

] ∈ D (S), hence A|X x0 + Bu ∈ X . This im-
plies that A|X (x − x0) ∈ X , hence

[
x−x0

0

] ∈ D (S). This gives
[

x
u

] ∈ D (S).
Thus D (S) = V . �

Everything which we have said so far in this section applies to general
operator nodes. In the case of a system node (where the main operator generates
a C0 semigroup) we can say something more: it induces a ‘dynamical system’
of a certain type:

Lemma 4.7.8 Let S be a system node on (Y, X,U ). Then, for each s ∈ R,
xs ∈ X and u ∈ W 2,1

loc ([s,∞); U ) with
[ xs

u(s)

] ∈ D (S), the equation[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ s, x(s) = xs, (4.7.4)

has a unique solution
[ x

y
]

satisfying x ∈ C1([s,∞); X ),
[

x
u

] ∈ C([s,∞);
D (S)), and y ∈ C([s,∞); Y ).

Proof By Theorem 4.3.9, the equation ẋ(t) = Ax(t)+ Bu(t) has a unique
strong solution on [s,∞) with x(s) = xs , this solution is continuously dif-
ferentiable in X , and ẋ(t) = A|X x(t)+ Bu(t) for all t ≥ s. In particular, x ,
u, and A|X x + Bu are continuous in X , U , and X , respectively, and this im-
plies that

[
x
u

]
is continuous with values in D (S) = D (A&B). Since C&D ∈

B(D (S) ; Y ), also y is continuous with values in Y . �

Occasionally we shall also need to discuss solutions of (4.7.4) with a
less smooth input function u ∈ L1

loc([s,∞); U ) and an arbitrary initial state
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xs ∈ X . The definition of the state trajectory x is straightforward: by Theo-
rem 3.8.2(i), for every u ∈ L1

loc([s,∞); U ) and xs ∈ X , the equation ẋ(t) =
A|X−1 x(t)+ Bu(t) has a unique strong solution in X−1 on [s,∞) with initial
state x(s) = xs , which is given by the variation of constants formula

x(t) = At−s xs +
∫ t

s
At−v
|X−1

Bu(v) dv, t ≥ s. (4.7.5)

However, the definition of the output y is less straightforward. One possibility
is to interpret the output as a distribution. By integrating the equation y(t) =
C&D

[
x(t)
u(t)

]
(which is part of (4.7.4)) two times and then differentiating the

result two times we get

y(t) = d2

dt2
C&D

∫ t

s
(t − v)

[
x(v)
u(v)

]
dv, t ≥ s. (4.7.6)

As the following lemma shows, the function to which we apply C&D in the
formula above does belong to D (C&D) = D (S), so if we interpret the second
order derivative in the distribution sense, then this formula defines a Y -valued
distribution (of order at most two).

Lemma 4.7.9 Let S be a system node on (Y, X,U ). Let s ∈ R, xs ∈ X, and
u ∈ L1

loc([s,∞); U ), define x by (4.7.5), and let[
x2(t)
u2(t)

]
=
∫ t

s
(t − v)

[
x(v)
u(v)

]
dv, t ≥ s,

be the second order integral of
[

x
u

]
. Then x2 ∈ C1([s,∞); X ) and

[ x2
u2

] ∈
C([s,∞);D (S)).

Proof Because of the linearity of the system, it suffices to prove the lemma sep-
arately in the two cases where either xs = 0 or u = 0. We begin with the latter.
If u = 0, then already the first order integral x1(t) = ∫ t

s x(v) dv is continuous
with values in X1 (as shown at the very beginning of the proof of Theorem
4.4.4), so we even have x2 ∈ C1([s,∞); X1) and

[ x2
0

] ∈ C1
(
[s,∞);

[
X1
0

]) ⊂
C1([s,∞);D (S)) in this case.

It remains to study the case where xs = 0 but u �= 0. By integrating (4.7.5)
(with xs = 0) two times (and simplifying the resulting double integral) we find
that

x2(t) =
∫ t

s
At−v
|X−1

Bu2(s) ds.

Thus, x2 is the strong solution of the equation ẋ2(t) = A|X x2(t)+ u2(t), t ≥ s,
with initial state x2(s) = 0. By Lemma 4.7.8, x2 ∈ C1([s,∞); X ) and

[ x2
u2

] ∈
C([s,∞);D (S)). Thus, the conclusion of Lemma 4.7.9 holds in this case, too.

�
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Definition 4.7.10 Let S be a system node on (Y, X,U ), let s ∈ R, xs ∈ X , and
let u ∈ L1

loc([s,∞); U ). Then the state trajectory x of S with initial time s, initial
state xs , and input function u is the function x given by (4.7.5), and the output
y is the distribution given by (4.7.6), where the second order derivative on the
right-hand side is interpreted in the distribution sense (by Lemma 4.7.9, the
function to which this derivative is applied is a continuous Y -valued function).

Note that, by Theorem 4.6.12, in the well-posed case this state trajectory
and output function coincide with the state trajectory and output function of the
corresponding well-posed linear system.

It is of interest to know some reasonable conditions under which the output
is a function rather than a distribution (even in the non-well-posed case).

Theorem 4.7.11 Let S = [ A&B
C&D

]
be a system node on (Y, X,U ). Let s ∈ R,

xs ∈ X, and u ∈ L1
loc([s,∞); U ), and let x and y be the state trajectory and

output of S with initial time s, initial state xs , and input function u. If x ∈
W 1,1

loc ([s,∞); X ), then
[

x
u

] ∈ L1
loc([s,∞);D (S)), y ∈ L1

loc([s,∞); Y ), and
[ x

y
]

is the unique solution with the above properties of the equation[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
for almost all t ≥ s, x(s) = xs . (4.7.7)

If u ∈ C([s,∞); U ) and x ∈ C1([s,∞); X ), then
[

x
u

] ∈ C([s,∞);D (S)), y ∈
C([s,∞); Y ), and the equation (4.7.7) holds for all t ≥ s.

Proof Throughout this proof we assume that u ∈ L1
loc([s,∞); U ) and x ∈

W 1,1
loc ([s,∞); X ).
Let us begin with the uniqueness claim. If

[
x
u

] ∈ L1
loc([s,∞);D (S)) and

(4.7.7) holds, then x is a strong solution (in X ) of the equation ẋ(t) = A|X x(t)+
Bu(t) on [s,∞) with initial state xs

(
recall that A&B = [A|X B

]
D(S)

)
. This fact

determines x uniquely in terms of xs and u; see Theorem 3.8.2(ii). Once we
know that x is unique, formula (4.7.7) defines y uniquely.

The state trajectory x is, as always, the strong solution in X−1 of the equa-
tion ẋ(t) = Ax(t)+ Bu(t) on [s,∞) with initial state xs . Since we now as-
sume that x ∈ W 1,1

loc ([s,∞); X ), this equation implies that ẋ = A|X x + Bu ∈
L1

loc([s,∞); X ), and hence
[

x
u

] ∈ L1
loc([s,∞);D (S)) and ẋ(t) = A&B

[
x(t)
u(t)

]
for almost all t ≥ s. We can now interpret the distribution derivative on the
right-hand side of (4.7.6) as an ordinary derivative, and carrying out the dif-

ferentiation we find that y ∈ L1
loc([s,∞); Y ), and that y(t) = C&D

[
x(t)
u(t)

]
for

almost all t ≥ s. The proof of the last claim (where u is continuous and x
continuously differentiable) is similar. �
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The transfer function of a general system node has more or less the
same interpretation as the transfer function of an L p|Reg-well-posed linear
system.

Lemma 4.7.12 Let S = [ A&B
C&D

]
be a system node on (Y, X,U ), with semi-

group generator A, the control operator B, the observation operator C, and
the transfer function D̂. Denote the growth bound of the semigroup A gen-
erated by A by ωA. Let ω > ωA, and suppose that the input function u in
Lemma 4.7.8 satisfies W 2,1

ω (R
+

; U ). Then the state trajectory x and the output

function y in Lemma 4.7.8 satisfy x ∈ BC1
0,ω(R

+
; X ) ∩W 1,1

ω (R
+

; X ),
[

x
u

] ∈
BC0,ω(R

+
;D (S)) ∩ L1

ω(R+;D (S)), and y ∈ BC0,ω(R
+

; Y ) ∩ L1
ω(R+; Y ). In

this case the Laplace transforms x̂ of x and ŷ of y are given (in terms of
the Laplace transform û of u) by (4.6.10).

Proof That x ∈ BC1
0,ω(R

+
; X ) ∩W 1,1

ω (R
+

; X ) follows from Theorem 3.8.4.

This implies (as in Theorem 4.3.11) that
[

x
u

] ∈ BC0,ω(R
+

;D (S)) ∩
L1
ω(R+;D (S)) (where D (S) = D (A&B)). Since y = C&D

[
x
u

]
, this fur-

thermore implies that y ∈ BC0,ω(R
+

; Y ) ∩ L1
ω(R+; Y ). We can therefore take

Laplace transforms in (4.7.4) to get for all z ∈ C
+
ω ,[

zx̂(z)− x(0)
ŷ(z)

]
=
[

A&B
C&D

] [
x̂(z)
û(z)

]
.

Since A&B = [A|X B
]
, we can write the first of the above equations in the

form

zx̂(z)− x(0) = A|X x̂(z)+ Bû(z),

which we can solve for x̂(z) to get the first equation in (4.6.10) (note that
(z − A|X )−1

|X = (z − A)−1). Substituting this into the second of the two equation
above we get

ŷ(z) = C&D

[
(z − A)−1x(0)+ (z − A|X )−1 Bû(z)

û(z)

]
= C(z − A)−1x(0)+ C&D

[
(z − A|X )−1 B

1

]
û(z)

= C(z − A)−1x(0)+ D̂(z)û(z).

�

Among all system nodes, the class of L p-well-posed system nodes with
1 ≤ p <∞ can be characterized in the following way:

Theorem 4.7.13 Let S be a system node on three Banach spaces (Y, X,U ),
and 1 ≤ p <∞. Then S is L p-well-posed if and only if, for some (hence all)
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T > 0, there is a constant M such that all solutions
[ x

y
]

of the type described
in Lemma 4.7.8 with s = 0 satisfy

|x(T )|X + ‖y‖L p([0,T );Y ) ≤ M
(|x(0)|X + ‖u‖L p([0,T );U )

)
. (4.7.8)

Proof The necessity of (4.7.8) follows from Definitions 2.2.1, 2.2.6, 2.2.7, and
Theorem 4.6.11(i). To prove the converse we must construct the input map B,
the output map C, and the input/output map D of the corresponding L p-well-
posed linear system (the existence of the semigroup A is part of the assumption
of a system node). In this construction we use the fact that if (4.7.8) holds, then
(by the time-invariance of the equation), it is also true that, for all initial times
s ∈ R, the solutions

[ x
y
]

of the type described in Lemma 4.7.8 satisfy

|x(s + T )|X + ‖y‖L p([s,s+T );Y ) ≤ M
(|x(s)|X + ‖u‖L p([s,s+T );U )

)
. (4.7.9)

We begin with the input map B. If we replace the state space X by X−1, then
B is a bounded control operator, and it follows from Proposition 2.3.1 (with
arbitrary choices of C and D) that

Bu :=
∫ 0

∞
A−v|X−1

Bu(v) dv

is an L1-well-posed input map for A. In particular, B satisfies the intertwining
condition At

|X−1
Bu = Bτ t

−u (with values in X−1) for all u ∈ L1
c(R−; U ) and

t ≥ 0. If u ∈ W 2,1
loc ([−T,∞); U ) and u(−T ) = 0, then the solution x mentioned

in Lemma 4.7.8 with s = −T and x(−T ) = 0 is given by

x(t) =
∫ t

−T
At−v
|X−1

Bu(v) dv = Bt
−T u, t ≥ −T,

and by (4.7.9), for this class of functions, |B0
−T u|X = |x(0)|X ≤

M‖u‖L p([−T,0);U ). The set of functions u in W 2,1([−T, 0); U ) with u(−T ) = 0
is dense in L p([−T, 0); U ), and this implies that B0

−T ∈ B(L p([−T, 0); U ); X ),
or equivalently, Bπ[−T,0) ∈ B(L p([−T, 0); U ); X ). By Lemma 2.4.3, this im-
plies that B ∈ B(L p

c (R−; U ); X ), and thus B is an L p-well-posed input map
for A.

Next we define Cx for all x ∈ X1 by

(Cx)(t) = CAt x, t ≥ 0, x ∈ X1.

Then C maps X1 into C(R
+

; Y ) since C ∈ B(X1; Y ) and t �→ At x is continuous
in X1 whenever x ∈ X1, and it is easy to show that C satisfies the intertwining
condition CAt x = τ t

+Cx for all x ∈ X1 and all t ≥ 0. If we take u = 0 and
x0 ∈ X1 in Lemma 4.7.8, then y = Cx0, and so, by (4.7.8), ‖Cx0‖L p([0,T );Y ) ≤
M |x(0)|X . This, together with Lemma 2.4.3, implies that C can be extended to
a continuous map from X to L p

loc(R+; Y ). By continuity (and since X1 is dense
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in X ), also the extended map satisfies the intertwining condition CAt = τ t
+C

for all t ≥ 0, so C is an L p-well-posed output map for A.
Finally, we construct the input/output map Du. We first consider the class

of input functions u ∈ W 2,1
c,loc(R; U ) which vanish on (−∞, s) for some s ∈ R.

The corresponding state trajectory x and output function y in Lemma 4.7.8 with
x(s) = 0 are given by

x(t) = Bt u, y(t) = C&D

[
x(t)
u(t)

]
, t ≥ 0,

so for this class of inputs it is natural to define Du by

(Du)(t) = C&D

[
Bt u
u(t)

]
, t ∈ R

(note, in particular, that
[

x
u

] ∈ C(R;D (S)) if we define x(t) = 0 for t < s). On
its present domain, D is clearly time-invariant. Let us look at the special case

where u(0) = u̇(0) = 0. Since
[

x(0)
u(0)

]
∈ D (S) and u(0) = 0, this implies that

x(0) = Bu ∈ X1. Moreover, π−u ∈ W 2,1
c (R; U ), so we may apply the same

argument with u replaced by π−u. This gives for all t ≥ 0,

(Dπ−u)(t) = C&D

[
Bτ tπ−u

0

]
= C

∫ 0

−∞
At−v
|X−1

Bu(v) dv

= CAt
|X−1

∫ 0

−∞
A−v|X−1

Bu(v) dv

= CAtBu = (C(Bu))(t).

Thus, π+Dπ−u = CBu whenever u ∈ W 2,1
c,loc(R; U ) and u(0) = u̇(0) = 0. A

similar (but simpler) computation shows that π−Dπ+u = 0 for the same set of
functions u.

So far we have not yet used (4.7.8) in our construction of D (so the
same construction is valid without this extra condition). Suppose now that
u ∈ W 2,1

c,loc(R; U ) vanishes on R−. Then, by (4.7.8),

‖Du‖L p([0,T );Y ) ≤ ‖u‖L p([0,T );U ).

The set of functions u ∈ W 2,1([0, T ); U ) which satisfy u(0) = u̇(0) = 0 is
dense in L p([0, T ); U ), so the preceding inequality implies that π[0,T )Dπ[0,T )

can be extended to an operator in B(L p([0, T ); U ); L p([0, T ); Y )). It follows
from Lemma 2.4.3 that D can be extended to a continuous operator from
L p

c,loc([0, T ); U ) to L p
c,loc([0, T ); Y ), and (by continuity and density) the ex-

tended operator is still time-invariant and causal, and its Hankel operator is
CB.
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We have now constructed an L p-well-posed linear system� = [A B

C D

]
. The

semigroup generator A, the control operator B, and the observation operator C
of � are the same as the corresponding operators of the given system node S.
It is also true that S and � have the same transfer function, hence they have the
same observation/feedthrough operator C&D, so S is the system node of �,
and hence L p-well-posed. �

The preceding theorem can also be stated in a slightly different form:

Theorem 4.7.14 Let S be a system node on three Banach spaces (Y, X,U )
with semigroup A, control operator B, and observation operator C, and let
1 ≤ p <∞. Then S is L p-well-posed if and only if the following conditions
hold:

(i) For all u ∈ L p
c (R−; U ),

Bu =
∫ 0

−∞
A−s Bu(s) ds ∈ X

(although the integral is computed in X−1).
(ii) The operator C : X1 → C(R

+
; Y ) defined by

(Cx)(t) = CAt x, t ≥ 0,

can be extended to a continuous operator X → L p
loc(R+; Y ).

(iii) The operator D : W 2,1
c,loc(R; U )→ Cc(R; Y ) defined by

(Du)(t) = C&D

[
Bt u
u(t)

]
, t ∈ R,

can be extended to a continuous operator L p
c,loc(R; U )→ L p

c,loc(R; Y ).

Proof The necessity of the given conditions follows from Theorems 4.2.4
and 4.4.7, and the fact that (Du)(t) = C&D

[
Bt u
u(t)

]
, t ∈ R, whenever u ∈

W 2,1
c,loc(R; U ) (as noticed in the proof of Theorem 4.7.13). The proof of the

sufficiency is a simplified version of the proof of Theorem 4.7.13 (use Theo-
rems 4.2.4 and 4.4.7 to conclude that B and C are L p-well-posed input and
output maps). �

Sometimes it is more convenient to use this theorem in a form which has no
explicit reference to the system

[A B

C D

]
induced by the node S = [ A&B

C&D

]
.

Theorem 4.7.15 Let S be an operator node (see Definition 4.7.2) on three
Banach spaces (Y, X,U ) with main operator A, control operator B, and ob-
servation operator C, and let 1 ≤ p <∞. Then S is an L p-well-posed system
node if and only if the following conditions hold:
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(i) For all x0 ∈ X and all u ∈ W 2,1
loc (R+; U ), the equation

ẋ(t) = A|X x(t)+ Bu(t), t ≥ 0,

x(0) = x0,
(4.7.10)

has a unique strong solution x in the sense of Definition 3.8.1 (i.e.,
x ∈ C(R+; X ) ∩W 1,1

loc (R+; X−1), x(0) = x0, and ẋ(t) = A|X x(t)+ Bu(t)
for almost all t ≥ 0).

(ii) For each T > 0 there is a constant KT <∞ so that, for all x0 ∈ X and
u ∈ W 2,1

loc (R+; U ) with
[ x0

u(0)

] ∈ D (S), if we let x be as in (i) and define

y(t) = C&D
[

x(t)
u(t)

]
, t ≥ 0, then

|x(T )| + ‖y‖L p([0,T );Y ) ≤ KT
(‖x0‖X + ‖u‖L p([0,T );U )

)
.

Proof The necessity of the given conditions follows from Lemma 4.7.8 and
Theorem 4.7.13, and so does the sufficiency if we can show that (i) and (ii)
imply that A is the generator of a C0 semigroup.

Assume (i) and (ii). If for all t ≥ 0 and x0 ∈ X we define At x0 = x(t), where
x is the strong solution of (4.7.10) with u = 0, then At is a strongly continuous
family of operators in B(X ) satisfying A0 = 1. It is also easy to show that A

has the semigroup property As+t = AsAt for all s, t ≥ 0 (by the uniqueness of
the solution of (4.7.10), the solution at time t > 0 corresponding to the initial
value x(s) is equal to x(s + t)). Thus, A is a C0 semigroup.

We denote the generator ofAby A1, and claim that A1 = A. Suppose first that
x0 ∈ D (A1). Then we know (see Theorem 3.2.1(iii)) that x(t) = At x0 is con-
tinuously differentiable in X . In particular, A1x0 = ẋ(0) = Ax0 ∈ X . Choose
someα ∈ ρ(A). Then (α − A)x0 ∈ X , and since (α − A)−1 maps X ontoD (A),
we get x0 ∈ D (A). Thus,D (A1) ⊂ D (A), and A1x0 = Ax0 for all x0 ∈ D (A1).
Conversely, suppose that x0 ∈ D (A). Define z0 = (α − A)x0 where α ∈ ρ(A),
and let z(t) = At z0. Then, by (i), z ∈ C(R+; X ) ∩W 1,1

loc (R+; X−1), z(0) = z0,
and ż(t) = Az(t) for almost all t ≥ 0. But Az ∈ C(R+; X−1), so we have, in fact,
z ∈ C(R+; X ) ∩ C1(R+; X−1), and ż(t) = Az(t) (in X−1) for all t ≥ 0. Define
x(t) = (α − A)−1z(t) for t ≥ 0. Then x ∈ C(R+; X1) ∩ C1(R+; X ), x(0) = x0,
and

ẋ(t) = (α − A)−1 ż(t) = (α − A)−1 Az(t)

= A(α − A)−1z(t) = Ax(t)

for all t ≥ 0. Thus, by (i), x(t) = At x0. Since x is continuously differentiable,
we have (by Definition 3.1.1), x0 ∈ D (A1). This means that A = A1, i.e, A is
the generator of A. �
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Above we have exclusively looked at L p-well-posedness with p <∞. Sim-
ilar results are true in the Reg-well-posed case. For simplicity, we only give the
analogue of Theorem 4.7.13.

Theorem 4.7.16 Let S = [ A&B
C&D

]
be a system node on three Banach spaces

(Y, X,U ). Then S is Reg-well-posed if and only if, for some (hence all) T > 0,
there is a constant M such that all solutions

[ x
y
]

of the type described in Lemma
4.7.8 with s = 0 satisfy

|x(T )|X + ‖y‖Reg([0,T ];Y ) ≤ M
(|x(0)|X + ‖u‖Reg([0,T ];U )

)
. (4.7.11)

Proof The necessity of (4.7.11) is easily proved (as in the L p-case with p <

∞), so let us concentrate on the converse part. We begin by showing that the
observation operator C of S can be extended to an operator C|X ∈ B(X ; Y ).
To see this, we take s = 0, x0 ∈ X1 and u = 0 in Lemma 4.7.8 to get the
continuous output y(t) = CAt x0. By (4.7.11), sup0≤t≤T |y(t)|Y ≤ M |x(0)|X , so,
in particular (take t = 0), |Cx0|Y ≤ M |x(0)|X . This, together with the density of
X1 in X , implies that C has a (unique) extension to an operator C|X ∈ B(X ; Y ).
From this and (4.7.3) we further conclude that C&D has a (unique) extension
to an operator

[
C|X D

] ∈ B([ X
U

]
; Y
)
. This means that, as far as the output is

concerned, we are in the situation described in Theorem 4.3.4: if we can show
that the operator Bu = ∫ 0

−∞ A−s
|X−1

Bu(s) ds is a Reg-well-posed input map for
A, then by applying that theorem we get a Reg-well-posed system whose system
node is the given node S (here A is the semigroup generated by the main operator
A of the node, and B ∈ B(U ; X−1) is the control operator).

Arguing in the same way as we did at the beginning of the proof of Theorem
4.7.13, we find that (4.7.9) holds with L p replaced by Reg, and that it suffices
to show that the operator B0

−T : u �→ ∫ t
−T At−v

|X−1
Bu(v) dv is a bounded linear

operator from Reg([−T, 0]; U ) to X . We know that this operator is bounded
from L1([−T, 0]; U ) to X−1, and by (4.7.9) with L p replaced by Reg, s = −T ,
and x(s) = 0,

|B0
−T u|X ≤ M‖u‖Reg([−T,0];U ), (4.7.12)

whenever u ∈ W 2,1([−T, 0]; U ) with u(−T ) = 0. This is the right inequality,
but we need it for all u ∈ Reg([−T, 0]; U ), and not just the subset of u described
above.

By the density of W 2,1([−T, 0]; U ) in C([−T, 0]; U ), if (4.7.12) holds for
all u ∈ W 2,1([−T, 0]; U ) with u(−T ) = 0, then it must also hold for all u ∈
C([−T, 0]; U ) with u(−T ) = 0. To show that it also holds for discontinuous
functions in Reg([−T, 0]; U ) (even without the limitation u(−T ) = 0) we first
study how B0

−T behaves when it is applied to a specific class of discontinuous
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‘triangular’ functions. For each n = 1, 2, 3, . . ., we define

ηn(s) =
{

1− ns, 0 ≤ s ≤ 1/n,

0, otherwise.

We fix some r ∈ [−T, 0) and u ∈ U , and study how B0
−T (τ rηnu) behaves as

n→∞. Clearly, τ rηnu → 0 in L1([−T, 0); U ) as n→∞, so we know that
B0
−T (τ rηnu)→ 0 in X−1 as n→∞. We claim that we have in fact convergence

in X , and not just in X−1. To prove this, we may, without loss of generality, take
n > −1/r (so that (τ rηn)(s) = 0 for s ≥ 0). Then, after a change of integration
variable we get

B0
−T (τ rηnu) = A

−(r+1/n)
|X−1

∫ 1/n

0
ns As

|X−1
Bu ds.

To show that this tends to zero in X it suffices to show that the integral (belongs
to X and) tends to zero in X . Let us denote this integral by xn . Then xn → 0
in X−1 (since

∫ 1/n
0 ns ds → 0 as n→∞). Fix some α ∈ ρ(A), multiply xn by

(α − A|X−1 ), and integrate by parts to show that

(α − A|X−1 )xn = αxn + n
∫ 1/n

0
As
|X−1

Bu ds − A
1/n
|X−1

Bu.

Here the right hand side (belongs to X−1 and) tends to zero in X−1 as n→∞,
so by multiplying both sides by (α − A|X )−1 we find that xn (belongs to X and)
tends to zero in X as n→∞. This proves our earlier claim that B0

−T (τ rηnu)
(belongs to X and) tends to zero in X as n→∞.

Now let us consider the case where u is a step function, vanishing
on (−∞,−T ), with a finite number of jump discontinuities at the points
−T ≤ t1 < t2 < · · · < tk < tk+1 = 0 (we include the point −T in this set if
u(−T ) �= 0, and we always include the point zero). Define

un = u −
k∑

j=0

τ tkηn[u(tk)− u(tk−)].

Then each un is continuous on [−T, 0] with un(−T ) = 0, so we may apply
(4.7.12) to un . Thus

|B0
−T un|X ≤ M‖un‖Reg([−T,0];U ).

For n > max1≤ j≤k 1/(t j+1 − t j ), un is a (continuous) piecewise linear function
where at most one of the correction terms ηn[u(tk)− u(tk−)] is nonzero at each
point, hence its values ‘interpolates’ the values of the original function u, and
therefore ‖un‖Reg([−T,0];U ) = ‖u‖Reg([−T,0];U ). Thus, we can continue the above
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inequality to get

|B0
−T un|X ≤ M‖u‖Reg([−T,0];U ).

By our earlier argument (applied to each of the correction terms separately),
B0
−T (u − un) (belongs to X and) tends to zero in X as n→∞. We conclude

that (4.7.12) holds whenever u is a step function with at most a finite number
of discontinuities in [−T, 0]. This set of functions is dense in Reg([−T, 0]; U ),
and therefore (4.7.12) must hold for all u ∈ Reg([−T, 0]; U ). �

As a part of the proof of Theorem 4.7.16 we essentially proved the following
result.

Lemma 4.7.17 Let � = [A B

C D

]
be a Reg-well-posed linear system on

(Y, X,U ). Then, for each u ∈ Regc(R−; U ) and ε > 0 there is a function

v ∈ BCc(R
−

; U ) such that ‖B(u − v)‖X ≤ ε.

In other words, the space BCc(R
−

; U ) is dense in Regc(R−; U ) in the semi-
norm induced by B.

Proof Since Reg is the closure of the space of step functions (see Section A.1)
and B is continuous, we can find a compactly supported step function w such
that ‖B(u − w)‖X ≤ ε/2. By the argument used in the preceding proof, we can
find a compactly supported continuous function v such that ‖B(w − v)‖X ≤
ε/2. Then ‖B(w − v)‖X ≤ ε. �

There are certain algebraic formulas involving the transfer function of an
operator node that we shall need from time to time.

Lemma 4.7.18 Let S = [ A&B
C&D

]
be an operator node, with main operator A,

control operator B, observation operator C, and transfer function D̂, and let
α ∈ ρ(A) = ρ(A|X ). Then the following claims are true.

(i) The operator
[
α 0
0 1

]− [ A&B
0 0

]
maps D (S) one-to-one onto

[
X
U

]
, its

inverse is
[

(α−A)−1 (α−A|X )−1 B
0 1

]
, and the following operator identities hold

in B([ X
U

]
;
[

X
Y

])
:[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

]
(4.7.13)

=
[

1 0
C&D

]([
α 0
0 1

]
−
[

A&B
0 0

])−1

(4.7.14)

=
[

1 0
C&D

] [
(α − A)−1 (α − A|X )−1 B

0 1

]
. (4.7.15)
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(ii) The operator
[

1 −(α−A|X )−1 B
0 1

]
maps D (S) one-to-one onto

[
X1
U

]
, its

inverse is
[

1 (α−A|X )−1 B
0 1

]
, and the following operator identities hold in

B([ X1
U

]
;
[

X
Y

])
:

[
A&B
C&D

] [
1 (α − A|X )−1 B
0 1

]
=
[

A α(α − A|X )−1 B
C D̂(α)

]
, (4.7.16)

[
1 0
C&D

] [
1 (α − A|X )−1 B
0 1

]
=
[

1 (α − A|X )−1 B
C D̂(α)

]
. (4.7.17)

(iii) The following operator identities hold in B(D (S) ;
[

X
Y

])
:

([
α 0
0 0

]
−
[

A&B
C&D

])
=
[
α − A 0
−C −D̂(α)

] [
1 −(α − A|X )−1 B
0 1

]

=
[

1 0
−C(α − A)−1 1

] [
α − A 0

0 −D̂(α)

] [
1 −(α − A|X )−1 B
0 1

]

=
[

1 0
−C(α − A)−1 1

]([
α 0
0 −D̂(α)

]
−
[

A&B
0 0

])
.

(iv) The operator
[
α 0
0 0

]− S is invertible if and only if D̂(α) is invertible, or

equivalently, if and only if
[
α−A 0
−C −D̂(α)

]
is invertible, or equivalently, if

and only if
[
α 0
0 −D̂(α)

]
− [ A&B

0 0

]
is invertible, in which case

([
α 0
0 0

]
−
[

A&B
C&D

])−1

=
[

1 (α − A|X )−1 B
0 1

] [
α − A 0
−C −D̂(α)

]−1

=
[

1 (α − A|X )−1 B
0 1

] [
α − A 0

0 −D̂(α)

]−1 [
1 0

C(α − A)−1 1

]

=
([

α 0
0 −D̂(α)

]
−
[

A&B
0 0

])−1 [ 1 0
C(α − A)−1 1

]

=
[

(α − A)−1 0
0 0

]
−
[

(α − A|X )−1 B
1

]
[D̂(α)]−1

[
C(α − A)−1 1

]
.

Proof The proofs of these identities are easy algebraic computations which use
Lemma 4.7.3, Lemma 4.7.5, and Definition 4.7.4. �
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4.8 Examples of generators

Here we compute the system nodes and the transfer functions of most of the
different systems that we have encountered so far.

Example 4.8.1 The system node S of the delay line in Example 2.3.4 (with
1 ≤ p <∞) is given by

S

[
x
u

]
=
[

ẋ
x(0)

]
for all

[
x
u

] ∈ D (S) =
{[

x
u

] ∈ [ W 1,p([0,T ];U )
U

] ∣∣ x(T ) = u
}

. In particular, the

observation operator is Cx = x(0) for all x ∈ D (τT ) = {u ∈ W 1,p([0, T ]; U ) |
u(T ) = 0}. The transfer function is D̂(z) = e−T z, z ∈ C.

Proof We begin with the transfer function D̂. The input/output map D is the
delay operator Du = τ−T u; hence by Definition 4.6.1, D̂(z) = e−T z .

Next we try to identify D (S). We have
[

x
u

] ∈ D (S) iff A|X x + Bu ∈ X , or
equivalently, iff (α − A|X )−1(A|X x + Bu) ∈ D (A) for α ∈ ρ(A). Define z =
(α − A|X )−1(A|X x + Bu). Then

z = −x + α(α − A)−1x + (α − A|X )−1 Bu,

which by Examples 3.3.2(iv) and 4.2.5 can be written in the form (for almost
all t ∈ [0, T ))

z(t) = −x(t)+ α

∫ T

t
eα(t−s)x(s) ds + eα(t−T )u.

The condition z ∈ D (A) means that z ∈ W 1,p([0, T ]; U ) and z(T ) = 0, and by
the above identity, this is equivalent to x ∈ W 1,p([0, T ]; U ) and x(T ) = u.

To compute S
[

x
u

]
for
[

x
u

] ∈ D (S) we argue as follows. For all
[

x
u

] ∈ D (S)
and all α ∈ ρ(A) = ρ(A|X ), we have by Lemmas 4.7.3(viii) and 4.7.18(ii),

S

[
x
u

]
= S

[
1 (α − A|X )−1 B
0 1

] [
1 −(α − A|X )−1 B
0 1

] [
x
u

]
=
[

A α(α − A|X )−1 B
C D̂(α)

] [
x − (α − A|X )−1 Bu

u

]
.

Here x − (α − A|X )−1 Bu ∈ X1, and by Example 4.2.5, it is equal to the function
t �→ x(t)+ eα(t−T )u. By Examples 3.2.3(iv) and 4.4.5,[

A
C

] (
x − (α − A|X )−1 Bu

) = [t �→ ẋ(t)− αeα(t−T )u
x(0)− e−αT u

]
,
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and by Example 4.2.5,[
α(α − A|X )−1 B

D̂(α)

]
u =

[
t �→ αeα(t−T )u

e−αT u

]
.

Adding these two terms we get S
[

x
u

] = [ ẋ
x(0)

]
. �

Example 4.8.2 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with system node S = [ A&B
C&D

]
.

(i) For each α ∈ C, the system node Sα and the transfer function D̂α of the
exponentially shifted system �α in Example 2.3.5 are

Sα =
[

A&B
C&D

]
+
[
α 0
0 0

]
, D̂α(z) = D̂(z − α).

(ii) For each λ > 0, the system node Sλ and the transfer function D̂λ of the
time compressed system �λ in Example 2.3.6 are

Sλ =
[
λ[A&B]

C&D

]
, D̂λ(z) = D̂(z/λ).

(iii) For each (boundedly) invertible E ∈ B(X1; X ), the system node SE and
the transfer function D̂E of the similarity transformed system �E in
Example 2.3.7 are

SE =
[

E−1 0
0 1

] [
A&B
C&D

] [
E 0
0 1

]
, D̂E (z) = D̂(z).

Once more we leave the proof to the reader. We also leave the (easy) formu-
lations and the proofs of the corresponding results for Examples 2.3.10–2.3.13
to the reader (see Example 5.1.17).

The generator of the Lax–Phillips model can be characterized as follows (for
simplicity we restrict our attention to the case 1 ≤ p <∞):

Theorem 4.8.3 Let 1 ≤ p <∞ and ω ∈ R, let � = [A B

C D

]
be an L p-well-

posed linear system on (Y, X,U ) with system node S = [ A&B
C&D

]
, and let T be

the generator of the corresponding Lax–Phillips model T of type L p
ω defined in

Definition 2.7.2.

(i) The domain of T consists of all the vectors
[ y0

x0
u0

]
∈
[

W 1,p
ω (R

−
;Y )

X
W 1,p
ω (R

+
;U )

]
which

satisfy
[ x0

u0(0)

] ∈ D (S) and y0(0) = C&D
[ x0

u0(0)

]
, and on its domain T is

given by

T

y0

x0

u0

 =
 ẏ0

A&B
[ x0

u0(0)

]
u̇0

 .
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Thus, the following three conditions are equivalent (see Definition 3.12.1
for the definitions of the Laplace transforms û and û0 of u and u0, and of
the left-sided Laplace transforms ŷ and ŷ0 of y and y0):

(a)
[ y0

x0
u0

]
∈ D (T ) and

[
y
x
u

]
= T

[ y0
x0
u0

]
;

(b) y0 ∈ W 1,p
ω (R

−
; Y ), x0 ∈ X, u0 ∈ W 1,p

ω (R
+

; U ),
[ x0

u0(0)

] ∈ D (S) and

[
x

y0(0)

]
= S

[
x0

u0(0)

]
,

[
y
u

]
=
[

ẏ0

u̇0

]
;

(c) y0 ∈ W 1,p
ω (R

−
; Y ), x0 ∈ X, u0 ∈ W 1,p

ω (R
+

; U ),
[ x0

u0(0)

] ∈ D (S) and

[
x

y0(0)

]
= S

[
x0

u0(0)

]
,

ŷ(z) = z ŷ0(z)− y0(0), 
z < ω,

û(z) = zû0(z)+ u0(0), 
z > ω.

(ii) The spectrum of T contains the vertical line {
α = ω}. A point α ∈ C+ω
belongs to the spectrum of T iff it belongs to the spectrum of A, and a
point α ∈ C−ω belongs to the spectrum of T iff

[
α 0
0 0

]− S is not invertible.

(iii) Let α ∈ ρ(T ) ∩ C+ω and let
[

y
x
u

]
∈
[

L2
ω(R−;Y )

X
L2
ω(R+;U )

]
. Then the following three

conditions are equivalent:

(a)
[ y0

x0
u0

]
= (α − T )−1

[
y
x
u

]
;

(b)



[
x0

y0(0)

]
=
[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

] [
x

û(α)

]
,

y0(t) = eαt y0(0)+
∫ 0

t
eα(t−s) y(s) ds, t ≤ 0,

u0(t) =
∫ ∞

t
eα(t−s)u(s) ds, t ≥ 0;

(c)



[
x0

y0(0)

]
=
[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

] [
x

û(α)

]
,

ŷ0(z) = ŷ(z)+ y0(0)

α − z
, 
z < ω,

û0(z) = û(z)− û(α)

α − z
, 
z > ω.

(iv) Let α ∈ ρ(T ) ∩ C−ω and let
[

y
x
u

]
∈
[

L2
ω(R−;Y )

X
L2
ω(R+;U )

]
. Then the following three
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conditions are equivalent:

(a)
[ y0

x0
u0

]
= (α − T )−1

[
y
x
u

]
;

(b)



[
x0

u0(0)

]
=
([

α 0
0 0

]
− S

)−1 [ x
ŷ(α)

]
,

y0(t) = −
∫ t

−∞
eα(t−s) y(s) ds, t ≤ 0

u0(t) = eαt u0(0)−
∫ t

0
eα(t−s)u(s) ds, t ≥ 0;

(c)



[
x0

u0(0)

]
=
([

α 0
0 0

]
− S

)−1 [ x
ŷ(α)

]
,

ŷ0(z) = ŷ(z)− ŷ(α)

α − z
, 
z < ω,

û0(z) = û(z)+ u0(0)

α − z
, 
z > ω.

Proof (i) Let
[ y0

x0
u0

]
∈
[

Y
X
U

]
, and let

[ yt
xt
ut

]
= Tt

[ y0
x0
u0

]
. By the definition of the

Lax–Phillips model given in Definition 2.7.2 and by Example 3.2.3(ii), the
limit limt↓0

1
t (ut − u0) exists in L p(R+; U ) if and only if u0 ∈ W 1,p(R

+
; U ), in

which case this limit is equal to u̇. Suppose that this is true. Then, by Corollary
4.3.8, xt is continuously differentiable in X if and only if A|X x0 + Bu0(0) ∈ X .
Suppose that this is the case. Then, according to Theorem 4.6.11, the output z
of � belongs to W 1,p

loc (R
+

; Y ) and satisfies z(t) = C&D
[ xt

u0(t)

] = C&D
[ xt

ut (0)

]
for t ≥ 0. The y-component of the Lax–Phillips semigroup consists of two
parts:

yt (s) =
{

y0(t + s), s < −t,

z(s + t), −t ≤ s < 0.

This implies (cf. Example 3.2.3 and its proof) that the limit limt↓0
1
t (yt − y0)

exists in L p
ω(R−; Y ) if and only if y0 ∈ W 1,p

ω (R
−

; Y ) and y0(0) = z(0) =
C&D

[ x0
u0(0)

]
, and that this limit is equal to ẏ in this case. To get the for-

mulas involving the Laplace transforms of u and u0 and the left-sided Laplace
transforms of y and y0 it suffices to integrate by parts in the definitions of the
Laplace transforms.

(ii)–(iv) Let α ∈ C,
[ y0

x0
u0

]
∈ D (T ), and (α − T )

[ y0
x0
u0

]
=
[

y
x
u

]
. By (i), this is

equivalent to the following conditions: y0 ∈ W 1,p
ω (R

−
; Y ), u0 ∈ W 1,p

ω (R
+

; U ),
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[ x0
u0(0)

] ∈ D (S), and

αy0 − ẏ0 = y,([
α 0
C&D

]
−
[

A&B
0 0

])[
x0

u0(0)

]
=
[

x
y0(0)

]
,

αu0 − u̇0 = u.

(4.8.1)

By Examples 3.2.3(ii) and 3.3.1(ii), if 
α = ω, then the range of the operator
u0 �→ αu0 − u̇0 in the last equation in (4.8.1) is not all of L p

ω(R+; U ). Thus,
the line {
α = ω} belongs to the spectrum of T (and we have proved the first
statement in (ii)).

(ii)&(iii) If 
α > ω, then the the last equation in (4.8.1) has the unique
solution u0 given in the last equation in (iii)(b). Observe that u0(0) = û(α).
We substitute this value in the equation αx0 − A&B

[ x0
u0(0)

] = x (which is part
of the middle equation in (4.8.1)), and observe that the resulting equation has
a unique solution x0 for all x ∈ X if and only if α ∈ ρ(A) = ρ(A|X ). When
this is the case, we can solve

[ x0
y0(0)

]
in terms of

[ x
u0(0)
]

from the middle equa-
tion in (4.8.1), and the result is the one given in formula (iii)(b) (see also
Lemma 4.7.18(i)). Once y0(0) is known we can use the variation of constants
formula in the first equation in (4.8.1) to get the second equation in (iii)(b).
Thus, we conclude that, for 
α > ω, α ∈ ρ(T ) if and only if α ∈ ρ(A), and
that (iii) holds. (We leave the proof of the fact that (iii)(b) ⇔ (iii)(c) to the
reader.)

(ii)&(iv) If
α < ω, then the first equation in (4.8.1) has the unique solution
y0 given in the second equation in (iv)(b). Observe that y0(0) = −ŷ(α). The
middle equation in (4.8.1) has a unique solution

[ x0
u0(0)

]
in terms of

[ x
ŷ(α)
]

if and
only if

[
α 0
0 0

]− S is invertible, and the solution is, in that case, given by the first
equation in (iv)(b). Once u0(0) is known we can use the variation of constants
formula in the last equation in (4.8.1) to get the last equation in (iii)(b). Thus,
we conclude that, for 
α < ω, α ∈ ρ(T ) if and only if

[
α 0
0 0

]− S is invertible,
and that (iv) holds. (We again leave the proof of the fact that (iv)(b)⇔ (iv)(c)
to the reader.) �

4.9 Diagonal and normal systems

By a diagonal system we understand an L p|Reg-well-posed linear system on
(Y, X,U ) with a diagonal or normal semigroup on the Hilbert space X (which is
separable in the diagonal case). We discussed this type of semigroup in Section
3.3 (see Definition 3.3.4 and Example 3.3.6), but we have not yet looked at full
systems of this type.
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We begin with the notationally simpler diagonal case. Our first task is to
develop representation formulas in terms of the spectral resolution of the semi-
group generator for the input map, output map, and input/output map.

We introduce the same notation as in Example 3.3.3. We let X be a separable
Hilbert space spanned by the orthonormal basis {φn}∞n=1. To simplify some of
the formulas below we introduce the notation

y∗x = 〈x, y〉X
(thus, y∗ can be interpreted as the bounded linear operator in X∗ which maps
x in to 〈x, y〉). Then every vector x ∈ X can be written in the form

x =
∞∑

n=1

φnφ
∗
n x =

∞∑
n=1

xnφn, xn = φ∗n x = 〈x, φn〉X ,

where φnφ
∗
n is the orthogonal projection onto the one-dimensional subspace

spanned by φn . We call {xn}∞n=1 the coordinates of x in the basis {φn}∞n=1. The
inner product of two arbitrary vectors in X can be written in the form

〈x, y〉X = y∗x =
∞∑

n=1

xn yn, xn = φ∗n x, yn = φ∗n y,

We let

Ax =
∞∑

n=1

λnφnφ
∗
n x

be the generator of a diagonal semigroup Awith eigenvaluesλn and eigenvectors
φn (see Examples 3.3.3 and 3.3.5), and let X1 = D (A). By Example 3.3.5, the
vectors x ∈ X1 are characterized by the fact that their coordinates xn in the
basis φn satisfy

‖x‖2
X1
=
∞∑

n=1

(1+ |λn|2)|xn|2 <∞, xn = φ∗n x, x ∈ X1.

Let us define the operator $ ∈ B(X1; X ) by

$x =
∞∑

n=1

(1+ |λn|2)1/2φnφ
∗
n x =

∞∑
n=1

(1+ |λn|2)1/2xnφn. (4.9.1)

Then $ is closed and self-adjoint as an operator in X , and it has a bounded
inverse

$−1x =
∞∑

n=1

(1+ |λn|2)−1/2φnφ
∗
n x =

∞∑
n=1

(1+ |λn|2)−1/2xnφn.
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Obviously, $ is an isometric isomorphism of X1 onto X , i.e., it maps X1 onto
X , and

‖$x‖X = ‖x‖X1 , x ∈ X1.

Thus X1 is a Hilbert space with inner product

〈x, y〉X1 = 〈$x,$y〉X =
∞∑

n=1

(1+ |λn|2)xn yn, xn = φ∗n x, yn = φ∗n y.

In particular,

‖φn‖X1 = (1+ |λn|2)1/2,

and {φn}∞n=1 is an orthogonal (but not orthonormal) basis in X1. The standard
formula for the expansion of a vector in terms of this basis in X1 is

x =
∞∑

n=1

〈x, φn〉X1

‖φn‖2
X1

φn =
∞∑

n=1

(1+ |λn|2)〈x, φn〉X
(1+ |λn|2)

φn

=
∞∑

n=1

〈x, φn〉Xφn =
∞∑

n=1

φnφ
∗
n x .

Thus, we get the same result if we expand x ∈ X1 with respect to the orthonormal
basis {φn}∞n=1 in X , or with respect to the same orthogonal (but not orthonormal)
basis in X1.

We proceed to construct the space X−1 in the same way as we did in Section
3.6, but with α − A replaced by$, i.e., we let X−1 be the completion of X with
the weaker norm

‖x‖2
X−1
= ‖$−1x‖2

X =
∞∑

n=1

(1+ |λn|2)−1|xn|2, xn = φ∗n x .

This norm is induced by the inner product

〈x, y〉X−1 = 〈$−1x,$−1 y〉X =
∞∑

n=1

(1+ λ2
n)−1xn yn.

In particular, X−1 is a Hilbert space, and $ can be extended to an isometric
isomorphism of X onto X−1. The sequence {φn}∞n=1 is still an orthogonal basis
in X1, but it is not orthonormal since

‖φn‖X−1 = (1+ |λn|2)−1/2.

Thus, vectors x ∈ X−1 are characterized by the fact that they can be written in
the form x =∑∞n=1 xnφn , where

‖x‖2
X−1
=
∞∑

n=1

(1+ |λn|2)−1|xn|2 <∞, x ∈ X−1.
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Here the coefficients xn are given by

xn = 〈x, φn〉X−1

‖φn‖2
X−1

= (1+ |λn|2)〈x, φn〉X−1 ,

and they are equal to φ∗n x whenever x ∈ X .
As X is a Hilbert space, we can identify X∗ with X (every y∗ ∈ X∗ is of the

form x �→ y∗x = 〈x, y〉X =
∑∞

n=1 xn yn for some y ∈ X ). It is also possible
to identify the dual of X−1 with X−1 and the dual of X1 with X1, but it is
more convenient to identify the dual of X−1 with X1, arguing as follows. Every
y∗ ∈ (X−1)∗ is of the form x �→ 〈x, y1〉X−1 for some y1 ∈ X−1. For x ∈ X we
can write this as (since $−1 is self-adjoint in X )

〈x, y〉X−1 = 〈$−1x,$−1 y1〉X = 〈x,$−2 y1〉X = 〈x, y〉X ,
where y = $−2 y1 ∈ X1. Thus, to every y∗ ∈ (X−1)∗ there corresponds a unique
y ∈ X1 such that

y∗x = 〈x, y〉X , x ∈ X,

and this induces a duality pairing

y∗x = 〈x, y〉(X−1,X1) =
∞∑

n=1

xn yn, x ∈ X−1, y ∈ X1

between X−1 and X1. The use of the same expression y∗x to represent both
〈x, y〉X and 〈x, y〉(X−1,X1), depending on the context, is possible since the actual
formula for its computation, y∗x =∑∞n=1 xn yn, is the same in both cases. (The
construction presented above is comparable to the one in Remark 3.6.1 if we
identify X∗ with X and use the fact that $ is self-adjoint, hence D ($) =
D ($)∗.)

If the diagonal semigroup A is part of an L p|Reg-well-posed linear system[A B

C D

]
on (Y, X,U ), then we can develop representations based on the eigen-

vectors and eigenvalues of the generator A of A for all the different operators
appearing in the theory. In our representation for the input operator B we need
the notion of a left-sided Laplace transform, introduced in Definition 3.12.1.

Theorem 4.9.1 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ), where A is a diagonal semigroup on the separable Hilbert space
X generated by the operator A with eigenvalues λn and eigenvectors φn, n =
1, 2, 3, . . . Let B be the control operator, C the observation operator, C&D the
combined observation/feedthrough operator, and D̂ the transfer function of �,
and define Cn = Cφn and Bn = φ∗n B, n = 1, 2, 3, . . . Denote the growth bound
of A by ωA, and let ω > ωA and α ∈ ρ(A). Then the following representation
formulas are valid (all the sums converge in the strong topology in the given
spaces):
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(i) Ax =∑∞n=1 λnφn xn, where xn = φ∗n x and the sum converges in X for
every x ∈ X1;

(ii) (α − A)−1x =∑∞n=1(α − λn)−1φn xn, where xn = φ∗n x and the sum
converges in X1 for every x ∈ X;

(iii) Bu =∑∞n=1 φn Bnu, where the sum converges in X−1 for every u ∈ U;
(iv) Cx =∑∞n=1 Cn xn, where the sum converges in Y for every x ∈ X1;
(v) C&D

[
x
u

] =∑∞n=1 Cn[xn − (α − λn)−1 Bnu]+ D̂(α)u, where
xn = φ∗n x and the sum converges in Y for every

[
x
u

] ∈ D (C&D) and
α ∈ C+ωA

;
(vi) D̂(z)u =∑∞n=1 Cn

(
(z − λn)−1 − (α − λn)−1

)
Bnu + D̂(α)u =∑∞

n=1 Cn(α − λn)−1(α − z)(z − λn)−1 Bnu + D̂(α)u, where the sums
converge in Y for every u ∈ U and z ∈ ρ(A);

(vii) At x =∑∞n=1 eλn tφn xn where xn = φ∗n x and the sum converges in X for
every x ∈ X, uniformly in t on any bounded interval;

(viii) Bu =∑∞n=1 φn Bnû(λn), where û is the left-sided Laplace transform of
u, and the sum converges in X for every u ∈ L p|Regω(R−; U ) with
ω > ωA;

(ix) (Cx)(t) =∑∞n=1 eλn t Cn xn, where xn = φ∗n x, and the sum converges in

L p|Regω(R
+

; Y ) for every x ∈ X and in BC0,ω(R
+

; Y ) for every x ∈ X1;

(x) (Du)(t) =∑∞n=1 Cn Bn

(∫ t
−∞ e(λn (t−s)u(s) ds − (α − λn)−1u(t)

)
+

D̂(α)u(t) =∑∞n=1 Cn Bn
∫ 0
−∞ e−λns

(
u(s + t)− eαsu(t)

)
ds + D̂(α)u(t),

where the sums converge in BCω,loc(R; Y ) for all u ∈ W 1,p
ω,loc(R; U ) if �

is L p-well-posed with p <∞, and for all u ∈ BCω,loc(R; U ) if � is
Reg-well-posed.

Further size estimates on the sequences Cn and Bn (which together with the
eigenvectors φn determine B and C) will be given in Section 10.6.

Proof (i)–(ii) See Examples 3.3.3 and 3.3.5.
(iii) For each x ∈ X−1, the sum

∑∞
n=1 φnφ

∗
n x converges to x in X−1. We

apply this to x = Bu to get, for all u ∈ U ,

Bu =
∞∑

n=1

φnφ
∗
n Bu =

∞∑
n=1

φn Bnu,

where Bn = φ∗n B ∈ U ∗.
(iv) For each x ∈ X1, the sum

∑∞
n=1 φnφ

∗
n x converges to x in X1. This,

together with the continuity of C ∈ B(X1; Y ), implies that for each x ∈ X1,

Cx = C
∞∑

n=1

φnφ
∗
n x =

∞∑
n=1

Cφnφ
∗
n x =

∞∑
n=1

Cn xn,

where Cn = Cφn ∈ Y , xn = φ∗n x , and the sum converges in Y .
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(v) Apply (ii)–(iv) to (4.7.3).
(vi) This follows from (ii)–(iv) and Theorem 4.6.9.
(vii) See Example 3.3.3.
(viii) For each x ∈ X , the sum

∑∞
n=1 φnφ

∗
n x converges to x in X . By Theorem

4.2.1(i), if u ∈ L p|Regω(R−; U ), then x = Bu = ∫ 0
−∞ A−s Bu(s) ds ∈ X , so

the preceding expansion is valid in this case. This combined with (iii) and (vii)
gives

Bu =
∞∑

n=1

φnφ
∗
n

∫ 0

−∞
A−s Bu(s) ds =

∞∑
n=1

φn

∫ 0

−∞
φ∗nA−s Bu(s) ds

=
∞∑

n=1

φn

∫ 0

−∞
e−λnsφ∗n Bu(s) ds =

∞∑
n=1

φn Bn

∫ 0

−∞
e−λnsu(s) ds

=
∞∑

n=1

φn Bnû(λn),

where Bn = φ∗n B, û is the left-sided Laplace transform of u, and the sum still
converges in X (the operator φ∗n ∈ X∗ is bounded and can be moved inside the
integral, and the operator Bn = φ∗n B ∈ U ∗ is bounded and can be moved out of
the integral).

(ix) This follows from (iv), Theorems 2.5.4(ii),(iv) and 4.4.2, and the fact that
the sum x =∑∞n=1 φnφ

∗
n x converges in X whenever x ∈ X and in X1 whenever

x ∈ X1.
(x) Use (ii)–(iv) and Theorems 4.5.2 and 4.6.5.

�

Let us now turn to the more general case of a normal semigroup. All the
results of Theorem 4.9.1 remain valid, modulo the fact that the sums must
be replaced by integrals over the spectrum of A. In particular, the identity
x =∑∞n=1 φnφ

∗
n x is replaced by x = ∫

σ (A) E( dλ)x , and the inner products in
X1, X , and X−1 are given by

〈x, y〉X1 =
∫
σ (A)

(1+ |λ|)2〈E( dλ)x, y〉,

〈x, y〉X =
∫
σ (A)
〈E( dλ)x, y〉,

〈x, y〉X−1 =
∫
σ (A)

(1+ |λ|)−2〈E( dλ)x, y〉.

Theorem 4.9.2 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ), where A is a normal semigroup on the Hilbert space X generated
by the operator A with spectral resolution E (cf. Example 3.3.6). Let B be the
control operator, C the observation operator, C&D the combined observation/
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feedthrough operator, and D̂ the transfer function of �. Denote the growth
bound of A by ωA, and let ω > ωA and α ∈ ρ(A). Then the following represen-
tation formulas are valid (all the integrals converge in the strong topology in
the given spaces as limits limr→∞

∫
σ (A)∩D(r ), where D(r ) = {λ ∈ C | |λ| ≤ r}):

(i) Ax = ∫
σ (A) λE( dλ)x, where the integral converges in X for every

x ∈ X1;
(ii) (α − A)−1x = ∫

σ (A)(α − λ)−1 E( dλ)x, where the integral converges in
X1 for every x ∈ X;

(iii) Bu = ∫
σ (A) E( dλ)Bu, where the integral converges in X−1 for every

u ∈ U;
(iv) Cx = ∫

σ (A) C E( dλ)x, where the integral converges in Y for every
x ∈ X1;

(v) C&D
[

x
u

] = ∫
σ (A) C E( dλ)(x − (α − λ)−1 Bu)+ D̂(α)u, where the

integral converges in Y for every
[

x
u

] ∈ D (C&D);
(vi) D̂(z)u = ∫

σ (A) C
(
(z − λ)−1 − (α − λ)−1

)
E( dλ)Bu + D̂(α)u =∫

σ (A) C(α − λ)−1(α − z)(z − λ)−1 E( dλ)Bu + D̂(α)u, where the
integrals converge in Y for every u ∈ U and every z ∈ ρ(A);

(vii) At x = ∫
σ (A) eλt E( dλ)x where the integral converges in X for every

x ∈ X, uniformly in t on any bounded interval;
(viii) Bu = ∫

σ (A) E( dλ)Bû(λ), where û is the left-sided Laplace transform of
u, and the integral converges in X for every u ∈ L p|Regω(R−; U );

(xi) (Cx)(t) = ∫
σ (A) eλt C E( dλ)x, where the integral converges in

L p|Regω(R
+

; Y ) for every x ∈ X and in BC0,ω(R
+

; Y ) for every x ∈ X1;

(x) (Du)(t) = ∫
σ (A) C E( dλ)B

(∫ t
−∞ e(λ(t−s)u(s) ds − (α − λ)−1u(t)

)
+

D̂(α)u(t) = ∫
σ (A) C E( dλ)B

∫ 0
−∞ e−λs

(
u(s + t)− eαsu(t)

)
ds +

D̂(α)u(t), where the integrals converge in BCω,loc(R; Y ) for all
u ∈ W 1,p

ω,loc(R; U ) if � is L p-well-posed with p <∞, and for all
u ∈ BCω,loc(R; U ) if � is Reg-well-posed.

As we mentioned above, modulo the replacement of all sums by integrals,
the proof of this theorem is identical to the proof of Theorem 4.9.1. We therefore
leave this proof to the reader. (The needed integration theory is found in, e.g.,
Rudin (1973, Chapters 12–13).)

4.10 Decompositions of systems

In many cases an L p|Reg-well-posed linear system � = [A B

C D

]
or a system

node S = [ A&B
C&D

]
on (Y, X,U ) has a structure which makes it possible to split

into smaller parts, so that the whole system can be regarded as one of the
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connections of its separate parts described in Examples 2.3.11–2.3.13. One
such case appears when the control operator B is not injective, and N (B) is
complemented in the input space U (which is always true if U is a Hilbert
space).

Proposition 4.10.1 Let S := [ A&B
C&D

]
be an operator node on (Y, X,U ) with

control operator B, and suppose that N (B) is complemented in U. Decompose
U into U = [ U1

U0

]
, where U0 = N (B) and U1 is a complementing subspace (if

U is a Hilbert space then we can take U1 = U⊥0 ). This decomposition induces
a (unique) decomposition of S into

S =
[

[A&B]1 0
[C&D]1 D0

]
:

[D (S1)
U0

]
→
[

X
Y

]
, (4.10.1)

where S1 := [ [A&B]1
[C&D]1

]
is an operator node on (Y, X,U1) and D0 ∈ B(U0; Y ).

The node S1 has the same main operator A and the same observation operator
C as S. Its control operator B1 is injective, and it is the restriction of B to U1,
so that B = [B1 0

]
. The transfer function D̂ of S has the decomposition

D̂(z) = [D̂1(z) D0
]
, z ∈ ρ(A),

where D̂1 is the transfer function of S1. We have
[ x

u1
u0

]
∈ D (S) if and only if[ x

u1

] ∈ D (S1). If S is the system node of an L p|Reg-well-posed linear system
� = [A B

C D

]
, then this system is decomposed into

� =
[

A B1 0

C D1 D0

]
, (4.10.2)

where �1 =
[

A B1

C D1

]
is the L p|Reg-well-posed linear system on (Y, X,U1)

induced by the system node S1.

Thus, S may be interpreted as the sum junction (cf. Example 2.3.11) of S1

and the static system D0 (whose state space has dimension zero).

Proof Both
[

X
U1

]
and
[

0
U0

]
are closed subspaces of

[
X
U

]
, and this implies that the

restrictions of S to each of these subspaces is closed. Let us denote these restric-
tions by S1, respectively S0, with domains D (S1) = D (S) ∩ [ X

U1

]
and D (S0) =

D (S) ∩ [ 0
U0

]
. Since D (S) = {[ x

u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}

and since Bu =
0 for all u ∈ U0, it is clear that

[ x
u1
u0

]
∈ D (S) if and only if

[ x
u1

] ∈ D (S1). Thus,

D (S0) = [ 0
U0

]
, and by the closed graph theorem, S0

[
0
u0

] = [ 0
D0

]
u0 for some

D0 ∈ B(U0; Y ) and all u ∈ U0. It is also clear from Definition 4.6.4 that S1 is
an operator node on (Y, X,U1). The proofs of the remaining claims are easy,
and they are left to the reader. �
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Another case where it is possible to reduce the system is when the observation
operator does not have dense range but the closure of the range is complemented
in the output space Y .

Proposition 4.10.2 Let S := [ A&B
C&D

]
be an operator node on (Y, X,U ) with

observation operator C, and suppose thatR (C) is complemented in Y . Decom-
pose Y into Y = [ Y1

Y0

]
, where Y1 = R (C) and Y0 is a complementing subspace

(if Y is a Hilbert space then we can take Y0 = Y⊥1 ). This decomposition induces
a (unique) decomposition of S into

S =
 A&B

[C&D]1

0 D0

 :

[D (S)
U

]
→
X

Y1

Y0

 , (4.10.3)

where S1 := [ A&B
[C&D]1

]
is an operator node on (Y1, X,U ) and D0 ∈ B(U ; Y0).

The node S1 has the same domain as S, and its observation operator C1 is C,
with range space Y1, so that C1 has dense range. The transfer function D̂ of S
has the decomposition

D̂(z) =
[
D̂1(z)

D0

]
, z ∈ ρ(A),

where D̂1 is the transfer function of S1. If S is the system node of an L p|Reg-
well-posed linear system � = [A B

C D

]
, then this system is decomposed into

� =

A B

C D1

0 D0

 , (4.10.4)

where �1 =
[A B1

C D

]
is the L p|Reg-well-posed linear system on (Y1, X,U )

induced by the system node S1.

Thus, S may be interpreted as the T-junction (cf. Example 2.3.12) of S1 and
the static system D0 (whose state space has dimension zero).

Proof We split S into
[ A&B

[C&D]1
[C&D]0

]
in accordance with the splitting of the range

space
[ X

Y1
Y0

]
. Then [C&D]1 ∈ B(D (S) ; Y1), [C&D]0 ∈ B(D (S) ; Y0), and both[

A&B
[C&D]1

]
and
[

A&B
[C&D]0

]
are operator nodes, with the same domain as S and

output space Y1, respectively Y0. We get the observation operators of these
operator nodes by splitting the original observation operator C into

[ C1
C0

]
. Since

Y1 = R (C) and Y0 is a complementing subspace, we have R (C1) = Y1 and
C0 = 0. The latter fact implies that [C&D]0 has a (unique) extension to an
operator

[
0 D0

] ∈ B([ X
U1

]
; Y0
)
. The (easy) proofs of the remaining claims are

left to the reader. �



4.10 Decompositions of systems 269

We can also combine the two preceding propositions into one.

Proposition 4.10.3 Let S := [ A&B
C&D

]
be an operator node on (Y, X,U ) with

control operator B and observation operator C, and suppose that N (B) is
complemented in U and that R (C) is complemented in Y . Decompose U and
Y into U = [ U1

U0

]
and Y = [ Y1

Y0

]
, where U0 = N (B), Y1 = R (C), and U1 and

Y0 are complementing subspaces. These decompositions induce a (unique) de-
composition of S into

S =
[A&B]1 0

[C&D]1 D10

0 D01 D00

 :

[D (S1)
U0

]
→
X

Y1

Y0

 , (4.10.5)

where S1 := [ [A&B]1
[C&D]1

]
is an operator node on (Y1, X,U1), D01 ∈ B(U1; Y0),

D10 ∈ B(U0; Y1), and D00 ∈ B(U0; Y0). The node S1 has the same main operator
A as S. Its control operator B1 is injective, and it is the restriction of B to U1,
so that B = [B1 0

]
. Its observation operator C1 is C with range space Y1. The

transfer function D̂ of S has the decomposition

D̂(z) =
[
D̂1(z) D10

D01 D00

]
, z ∈ ρ(A),

where D̂1 is the transfer function of S1. We have
[ x

u1
u0

]
∈ D (S) if and only if[ x

u1

] ∈ D (S1).

Proof Combine Propositions 4.10.1 and 4.10.2. �

So far we have only studied decompositions of systems which are based on
the decomposition of the input and output spaces. A more intriguing question
is to what extent it is possible to split the state space into two parts, leaving
the input and output spaces intact, and to write the whole system as a parallel
connection of two subsystems (cf. Example 2.3.13). For this to be possible we
need to split the state space X into two complementary reducing subspaces

X =
[

X+
X−

]
. One way is to use the spectral projections described in Theorems

3.14.10 and 3.14.11. More generally, let us assume that we have an arbitrary
decomposition of X into two reducing subspaces X+ and X− of the semigroup
generator A, and that X+ ⊂ D (A).

Theorem 4.10.4 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with system node S = [ A&B
C&D

]
, semigroup generator A, control oper-

ator B, observation operator C, and transfer function D̂. Let X+ and X− be
a pair of reducing subspaces of A with X+ ⊂ D (A). Then � is the parallel
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connection (see Example 2.3.13)

� =

A+ 0 B+
0 A− B−

C+ C− D+ +D−


of the two systems �+ =

[
A+ B+
C+ D+

]
and �− =

[
A− B−
C− D−

]
on (Y, X+,U ), re-

spectively (Y, X−,U ), which are defined as follows. Let π be the projection of
X onto X+ along X−. Then π can be extended to a projection operator π|X−1 in
X−1 with R (π|X−1

) = R (π ) = X+. The system �+ is generated by the system
node

S+ =
[

A+ B+
C+ 0

]
=
[

A|X+ π|X−1 B
C|X+ 0

]
(4.10.6)

where A+ ∈ B(X+), B+ ∈ B(U ; X+), C+ ∈ B(X+; Y ), and

D̂+(z) = C+(z − A+)−1 B+, z ∈ ρ(A+) ⊃ ρ(A). (4.10.7)

In particular, �+ is Reg-well-posed and L p-well-posed for all p ∈ [1,∞], and
A+ = A|X+ , B+ = πB, and C+ = C|X+ . The system�− is L p|Reg-well-posed,
and it is given by [

A− B−

C− D−

]
=
[

A|X− (1− π )B−

C|X− D−D+

]
. (4.10.8)

Its system node is

S− =
[

(1− π ) 0
0 1

] [
A&B
C&D

]
|D(S−)

. (4.10.9)

with domain

D (S−) = D (S) ∩
[

X−
U

]
.

The semigroup generator of S− is A− = A|X− , the control operator is B− =
(1− π|X−1 )B, the observation operator is C− = C|X− , and the transfer function
D̂− satisfies

D̂−(z) = D̂(z)− D̂+(z), z ∈ ρ(A). (4.10.10)
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Thus, we may write � and S in the block matrix forms

� =

A|X+ 0 πB

0 A|X− (1− π )B

C|X+ C|X− D

 , (4.10.11)

S =
A|X+ 0 B+

0 [A&B]−
C|X+ [C&D]−

 , (4.10.12)

where B+ = π|X−1 B and
[

[A&B]−
[C&D]−

]
= S−.

Proof Since X+ and X− are reducing subspaces of A, they are also reducing
subspaces of A, and we immediately get the decomposition of � given in
(4.10.11). Let X−1− be the analogue of the space X−1 defined in Section 3.6
with X replaced by X− and A replaced by A−. Then X+ and X−1− are reducing
subspaces of A|X−1 . Let π|X−1 be the projection onto X+ along X−1−. Then π

is the restriction of π|X−1 to X . The decomposition of X−1 into
[

X+
X−1−

]
induces

the corresponding decomposition of S given in (4.10.12).
Define S+ by (4.10.6). By Theorem 3.14.6, A+ ∈ B(X+). The operator C+

is a closed operator defined on all of X+, so by the closed graph theorem,
C+ ∈ B(X+; Y ). Since π|X−1 ∈ B(X−1; X+), we also have B+ ∈ B(U ; X+).

Thus, S+ generates a system �+ =
[

A+ B+
C+ D+

]
whose semigroup A+ is uni-

formly continuous, and which is both Reg-well-posed and L p-well-posed for all
p ∈ [1,∞] (see Proposition 2.3.1). It is easy to see that A+ = A|X+ , B+ = πB,
and C+ = C|X+ , and of course, the transfer function is given by (4.10.7).

Define �− by (4.10.8). We claim that �− is an L p|Reg-well-posed linear
system. This is not difficult to prove. Indeed, the four operators in �− have
the right continuity properties (since both � and �+ are L p|Reg-well-posed).
Most of the algebraic conditions in Definitions 2.2.1 and 2.2.3 are obviously
satisfied: A− is a C0 semigroup on X−, and the two intertwining conditions
At
−B− = Bτ t

− and C−At
− = τ t

+C hold for all t ≥ 0. That the Hankel operator
of D− is C−B− is also easy to show:

π+D−π− = π+Dπ− − π+D+π− = CB− C+B+ = CB− CπB = C−B−.

We conclude that �− is an L p|Reg-well-posed linear system. The remaining
claims about S−, A−, B−, C−, and D̂− are also easy to verify. �

If the space X+ is obtained by a Riesz projection of the type described in
Theorem 3.14.10, then we can say something more about the transfer function
D̂+ in Theorem 4.10.4.
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Theorem 4.10.5 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with semigroup generator A, control operator B, observation op-
erator C, and transfer function D̂. Let � be a positively oriented piecewise
continuously differentiable Jordan curve contained in ρ(A) which separates
σ (A) into two nontrivial parts σ (A) = σ+(A) ∪ σ−(A), where σ+(A) lies in-
side� andσ−(A) lies outside� , and define the Riesz projectionπ as in Theorem
3.14.10 with X+ = R (π ) and X− = N (π ). Decompose � into �+ and �−
as in Theorem 4.10.4, and let λ0 be a point inside �. Then D̂+ is analytic at
infinity, and it has a expansion

D̂+(λ) =
∞∑

n=1

D−n(λ− λ0)−n, (4.10.13)

valid in a neighborhood of infinity, where D−n ∈ B(U ; Y ) is given by

D−n = 1

2π j

∮
�

(λ− λ0)n−1D̂(λ) dλ = C+(A+ − λ0)n−1 B+. (4.10.14)

In particular, D̂+ depends only on � and on the transfer function D̂, and not
on the particular realization. If σ+(A) consists of the single point λ0, then
the above expansion is valid in all of C \ {λ0}, and the coefficients D−n co-
incide with the coefficients with negative index in the Laurent series of D̂

at λ0.

Proof The function D̂+(λ0 + λ) = C+(λ0 + λ− A)−1 B+ is analytic at infinity
and vanishes at infinity since A+ ∈ B(X+). It therefore has a Taylor expansion

D̂(λ0 + 1/z) =
∞∑

n=1

D−nzn,

valid in a neighborhood of zero. After a change of variable (replace z by 1/(λ−
λ0)) this becomes (4.10.13). The Taylor coefficients D−n can be computed by
means of a Cauchy integral, and after the same change of variable that we made
above (cf. Lemma 3.9.1(ii) and its proof) we get

D−n = 1

2π j

∮
�1

(λ− λ0)n−1D̂+(λ) dλ

= 1

2π j

∮
�1

(λ− λ0)n−1C+(λ− A+)−1 B+ dλ

= C+(A+ − λ0)n−1 B+,

where the last line follows from the preceding line and Lemma 4.10.6. Since
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both (λ− λ0)n−1 and D̂− are analytic inside �, we have

1

2π j

∮
�1

λn−1D̂−(λ) dλ = 0,

and therefore also the first identity in (4.10.14) holds (recall that D̂(z) =
D̂+(z)+ D̂−(z) for all z ∈ ρ(A)).

If σ+(A) consists of the single point λ0, then D̂+ is analytic on C \ {λ0}, and
therefore the expansion (4.10.13) holds in C \ {λ0}, and it coincides with the
Laurent expansion of D̂+ at λ0, and also with the negative part of the Laurent
expansion of D̂ at λ0. �

In the above proof we used the following lemma.

Lemma 4.10.6 Let A ∈ B(X ) and let λ0 ∈ C. Then (λ− A)−1 is analytic at
infinity, and it has an expansion

(λ− A)−1 =
∞∑

n=1

A−n(λ− λ0)−n, (4.10.15)

valid in a neighborhood of infinity, where A−n ∈ B(U ; Y ) is given by

A−n = 1

2π j

∮
�

(λ− λ0)n−1(λ− A)−1 dλ = (A − λ0)n−1; (4.10.16)

here � is a positively oriented piecewise continuously differentiable Jordan
curve which encircles both λ0 and σ (A). In particular, A|X = 1. If σ (A) consists
of the single point λ0, then the above expansion is valid in all of C \ {λ0}, and
the coefficients A−n coincide with the coefficients with negative index in the
Laurent expansion of (λ− A)−1 at λ0.

Proof That (λ− A)−1 has an expansion of the type (4.10.15) with the coef-
ficients A−n given by the first of the two expression in (4.10.16) is proved in
the same way as in the proof of Theorem 4.10.5 (take σ−(A) = ∅, B = 1, and
C = 1). The alternative formula for the coefficients follows from (3.9.1) (see
also the discussion following (3.9.1)). �

4.11 Comments

Most of the results in this chapter are (independently) due to Salamon (1987,
1989), Smuljan (1986) (these two authors deal with the Hilbert space case with
p = 2) and G.Weiss (1989a, b, 1991a, 1994a). Some of the results for Reg-
well-posed linear systems appear to be new. Our proofs follow mainly those
given by Salamon (1989).
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Section 4.2 The main part of Theorem 4.2.1 is found in Salamon (1989, The-
orem 3.1), Smuljan (1986, Theorem 2.1), and G. Weiss (1989a, Theorem 3.9).
The representation of a Reg-well-posed input map appears to be new. An exam-
ple is given in G. Weiss (1991a, Section 3) which shows that the representation
in Theorem 4.2.1 need not be valid for inputs in L∞loc. Theorem 4.2.7 is due to G.
Weiss (1989a, Theorem 4.8). Our proof of this theorem is simpler than the one
given by G. Weiss (1989a). The estimates in Proposition 4.2.9 with n > 1 may
be new (the case n = 1 is well-known). Also Theorem 4.2.11 appears to be new.

Section 4.3 Part (i) of Theorem 4.3.1 (in the Hilbert space case with p =
2) is due to Salamon (1989, Lemma 2.3) (and it can also be found in the
PDE literature), but part (ii) appears to be new. The space (X + BU )1 = (α −
A)−1(X + BU ) appears in Salamon (1987, Section 2.2) in the case where B
is injective, and in the form presented here in Staffans (1997). It can also be
found in the PDE literature.

Section 4.4 The main part of Theorem 4.4.2 is due to Salamon (1987, Theorem
3.1), Smuljan (1986, Theorem 3.2), and G. Weiss (1989b, Theorem 3.3). Our
proof follows the one given by Salamon (1987). Theorems 4.4.2(ii) and 4.4.7(ii)
are due to G. Weiss (1989b, Proposition 6.5). Theorem 4.4.8 may be new, and
also the size estimates in Proposition 4.4.9 with n > 1 may be new. Theorem
4.4.10 is apparently new.

Section 4.5 Theorem 4.5.2 is a simple corollary of the more general results in
G. Weiss (1994a) (which will be discussed in Chapter 5). Lemma 4.5.3 is found
in Lax and Phillips (1973, pp. 187–188) and G. Weiss (1991a, Theorem 2.3).
Theorem 4.5.4 and Corollaries 4.5.5 and 4.5.6 appear to be new. Theorem 4.5.8
is, of course, well-known, but its proof is new.

Section 4.6 Our definition of a transfer function is the same as the one used by
Lax and Phillips (1973, pp. 187–188). Theorem 4.6.3 can be deduced from, e.g.,
Helton (1976) or G. Weiss (1989c, Proposition 4.7). The combined observation/
feedthrough operator appears explicitly in the work by Arov and Nudelman
(1996) and Smuljan (1986), and less explicitly in the works by Curtain and Weiss
(1989) and Salamon (1987). The representation formula in Theorem 4.6.11 is
found in Helton (1976, p. 148) and Salamon (1987, formula (2.1;2)) in a rather
implicit way, and more explicitly in Arov and Nudelman (1996, formula (2.1)),
Curtain and Weiss (1989, formula (4.1)), Salamon (1989, formula (2.1)), and
Šmuljan (1986, formulas (4.6)). Different versions of Theorem 4.6.9 are found
in Arov and Nudelman (1996, formula (2.9)), Curtain and Weiss (1989, formula
(4.3)), Helton (1976, formula (2.4)), and Salamon (1987, formula (2.3)),
and Smuljan (1986, formula (5.6)). The Hilbert space case with p = 2 of the
representation in Theorem 4.6.9 is well-known. The L p-case with 1 ≤ p <∞
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was proved by G. Weiss (1991a, Theorem 2.3), but the Reg-well-posed case
may be new.

Section 4.7 Operator and system nodes of the type that we consider here seem
to have appeared for the first time in Smuljan (1986), and in a less explicit form
in Salamon (1987). Our notation C&D

[
x
u

]
corresponds to Smuljan’s notation

N 〈x, u〉 and Salamon’s notation
(
x − (α − A)−1 Bu

)+ D̂(α)u. Compare this to
formula (4.6.3). System nodes have since then been used in Arov and Nudelman
(1996), Malinen et al. (2003), (Staffans, 2001a, 2002a, b, c), Staffans and Weiss
(2002, 2004). Many of the results presented in this section are found in Malinen
et al. (2003).

Section 4.8 Theorem 4.8.3 (in a Hilbert space setting with p = 2) is found in
Staffans and Weiss (2002, Theorem 6.3 and Proposition 6.4). Related results
are found in Lax and Phillips (1973, Theorems 6.1 and 6.2), Grabowski and
Callier (1996, Theorem 2.2), Engel (1998, Theorem 2), and Smuljan (1986,
Section 4).

Section 4.9 Diagonal systems are often used as examples illustrating more gen-
eral results, and they also arise naturally from partial differential equations on a
bounded domain. A system whose generator has a Riesz basis of eigenvectors
can be transformed into a diagonal system through a similarity transform (see
Example 2.3.7 and our earlier comments about Section 3.3). Most of Theorem
4.9.2 is contained (more or less explicitly) in Rudin (1973, Chapter 13) (see,
in particular, Rudin 1973, Theorems 13.33 and 13.37).

Section 4.10 Proposition 4.10.3 is a minor extension of Malinen et al. (2003,
Proposition 2.5). Theorems 4.10.4 and 4.10.5 may be new (at least formally),
but similar decompositions have, of course, been used before, e.g., in the finite-
dimensional case.
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Compatible and regular systems

Compatibility of a system has to do with the question of to what extent the
system node S = [ A&B

C&D

]
in the differential/algebraic equation

[
ẋ
y

] = S
[

x
u

]
can

be extended to an operator of the type
[

A|W B
C|W D

]
, defined on

[
W
U

]
, where D (S) ⊂[

W
U

] ⊂ [ X
U

]
. Typical boundary control systems are compatible. Regularity is

related to the behavior of the transfer function at +∞.

5.1 Compatible systems

The system nodes and operator nodes treated in Sections 4.6 and 4.7 have a
natural decomposition S = [ A&B

C&D

]
, where A&B mapsD (S) into the state space

X and C&D maps D (S) into the output space Y . If the control operator B is
bounded, i.e., if B ∈ B(U ; X ), then D (S) = [ X1

U

]
, and S further decomposes

into S = [ A B
C D

]
, where A ∈ B(X1; X ), B ∈ B(U ; X ), C ∈ B(X1; Y ), and D ∈

B(U ; Y ). In this case many of the formulas in Sections 4.6 and 4.7 simplify, and
they start to look exactly like they would look in the classical finite-dimensional
case.

The same simplification of S into S = [ A B
C D

]
would be possible whenever

D (S) is of the formD (S) = [ W
U

]
for some arbitrary subspace W of X . Unfortu-

nately, such a decomposition is never valid if B is unbounded, i.e., B /∈ B(U ; X );
this follows from (4.6.5). Therefore, we have to settle for a weaker condition
in this case: Is it maybe possible to extend the operator node S in such a way
that the extended operator is defined on

[
W
U

]
, where D (S) ⊂ [ W

U

] ⊂ [ X
U

]
?

We have already seen a partial answer to the question above: the definition of
an operator node contains the requirement that A&B always can be extended to
an operator

[
A|X B

]
on
[

X
U

]
, at the expense of also extending the range space

of this operator so that it becomes X−1 instead of the original X . Unfortunately,
a similar extension of the range space of the operator C&D is in most cases

276
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not allowed, since this space is the (often finite-dimensional) output space of
the whole system.1 Still, it may be possible to extend C&D to a bounded linear
operator on some larger space

[
W
U

]
without changing the output space Y , where

W is a Banach (or Hilbert) space. We must have X1 ⊂ W since
[

X1
0

] ⊂ D (S),
and it is natural to require that W ⊂ X . The extension of C&D can then be

written in the form
[
C|W D

]
, and we get S =

[
A|X B
C|W D

]
|D(S)

.

Before looking further into the question of the existence of this extension of
S, let us study some of its consequences. We start with a definition.

Definition 5.1.1 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ) with main

operator A, control operator B, and observation operator C . Then S is com-
patible if there exist a Banach space W , with X1 ⊂ W ⊂ X (with continuous
embeddings), and an operator C|W ∈ B(W ; Y ) such that

(i) C|W x = Cx for all x ∈ X1, and
(ii) R ((α − A|X )−1 B

) ⊂ W for some α ∈ ρ(A).

We call W a compatible extension of X1 and C|W a compatible extension of
the observation operator C , or alternatively, an extended observation operator.
By a compatible L p|Reg-well-posed linear system � we mean a system whose
system node is compatible.

Note that the space W in (i) is always dense in X since X1 is dense in X ,
but that X1 need not be dense in W . See Remarks 5.1.13 and 5.1.14. Therefore,
there may exist more than one extension C|W of C to W .

Lemma 5.1.2 The following operator nodes (and systems) are compatible:2

(i) Operator nodes with a bounded observation operator; in particular,
nodes that are L∞-well-posed or Reg-well-posed.

(ii) Operator nodes with a bounded control operator; in particular,
L1-well-posed system nodes with a reflexive state space.

(iii) System nodes whose control operator B and observation operator C
satisfy B ∈ B(U ; Xα−1) and C ∈ B(Xα; Y ), where α ∈ [0, 1] and Xα is
defined as in Section 3.9 (U is the input space and Y the output space).

(iv) The delay line in Example 2.3.4.

Proof Take W = X in (i) and W = X1 in (ii), and see Theorems 4.2.7 and
4.4.2(ii). Note that both of these are special cases of (iii). That (iii) holds is
obvious from the standard properties of the spaces Xα (see Section 3.9). In (iv)
we can take, for example, W = W 1,p([0, T ]; U ) (see Example 4.8.1). �

1 From an input/output point of view, the spaces U and Y are determined by the original problem,
whereas the state space may vary from one realization to another.

2 These systems are even regular whenever they are L p|Reg-well-posed: see Lemma 5.7.1.
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For further examples of compatible systems, see Theorems 5.1.12 and 5.2.3.

Lemma 5.1.3 Let A be a densely defined operator on X with a nonempty
resolvent set, and let W be a Banach space satisfying X1 ⊂ W ⊂ X, and let
α ∈ ρ(A). For each k = 0,±1,±2, . . . , define

Wk = (α − A)−k
|W W = {(α − A)−k

|W x | x ∈ W }.
Then Xk+1 ⊂ Wk ⊂ Xk, Wk is a Banach space with the norm

|x |Wk = |(α − A)k
|Wk

x |W ,
Wk is a Hilbert spaces if W is a Hilbert space, Wk is dense in Xk, and Xk+1

is dense in Wk if and only if X1 is dense in W . Moreover, for each α ∈ ρ(A)
and k, l = 0,±1,±2, . . . , (α − A)l

|Wk
∈ B(Wk ; Wk−l). Moreover, all possible

choices of α ∈ ρ(A) give the same spaces Wk.

Proof The proof of this lemma is virtually identical to the argument that we
gave in Section 3.6 in our construction of the spaces Xk . �

The most important of these spaces (apart from W itself) will be W−1 =
(α − A)|W W , X ⊂ W−1 ⊂ X−1.

At the beginning of this section we were looking for an extension of the
observation/feedthrough operator C&D to a larger domain of the type

[
W
U

]
, for

some Banach space W , X1 ⊂ W ⊂ X , but then we continued to instead discuss
extensions of the observation operator C . Obviously, if we first extend C&D to
an operator on

[
W
U

]
and then restrict this extended operator to

[
W
0

]
, then we get

an extension of C . The converse statement is also true in the following sense.

Lemma 5.1.4 Let S = [ A&B
C&D

]
be a compatible operator node on (Y, X,U ),

with main operator A, control operator B, observation operator C, and ex-
tended observation operator C|W defined on W , X1 ⊂ W ⊂ X. Let W−1 =
(α − A)|W W where α ∈ ρ(A) (cf. Lemma 5.1.3). Then the following claims
hold.

(i) D (S) ⊂ [ W
U

] ⊂ [ X
U

]
, and

S =
[

A|W B
C|W D

]
|D(S)

(5.1.1)

where
[

A|W B
C|W D

]
∈ B([ W

U

]
;
[

W−1
Y

])
, and

D = D̂(α)− C|W (α − A|X )−1 B, α ∈ ρ(A), (5.1.2)

belongs to B(U ; Y ) and is independent of α ∈ ρ(A). In particular,
(α − A|X )−1 B ∈ B(U ; W ) for all α ∈ ρ(A), and D is determined
uniquely by S and C|W .
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(ii) The transfer function of S can be written in the form

D̂(z) = C|W (z − A|X )−1 B + D, z ∈ ρ(A). (5.1.3)

(iii) S is determined uniquely by A, B, C|W , and D. If X1 is dense in W then
C|W and D are determined uniquely by S.

Proof (i) That A maps W into W−1 and that B maps U into W−1 follow
from Definition 5.1.1 and Lemma 5.1.3. The boundedness of these opera-
tors follows from the closed graph theorem (they are continuous with values
in X−1, hence closed as operators with values in W−1). Thus in particular,
(α − A|X )−1 B ∈ B(U ; W ). Fix some α ∈ ρ(A), and define D by (5.1.2). Then[
C|W D

] ∈ B([ W
U

]
; Y
)
, and by (4.7.3), C&D = [C|W D

]
|D(S)

. That D is inde-
pendent of α follows from (4.7.2).

(ii) This is a rewritten version of (5.1.2).
(iii) That S is determined uniquely by A, B, C|W , and D follows from (5.1.1).

Clearly, if X1 is dense in W then C|W is determined uniquely by C (which is
determined uniquely by S, and D is then determined uniquely by (5.1.2). �

Definition 5.1.5 We call the operator
[

A|W B
C|W D

]
∈ B(

[
W
U

]
;
[

W−1
Y

]
) in Lemma

5.1.4(i) a compatible extension of the operator node S, or alternatively, an
extended operator node. We call D the feedthrough operator induced by S and
C|W .

Remark 5.1.6 Clearly, an extended operator node
[

A|W B
C|W D

]
determines the orig-

inal operator node S uniquely through (5.1.1), but the converse is not true unless
X1 is dense in W . For example, in the delay line in Example 5.1.2(iv), if we
take W = W 1,p([0, T ]; U ), then we can take D to be an arbitrary operator in
B(U ) and let C|W

[
x
u

] = x(0)− DW x(T ). See also Lemma 5.1.10 and Remark
5.2.9.

For compatible L p|Reg-well-posed linear systems we can in practice replace

the system node S by its extension
[

A|W B
C|W D

]
.

Corollary 5.1.7 Let S = [ A&B
C&D

]
be a compatible system node on (Y, X,U ),

and let
[

A|W B
C|W D

]
∈ B([ W

U

]
;
[

W−1
Y

])
be a compatible extension of S. Then the

following claims are true.

(i) We can replace the equation (4.7.4) in Lemma 4.7.8 by[
ẋ(t)
y(t)

]
=
[

A|W B
C|W D

] [
x(t)
u(t)

]
, t ≥ s, x(s) = xs . (5.1.4)
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(ii) If S is L p|Reg-well-posed, then we can replace equations (4.6.6) and
(4.6.7) in Theorem 4.6.5 by[

ẋ(t)
y(t)

]
=
[

A|W B
C|W D

] [
x(t)
u(t)

]
, t ∈ R, (5.1.5)

and we can replace formulas (4.6.13) and (4.6.14) in Theorem 4.6.11 by
(5.1.4).

Proof This is obvious. �

For each compatible operator node, there is a canonical minimal space W ,
namely the space (X + BU )1 introduced in Lemma 4.3.12(ii)–(iii):

Theorem 5.1.8 Let S = [ A&B
C&D

]
be a compatible operator node on (Y, X,U )

with a compatible extension
[

A|W B
C|W D

]
∈ B([ W

U

]
;
[

W−1
Y

])
. Let α ∈ ρ(A), and

define (cf. Lemma 4.3.12)

(X + BU )1 = (α − A|X )−1(X + BU ).

Then X1 ⊂ (X + BU )1 ⊂ W , and if we let C|(X+BU )1 be the restriction of C|W
to (X + BU )1, then C|(X+BU )1 is a compatible extension of C.

Proof By Definition 5.1.1, W contains both X1 = (α − A)−1 X and (α −
A|X )−1 BU , hence (X + BU )1 = (α − A|X )−1(X + BU ) ⊂ W (and the em-
bedding is, of course, continuous). That X1 ⊂ (X + BU )1 follows from the
inclusion X ⊂ X + BU . Thus, the conditions of Definition 5.1.1 are satisfied
if we replace W by (X + BU )1. �

Corollary 5.1.9 A operator node S = [ A&B
C&D

]
with main operator A, control

operator B, and observation operator C is compatible if and only if C can be
extended to a bounded linear operator C|(X+BU )1 ∈ B((X + BU )1; Y ).

This follows from Theorem 5.1.8.
We saw in Lemma 5.1.4(i) that the operator D in that lemma is determined

uniquely by A, B, C|W , and D̂. In the case where W = (X + BU )1 it is also
true that C|W is determined uniquely by A, B, C , D, and D̂:

Lemma 5.1.10 In the case where W = (X + BU )1 we can add the following
conclusion to Lemma 5.1.4(i):

(iv) The operator C|(X+BU )1 is determined uniquely by S and D.

Proof Every w ∈ (X + BU )1 can be written in the form w = x1 + (α −
A|X )−1 Bu, where x1 ∈ X1, u ∈ U , and α ∈ ρ(A). Thus, C|(X+BU )1w = Cx1 +
C|(X+BU )1 (α − A|X )−1 Bu, and to show that C|(X+BU )1 is unique it suffices to
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show that C|(X+BU )1 is unique on R ((α − A|X )−1 B
)
. However, this follows

from the fact that, according to (5.1.2), C|(X+BU )1 (α − A|X )−1 B = D̂(α)− D.
�

Let us now return to the question of exactly what type of operator nodes are
known to be compatible. We begin with a crucial lemma.

Lemma 5.1.11 Let � be a L p|Reg-well-posed linear system � on (Y, X,U )
with control operator B and observation operator C. Then C is continuous
with respect to the (weaker) norm in X1 induced by (X + BU )1, i.e., there is a
constant M such that

|Cx |Y ≤ M |x |(X+BU )1 , x ∈ X1. (5.1.6)

Thus, C has a (unique) extension to a bounded linear operator from the closure
of X1 in (X + BU )1 to Y .

Proof Let x ∈ X1, and let α ∈ ρ(A). By Lemma 4.3.12, there exist z ∈ X1 and
u ∈ U with

|z|X1 + |u|U ≤ 2|x |(X+BU )1

such that x = z + (α − A|X )−1 Bu. As both x ∈ X1 and z ∈ X1, this implies
that Bu ∈ X . By Theorem 3.7.1(iii),

Bu = lim
λ→+∞

λ(λ− A)−1 Bu

(in X ). This, combined with (4.7.2), gives

C(α − A)−1 Bu = lim
λ→+∞

C(α − A)−1(λ− α)(λ− A)−1 Bu

= D̂(α)u − lim
λ→+∞

D̂(λ)u.

If we denote M = sup
λ≥
α‖D̂(λ)‖, then M <∞ (see Corollary 4.6.8), and
|C(α − A)−1 Bu|Y ≤ 2M |u|U . Thus

|Cx |Y ≤ |Cz|Y + |C(α − A)−1 Bu|Y
≤ ‖C‖B(X1;Y )|z|X1 + 2M |u|U
≤ 2(‖C‖B(X1;Y ) + 2M)|x |(X+BU )1 .

�

With the aid of Lemma 5.1.11 we are now ready to prove the following result,
which shows that most L p|Reg-well-posed linear systems are compatible.

Theorem 5.1.12 Let � be a L p|Reg-well-posed linear system on (Y, X,U )
with control operator B. Then � is compatible in (at least) the following
cases:
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(i) the closure of X in X + BU is complemented in X + BU;
(ii) X and U are Hilbert spaces;

(iii) at least one of the spaces X, U, or Y is finite-dimensional.

Proof (i) Write X + BU in the form X + BU = X +̇ Z , where X is the closure
of X in X + BU and Z is a complementing subspace to X . Then (X + BU )1 =
(α − A|X )−1(X + Z ) = W1 +̇W2, with W1 = (α − A|X )−1 X and W2 = (α −
A|X )−1 Z . By Lemma 5.1.11, C can be extended to an operator CW1 ∈ B(W1; Y ).
For each w = w1 + w2 ∈ W1 +̇W2 we can define, e.g., C|(X+BU )1w = CW1w1.
Then C|(X+BU )1 ∈ B((X + BU )1; Y ) is an extension of C ∈ B(X1; Y ), and by
Corollary 5.1.9, � is compatible.

(ii) If both X and U are Hilbert spaces, then X + BU is a Hilbert space, and
every closed subspace of a Hilbert space is complemented.

(iii) If X is finite-dimensional, then X−1 = X , hence X = X + BU and (i)
holds. If U is finite-dimensional, then the co-dimension of X in X + BU is
finite and X is complemented. If Y is finite-dimensional, then we can use the
Hahn–Banach theorem to extend C from the closure of X1 in (X + BU )1 to all
of (X + BU )1. �

Remark 5.1.13 It is clear that the extension of C to (X + BU )1 is unique if
and only if X1 is dense in (X + BU )1, or equivalently, if and only if X is dense
in X + BU . It is easy to give examples where these inclusions are not dense.
For example, in the delay line described in Lemma 5.1.2(iv) we have

X1 = {x ∈ W 1,p([0, T ]; U ) | x(T ) = 0}
and

(X + BU )1 = W 1,p([0, T ]; U ).

Observe that X is closed in X + BU and X1 is closed in (X + BU )1 in this
case, and that this is a Hilbert space example if p = 2 and U is a Hilbert space.

Remark 5.1.14 As a complement to Remark 5.1.13, let us give another exam-
ple where X is dense in X + BU and X1 is dense in the space (X + BU )1.
We let A generate an exponentially stable analytic semigroup on the Banach
space X , let U = X , B = A1/4

|X , and Bu = ∫ 0
−∞ A−s

|X−1
Bu(s) ds. The exponen-

tial stability of A implies that A is invertible, that Aα
|X maps X onto X−α for all

α ∈ R, and that we can choose the norm in X−α so that ‖Aα
|X x‖X−α = ‖x‖X . By

Theorem 5.7.3, B is an L2-admissible input map for A with control operator
B, and X + BU = {z = x + A1/4

|X u
∣∣ x, u ∈ X

}
. Clearly X + BU = X−1/4

(since A1/4
|X maps X onto X−1/4). The norm in X + BU is given by

|z|X+BU = inf
x+A1/4

|X u=z

(|x |2X + |u|2X )1/2
.
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Choosing x = 0 and z = A1/4
|X u we observe that ‖z‖X+BU ≤ ‖A−1/4

|X z‖X =
‖z‖X−1/4 . This and the closed graph theorem imply that the norms in X + BU
and X−1/4 are equivalent. As X is dense in X−1/4, this means that X is also
dense in X + BU .

Remark 5.1.15 If C : X → Y is closable, i.e., if the closure of the graph of C
in
[

Y
X

]
is the graph of an operator X → Y (this is equivalent to the condition

that Cxn cannot tend to a nonzero limit in Y if xn ∈ X1 and xn → 0 in X ), then
this closure of C (defined on its domain equipped with the graph norm) is the
maximally defined extension on C that can be used in Definition 5.1.1, i.e., the
domain of the closure of C contains every possible space W . However, C will
not, in general, be closable, and even if it is, then C|W need not be the restriction
of W of the maximal extension of C . In particular, the observation operator for
the delay line is not closable.

We end this section with some comments on how compatibility is preserved
and how the generators change under some standard transformations. We leave
the easy proofs to the reader.

Example 5.1.16 Let � = [A B

C D

]
be a compatible L p|Reg-well-posed linear

system on (Y, X,U ) with extended system node
[

A|W B
C|W D

]
∈ B([ W

U

]
;
[

W−1
Y

])
.

(i) For each α ∈ C, the exponentially shifted system �α in Example 2.3.5 is

compatible, with extended system node
[

A|W+α B
C|W D

]
.

(ii) For each λ > 0, the time compressed system �λ in Example 2.3.6 is

compatible, with extended system node
[
λA|W λB
C|W D

]
.

(iii) For each (boundedly) invertible E ∈ B(X1; X ), the similarity
transformed system �E in Example 2.3.7 is compatible, with extended

system node
[

E−1 AE E−1 B
C|W E D

]
.

Example 5.1.17 Let �1 and �2 be two compatible systems (with matching
input and output spaces) which are L p|Reg-well-posed in the same sense, with

extended system nodes
[

A1 |W1
B1

C|W1 D1

]
, respectively

[
A2 |W2

B2

C|W2 D2

]
. Then the following

systems derived from these two systems are also compatible, and they have the
following extended system nodes:

(i) The cross-product of �1 and �2 in Example 2.3.10 with extended system
node

[
A|W B
C|W D

]
=


A1|W1

0 B1 0
0 A2|W2

0 B2,

C|W1 0 D1 0
0 C|W2 0 D2

 .
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(ii) The sum junction of �1 and �2 in Example 2.3.11 with extended system
node [

A|W B
C|W D

]
=

 A1|W1
0 B1 0

0 A2|W2
0 B2,

C|W1 C|W2 D1 D1

 .
(iii) The T -junction of �1 and �2 in Example 2.3.12 with extended system

node

[
A|W B
C|W D

]
=


A1|W1

0 B1

0 A2|W2
B2,

C|W1 0 D1

0 C|W2 D2

 .
(iv) The parallel connection of �1 and �2 in Example 2.3.13 with extended

system node

[
A|W B
C|W D

]
=

 A1|W1
0 B1

0 A2|W2
B2,

C|W1 C|W2 D1 + D2

 .

5.2 Boundary control systems

In this section we take a closer look at so-called boundary control systems.

Definition 5.2.1 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ) with control

operator B ∈ B(U ; X−1). We call S a boundary control node if B is injective
and R (B) ∩ X = 0. If, in addition, S is an L p|Reg-well-posed system node,
then we call the corresponding system a boundary control system.

Here the requirement that B should be injective is not important, but it
simplifies some of the formulas below. It can be removed completely if U is a
Hilbert space, and it can be replaced by the assumption that the null space of
B is complemented. See Proposition 4.10.1 and Theorem 5.2.16.

The following lemma gives a number of equivalent conditions for an operator
node to be a boundary control node:

Lemma 5.2.2 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ) with main

operator A and control operator B. Suppose that B is injective, and let α ∈
ρ(A). Then the following conditions are equivalent:

(i) S is a boundary control node;
(ii) R (B) ∩ X = 0;

(iii) X + BU is the direct sum X +̇ BU of X and BU (i.e., both X and BU
are closed in X + BU and X ∩ BU = 0);
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(iv) R ((α − A|X )−1 B
) ∩ X1 = 0;

(v) (X + BU )1 is the direct sum of X1 and (α − A|X )−1 BU.

When these conditions hold, there exists a finite positive constant and M such
that, for all x ∈ X, x1 ∈ X1, and u ∈ U

M−1
(|x |2X + |u|2U ) ≤ |x + Bu|2X+BU ≤ |x |2X + |u|2U ,

M−1
(|x1|2X1

+ |u|2U
) ≤ |x1 + (α − A|X )−1 Bu|2(X+BU )1

≤ M
(|x1|2X1

+ |u|2U
)
.

For the major part of the conclusion of this lemma it is not really important
that B is injective (we may replace U by U/N (B)).

Proof (i)⇔ (ii). See Definition 5.2.1.
(ii)⇔ (iv). This is true since (α − A)−1 maps X one-to-one onto X1.
(iii) ⇔ (v). This is true since (α − A)−1 is an isomorphism of X onto X1

and (α − A)−1
|X+BU is an isomorphism of X + BU onto W .

(ii)⇒ (iii). Since we assume that R (B) ∩ X = 0, every z ∈ X + BU has
a unique representation z = x + Bu, where x ∈ X and u ∈ U . This implies
that (see Lemma 4.3.12), for all x ∈ X , |x |X+BU = |x |X , and for all z ∈ BU ,
|z|X+BU = |u|U where z = Bu. This means that both X and BU are closed in
X + BU . As moreover X ∩ BU = 0, we find that X + BU = X +̇ BU .

(iii)⇒ (ii). This is trivial.
We have now proved the equivalence of (i)–(v). It still remains to prove the

additional claims. The inequality |x + Bu|2X+BU ≤ |x |2X + |u|2U is built into the
definition of the norm in X + BU , and the converse inequality

(|x |2X + |u|2U ) ≤
M |x + Bu|2X+BU follows from a general result on complemented subspaces
(see, e.g., Rudin (1973, Theorem 5.16) and recall that |Bu|X+BU = |u|U ). The
corresponding norm inequality in (X + BU )1 follows from this and the fact
that (α − A)−1 is an isomorphism of X onto X1 and that (α − A|X )−1 is an
isomorphism of X + BU onto (X + BU )1. �

Theorem 5.2.3 Every boundary control node is compatible.

Proof See Theorem 5.1.12(i) and Lemma 5.2.2(iii). �

Example 5.2.4 The exactly controllable shift realization in Example 2.6.5(i)
and the bilateral input shift realization in Example 2.6.5(iii) are boundary
control systems. In particular, they are compatible.

Proof Combine Theorem 5.2.3 with Example 4.2.6 and Lemma 5.2.2. �

Corollary 5.2.5 Every D ∈ TICp
ω(U ; Y ), where 1 ≤ p <∞, ω ∈ R, and U

and Y are Banach spaces, has a compatible realization.

Proof See Examples 2.6.5 and 5.2.4. �
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Boundary control nodes are not only compatible: it is furthermore possible

to replace the extended operator node
[

A|W B
C|W D

]
by another set of ‘generating

operators’ (�,�,C|(X+BU )1 , D). Here� and� are unique, D is a free parameter
in B(U ; Y ) which we interpret as a feedthrough operator, and C|(X+BU )1 is the
corresponding (unique) compatible extension of C to the space (X + BU )1. In
particular, if we require D = 0, then all of �, �, and C|(X+BU )1 are unique.

Theorem 5.2.6 Let S = [ A&B
C&D

]
be a boundary control node on (Y, X,U )

with main operator A, control operator B, observation operator C, and
transfer function D̂. Let D ∈ B(U ; Y ), α ∈ ρ(A), and let (X + BU )1 =
(α − A|X )−1(X + BU ).

(i) There exist unique operators � ∈ B((X + BU )1; X ),
� ∈ B((X + BU )1; U ), and C|(X+BU )1 ∈ B((X + BU )1; Y ) satisfying

� = A|X + B�, C|(X+BU )1 = C&D

[
1
�

]
− D� (5.2.1)

(in particular, the operator
[

1
�

]
maps (X + BU )1 into D (S)). The

operator � is an extension of the semigroup generator A ∈ B(X1; X ),
and N (�) = X1. Moreover, the following two conditions are equivalent:
(a) x ∈ X, w ∈ X, u ∈ U, and x = A|Xw + Bu;
(b) w ∈ (X + BU )1, x = �w, and u = �w.

(ii) When the operators �, �, and C|(X+BU )1 are applied to (α − A|X )−1 B we
get the following results:

�(α − A|X )−1 B = α(α − A|X )−1 B,

�(α − A|X )−1 B = 1,

C|(X+BU )1 (α − A|X )−1 B = D̂(α)− D.

(5.2.2)

Thus, if we define Qα := (α − A|X )−1 B�, then Qα is the projection of
(X + BU )1 onto (α − A|X )−1 BU with null space X1, and

�Qα = αQα,

�Qα = �,

C|(X+BU )1 Qα =
(
D̂(α)− D

)
�.

(5.2.3)

(iii) The operator C|(X+BU )1 can alternatively be written in the form

C|(X+BU )1 = C(α − A)−1(α −�)+ (D̂(α)− D)�

(where the right hand side is independent of α ∈ ρ(A)), and it is a
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compatible extension of the observation operator C ∈ B(X1; Y ) with
corresponding feedthrough operator D, i.e.,

C&D = [C|(X+BU )1 D
]
|D(S)

.

Proof (i) For each w ∈ (X + BU )1 ⊂ X , (α − A|X )w ∈ X + BU , hence
A|Xw ∈ X + BU . By Lemma 5.2.2 (with u replaced by−u), A|Xw has a unique
representation A|Xw = x − Bu where x ∈ X and u ∈ U . In other words, for
each w ∈ (X + BU )1, the requirements

x = A|Xw + Bu, x ∈ X, u ∈ U,

determine x and u uniquely. Moreover, since A|X maps (X + BU )1 continu-
ously into X + BU , and since the pair

[
x
u

] ∈ [ X
U

]
depends continuously on

A|Xw ∈ X + BU (see Lemma 5.2.2), we find that
[

x
u

] ∈ [ X
U

]
depends contin-

uously on w ∈ (X + BU )1. Thus, if we define

�w = x, �w = u,

then � ∈ B((X + BU )1; X ), � ∈ B((X + BU )1,U ), and � = A + B�. The
uniqueness of � and � follows from the fact that the decomposition of Aw
into x − Bu is unique. To see that

[
1
�

]
maps (X + BU )1 into D (S) it suffices

to observe that
[
A B
] [

1
�

] = A + B� = � maps (x + BU )1 into X (D (S) is
defined in Definition 4.6.4). Clearly the second equation in (5.2.1) then defines
a unique C|(X+BU )1 ∈ B((X + BU )1; Y ).

Ifw ∈ X1 then x = Aw and u = 0, hence� is an extension of A ∈ B(X1; X )
and X1 ⊂ N (�). Conversely, if u = �w = 0, then A|Xw = x ∈ X , hencew ∈
X1. This shows that N (�) = X1.

That (a)⇒ (b) was built into the definition of � and � that we gave above
(recall that, by Lemma 4.3.12, if w ∈ X , u ∈ U , and A|Xw + Bu ∈ X , then
w ∈ (X − BU )1). The converse implication follows from (5.2.1).

(ii) Continuing with the same notation as in the proof of (i), if u ∈ U and
we let w := (α − A|X )−1 Bu, then x = αw, and we have x = �w = αw =
α(α − A|X )−1 Bu and u = �w = �(α − A|X )−1 Bu. This gives us the first two
identities in (5.2.2). This together with (4.7.1) and (5.2.1) gives

D̂(α) = C&D

[
(α − A|X )−1 B

1

]
= C&D

[
(α − A|X )−1 B
�(α − A|X )−1 B

]
= C&D

[
1
�

]
(α − A|X )−1 B

= (C|(X+BU )1 + D�
)
(α − A|X )−1 B

= C|(X+BU )1 (α − A|X )−1 B + D.

Clearly (5.2.3) follows from (5.2.2).
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(iii) The alternative formula for C|(X+BU )1 follows from (4.7.3). For each
w ∈ X1, �w = 0 and

C|(X+BU )1w = C&D

[
w

�w

]
= C&D

[
w

0

]
= Cw,

so C|(X+BU )1 is a (compatible) extension of C ∈ B(X1; Y ). By (5.1.2) and
(5.2.2), the corresponding feedthrough operator is

D̂(α)− C|(X+BU )1 (α − A|X )−1 B = D.

�

Corollary 5.2.7 Let S = [ A&B
C&D

]
be a boundary control node on (Y, X,U ), with

main operator A, control operator B, observation operator C, and transfer
function D̂. Let D ∈ B(U ; Y ), α ∈ ρ(A), and define C|(X+BU )1 as in Theorem
5.2.6. The the following claims are true.

(i) The transfer function D̂ is given by

D̂(z) = C|(X+BU )1 (z − A|X )−1 B + D, z ∈ ρ(A).

(ii) If S is a system node, then we can replace the equation (4.7.4) in Lemma
4.7.8 by[

ẋ(t)
y(t)

]
=
[

A|(X+BU )1 B
C|(X+BU )1 D

] [
x(t)
u(t)

]
, t ≥ s, x(s) = xs . (5.2.4)

(iii) If S is an L p|Reg-well-posed system node then we can replace equations
(4.6.6) and (4.6.7) in Theorem 4.6.5 by[

ẋ(t)
y(t)

]
=
[

A|(X+BU )1 B
C|(X+BU )1 D

] [
x(t)
u(t)

]
, t ∈ R, (5.2.5)

and we can replace formulas (4.6.13) and (4.6.14) in Theorem 4.6.11 by
(5.2.4).

Proof This follows from Lemma 5.1.4, Corollary 5.1.7, and Theorem 5.2.6.
�

In the above corollary we only used a small part of Theorem 5.2.6, namely
the fact that

[
C|(X+BU )1 D

]
is a compatible extension of C&D. We can also

use the operators � and � to get a different representation formula for the state
trajectory x in Lemma 4.7.8 and Theorems 4.6.5 and 4.6.11.

Corollary 5.2.8 Let S = [ A&B
C&D

]
be a system node on (Y, X,U ) which is also

a boundary control node, with semigroup generator A, control operator B,
observation operator C, and transfer function D̂. Let D ∈ B(U ; Y ), α ∈ ρ(A),
and define �, �, and C|(X+BU )1 as in Theorem 5.2.6. Then the following claims
are true.
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(i) The state trajectory x and output function y in Lemma 4.7.8 satisfy

ẋ(t) = �x(t), �x(t) = u(t), t ≥ s,

y(t) = C|(X+BU )1 x(t)+ Du(t), t ≥ s,

x(s) = xs .

(5.2.6)

(ii) If S is L p|Reg-well-posed then the state trajectory x and output function
y in Theorem 4.6.5 satisfy

ẋ(t) = �x(t), �x(t) = u(t), t ∈ R,

y(t) = C|(X+BU )1 x(t)+ Du(t), t ∈ R,
(5.2.7)

and the state trajectory x and output function y in Theorem 4.6.11 satisfy
(5.2.6).

Proof This follows from Theorem 5.2.6 and Corollary 5.2.7. �

Remark 5.2.9 Especially in the L∞-well-posed and Reg-well-posed cases it
may be confusing that we have several different extensions of C , namely the
unique extension to an operator C|X ∈ B(X ; Y ) given by Theorem 4.4.2(ii),
and the extensions given in Theorem 5.2.6 to a family of operators in B((X +
BU )1; Y ) which are parametrized by the operator D. It is not true, in general,
that C|(X+BU )1 ∈ B((X + BU )1; Y ) in Theorem 5.2.6 is a restriction of C|X to
(X + BU )1: this is true if and only if we choose D in Theorem 5.2.6 to be the
feedthrough operator D defined in Theorem 4.5.2. The same comment applies
to the case where the system is regular in the sense of Definition 5.6.3.

Remark 5.2.10 Continuing the preceding remark, although the operator � ∈
B((X + BU )1; X ) is an extension of the generator A ∈ B(X1; X ), it is not the
restriction to (X + BU )1 of the extension A|X of A to B(X ; X−1) that we con-
structed in Section 3.6. This follows from the fact that (α − A) maps X1 onto
X for α ∈ ρ(A), whereas (α −�) maps all of (X + BU )1 into X . In particular,
(α − A) is injective but (α −�) is not.

Remark 5.2.11 The operators � and � in Theorem 5.2.6 can be interpreted in
the following way. The operator � is an ‘abstract partial differential operator’
with an insufficient set of boundary conditions, so that� does not itself generate
a semigroup, i.e., the solution x of (5.2.6) is not unique if we remove the ‘abstract
boundary condition’ �x(t) = u(t). Often � is referred to as a ‘trace operator’.
It follows from (5.2.2) that x := (α − A|X )−1 Bu is the unique (static) solution
in (X + BU )1 of the ‘abstract elliptic problem’

�x = αx, �x = u. (5.2.8)

Boundary control systems arise in at least two different ways: in realization
theory (see Example 5.2.4), and in the theory of partial differential equations. In
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the latter case one often starts by studying the abstract elliptic problem (5.2.8).
In this setting the given data are the spaces U , Y , and W ⊂ X (where W :=
(X + BU )1) and the operators � ∈ B(W ; X ), � ∈ B(W ; U ), C|W ∈ B(W ; Y ),
and D ∈ B(U ; Y ) (where the last operator is usually taken to be zero). These
operators typically have the following properties:

Corollary 5.2.12 The Banach spaces U, X, Y , and W := (X + BU )1 and
the operators � ∈ B(W ; X ), � ∈ B(W ; U ), and C|W ∈ B(W ; Y ) constructed
in Theorem 5.2.6 have the following properties:

(i) W is densely and continuously embedded in X;
(ii) N (�) is dense in X;

(iii) for some α ∈ C, α −� maps N (�) one-to-one onto X;
(iv) � is right-invertible (i.e., ��−1

right = 1 for some �−1
right ∈ B(U ; W )).

Proof Claim (i) is contained in Lemma 4.3.12(i), and claim (ii) is part of The-
orem 5.2.6(i). Clearly N (�) is dense in X since N (�) = X1, and that �
is right-invertible follows from (5.2.2). The restriction of � to N (�) = X1

is equal to the main operator A of the node, and (iii) holds for all
α ∈ ρ(A). �

It turns out that the necessary conditions on W , �, �, and C|W listed
above are also sufficient for these operators to determine a boundary control
node.

Theorem 5.2.13 Let U, X, Y , and W be Banach spaces, and suppose that� ∈
B(W ; X ), � ∈ B(W ; U ), C|W ∈ B(W ; Y ), and D ∈ B(U ; Y ) satisfy conditions
(i)–(iv) in Corollary 5.2.12. Then there is a unique boundary control node
S = [ A&B

C&D

]
such that the operators�,�, and C|W constructed in Theorem 5.2.6

coincide with the given ones, and W = (X + BU )1 (possibly with a different
but equivalent norm). This operator node can be constructed in the following
way.

(i) The main operator A of S is given by A := �|N (�). It is closed in X, and
the constant α in condition (iii) in Corollary 5.2.12 belongs to its
resolvent set.

(ii) The spaces X1 ⊂ X ⊂ X−1 are constructed as in Section 3.6, with α
given by condition (iii) in Corollary 5.2.12, and A is extended to an
operator A|X ∈ B(X ; X−1). In particular, X1 = N (�), and the norm in
X1 is equivalent to the norm inherited from W .

(iii) B = (�− A|X )�−1
right ∈ B(U ; X−1), where �−1

right ∈ B(U ; W ) is an
arbitrary right-inverse of � (the result is independent of the choice of
�−1

right).
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(iv) D (S) := {[ wu ] ∈ [ W
U

] ∣∣ u = �w
}
.

(v) S :=
[

A|X B
C|W D

]
|D(S)

.

Proof Let us begin by establishing the uniqueness of S. In Theorem 5.2.6 we
had X1 = N (�), so A must be given by (i), and the constant α in condition
(iii) in Corollary 5.2.12 must belong to its resolvent set. The formula given in
(iii) for B is obtained from (5.2.1). By part (iv) of Definition 4.7.2 and by the
equivalence of (a) and (b) in part (i) of Theorem 5.2.6, D (S) must be given by
(iv). Finally (v) holds for all compatible operator nodes. Thus, the node S is
unique (if it exists). In particular, the operator B defined in (iii) does not depend
on the particular choice of �−1

right.
We continue with the existence part of the proof. To show that A is closed

in X we let X ′1 := N (�) with the norm inherited from W . By condition (iii)
in Corollary 5.2.12, α − A maps X ′1 one-to-one continuously onto X . By the
closed graph theorem, the inverse is bounded from X to X ′1, and hence (by
the continuity of the inclusion W ⊂ X ), from X to itself. Therefore α − A is
closed, hence so is A, and α ∈ ρ(A). That the norm in N (�) inherited from
W is equivalent to the norm defined in Section 3.6 (i.e., the norm induced by
α − A from X ) follows from the fact that α − A is a bounded operator from
X ′1 to X with a bounded inverse.

We are now in a position where we can define A|X , B, and S as described
in (ii)–(v). It remains to show that S is a boundary control node, that W =
(X + BU )1, and that the operators�, �, and C|W constructed in Theorem 5.2.6
coincide with the given ones.

We begin with the claim that W = (X + BU )1. Trivially, X1 = N (�) is a
closed subspace of W , so to show that (X + BU )1 = X1 + (α − A|X )−1 BU ⊂
W with a continuous inclusion it suffices to show that (α − A|X )−1 B maps U
continuously into W . But this follows from the fact that

(α − A|X )−1 B = (α − A|X )−1(�− A|X )�−1
right

= �−1
right + (α − A|X )−1(�+ α)�−1

right,
(5.2.9)

where �−1
right ∈ B(U ; W ), �+ α ∈ B(W ; X ), and (α − A|X )−1

|X = (α − A)−1 ∈
B(X ; X1). In particular, since the last term belongs to X1 = N (�), we have, in
addition,

�(α − A|X )−1 B = 1. (5.2.10)

To prove the converse inclusion W ⊂ (X + BU )1 we take an arbitrary w ∈ W ,
and define u = �w and x = w − (α − A|X )−1 Bu. Recall that � ∈ B(W ; U )
and that (α − A|X )−1 Bu ∈ B(U ; W ), hence the mapping w �→ [ x

u

]
is contin-

uous from W to
[

W
U

]
. Actually, the range of the mapping w �→ x belongs to
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X1 = N (�), since

�x = �w − �(α − A|X )−1 Bu = u − u = 0.

For each w ∈ W we can find a pair
[

x
u

] ∈ [ X1
U

]
which depends continuously

on w such that w = x + (α − A|X )−1 Bu. This implies that W = (X + BU )1,
with equivalent norms.

We next show that D (S) defined in (iv) satisfies

D (S) = {[ wu ] ∈ [ X
U

] ∣∣ A|Xw + Bu ∈ X
}
. (5.2.11)

Let α ∈ ρ(A). Each of the lines in the following list is equivalent to both the
preceding and the following line (recall that (α − A|X )−1 maps X onto-to-
one onto X1, that (α − A|X )−1 B maps U into W , that X1 = N (�), and that
�(α − A|X )−1 B = 1):

[ wu ] ∈ [ X
U

]
and A|Xw + Bu ∈ X,

[ wu ] ∈ [ X
U

]
and (α − A|X )−1(A|Xw + Bu) ∈ X1,

[ wu ] ∈ [ X
U

]
and − w + (α − A|X )−1w + (α − A|X )−1 Bu ∈ X1,

[ wu ] ∈ [ W
U

]
and − w + (α − A|X )−1 Bu ∈ X1,

[ wu ] ∈ [ W
U

]
and − �w + �(α − A|X )−1 Bu = 0,

[ wu ] ∈ [ W
U

]
and u = �w.

This proves (5.2.11).
By (5.2.11), the operator S defined in (v) is the restriction of the operator[

A|X B
C|W D

]
∈ B([ W

U

]
;
[

X−1
Y

])
to the domain

{[
x
u

] ∈ [ W
U

] ∣∣ S
[

x
u

] ∈ [ X
U

]}
. As can

easily be seen, this implies that S is closed. According to Definition 4.7.2, S is
an operator node. By (5.2.10), B is injective. If for some u ∈ U we have Bu ∈
X , then (α − A|X )−1 Bu ∈ X1 = N (�), and hence u = �(α − A|X )−1 Bu = 0.
Thus, S satisfies all the requirements of a boundary control node listed in
Definition 5.2.1.

It remains to show that the operators �, �, and C|W constructed from the
node S in Theorem 5.2.6 coincide with the given ones. By (5.2.11), w ∈ W
and u = �u if and only if A|Xw + Bu ∈ X . This was the property that we
used to define � in Theorem 5.2.6, so the given operator � coincides with the
operator � constructed in Theorem 5.2.6. That the operator � also coincides
with the one constructed in Theorem 5.2.6 follows from the fact that they are
both the restriction of A|X + B� to (X + BU )1 (see (5.2.1) and the definition
of B in (iii)). Finally, in both cases C|W is the compatible extension of C to W
corresponding to the given feedthrough operator D, and according to Lemma
5.1.10, this determines C|W uniquely. �
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A boundary control node can be regarded as a special case of the following
more general class of operator nodes:

Definition 5.2.14 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ) with con-

trol operator B ∈ B(U ; X−1). We call S a mixed boundary/distributed control
node if the inverse image under B of R (B) ∩ X is complemented in U . (If U
is a Hilbert space, then this is true if and only if the inverse image under B
of R (B) ∩ X is closed in U .) If, in addition, S is an L p|Reg-well-posed sys-
tem node, then we call the corresponding system a mixed boundary/distributed
control system.

Clearly, every operator node with a finite-dimensional input space is a mixed
boundary/distributed control node. An example of a system which is not a mixed
boundary/distributed control system is given in Remark 5.1.14.

It follows from Definition 5.2.14 that S is a mixed boundary/distributed
control node on (Y, X,U ) if and only if we can split U into U = [ U1

U2

]
in such a way that, if we split B accordingly into B = [B1 B2

]
(so that

B
[ u1

u2

] = [B1 B2
] [ u1

u2

] = B1u1 + B2u2), then R (B1) ∩ X = 0 and B2u2 ∈ X
for all u2 ∈ U (we define U2 to be the inverse image under B of R (B) ∩ X ,

and U1 to be a complementing subspace). Both
[

X
U1
0

]
and
[

0
0

U0

]
are closed

subspaces of
[ X

U1
U0

]
, and this implies that the restriction of S to each of

these subspaces is closed. Let us denote these restrictions by S1 respec-
tively S2. As B

[ u1
u2

] = [B1 B2
] [ u1

u2

] = B1u1 + B2u2 where B2u2 ∈ X , it is

clear that
[ x

u1
u2

]
∈ D (S) if and only if A|X−1 x + B1u1 ∈ X . This implies that

D (S1) = {[ x
u1

] ∈ [ X
U1

] ∣∣ A|X−1 x + B1u1 ∈ X
}

and D (S2) = U2. In particular,
it follows from Definition 4.7.2 that S1 is an operator node on (Y, X,U1), with
main operator A, control operator B1, and observation operator C . Furthermore,
by the closed graph theorem, S2 is of the form S2 =

[ B2
D2

]
with B2 ∈ B(U2 : X )

and D2 ∈ B(U2; Y ). Splitting S1 vertically into S1 =
[ [A&B]1

[C&D]1

]
, we conclude

that S has the representation S = [ [A&B]1 B2
[C&D]1 D2

]
. By construction, S1 is a bound-

ary control node on (Y, X,U1). If S is a system node then so is S1, and if S is
L p|Reg-well-posed, then so is S1.

The following result is a generalization of Theorem 5.2.3:

Theorem 5.2.15 Every mixed boundary/distributed control system is
compatible.

Proof With the notation introduced above, by Theorem 5.2.3, S1 is compatible,
and since B2 ∈ B(U2; X ), this implies that also S is compatible. �

The transfer function, the state trajectory, and the output function of a mixed
boundary/distributed control systems can be represented in the following way:
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Theorem 5.2.16 Let S = [ A&B
C&D

] = [ [A&B]1 B2
[C&D]1 D2

]
be a mixed boundary/

distributed control node on (Y, X,U ) = (Y, X,
[ U1

U2

])
(where we use the no-

tations introduced after Definition 5.2.14). Let D1 ∈ B(U1; Y ), and define �,
�, and C|(X+BU )1 as in Theorem 5.2.6 with U replaced by U1, S replaced by
S1 =

[ [A&B]1
[C&D]1

]
, B replaced by the control operator B1 of �1, and D replaced

by D1. Then the following claims are true.

(i) The transfer function D̂ of S is given by

D̂(z)
[ u1

u2

] = C|(X+BU )1 (z − A|X )−1(B1u1 + B2u2)

+ D1u1 + D2u2, z ∈ ρ(A).

(ii) If S is a system node, then the state trajectory x and output function y in
Lemma 4.7.8 satisfy

ẋ(t) = �x(t)+ B2u2(t), t ≥ s,

�x(t) = u1(t), t ≥ s,

y(t) = C|(X+BU )1 x(t)+ D1u1(t)+ D2u2(t), t ≥ s,

x(s) = xs .

(5.2.12)
(iii) If S is a L p|Reg-well-posed system node, then the state trajectory x and

output function y in Theorem 4.6.5 satisfy

ẋ(t) = �x(t)+ B2u2(t), t ∈ R,

�x(t) = u1(t), t ∈ R,

y(t) = C|(X+BU )1 x(t)+ D1u1(t)+ D2u2(t), t ∈ R,

(5.2.13)
and the state trajectory x and output function y in Theorem 4.6.11 satisfy
(5.2.12).

Proof (i) This is the formula for the transfer function of a compatible node
given in (5.1.3), with the X = (X + BU )1, substitutions B = [B1 B2

]
and

D = [D1 D2
]
.

(ii) Let x1 and y1 be the state trajectory and output function that we get by
applying Lemma 4.7.8 with S replaced by S1, u replaced by u1, and x1(s) = xs ,
and let x2 and y2 be the state trajectory and output function that we get by
applying Lemma 4.7.8 with S replaced by S2 =

[ A B2
C D2

]
, u replaced by u2,

and x2(s) = 0. Then x = x1 + x2, y = y1 + y2, and we get (ii) by applying
Corollary 5.2.8(i) to x1 and y1 and Corollary 5.1.7(i) to x2 and y2 (recall that
�|X1 = A, and that the restriction of C|(X+BU )1 to X1 is C).

(iii) This proof is similar to the one above. �
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5.3 Approximations of the identity in the state space

In Section 5.1 we introduced the notion of a compatible system, which is based
on an extension of the observation operator C . The purpose of this section is
to define some specific extensions by means of summability methods. These
extensions have the advantage that they are determined uniquely by the sys-
tem, even if X1 is not dense in (X + BU )1, and that (in some of the cases)
X1 is dense in their domains. They have the drawback that their domains
are not Hilbert spaces, even when U , X , and Y are Hilbert spaces. We shall
also extend the combined observation/feedthrough operator C&D by the same
method.

The extensions of C that we present below are all based on the same idea:
we first approximate C by C J h or C Jα where J h and Jα are approximations of
the identity operator on X , and then let h ↓ 0 or α→∞. The approximations
of the identity that we use are various Cesàro and Yosida approximations of
the semigroup A at zero. We already defined the Cesàro approximation J h of
order one and the Yosida approximation Jα in Definition 3.7.2, but in addition
to these approximations we shall need Cesàro approximations of order different
from one, defined as follows. (For completeness we repeat the definition of the
Yosida approximation from Definition 3.7.2.)

Definition 5.3.1 The Yosida (or Abel) approximation Jα with parameter α ∈
ρ(A) of the identity on X is given by

Jαx = α(α − A)−1x, x ∈ X.

The Cesàro approximation J β,h of order β > 0 with parameter h > 0 of the
identity on X is given by

J β,h x = βh−β
∫ h

0
(h − s)β−1As x ds, x ∈ X.

The Cesàro approximation J 0,h of order zero with parameter h > 0 of the
identity on X is given by

J 0,h x = Ah x, x ∈ X.

By the Cesàro approximation without any reference to its order we mean the
Cesàro approximation of order one.

In particular, A is strongly continuous if and only if the zero order Cesàro
approximation of the identity tends strongly to 1 as h ↓ 0 (this is the reason for
the abbreviation C0 semigroup for a strongly continuous semigroup), and J 1,h

coincides with the operator J h defined in Definition 3.7.2.
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The Yosida and Cesàro approximations of the identity defined above have
the following properties (for completeness we repeat part of Theorem 3.7.1):

Theorem 5.3.2 Let α ∈ ρ(A), γ , β ≥ 0, h, k, and t > 0.

(i) Jα ∈ B(X ; X1), J β,h ∈ B(X ), J β,h ∈ B(X ; X1) for β ≥ 1, and

AJα = α(Jα − 1),

AJ β,h = β

h

(
J β−1,h − 1

)
, β ≥ 1,

∂

∂h
J β,h = AJ β,h + β

h

(
1− J β,h

)
, β ≥ 1,

∂

∂h
J β,h = β

h

(
J β−1,h − J β,h

)
, β ≥ 1.

Moreover, for α ∈ C+ωA
,

Jαx = α

∫ ∞
0

e−αsAs x ds, x ∈ X.

(ii) The operators Jα , J β,h, J γ,k , and At commute with each other and with
A (regarded as an operator in B(X1; X )).

(iii) J β,h and Jα approximate the identity on X in the sense that

lim
α→+∞ Jαx = lim

h↓0
J β,h x = x

in X (for all x ∈ X). (Here α→+∞ along the positive real axis.)
(iv) For all x ∈ X,

Jαx = αβ+1

�(β + 1)

∫ ∞
0

e−αvvβ J β,vx dv,

where

�(β) =
∫ ∞

0
sβ−1e−s ds

and

αβ+1

�(β + 1)

∫ ∞
0

e−αvvβ dv = 1.

(v) For all γ > 0 and all x ∈ X,

J β+γ,h x = γ h−(β+γ )

B(β + 1, γ + 1)

∫ h

0
(h − v)γ−1vβ J β,vx dv,
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where

B(β, γ ) =
∫ 1

0
(1− s)β−1sγ−1 ds = �(β)�(γ )

�(β + γ )
(5.3.1)

is the Beta-function, and

γ h−(β+γ )

B(β + 1, γ + 1)

∫ h

0
(h − v)γ−1vβ dv = 1. (5.3.2)

(vi) For all β ∈ (0, 1) and all x ∈ X,

At J β,h x =
(

t + h

h

)β
J β,t+h x − h−β

∫ t

0
ah,β(t − s)sβ J β,s x ds,

where

ah,β(s) = β

�(β)�(1− β)

∫ h

0
(s + h − w)−β−1wβ−1 dw,

is nonnegative on R
+

,
∫∞

0 ah,β(s) ds = 1, and∫ t

0
aβ,h(t − s)sβ ds = (t + h)β − hβ, t > 0, (5.3.3)

∫ t

0
aβ,h(t − s)sβ−1 ds = (t + h)β−1, t > 0. (5.3.4)

(vii) For all x ∈ X,

At J 1,h x = t + h

h
J 1,t+h x − t

h
J 1,t x .

(viii) J β,h J γ,k ∈ B(X ; X1) if β + γ ≥ 1.

Proof (i) The claims about Jα are contained in Theorem 3.7.1(i), and so are
the claims about J β,h for β = 1. Obviously J β,h ∈ B(X ; X ). To get the two
formulas of ∂

∂h J β,h we differentiate the definition of J β,h , first in its original
form and then in the equivalent form

J β,h = βh−β
∫ h

0
sβ−1Ah−s x ds.

By combining these two formulas we get the formula for AJ β,h , which in turn
implies that J β,h ∈ B(X ; X1) for β ≥ 1.
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(ii) This is true since As commutes with At and with (α − A)−1.
(iii) See Theorem 3.2.9(iii) (or Theorem 3.7.1(iii)) for the Yosida approxi-

mation. Trivially, J 0,h x = Ah x → x as h ↓ 0 (by the strong continuity of A).
For β > 0 we have βh−β

∫ h
0 (h − s)β−1 ds = 1, hence

|J β,h x − x |X =
∣∣∣βh−β

∫ h

0
(h − s)β−1(As x − x) ds

∣∣∣
X

≤ βh−β
∫ h

0
(h − s)β−1|As x − x |X ds

≤ sup
0<s<h

|As x − x |X → 0 as h ↓ 0.

(iv) This is trivial if β = 0. Otherwise we write out J β,vx as an integral,
change the order of integration, make the substitution v = s + t/α, and use the
definition of the Gamma function

�(β) =
∫ ∞

0
e−t tβ−1 dt.

(v) This is trivial if β = 0. Otherwise we write out J β,vx as an integral,
change the order of integration, make the substitution v = s + (h − s)t in the
inner integral, and use the fact that

�(β + 1) = β�(β).

(vi) Clearly, by a change of integration variable

At J β,h x = J β,hAt x

= βh−β
∫ h

0
(h − s)β−1As+t x ds

= βh−β
∫ t+h

t
(h + t − v)β−1Avx dv

− βh−β
∫ t

0
(t + h − v)β−1Avx dv

=
(

t + h

h

)β
J β,t+h x − βh−β

∫ t

0
(t + h − v)β−1Avx dv.

Thus, the claim in (vi) is equivalent to the claim that (for simplicity we have
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denoted ah,β by a)

β

∫ t

0
(t + h − v)β−1Avx dv

=
∫ t

0
a(t − s)sβ J β,s ds

= β

∫ t

0
a(t − s)

∫ s

0
(s − v)β−1Avx dv ds

= β

∫ t

0

(∫ t

v

a(t − s)(s − v)β−1 ds

)
Avx dv

= β

∫ t

0

(∫ t−v

0
a(t − v − s)sβ−1 ds

)
Avx dv,

which is implied by (5.3.4). The identity (5.3.4) can be derived from (5.3.3):
we rewrite (5.3.4) in the form∫ t

0
aβ,h(s)(t − s)β ds = (t + h)β − hβ, t > 0,

and differentiate with respect to t . To prove (5.3.3) we can, e.g., first integrate
by parts, use the fact that∫ t

0
(t − s)β−1s−β ds = B(β, 1− β) = �(β)�(1− β), t > 0,

observe that∫ s

0
ah,β(v) dv = 1

�(β)�(1− β)

∫ s

0
(s − w)−β(w + h)β−1 dw,

and change the order of integration. To prove that
∫∞

0 ah,β(s) ds = 1 it suffices
to change the order of the two integrals.

(vii) The proof of this is a (much) simplified version of the proof of (vi).
(viii) This follows from (i) if β ≥ 1 or γ ≥ 1. If both β < 1 and γ < 1 then

we can apply the operator A to the identity

J β,h J γ,k x = B(β + 1, γ + 1)

×
[

(h + k)β+γ J β+γ,h+k x

−
∫ k

0
ah,β(k − v)vβ+γ J β+γ,vx dv

−
∫ h

0
ak,γ (h − v)vβ+γ J β+γ,vx dv

]
,

(5.3.5)

where the notation is the same as in (vi), and use (i). We leave the verification
of this identity (based on (vi)) to the reader. �
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By Theorems 3.7.1(i) and 5.3.2(vii), we can approximate C by Cβ,h = C J β,h

or Cα = C Jα for β ≥ 1, h > 0, and α ∈ ρ(A) (compare this to the approxima-
tions of A defined in Definition 3.7.2). All these approximations belong to
B(X1; Y ), and even to B(X ; Y ) in the case of Cα and Cβ,h with h ≥ 1. Actu-
ally, it is possible to define Cβ,h in a different way which produces an operator
in B(X ; Y ) for a larger range of β. This method is based on the following
fact.

Lemma 5.3.3 Let 1 ≤ p ≤ ∞, and let C : X → L p
loc(R+; Y ) be an L p-well-

posed output map for the C0 semigroup A, and let C be the corresponding
control operator. Then, for all β > 0 and h > 0,

C J β,h x = βh−βC
∫ h

0
(h − s)β−1As x ds

= βh−β
∫ h

0
(h − s)β−1(Cx)(s) ds, x ∈ X1.

Proof We get this formula by moving C inside the integral (this is permitted
since C ∈ B(X1; Y )) and using the fact that (Cx)(s) = CAs x for all x ∈ X1 and
(almost) all s ≥ 0. �

By Hölder’s inequality, the second integral characterization of C J β,h given
in Lemma 5.3.3 defines an operator in B(X ; Y ) for all β > 1/p if p > 1, and
for all β ≥ 1 if p = 1. Therefore, we prefer to use this as the definition of Cβ,h .

Definition 5.3.4 Let X and Y be Banach spaces, let A be a C0 semigroup on X
with growth bound ωA, and let C be an L p-well-posed output map for A with
output space Y , with 1 ≤ p ≤ ∞.

(i) For each α ∈ ρ(A), the Yosida (or Abel) approximation Cα ∈ B(X ; Y ) of
C with parameter α is given by

Cαx = C JαX = αC(α − A)−1x, x ∈ X.

(ii) For each h > 0 and β > 1/p if p > 1, β ≥ 1 if p = 1, the Cesàro
approximation Cβ,h ∈ B(X ; Y ) of C of order β of C with parameter h is
given by

Cβ,h x = βh−β
∫ h

0
(h − s)β−1(Cx)(s) ds, x ∈ X.

These approximations of C inherit many properties from the corresponding
approximations of the identity.

Lemma 5.3.5 Let X and Y be Banach spaces, let A be a C0 semigroup on
X with growth bound ωA, and let C be an L p-well-posed output map for A
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with output space Y , with 1 ≤ p ≤ ∞. Let α ∈ ρ(A), h > 0, and let β > 1/p
if p > 1, β ≥ 1 if p = 1.

(i) For all α ∈ C+ωA
, Cα is given by

Cαx = α

∫ ∞
0

e−αs(Cx)(s) ds, x ∈ X.

(ii) There exists a constant M (which depends on C, β, and ω but not on h
and α) such that

‖Cα‖ ≤ (α − ω)1/p M, α ≥ ω + 1 > ωA+ 1,

‖Cβ,h‖ ≤ h−1/p M, 0 < h ≤ 1.

(iii) The following identities are valid for all x ∈ X and almost all t > 0:

Cα J β,h x = Cβ,h Jαx,

(C(Jαx))(t) = CαA
t x,

(C(J β,h x))(t) = Cβ,hAt x .

(iv) For all x ∈ X,

Cαx = αβ+1

�(β + 1)

∫ ∞
0

e−αvvβCβ,vx dv,

where

αβ+1

�(β + 1)

∫ ∞
0

e−αvvβ dv = 1.

(v) For all γ > 0 and all x ∈ X,

Cβ+γ,h x = γ h−(β+γ )

B(β + 1, γ + 1)

∫ h

0
(h − v)γ−1vβCβ,vx dv,

where

γ h−(β+γ )

B(β + 1, γ + 1)

∫ h

0
(h − v)γ−1vβ dv = 1. (5.3.2)

(vi) For all β ∈ (0, 1), all x ∈ X, and almost all t > 0,

C(J β,h x)(t) =
(

t + h

h

)β
Cβ,t+h x − h−β

∫ t

0
ah,β(t − s)sβCβ,s x ds,

where

ah,β(s) = β

�(β)�(1− β)

∫ h

0
(s + h − w)−β−1wβ−1 dw,
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is nonnegative on R
+

,
∫∞

0 ah,β(s) ds = 1, and∫ t

0
aβ,h(t − s)sβ ds = (t + h)β − hβ, t > 0, (5.3.3)∫ t

0
aβ,h(t − s)sβ−1 ds = (t + h)β−1, t > 0. (5.3.4)

(vii) For all x ∈ X and almost all t > 0,

(CJ 1,h x)(t) = t + h

h
C1,t+h x − t

h
C1,t x .

Proof The integral formula for Cα in (i) follows from the corresponding integral
formula for Jα (see, e.g., Theorem 5.3.2(i)). To get the inequalities in (ii) we
use Hölder’s inequality and some simple estimates (the estimate for Cα can
also be reduced to the one in Proposition 4.4.9). To get the remaining claims we
multiply the formulas in Theorem 5.3.2 by C ∈ B(X1; Y ), and use the density
of X1 in X and the continuity of all the operators to get the result for all x ∈ X
(instead of x ∈ X1). �

5.4 Extended observation operators

After the preliminary considerations in Section 5.3, we are now ready to study
how the Yosida and Cesàro approximations Cα and Cβ,h behave as α→+∞
(along the real axis) or h ↓ 0.

Definition 5.4.1 Let X and Y be Banach spaces, let A be a C0 semigroup on
X and let C be an L p-well-posed output map for A with output space Y , with
1 ≤ p ≤ ∞. Let β > 1/p if p > 1, β ≥ 1 if p = 1.

(i) The weak Yosida (or Abel) extension C̃w of C is the operator

C̃wx = lim
α→+∞Cαx = lim

α→+∞αC(α − A)−1x,

defined for those x ∈ X for which this limit exists in the weak sense.
(Here α→+∞ along the positive real axis.)

(ii) The weak Cesàro extension Cβ
w of C of order β is the operator

Cβ
wx = lim

h↓0
Cβ,h x = lim

h↓0
βh−β

∫ h

0
(h − s)β−1(Cx)(s) ds,

defined for those x ∈ X for which this limit exists in the weak sense.
(iii) The strong Yosida and Cesàro extensions C̃s and Cβ

s of C are defined in
the same way as the weak extensions C̃w and Cβ

w, but with weak limits
replaced by strong limits.
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(iv) By C̃ we mean either C̃w or C̃s , and by Cβ we mean either Cβ
w or Cβ

s ,
depending on the context.

These extensions of C will be used in two different ways. In Theorem 5.4.8
we extend the formula

(Cx)(t) = CAt x,

valid for all x ∈ X1 and (almost) all t > 0, to all x ∈ X by replacing C by either
Cβ or C̃ . In Section 5.6 we use these extensions as compatible extensions of C
to which we apply the theory developed in Section 5.1 (and at the same time
extend this theory slightly).

The domains of Cβ and C̃ can be made into Banach spaces as follows:

Definition 5.4.2 Make the same assumptions as in Definition 5.4.1, and denote
the growth bound of A by ωA.

(i) We define a norm |·|C̃ on D (C̃) as follows: If p = ∞, then |x |C̃ = |x |X ,
and if p <∞ then

|x |C̃ = |x |X + sup
α>1+ωA

|Cαx |Y

= |x |X + sup
α>1+ωA

∣∣∣∣α ∫ ∞
0

e−αs(Cx)(s) ds

∣∣∣∣
Y

= |x |X + sup
α>1+ωA

∣∣αC(α − A)−1x
∣∣,

x ∈ D (C̃w) or x ∈ D (C̃s).

(ii) We define a norm |·|
C
β on D (Cβ

)
as follows. If p = ∞, then

|x |
C
β = |x |X , and if p <∞ then

|x |
C
β = |x |X + sup

0<h<1
|Cβ,h x |Y

= |x |X + sup
0<h<1

∣∣∣∣βh−β
∫ h

0
(h − s)β−1(Cx)(s) ds

∣∣∣∣
Y

,

x ∈ D (Cβ
w

)
or x ∈ D (Cβ

s

)
.

The main properties of the extensions C̃ and Cβ are listed in the following
theorem.

Theorem 5.4.3 Let X and Y be Banach spaces, let A be a C0 semigroup on
X, and let C be an L p-well-posed output map for A with output space Y and
observation operator C. Letβ ≥ 1 if p = 1 orβ > 1/p if p > 1, and let γ ≥ β.
Then, both the weak and the strong versions of the following claims are true:
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(i) If C is bounded then D (C̃) = D (Cβ
) = X and C̃x = Cβx = Cx for all

x ∈ X. This is, in particular, true when C is L∞-well-posed.
(ii) The norms defined in Definition 5.4.2 make the domains of the operators

Cβ and C̃ (both the weak and the strong versions) into Banach spaces,
and these operators are continuous from their domains equipped with
these norms into Y . Moreover,

C ⊂ Cβ ⊂ Cγ ⊂ C̃

(i.e., C̃ is an extension of Cγ , which is an extension of Cβ , which is an
extension of Cγ , which is an extension of C), and

X1 = D (C) ⊂ D (Cβ
) ⊂ D (Cγ ) ⊂ D (C̃) ⊂ X

with continuous embeddings. The embeddings D (Cβ
) ⊂ X and

D (C̃) ⊂ X are always dense, and the embedding X1 ⊂ D (Cβ
s

)
(i.e., the

strong version of Cβ) is dense if β ≤ 1.3 The domains of the strong
versions of these extensions are closed subspaces of the domains of the
corresponding weak version. (Thus, the embeddings of X1 in D (Cβ

w

)
and

D (C̃w) cannot be dense unless Cβ
w = Cβ

s and C̃w = C̃s .)
(iii) If p <∞ and

lim
h↓0

1

h

∫ h

0
|y − (Cx)(s)|p ds = 0,

then x ∈ D (Cβ
) ⊂ D (C̃) and

y = Cβx = C̃x .

(iv) If p <∞, β > 1/p, and

lim sup
h↓0

1

h

∫ h

0
|(Cx)(s)|p ds <∞,

then x ∈ D (C̃) if and only if x ∈ D (Cβ
)
.

The proof of this theorem is rather long. It is based on a number of auxiliary
lemmas.

Lemma 5.4.4 Let 1 ≤ p <∞, u ∈ L p
loc(R+; U ), v ∈ U, and h > 0. Then(

1

h

∫ h

0
|u(s)|p ds

)1/p

− |v| ≤
(

1

h

∫ h

0
|u(s)− v|p ds

)1/p

≤
(

1

h

∫ h

0
|u(s)|p ds

)1/p

+ |v|.

3 We do not know if the embeddings X1 ⊂ D
(

Cβ
s

)
with β > 1 and X1 ⊂ D (C̃s ) are always

dense. See also Remark 5.4.7.
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Thus,

lim sup
h↓0

1

h

∫ h

0
|u(s)|p ds <∞

if and only if

lim sup
h↓0

1

h

∫ h

0
|u(s)− v|p ds <∞.

Proof This follows from the triangle inequality and the fact that
1/h
∫ h

0 |v|p ds = |v|p. �

Lemma 5.4.5 Let 1 ≤ p <∞, u ∈ L p
loc(R+; U ), v ∈ U, h > 0, and 1/p +

1/q = 1.

(i) Let β ≥ 1 if p = 1 and β > 1/p if p > 1. Then, for all γ ≥ β,∣∣∣∣γ h−γ
∫ h

0
(h − s)γ−1u(s) ds − v

∣∣∣∣
≤ sup

0<t<h

∣∣∣∣βt−β
∫ t

0
(t − s)β−1u(s) ds − v

∣∣∣∣.
(ii) Let β ≥ 1 if p = 1 and β > 1/p if p > 1. Then∣∣∣∣βh−β

∫ h

0
(h − s)β−1u(s) ds − v

∣∣∣∣
≤ Kβ

(
1

h

∫ h

0
|u(s)− v|p ds

)1/p

,

where Kβ =
{
β, p = 1, β ≥ 1,

β/(1+ βq − q)1/q , p > 1, β > 1/p.
(iii) For all β > 0,∣∣∣∣βh−β

∫ h

0
(h − s)β−1u(s) ds − v

∣∣∣∣ ≤ ess sup
0<s<h

|u(s)− v|.

(iv) If u ∈ L p
ω(R+; U ) for some ω ≥ 0, then∣∣∣∣α ∫ ∞

0
e−αsu(s) ds − v

∣∣∣∣
≤ αβ+1

�(β + 1)(α − ω)β+1

∫ ∞
0

sβe−s |K (s/(α − ω))| ds

for all α > ω, and β ≥ 1 if p = 1, β > 1/p if p > 1; here

K (t) = e−ωtβt−β
∫ t

0
(t − s)β−1(u(s)− v) ds.
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(v) If u ∈ L p
ω(R+; U ) for some ω ≥ 0, β ≥ 1 if p = 1, β > 1/p if p > 1,

and γ ≥ β, then

lim
h↓0

ess sup
0<s<h

|u(s)− v| = 0

⇒ lim
h↓0

1

h

∫ h

0
|u(s)− v|p ds = 0

⇒ v = lim
h↓0

βt−β
∫ t

0
(t − s)β−1u(s) ds

⇒ v = lim
h↓0

γ t−γ
∫ t

0
(t − s)γ−1u(s) ds

⇒ v = lim
α→+∞α

∫ ∞
0

e−αsu(s) ds.

(vi) If u ∈ L p
ω(R+; U ) for some ω ≥ 0, β > 1/p, and

lim sup
h↓0

1

h

∫ h

0
|u(s)|p ds <∞,

then

v = lim
α→+∞α

∫ ∞
0

e−αsu(s) ds,

if and only if

v = lim
h↓0

βt−β
∫ t

0
(t − s)β−1u(s) ds.

Proof We may, without loss of generality, throughout the proof take v = 0, i.e.,
we move v inside the integrals and replace u − v by u; note that

βh−β
∫ h

0
(h − s)β−1 ds = α

∫ ∞
0

e−αs ds = 1.

(i) We change the order of integration in the right hand side of the formula
below to get (this argument is identical to the proof of Theorem 5.3.2(v); note
that the integrals are well-defined because of the restriction on β)

γ h−γ
∫ h

0
(h − s)γ−1u(s) ds

= �(γ + 1)h−γ

�(γ − β)�(β + 1)

×
∫ h

0
vβ(h − v)γ−β−1

(
βv−β

∫ v

0
(v − s)β−1u(s) ds

)
dv.
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We take the norm of both sides, move the norm inside the integral on the right
hand side, estimate the term inside the parentheses by its supremum over (0, h),
and (5.3.2) to get (i).

(ii) If p = 1 then we simply move the norm inside the integral, and estimate
|h − s|β−1 by hβ−1. For p > 1 we use Hölder’s inequality as follows:∣∣∣∣βh−β

∫ h

0
(h − s)β−1u(s) ds

∣∣∣∣
≤ βh−β

∫ h

0
(h − s)β−1|u(s)| ds

≤ βh−β
(∫ h

0
(h − s)qβ−q |u(s)| ds

)1/q(∫ h

0
|u(s)|p ds

)1/p

= βh−β
hβ−1+1/q

(1+ βq − q)1/q

(∫ h

0
|u(s)|p ds

)1/p

= β

(1+ βq − q)1/q

(
1

h

∫ h

0
|u(s)|p ds

)1/p

.

(iii) This follows from Hölder’s inequality.
(iv) We first observe that the following identities hold (to get the first iden-

tity we change the order of integration; to get the last we make a change of
integration variable)

α

∫ ∞
0

e−αsu(s) ds

= αβ+1

�(β + 1)

∫ ∞
0

tβe−αtβt−β
∫ t

0
(t − s)β−1u(s) ds dt

= αβ+1

�(β + 1)

∫ ∞
0

tβe−(α−ω)t K (t) dt

= αβ+1

�(β + 1)(α − ω)β+1

∫ ∞
0

sβe−s K (s/(α − ω)) ds

By taking the norm of the first and last terms and moving the norm inside the
integral in the last term we get (iv).

(v) The first implication is obvious, the second follows from (ii), and the
third from (i). To get the last implication we observe that the function K in
(iv) is bounded and lims↓0 K (s) = 0, hence the result follows from (iv) and the
Lebesgue dominated convergence theorem.

(vi) One half of (vi) follows from (v). To prove the opposite direction we
may assume that u ∈ L∞(R+; U ) if p = ∞ and that

sup
0<h<∞

1

h

∫ h

0
|u(s)|p ds <∞ if p <∞,
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because otherwise we replace u(s) by e−(ω+1)su(s); this does not change the
two limits since

lim
α→+∞α

∫ ∞
0

e−αsu(s) ds = lim
α→+∞(α − ω − 1)

∫ ∞
0

e−αsu(s) ds

= lim
α→+∞α

∫ ∞
0

e−αse−(ω+1)su(s) ds

and, since by (ii) and (iii),

lim
h↓0

βt−β
∫ t

0
(t − s)β−1

(
1− e−(ω+1)s

)
u(s) ds = 0.

The result then follows from (ii), (iii), and Pitt’s tauberian theorem (Hille and
Phillips, 1957, Theorem 18.3.3, see also the remark in Hille and Phillips 1957,
p. 508). �

Proof of Theorem 5.4.3 In this proof, whenever we apply Lemma 5.4.5 we
replace u by Cx or τ tCx , and let v be an appropriate mean at zero of Cx or
τ tCx .

(i) This follows from Theorem 4.4.2(ii), Lemma 5.4.5(v), and the fact that
strong convergence implies weak convergence.

(ii) The inclusions of the operators and their domains follow from Theorem
4.4.2(i), Lemma 5.4.5(v), and the fact that strong convergence implies weak
convergence.

To prove that the spaces are Banach spaces we have to prove completeness.
The proofs are very similar in all the cases, so let us just treat, for example,
D (Cβ

w

)
.

Let xn be a Cauchy sequence in the norm |·|
C
β . Then xn has a limit x in X ,

hence Cxn → Cx in L p
ω(R+; Y ) for all ω > ωA. In particular, for all h ∈ (0, 1),∫ h

0
(h − s)β−1(Cxn)(s) ds →

∫ h

0
(h − s)β−1(Cx)(s) ds.

Moreover, since h �→ βh−β
∫ h

0 (h − s)β−1(Cxn)(s) ds is a Cauchy sequence in
L∞((0, 1); Y ), the limit must satisfy

sup
0<h<1

∣∣∣∣βh−β
∫ h

0
(h − s)β−1(Cx)(s) ds

∣∣∣∣.
For each y∗ ∈ Y ∗, the sequence h �→ y∗βh−β

∫ h
0 (h − s)β−1(Cxn)(s) ds is a

Cauchy sequence in C([0, 1]; C), and therefore the limit h �→ y∗βh−β
∫ h

0 (h −
s)β−1(Cx)(s) ds belongs to C([0, 1]; C). This proves that the weak limit

lim
h↓0

βh−β
∫ h

0
(h − s)β−1(Cx)(s) ds
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exists, hence x ∈ D (Cβ
w

)
. Moreover, because of the uniform weak convergence,

Cβ
wx = lim

h↓0
lim

n→∞βh−β
∫ h

0
(h − s)β−1(Cxn)(s) ds

= lim
n→∞ lim

h↓0
βh−β

∫ h

0
(h − s)β−1(Cxn)(s) ds = lim

n→∞Cβ
wxn.

Thus, D (Cβ
w

)
is complete, and Cβ

w is continuous D (Cβ
w

)→ Y .
It is obvious that the domains of the strong versions of these extensions are

closed subspaces of the domains of the corresponding weak version, since the
norms are the same.

The continuity of the given embeddings are either obvious or follow im-
mediately from Lemma 5.3.5 and Lemma 5.4.5, with one minor exception,
namely the embedding D (Cγ ) ⊂ D (C̃). The continuity of this embedding fol-
lows from the closed graph theorem since the embedding D (Cγ ) ⊂ X is con-
tinuous, hence the embedding D (Cγ ) ⊂ D (C̃) is closed and thus continuous.

The density of the embeddings D (Cβ
) ⊂ X and D (C̃) ⊂ X follow from

the density of the embedding X1 ⊂ X .
To show that X1 is dense in D (Cβ

)
when β ≤ 1 it suffices to show that,

for example, Jαx → x in D (Cβ
)

as α→+∞. We know that Jαx → x in X
(see Theorem 5.3.2(iii)), so to show convergence inD (Cβ

)
it is (necessary and)

sufficient to show that Cβ,h Jαx → Cβ,h x as α→+∞, uniformly in h ∈ [0, 1].
Let x ∈ D (Cβ

)
and ε > 0. By Lemma 5.4.6 below, there is a δ > 0 and a > 0

such that

|Cβ,h Jαx − Cβx |Y ≤ ε/2, 0 < h < δ, α > a,

hence

|Cβ,h Jαx − Cβ,h x |Y ≤ ε, 0 < h < δ, α > a.

For h ≥ δ we can estimate (cf. Lemma 5.3.5)

|Cβ,h Jαx − Cβ,h x |Y ≤ ‖Cβ,h‖|Jαx − x |X ≤ h−1/p M |Jαx − x |X ,

which tends to zero as α→+∞, uniformly in h ∈ [δ, 1]. Thus, Cβ,h Jαx →
Cβ,h x as α→+∞, uniformly in h ∈ [0, 1], and we have shown that Jαx → x
in D (Cβ

)
.

(iii)–(iv) These follow from Lemma 5.4.5(v)–(vi). �

Lemma 5.4.6 Let X and Y be Banach spaces, let A be a C0 semigroup on
X, and let C be an L p-well-posed output map for A with output space Y and
observation operator C. Let β = 1 if p = 1 or 1/p < β ≤ 1 if p > 1, and let
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γ ≥ 0. Then, for each x ∈ D (Cβ
s

)
,

Cβx = lim
h↓0,k↓0

Cβ,h J β+γ,k x = lim
h↓0,α→+∞

Cβ,h Jαx, (5.4.1)

where the limits are strong limits in Y . If, instead, x ∈ D (Cβ
w

)
, then the same

statement is true if we replace the strong limits by weak limits.

Proof We claim that, in order to prove (5.4.1), it suffices to prove a special case
of (5.4.1), namely

Cβx = lim
h↓0,k↓0

Cβ,h J β,k x . (5.4.2)

Suppose that (5.4.2) holds. Then |Cβ,h J β,k x − Cβx |Y → 0 as h ↓ 0 and k ↓ 0,
and by Theorem 5.3.2(v),

|Cβ,h J β+γ,k x − Cβx |Y

≤ γ k−(β+γ )

B(β + 1, γ + 1)

∫ k

0
(k − v)γ−1vβ |Cβ,h J β,vx − Cβx |Y dv

≤ sup
0<v<k

|Cβ,h J β,k x − Cβx |Y .

A similar (slightly longer) computation (cf. Theorem 5.3.2(iv) and Lemma
5.4.5(iv)) shows that (5.4.2) implies that Cβx = limh↓0,α→+∞ Cβ,h Jαx . Thus,
it suffices to prove (5.4.2).

The proof of (5.4.2) is slightly different depending on whether β < 1 or
β = 1. Below we treat only the case β < 1, and leave the easier case β = 1 to
the reader (replace Lemma 5.3.5(vi) by Lemma 5.3.5(vii)).

By Lemma 5.3.5(vi),

Cβ,h J β,k x − Cβx

= βk−β
∫ k

0
(k − s)β−1

(
1+ s/h

)β(
Cβ,s+h x − Cβx

)
ds

− βk−β
∫ k

0
(k − s)β−1h−β

∫ s

0
ah,β(s − v)vβ

(
Cβ,vx − Cβx

)
dv ds.

Let δ > 0. We split the region h > 0, k > 0, h + k < δ in two parts, depend-
ing on whether k ≤ h or k > h, and, by symmetry (recall that Cβ,h J β,k =
Cβ,k J β,h), we may assume that k ≤ h. Then

|Cβ,h J β,k x − Cβx |Y ≤ I1 + I2
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where

I1 ≤ βk−β
∫ k

0
(k − s)β−1

(
1+ s/h

)β |Cβ,s+h x − Cβx |Y ds

≤ sup
0<s<k

(
1+ s/h

)β |Cβ,s+h x − Cβx |Y

≤ 2β sup
0<s<δ
|Cβ,vx − Cβx |Y → 0 as δ ↓ 0

and

I2 ≤ βk−β
∫ k

0
(k − s)β−1h−β

∫ s

0
ah,β(s − v)vβ

∣∣Cβ,vx − Cβx
∣∣
Y

dv ds

≤ sup
0<s<k

h−β
∫ s

0
ah,β(s − v)vβ

∣∣Cβ,vx − Cβx
∣∣
Y

dv

≤ sup
0<v<k

h−βvβ
∣∣Cβ,vx − Cβx

∣∣
Y

≤ sup
0<v<δ

∣∣Cβ,vx − Cβx
∣∣
Y
→ 0 as δ ↓ 0.

This proves (5.4.2).
The proof for the weak case is identical to the one above, except for the fact

that we replace C by y∗C and C by y∗C where y∗ ∈ Y ∗ is arbitrary. �

Remark 5.4.7 If β ≤ 1, then X1 is dense in D (Cβ
w

)
in the topology induced

by the seminorms

‖x‖X + sup
0<h<1

|y∗Cβ,h x |Y , y∗ ∈ Y ∗.

The proof is the same as in the strong case.

The following theorem extends the formula

(Cx)(t) = CAt x,

valid for all x ∈ X1 and (almost) all t > 0, to all x ∈ X by replacing C by either
Cβ or C̃ .

Theorem 5.4.8 Let X and Y be Banach spaces, let A be a C0 semigroup on
X, and let C be an L p-well-posed output map for A with output space Y and
observation operator C. Letβ ≥ 1 if p = 1 orβ > 1/p if p > 1, and let γ > β.
Then, both the weak and the strong versions of the following claims are true:

(i) If C is bounded then (Cx)(t) = CAt x for all x ∈ X and (almost) all
t ≥ 0. This is, in particular, true when C is L∞-well-posed.
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(ii) If p <∞, then At x ∈ D (Cβ
)

if and only if the limit

limh↓0 βh−β
∫ h

0 (h − s)β−1(Cx)(t + s) ds exists, and in this case

CβAt x = lim
h↓0

βh−β
∫ h

0
(h − s)β−1(Cx)(t + s) ds.

(iii) If p <∞, then At x ∈ D (C̃) if and only if the limit
limα→+∞ α

∫∞
0 e−αs(Cx)(t + s) ds exists, and in this case

C̃At x = lim
α→+∞α

∫ ∞
0

e−αs(Cx)(t + s) ds.

(iv) If p <∞, β > 1/p, and

lim sup
h↓0

1

h

∫ h

0
|(Cx)(t + s)|p ds <∞,

then At x ∈ D (C̃) if and only if At x ∈ D (Cβ
)

(and C̃At x = CβAt x).
(v) If t is a right L p Lebesgue point of Cx (see Definition 5.4.9), then

(At x)(t) ∈ D (Cβ
s

)
and

(Cx)(t) = Cβ
s At x = C̃sA

t x . (5.4.3)

In particular, (At x)(t) ∈ D (Cβ
s

)
and (5.4.3) holds for almost all t ≥ 0.

Proof (i) See Theorem 4.4.2(ii).
(ii)–(iii) Combine the definitions of Cβ and C̃ with the fact that π+τ tCx =

CAt x for all x ∈ X and t ≥ 0.
(iv) Combine (ii) and (iii) with Theorem 5.4.3(iv).
(v) Combine (ii) and (iii) with Definition 5.4.9 and Theorem 5.4.3(iii). �

The preceding theorem used the following definition and the following
auxiliary lemma.

Definition 5.4.9 The point t ∈ R is called a right L p Lebesgue point, 1 ≤ p <

∞, of u ∈ L p
loc(R; U ) if

lim
h↓0

1

h

∫ h

0
|u(t + s)− u(t)|pU ds = 0.

It is an L∞ Lebesgue point of u ∈ L∞loc(R; U ) if

lim
h↓0

ess sup
0<s<h

|u(t + h)− u(t)|U = 0.

Left L p Lebesgue points are defined in the same way, with the interval (0, h)
replaced by the interval (−h, 0). A point t is a (double sided) L p Lebesgue
point if it is both a right and a left Lebesgue point.
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Note that, by Hölder’s inequality, if t is an L p Lebesgue point of u for some
p > 1, then it is an Lr Lebesgue point for all r ∈ [1, p].

Lemma 5.4.10 Let u ∈ L p
loc(R; U ) for some p, 1 ≤ p <∞. Then almost all

t ∈ R are Lebesgue points of u.

Proof After redefining u on a set of measure zero we may assume that the
range of u is separable-valued, i.e., there is a countable set {vn | n ∈ Z+}which
is dense in {u(t) | t ∈ R}. For any n ∈ Z+, the function φn(t) = |u(t)− vn|p
belongs to L1

loc, so

φn(t) = lim
h→0

1

2h

∫ h

−h
φn(t + s) ds (5.4.4)

for almost all t ∈ R. Thus, there is a set E of measure zero such that (5.4.4)
holds for all n ∈ Z+ if t /∈ E . We claim that all t /∈ E are L p Lebesgue points
of u. Fix t /∈ E . By the triangle inequality,∣∣∣∣ 1

2h

∫ h

−h
|u(t + s)− u(t)|p ds

∣∣∣∣1/p

≤
∣∣∣∣ 1

2h

∫ h

−h
|u(t + s)− vn|p ds

∣∣∣∣1/p

+ |vn − u(t)|

=
[∣∣∣∣ 1

2h

∫ h

−h
|u(t + s)− vn|p ds

∣∣∣∣1/p

− (φn(t))1/p

]
+ 2|vn − u(t)|.

For each ε > 0 we can first choose n so large that 2|vn − u(t)| < ε/2, and then
choose h so small that the term inside the square bracket is less than ε/2. Thus,
the left hand side is less than ε. This shows that t is an L p Lebesgue point
of u. �

5.5 Extended observation/feedthrough operators

By using Theorems 5.4.3 and 5.4.8 we are able to extend the output formula

y(t) = (C&D)
[

x(t)
u(t)

]
, t ≥ s,

in Theorem 4.6.11(i) for an L p-well-posed linear system to arbitrary initial
states xs ∈ X and inputs u ∈ L p

loc([s,∞; U ). (The corresponding result for the
L∞-well-posed and Reg-well-posed cases is found in Corollary 4.5.5.) This
requires an extension of the combined observation/feedthrough operator C&D.

Definition 5.5.1 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with system node S = [ A&B
C&D

]
, semigroup generator A, control



314 Compatible and regular systems

operator B, and observation operator C . Let α ∈ ρ(A), and let β ≥ 1 if p = 1,
β > 1/p if p > 1.

(i) The weak Yosida (or Abel) extension C̃&Dw of C&D is the operator

C̃&Dw

[
x
u

] = C̃w

[
x − (α − A|X )−1 Bu

]+ D̂(α)u.

with domain

D (C̃&Dw) = {[ x
u

] ∈ [ X
U

] ∣∣ x − (α − A|X )−1 Bu ∈ D (C̃w)
}
.

(ii) The extensions C&Dβ
w, C̃&Ds , and C&Dβ

s are defined in the same way,
with C̃w replaced by Cβ

w, C̃s , or Cβ
s , respectively.

(iii) By C̃&D we mean either C̃&Dw or C̃&Ds , and by C&Dβ we mean
either C&Dβ

w or C&Dβ
s , depending on the context.

Lemma 5.5.2 The operators C̃&Dw, C&Dβ
w, C̃&Ds, and C&Dβ

s in Definition
5.5.1 have the following properties.

(i) D (C̃&Dw) is a Banach space with norm∣∣[ x
u

]∣∣
D
(

C̃&Dw

) = {|x |2x + |u|2U + |x − (α − A|X )−1 Bu|2D(C̃w

)}1/2
.

(ii) The operator C̃&Dw belongs to B(D (C̃&Dw) ; Y ), and it does not
depend on α ∈ ρ(A) (although the norm in D (C̃&Dw) does depend on
α).

(iii) The same claims remain true for the operators C&Dβ
s , C̃&Dw, and

C̃&Ds if we replace C̃w by Cβ
w, C̃ s , or Cβ

s , respectively.

Proof (i) The operator
[
1 (α − A|X )−1 B

]
is a bounded operator

[
X
U

]
to X , hence

a closed operator from D (C̃&Dw) to D (C̃w). We have defined the norm
in D (C̃&Dw) to be the graph norm of this operator, and therefore it is a Banach
space.

(ii) Clearly C̃&Dw ∈ B(C̃&Dw; Y ). That this operator does not depend on
the value of α follows from (4.7.2) and the fact that the restriction of C̃&Dw to
X1 is C .

(iii) The proof stays the same if we replace C̃w by Cβ
w, C̃s , or Cβ

s , respectively.
�

We are now ready to present the following representation of the input/output
map of an L p-well-posed linear system.

Theorem 5.5.3 Let� = [A B

C D

]
be an L p-well-posed, 1 ≤ p <∞, linear sys-

tem with growth bound ωA, and let ω > ωA. Let u ∈ L p
ω,loc(R; U ), and let

x(t) = Bt u, t ∈ R, and y = Du be the state trajectory and output function of
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� with initial time−∞ and input function u (cf. Definition 2.5.8). Let β ≥ 1 if
p = 1, and β > 1/p if p > 1.

(i) If t is a right L p Lebesgue point of u, then
[

x(t)
u(t)

]
∈ D (C&Dβ

)
(the

strong or the weak version; cf. Definition 5.4.1) if and only if the limit

yβ(t) = lim
h↓0

β/hβ
∫ h

0
(h − s)β−1 y(t + s) ds, (5.5.1)

exists (in the strong or weak sense), in which case this limit is equal to

yβ(t) = C&Dβ

[
x(t)
u(t)

]
. (5.5.2)

In particular,

y(t) = C&Dβ

[
x(t)
u(t)

]
, (5.5.3)

whenever t is a right L p Lebesgue point of both u and y, and hence, for
almost all t ∈ R.

(ii) If u ∈ L p
ω(R; U ), then the conclusion of part (i) remains true if we

replace C&Dβ by C̃&D and the limit in (5.5.1) by

ỹ(t) = lim
α→+∞α

∫ ∞
0

e−αs y(t + s) ds. (5.5.4)

The proof of this theorem uses the following lemma.

Lemma 5.5.4 Let 1 ≤ p <∞, and let D ∈ TICp
ω(U ; Y ) (see Definition 2.6.2).

Let 0 < h < 1, β ≥ 1 if p = 1, and β > 1/p if p > 1. Then there exist
constants K1 and K2 such that∣∣∣∣β/hβ

∫ h

0
(h − s)β−1(Dπ+u)(s) ds

∣∣∣∣
≤ K1

(
1

h

∫ h

0
|(Dπ+u)(s)|p ds

)1/p

≤ K2

(
1

h

∫ h

0
|u(s)|p ds

)1/p

for all u ∈ L p
loc(R+; U ). In particular, if the last term in this chain of inequalities

tends to zero as h ↓ 0, then so do the other two.

Proof Define D = π[0,1)Dπ[0,1). Then(∫ h

0
|(Dπ+u)(s)|p ds

)1/p

≤ ‖D‖
(∫ h

0
|u(s)|p ds

)1/p

,
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and the result follows from Lemma 5.4.5(ii) with v = 0 and u replaced by
Dπ+u. �

Proof of Theorem 5.5.3 (i) Let us first assume that t = 0 and u(0) = 0, and
that zero is a right L p Lebesgue point of u. We write π+y = π+Du in the form
π+y = π+D(π−u + π+u) = CBu +Dπ+u, and integrate this identity to get

β/hβ
∫ h

0
(h − s)β−1 y(s) ds

= β/hβ
∫ h

0
(h − s)β−1

(
(CBu)(s)+ (Dπ+u)(s)

)
(s) ds.

Let h ↓ 0 and use Definitions 5.4.9 and 5.4.1 and Lemma 5.5.4 to get

yβ(0) = lim
h↓0

β/hβ
∫ h

0
(h − s)β−1 y(s) ds

= lim
h↓0

β/hβ
∫ h

0
(h − s)β−1(CBu)(s) ds

= CβBu = Cβx(0).

In the case where t = 0 and u(t) = 0 this proves that the limit in (5.5.1) exists if
and only if x(0) ∈ D (Cβ

)
, and in this case y(0) = Cβx(0). Equivalently, since

u(0) = 0, the limit in (5.5.1) exists if and only if
[

x(0)
u(0)

]
= [ x(0)

0

] ∈ D (C&Dβ
)
,

and in this case (5.5.2) holds.
If t �= 0 or u(t) �= 0 then we apply the same argument to the function v =

τ t u − eαu(t), where α ∈ C+ωA
and eα(s) = eαs for s ∈ R. Then Bu is replaced

by Bt u − (α − A|X )−1 Bu(t) = x(t)− (α − A|X )−1 Bu(t) (see Definition 2.2.6
and Theorem 4.2.1(i),(iii)) and y is replaced by τ t y − D̂(α)u(t) (see Definition
4.6.1). Thus, by the preceding argument, if t is a right L p Lebesgue point of u,
then the limit in (5.5.1) exists if and only if x(t)− (α − A|X )−1 Bu(t) ∈ D (Cβ

)
and

yβ(t) = [Cβx(t)− (α − A|X )−1 Bu(t)]+ D̂(α)u(t)

= C&Dβ

[
x(t)
u(t)

]
.

If, furthermore, t is a right L p Lebesgue point of y, then from the second
implication in Lemma 5.4.5(v) with u replaced by y, we get yβ(t) = y(t), hence
(5.5.3) holds. By Lemma 5.4.10, the set of points which are Lebesgue points
of both u and y is dense in R.

(ii) The proof stays essentially the same (only the exact references change
slightly) if we replace C&Dβ by C̃&D, and we leave this part of the proof to
the reader. (The stronger assumption that u ∈ L p

ω(R; U ) is needed in Lemma
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5.4.5(v), and it guarantees that the integral in (5.5.4) converges for α large
enough.) �

A similar representation is valid for the output of an L p-well-posed linear
system with a finite initial time.

Theorem 5.5.5 Let� = [A B

C D

]
be an L p-well-posed, 1 ≤ p <∞, linear sys-

tem with system node S = [ A&B
C&D

]
. Let s ∈ R, xs ∈ X, u ∈ L p

loc([s,∞); U ), and
let x and y be the state trajectory and output function of � with initial time s,
initial state xs , and input function u (cf. Definition 2.2.6). Let β ≥ 1 if p = 1,
and β > 1/p if p > 1.

(i) For almost all t ∈ [s,∞),

y(t) = C&Dβ
s

[
x(t)
u(t)

]
. (5.5.5)

More precisely, (5.5.5) holds at every point t which is a right L p

Lebesgue point of both u and y.
(ii) The statement (i) is also true if we replace C&Dβ

s by C&Dβ
w, C̃&Ds, or

C̃&Dw.

Proof This follows from Definition 2.2.7 and Theorems 5.4.8(v), and 5.5.3.
(Recall that Cβ

w, C̃s , or C̃w are extensions of Cβ
s and that C&Dβ

w, C̃&Ds , or
C̃&Dw are extensions of C&Dβ

s .) �

5.6 Regular systems

The notion of a regular system is an important special case of the notion of
a compatible L p|Reg-well-posed system. To define this notion we first define
what we mean by the regularity of an input/output map:

Definition 5.6.1 Let ω ∈ R, let D ∈ TICω(U ; Y ) satisfy the assumptions of
Corollary 4.6.10 (i.e., D has a well-posed realization), and denote the transfer
function of D by D̂.

(i) D is weakly regular if the (weak) limit limα→+∞ y∗D̂(α)u exists for all
u ∈ U and y∗ ∈ Y ∗.

(ii) D is strongly regular if the (strong) limit limα→+∞ D̂(α)u exists in Y for
all u ∈ U .

(iii) D is uniformly regular if the (uniform) limα→+∞ D̂(α) exists in B(U ; Y ).
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In each case the operator D which maps u ∈ U into

Du = lim
α→+∞ D̂(α)u

is called the feedthrough operator of D.

Lemma 5.6.2 The feedthrough operator D is bounded, i.e., D ∈ B(U ; Y ).

Proof This follows from the uniform boundedness principle since the operators
D̂(α) are bounded. �

Definition 5.6.3 By a weakly, strongly, or uniformly regular linear system
� = [A B

C D

]
on (Y, X,U ) we mean a L p|Reg-well-posed system whose in-

put/output map D is weakly, strongly, or uniformly regular, and by the
feedthrough operator of � we mean the feedthrough operator of D.

Several examples of weakly or strongly regular systems are given in Section
5.7. (Most of the systems appearing in practice seem to be regular.)

Theorem 5.6.4 Every weakly regular system is compatible. In particular,
for weakly regular systems the conclusion of Corollary 5.1.7 is valid with
W = D (C̃w) and C|W = C̃w, with D given by the feedthrough operator of
D̂ (defined in Definition 5.6.1).

Proof In the L∞-case and Reg-case this follows from Lemma 5.1.2(i)–(ii), and
in the L p-case with 1 ≤ p <∞ from the equivalence of (i) and (iv) in Theorem
5.6.5 stated below. �

The following theorem lists a number of equivalent characterizations of the
regularity of a system.

Theorem 5.6.5 Let� = [A B

C D

]
be an L p-well-posed, 1 ≤ p <∞, linear sys-

tem with growth bound ωA, semigroup generator A, control operator B, ob-
servation operator C, and transfer function D̂. Let β > 1/p, let ω > ωA, and
define the different extensions of C as in Definition 5.4.1. Then both the strong
and the weak versions of the following conditions are equivalent, and the strong
versions of these conditions imply the weak versions. (In these conditions the
text within square brackets gives different ways of computing the feedthrough
operator D, and the conditions are still equivalent if this text is omitted.)

(i) � is regular [with feedthrough operator D].
(ii) The limit

[Du =] lim
α→+∞ D̂(α)u

exists for all u ∈ U.
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(iii) The limit

[Du =] lim
h↓0

βh−β
∫ h

0
(h − s)β−1(D1+u)(s) ds

exists for each u ∈ U. Here (1+u)(t) = u for t ≥ 0 and (1+u)(t) = 0 for
t < 0.

(iii′) The limit

[Du =] lim
α→+∞α

∫ ∞
0

e−αt (D1+u)(s) ds

exists for each u ∈ U.
(iv) For some α ∈ ρ(A), R ((α − A|X )−1 B

) ⊂ D (Cβ
)

[and
D = D̂(α)− Cβ(α − A|X )−1 B].

(iv′) For some α ∈ ρ(A), R ((α − A|X )−1 B
) ⊂ D (C̃) [and

D = D̂(α)− C̃(α − A|X )−1 B].
(v) For all α ∈ ρ(A), R ((α − A|X )−1 B

) ⊂ D (Cβ
)

[and
D = D̂(α)− Cβ(α − A|X )−1 B].

(v′) For all α ∈ ρ(A), R ((α − A|X )−1 B
) ⊂ D (C̃) [and

D = D̂(α)− C̃(α − A|X )−1 B].
(vi) For all u ∈ L p

ω,loc(R; U ), it is true for almost all t ∈ R that the state
trajectory x of � with initial time −∞ and input function u satisfies
x(t) ∈ D (Cβ

)
[and the corresponding output y(t) is given by

y(t) = Cβx(t)+ Du(t)].
(vi′) For all u ∈ L p

ω,loc(R; U ), it is true for almost all t ∈ R that the state
trajectory x of � with initial time −∞ and input function u satisfies
x(t) ∈ D (C̃) [and the corresponding output y(t) is given by
y(t) = C̃x(t)+ Du(t)].

(vii) For all s ∈ R, xs ∈ X and all u ∈ L p
loc(R+; U ), it is true for almost all

t ∈ [s,∞) that the state trajectory x of � with initial state xs , input
function u, and initial time s satisfies x(t) ∈ D (Cβ

)
[and the

corresponding output y(t) is given by y(t) = Cβx(t)+ Du(t)].
(vii′) For all s ∈ R, xs ∈ X and all u ∈ L p

loc(R+; U ), it is true for almost all
t ∈ [s,∞) that the state trajectory x of � with initial state xs , input
function u, and initial time s satisfies x(t) ∈ D (C̃) [and the
corresponding output y(t) is given by y(t) = C̃x(t)+ Du(t)].

Proof By Definition 5.6.3, (i)⇔ (ii). The plan is to show that (ii)⇔ (iii′), that
(iii)⇔ (iii′), that (iii)⇔ (iv)⇔ (v) and (iii′)⇔ (iv′)⇔ (v′), that (iv)⇔ (vi)
and (iv′)⇔ (vi′), and that (vi)⇔ (vii) and (vi′)⇔ (vii′). This implies that all
the listed conditions are equivalent.
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(ii)⇔ (iii′): This follows from Theorem 4.6.9 (the Laplace transform of 1+u
is u/α).

(iii)⇒ (iii′): This follows from the last implication in Lemma 5.4.5(v) with
u replaced by D1+u.

(iii′)⇒ (iii): This follows from the second inequality in Lemma 5.5.4 and
Lemma 5.4.5(vi) ( with u replaced by D1+u).

(iii) ⇔ (iv) ⇔ (v): Define x(t) = Bt 1+u and y = D1+u. Then zero is a
right Lebesgue point of 1+u and x(0) = 0, so by Theorem 5.5.3 with t = 0,[

0
u

] ∈ D (C&Dβ
)

if and only if the limit in (iii) exists. By Definition 5.5.1 and
Lemma 5.5.2,

[
0
u

] ∈ D (C&Dβ
)

if and only if (α − A|X )−1 Bu ∈ D (Cβ
)

for
some α ∈ ρ(A), or equivalently, for all α ∈ ρ(A). Moreover, if we denote the
limit in (iii) by Du, then Du = C&Dβ

[
0
u

] = −Cβ(α − A|X )−1 Bu + D̂(α)u
in this case.

(iii′)⇔ (iv′)⇔ (v′): This proof is the same as the one above, except that we
replace the Cesàro means and extensions by the Yosida (or Abel) means and
extensions.

(iv) ⇒ (vi) and (iv′) ⇒ (vi′): This follows from Theorem 5.5.3,
since C&Dβ

[
x
u

] = Cβ
[
x − (α − A|X )−1 Bu

]+ D̂(α)u and (α − A|X )−1 Bu ∈
D (Cβ

)
for all u ∈ U (and the corresponding result is also true with C&Dβ and

Cβ replaced by C̃&D, respectively C̃).
(vi) ⇒ (iv) and (vi′) ⇒ (iv′): Let α ∈ C+ωA

, and let u(t) = eαt u0, t ∈ R,
where u0 ∈ U . Then, by Theorem 4.2.1(iii), the corresponding state of � with
initial time −∞ is given by x(t) = eαt (α − A|X )−1 Bu0, t ∈ R. Clearly, this
implies that if x(t) ∈ D (Cβ

)
for some t ∈ R, then (α − A|X )−1 Bu0 ∈ D (Cβ

)
.

In particular, this is true if (vi) holds. The corresponding output is given
by (see Lemma 4.5.3, and Definition 4.6.1) y(t) = eαtD̂(α)u0 for almost
all t ∈ R, which should be compared to the formula that we get from (vi),
namely

y(t) = Cβx(t)+ Du(t) = eαt
(
Cβ(α − A|X )−1 B + D

)
u0.

Thus, if we let D stand for the operator in (vi), then D = D̂(α)− Cβ(α −
A|X )−1 B, as (iv) says. The proof that (vi′)⇒ (iv′) is analogous.

(vi)⇒ (vii) and (vi′)⇒ (vii′): This follows from Theorems 5.4.3(ii), 5.4.8(v)
and 5.5.3 (in the last theorem we replace u by π[s,∞)u).

(vii)⇒ (vi) and (vii′)⇒ (vi′): Let u ∈ L p
ω,loc(R; U ), and define x(t) = Bt u

and y = Du. Fix an arbitrary s ∈ R. Then, by Theorem 2.5.7, x(t) for t ≥ s
and π[s,∞) y can be interpreted as the state and output of � with initial time s,
initial value x(s), and input u. Thus, by (vii), x(t) ∈ D (Cβ

)
and the output y(t)

is given by y(t) = Cβx(t)+ Du(t) for almost all t ≥ s. Since s is arbitrary, this
proves (vi). (The proof that (vii′)⇒ (vi′) is analogous.) �



5.6 Regular systems 321

In the case p = 1 we can add the following conclusion:

Theorem 5.6.6 Every L1-well-posed linear system is weakly regular, and
hence, the weak versions of the equivalent conditions listed in Theorem 5.6.5
hold. In addition, it is possible to take β = 1 in this case.

Proof To prove this theorem it suffices to show that the weak version of con-
dition (iii) in Theorem 5.6.5 always holds with β = 1 whenever p = 1. (The
assumption that β > 1/p with p = 1 was needed only in the proof of the im-
plication (iii′)⇒ (iii), which was based on Lemma 5.4.5(vi). See also Lemma
5.4.5(v).)

Without loss of generality, suppose that the growth bound of � is negative
(see Example 3.2.6(i)). Fix y∗ ∈ Y ∗ and u ∈ U . Then v �→ y∗D(uv) is a causal
time-invariant continuous mapping L1(R; C)→ L1(R; C). Let us denote this
mapping by a. We claim that this operator is a convolution operator with a kernel
which is a measure of finite total variation on R

+
. This can be seen as follows.

The adjoint operator a∗ is an anti-causal time-invariant continuous mapping
L∞(R; C)→ L∞(R; C). In particular, since τ hu → u in L∞(R; C) whenever
u ∈ BC0(R; C) (see Example 2.3.2(i)), this means that a∗ maps BC0(R; C) into
C(R; C). Thus we can evaluate the resulting function at zero, and conclude
that the mapping u �→ (a∗u)(0) belongs to the dual of BC0(R; C). By the Riesz
representation theorem, there is a measure µ on R

+
with finite total variation

such that

(a∗u)(0) =
∫

R
+

u(s)µ( ds)

(µ must be supported on R
+

since a∗ is anti-causal). This together with the
time-invariance of a∗ implies that

(a∗u)(t) =
∫

R
+

u(t + s)µ( ds),

which in turn implies that a∗ maps BC0(R; C) into itself (see, e.g., Gripenberg
et al. (1990, Theorem 6.1(iii), p. 97)). The adjoint a∗∗ of a∗, which maps the dual
of BC0(R; C) into itself, i.e., the space of measures with finite total variation on
R into itself, is then convolution with the complex conjugate ofµ. By restricting
a∗∗ to L1(R; C) we get the original operator a. This argument proves our claim
that a is a convolution operator of the form

(au)(t) = (µ ∗ u)(t) =
∫

R
+

u(t − s)µ( ds).

If we apply this to the Heaviside function 1+, then we simply get

(a1+)(t) = µ([0, t]), t ≥ 0,
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which tends toµ({0}) as t ↓ 0. Thus, Theorem 5.6.5(iii) holds in the weak sense
with β = 1, and � is weakly regular. �

It is sometimes possible to prove regularity of an input/output map D (or of
a system whose input/output map is D) by appealing directly to time-domain
properties of D which imply part (iii) of Theorem 5.6.5. The following theorem
gives some examples of this type. In addition, it shows that we can sometimes
say more about the behavior of D̂ at infinity.

Theorem 5.6.7 Let ω ∈ R, and let D ∈ TICω(U ; Y ) have a well-posed re-
alization. Then, in all the following cases D is strongly regular with a zero
feedthrough operator:

(i) D is an operator of the type constructed in Theorem A.3.5.
(ii) ‖Dπ+u‖L p |Reg([0,t);Y ) ≤ k(t)‖u‖L p |Reg([0,t);U ) for all

u ∈ L p|Regloc(R
+

; U ), where k(t)→ 0 as t ↓ 0. In this case D is even
uniformly regular.

(iii) D is a convolution operator of the type given in Theorem A.3.4. In this
case D is even uniformly regular.

Moreover, we have the following additional conclusions about D̂:

(i′) In case (i), let ω′ = ω if p = 1 and ω′ > ω if p > 1. Then, for each
u ∈ U, D̂(α)u → 0 as |α| tends to infinity in the half-plane 
α ≥ ω′.

(ii′) In case (ii), ‖D̂(α)‖B(U ;Y ) → 0 as 
α→+∞, uniformly in 'α.
(iii′) In case (iii) the conclusions of (i′) and (ii′) hold (with the same choice of

ω′). If, in addition, the function A in Theorem A.3.4 is measurable in the
norm of B(X ; Y ), then ‖D̂(α)‖B(U ;Y ) → 0 as |α| tends to infinity in the
half-plane 
α ≥ ω′.

Proof (i) In this case the function D1+u in Theorem 5.6.5(iii) is given by

(D1+u)(t) =
∫ t

0
(Cu)(s) ds.

This function is continuous with a limit zero at zero, so the condition in Theorem
5.6.5(iii) holds with D = 0 (cf. Lemma 5.4.5).

(ii) Again with reference to Theorem 5.6.5(iii), since ‖1+u‖L p([0,t);U ) =
t1/p‖u‖U (where we take p = ∞ in the Reg-well-posed case), we get

t−1/p‖D1+u‖L p |Reg([0,t);Y ) ≤ k(t), t > 0.

This together with Lemma 5.4.5(ii) and Theorem 5.6.5(iii) implies regularity
with D = 0. The estimate above is uniform in u with ‖u‖U ≤ 1, and by checking
the constants in our proof of the implication (iii)⇒ (ii) in Theorem 5.6.5 we
find that the limit in (ii) is uniform in u (see, in particular, the proof of Lemma
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5.4.5(v) with u replaced by D1+u and v = 0, and move the norm inside the
integral in the definition of K (t) in Lemma 5.4.5(iv)). Thus D is uniformly
regular.

(iii) Both (i) and (ii) can be applied in this case.
(i′) This follows from Lemma 5.6.10(i) below, applied to the function s �→

e−ω
′s(Cu)(s), which belongs to L1(R+; Y ).

(ii′) Use the same argument as in the proof of (ii), but replace the function
D1+u (where u ∈ U ) by Dπ+v, where v(t) = e jβ(t)u and β ∈ R. By the same
argument that we gave above, the limit in Theorem 5.6.5(iii) is uniform both in
u ∈ U with ‖u‖U ≤ 1 and β ∈ R.

(iii′) We can apply both (i′) and (ii′) in this case. To prove the last claim we
apply (i′) with X replaced by C and Y replaced by B(X ; Y ); this is possible
since A ∈ L1(R+;B(X ; Y )) in this case. �

By Theorem 5.6.4, every weakly regular system is compatible. A partial
converse to this theorem is also true:

Theorem 5.6.8 Let � be a compatible L p|Reg-well-posed linear system on
(Y, X,U ), with extended observation operator C|W ∈ B(W ; Y ), where W is a
compatible extension of X1.

(i) � is weakly regular if either of the following conditions hold:
(a) The (weak) limit limα→+∞w∗α(α − A)−1w = w∗Ew exists for all

w∗ ∈ W ∗ and w ∈ W (and some E ∈ B(W )). If E = 1 then X1 is
weakly dense in W , W ⊂ D (C̃w), and C|W is the restriction of C̃w to
W .

(b) X1 is weakly dense in W , and
lim supα→+∞‖α(α − A)−1‖B(W ) <∞. In this case W ⊂ D (C̃w) and
C|W is the restriction of C̃w to W .

(ii) � is strongly regular if any one of the following conditions hold:
(a) The (strong) limit limα→+∞ α(α − A)−1w = Ew exists in W for all

w ∈ W (and some E ∈ B(W )). If E = 1, then X1 is dense in W ,
W ⊂ D (C̃s), and C|W is the restriction of C̃s to W .

(b) X1 is dense in W , and lim supα→+∞‖α(α − A)−1‖B(W ) <∞. In this
case X1 is dense in W , W ⊂ D (C̃s), and C|W is the restriction of C̃s

to W .
(c) W is invariant under A and the restriction of A to W is a C0

semigroup on W . In this case X1 is dense in W , W ⊂ D (C̃s), and
C|W is the restriction of C̃s to W .

(iii) � is uniformly regular if the (uniform) limit limα→+∞ α(α − A)−1 exists
in B(W ).
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Proof The proofs of cases (i)–(iii) are very similar to each other, so let us prove
only one of them, namely (ii).

(ii)(a) For each β ∈ C,

(α − A)−1(β − A) = (α − A)−1
[
β − α + (α − A)

] = 1+ (β − α)(α − A)−1,

which tends strongly to 1− E as α→+∞. Thus, for each β ∈ ρ(A) and
x ∈ W−1,

(α − A)−1x = (α − A)−1(β − A)(β − A)−1x → (1− E)(β − A)−1x

in W as α→+∞. This implies that, for each u ∈ U ,

D̂(α)u = C|W (α − A)−1 Bu + Du → C|W (1− E)(β − A)−1 Bu + Du

in Y as α→+∞. This proves the strong regularity of� (and, at the same time
we find that the feedthrough operator of � is C|W (1− E)(β − A)−1 Bu + D).
If E = 1, then every w ∈ W is the limit in W of α(α − A)−1w as α→+∞,
hence X1 is dense in W (recall that α(α − A)−1w ∈ W1 ⊂ X1). This further
implies that, for each w ∈ W , αC(α − A)−1w = αCw(α − A)−1w→ C|Ww
in Y as α→+∞, hence w ∈ D (C̃s) and C̃sw = C|Ww. (The feedthrough
operator of � is D in this case.)

(ii)(b) By Theorem 5.3.2(iii), for each x ∈ X1, α(α − A)−1x → x in X1 as
α→+∞, hence α(α − A)−1x → x in W as α→+∞. This together with the
condition lim supα→+∞‖α(α − A)−1‖B(W ) <∞ implies that, for everyw ∈ W ,
α(α − A)−1w→ w in W asα→+∞. Thus (b) follows from (a) (with E = 1).

(ii)(c) This follows from (b) and Theorems 3.2.1(vi) and 3.2.9(ii) with X
replaced by W . �

Corollary 5.6.9 Let � be a compatible L p|Reg-well-posed linear system on
(Y, X,U ), with extended observation operator C|W ∈ B(W ; Y ), where W = Xα

for some α ∈ [0, 1] is a compatible extension of X1 (the spaces Xα are defined
as in Section 3.9). Then � is regular, W ⊂ D (C̃s), and C|W is the restriction
of C̃s to W .

Proof This follows from Theorem 5.6.8(ii)(c) (see also the discussion in Section
3.9). �

In proof of Theorem 5.6.7(i′) we used the following lemma.

Lemma 5.6.10 (Riemann–Lebesgue Lemma)

(i) If u ∈ L1(R+; U ), then û(z)→ 0 as |z| → ∞ in the closed right
half-plane C

+
.

(ii) If u ∈ L1(R; U ), then û(z)→ 0 as |z| → ∞ along the imaginary axis
jR.
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Proof (i) Let us first suppose that u ∈ W 1,1
0 (R

+
; U ). Then, by Proposition

3.13.2(i),(ii), the Laplace transform of u satisfies zû(z) = ̂̇u(z) in C
+

, where
|̂u̇(z)| ≤ ‖u‖L1(R+;U ) for all z in C

+
. In particular, û(z) = O(|z|−1) as |z| → ∞

in C
+

. Thus, the conclusion of part (i) of Lemma 5.6.10 holds whenever
u ∈ W 1,1

0 (R
+

; U ).
Given an arbitrary u ∈ L1(R+; U ) and ε > 0 we can approximate u by a

function v ∈ W 1,1
0 (R

+
; U ) so that ‖u − v‖L1(R+;U ) ≤ ε (note that W 1,1

0 (R
+

; U )
is dense in L1(R+; U ) since it is the domain of the generator of the outgoing
shift τ ∗+ on L1(R+; U )). We then have |û(z)− v̂(z)| ≤ ε for all z ∈ C

+
, and

hence lim sup|z|→∞,z∈C+|û(z)| ≤ ε. Here ε can be made arbitrarily small. Thus,
lim|z|→∞,z∈C+ û(z) = 0.

(ii) The proof of part (ii) is very similar to the one above (use the bilateral
shift τ on L1(R; U ) instead of τ ∗+), and it is left to the reader. �

5.7 Examples of regular systems

In this section we present some examples of regular systems.

Lemma 5.7.1 The following L p|Reg-well-posed linear systems are strongly
regular:

(i) Systems with a bounded observation operator; in particular, systems that
are L∞-well-posed or Reg-well-posed.

(ii) Systems with a bounded control operator; in particular, L1-well-posed
systems with a reflexive state space.

(iii) Systems whose control operator B and observation operator C satisfy
B ∈ B(U ; Xα−1) and C ∈ B(Xα; Y ), where α ∈ [0, 1] and Xα is defined
as in Section 3.9 (U is the input space and Y the output space).

(iv) The delay line in Example 2.3.4.

Proof Both (i) and (ii) are special cases of (iii), and (iii) is a reformulation of
Corollary 5.6.9. That the delay line is regular follows from Example 4.8.1. �

Note that, by Theorem 5.6.6, L1-well-posed linear systems are always
weakly regular, even when the state space is not reflexive.

Example 5.7.2 If the system � in Example 5.1.16 is weakly, strongly, or uni-
formly regular, then so are the systems in Example 5.1.16(i)–(iii) derived from�.
If the systems �1, and �2 in Example 5.1.17 are weakly, strongly, or uniformly
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regular, then so are the systems in Example 5.1.17(i)–(iv) derived from �1

and �2.

This is obvious.

Theorem 5.7.3 Let A be an analytic semigroup on X with generator A (cf.
Definition 3.10.1), let B ∈ B(U ; Xβ), C ∈ B(Xα; Y ), and D ∈ B(U ; Y ), where
β, α ∈ R satisfy α − β < 1, and the spaces Xβ and Xα are defined as in Section
3.10. Define B, C, and D by

Bu =
∫ 0

−∞
A−s
|Xα−1

Bu(s) ds,

Cx = (t �→ CAt x, t ≥ 0
)
,

Du =
(

t �→
∫ t

−∞
CAt−s

|Xα−1
Bu(s) ds + Du(t), t ∈ R

)
,

and let � = [A B

C D

]
. Then

(i) � is an L1-well-posed linear system on (Y, Xγ ,U ) for all γ ∈ (α − 1, β].
(ii) � is an L p-well-posed linear system, 1 < p <∞, on (Y, Xγ ,U ) for all

γ ∈ (α − 1/p, β + 1− 1/p).
(iii) � is an L∞-well-posed and Reg-well-posed linear system on (Y, Xγ ,U )

for all γ ∈ [α, β + 1).

In all cases the systems described above are uniformly regular, with an extended
system node

[ A|Xα B
C D

] ∈ B([ Xα

U

]
;
[

Xα−1
Y

])
. The function t �→ CAt

|Xα−1
B appear-

ing in the definition of D belongs to L1
loc

(
R
+
,B(U ; Y )

) ∩ C
(
R+,B(U ; Y )

)
;

in particular, it is measurable in the operator-norm. The transfer function
D̂(λ) = C(λ− A|Xα

)−1 B + D satisfies

lim sup
|λ|→∞
|arg λ|≤θ

(|λ|ε‖D̂(λ)− D‖)
= lim sup
|λ|→∞
|arg λ|≤θ

(|λ|ε‖C(λ− A|Xα
)−1 B‖) <∞ (5.7.1)

for some θ > π/2; here ε = min{1, β − α + 1} > 0. In particular

lim
|λ|→∞

λ≥0

‖D̂(λ)− D‖ = 0.

Proof We claim that it suffices to prove the theorem under the extra assumption
that β ≤ α. If β > α, then the assumption of the theorem holds with both β

and α replaced by γ for every γ ∈ [α, β]. We can then apply this theorem with
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β and α replaced by γ , and by letting γ vary in the interval [α, β] we get the
desired conclusion.

Let 1/p + 1/q = 1 (with 1/∞ = 0), let β ≤ α < β + 1, and let γ satisfy
the inequalities in (i)–(iii). If γ < β, then it follows from Proposition 2.3.1 that
B is an L1-well-posed input map for A; hence it is an L p-well-posed input map
for every p ≥ 1. If γ > α, then, by Proposition 2.3.1, C is an L∞-well-posed
output map for A; hence it is an L p-well-posed output map for every p ≥ 1. The
assumptions B ∈ B(U ; Xβ) and C ∈ B(Xα; Y ) combined with Lemma 3.10.9
implies that there are constants M ≥ 1 and ω ∈ R such that (in the two first
inequalities we assume that β ≤ γ ≤ α)

‖At
|Xα−1

B‖B(U ;Xγ ) ≤ Mt−(γ−β)eωt , t > 0,

‖CAt
|Xγ
‖B(Xγ ;Y ) ≤ Mt−(α−γ )eωt , t > 0,

‖CAt
|Xα−1

B‖B(U ;Y ) ≤ Mt−(α−β)eωt , t > 0.

The first inequality combined with Hölder’s inequality (and the listed restric-
tions on γ ) implies that B maps L p|Regc(R−; U ) continuously into Xγ , hence
B is an L p|Reg-well-posed input map for A. The second inequality shows that
C is an L p|Reg-well-posed output map for A. The third inequality combined
with Theorem A.3.7 implies that D maps L p|Regc,loc(U ; Y ) continuously into
itself. To show that π+Dπ− = CB we move CAt

|Xγ
out of the integral (this

is permitted since CAt
|Xγ
∈ B(Xγ ; Y ) and the integral converges absolutely for

almost all t) to get, for (almost) all t > 0,

(Du)(t) = CAt
|Xγ

∫ 0

−∞
A−s
|Xα−1

Bu(s) ds = (CBu)(t).

Thus, � = [A B

C D

]
is an L p|Reg-well-posed linear system on (Y, Xγ ; U ).

To prove condition (5.7.1) it suffices to pick any sector �θ ′,ω on which A is
sectorial, let π/2 < θ < θ ′, and use Lemma 3.10.9. �

Example 5.7.4 Let Y = l2(Z+; C). We let C+ = {z ∈ C | 
z > 0}, a > 1, and
define f : C+ → C and g : C+ → Y by

f (s) = s

(1+ s)2
, s ∈ C+,

g(s) = [ f (s) f (s/a) f (s/a2) f (s/a3) · · ·] , s ∈ C+.

Then g is the transfer function of an L2-well-posed linear system which is weakly
regular but not strongly regular. The dual of this system is strongly regular but
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not uniformly regular. Moreover, if we choose a to be large enough, then the
limit limλ→+∞‖g(λ)‖Y does not exist.

Proof Clearly

| f (s)| ≤ min{|s|−1, |s|}, s ∈ C+, (5.7.2)

since |(1+ s)| ≥ max{|s|, 1} for all s ∈ C+. Using (5.7.2) we can show that g
is bounded on C0. Indeed, for all s ∈ C+,

‖g(s)‖2 =
∞∑

k=0

∣∣ f (a−ks)
∣∣2 ≤ ∞∑

k=0

min{a2k |s|−2, a−2k |s|2}

≤
∞∑

k=−∞
min{a2k |s|−2, a−2k |s|2}

≤
∞∑

k=−∞
min{e2(k log a−log|s|), e−2(k log a−log|s|)}

=
∞∑

k=−∞
e−2
∣∣log|s|−k log a

∣∣
.

The function h(γ ) =∑∞k=−∞ e−2|γ−k log a| is periodic in γ with period log a.
Elementary computations show that its maximum value is hmax = (1+
a−2)/(1− a−2), at γ = k log a, and its minimum value is hmin = 2/(a − a−1),
at γ = (k + 1/2) log a, where k ∈ Z. In particular, this shows that g is bounded
on C+.

Let us show that g is analytic. For any y = {yk}∞k=0 ∈ Y we have

〈g(s), y〉 =
∞∑

k=1

f (a−ks)yk .

Using the estimate | f (s)| ≤ |s| (see (5.7.2)), we see that the partial sums of
the above series converge uniformly on compact subsets of C+. These partial
sums are analytic, so 〈g, y〉 is analytic for any y ∈ Y . It follows that g is weakly
analytic, hence analytic.

Let us next show that limλ→+∞〈g(λ), y〉 = 0 for all y ∈ Y , i.e., g is weakly
regular. Let y = {yk}∞k=0 and ε > 0. We can find n ∈ Z+ such that

∞∑
k=n

|yk |2 ≤ ε2

hmax
.
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Then, forλ ∈ (0,∞), by (5.7.2), the Schwarz inequality and the estimate g(λ) ≤
hmax obtained earlier,

|〈g(λ), y〉| ≤
∞∑

k=0

| f (a−kλ)yk |

≤
n−1∑
k=0

| f (a−kλ)yk | +
( ∞∑

k=n

| f (a−kλ)|2
)1/2( ∞∑

k=n

|yk |2
)1/2

≤
n−1∑
k=0

akλ−2|yk | + (hmax )
1
2

( ∞∑
k=n

|yk |2
)1/2

≤
n−1∑
k=0

akλ−2|yk | + ε.

For sufficiently large λ the sum is less than 2ε. Thus, 〈g(λ), y〉 → 0 as λ→∞.
This proves that g is weakly regular.

Let us show that g is not strongly regular. Strong regularity of g would mean
that limλ→+∞ g(λ) = 0 in Y , since the feedthrough operator of g is zero. But
this is not true, since for all positive integers k, ‖g(ak)‖ > | f (1)| = 1/4.

By Theorem 10.3.5, g is the transfer function of some operator D ∈
TIC2(C; Y ). Let � = [A B

C D

]
be an arbitrary L2-well-posed realization of this

transfer function. Then� is a weakly regular system with feedthrough operator
D = 0, but� is not strongly regular. By Theorem 6.2.15(ii)–(iii), the causal dual
system is weakly regular but not uniformly regular. As the output space of the
dual system is C, weak regularity is equivalent to strong regularity in this case.

We can also show that for certain a, limλ→+∞‖g(λ)‖Y does not exist. (In
fact, this is true for any a > 1, but it is easiest to prove it for large a.) On
one hand, we observed above that ‖g(ak)‖ > | f (1)| = 1/4 for all positive inte-
gers k. On the other hand, we have ‖g(ak+1/2)‖ ≤ h1/2

min =
(
2/(a − a−1)

)1/2

for all positive integers k. For a large enough, the latter value is smaller
than the former, so limλ→+∞‖g(λ)‖Y does not exist (at least) for these values
of a. �

5.8 Comments

Section 5.1 The notion of a compatible system was introduced by Helton (1976,
p. 148) and adapted by Fuhrmann (1981), but it did not attract a great deal of
attention at that time. (Helton’s definition differs slightly from ours in the sense
that he does not require C|W to be continuous with respect to the norm in W .)
The version of compatibility that we use was independently rediscovered by
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Mikkola while he was working on his thesis (Mikkola, 2002 which also contains
a number of additional ‘regularity’ notions). Helton also introduces a stronger
version of a uniformly regular system in Helton (1976, p. 155) (he requires
D̂(z) to tend to D in operator norm as 
z →∞, uniformly in 'z.) Lemma
5.1.11 was proved only recently in Staffans and Weiss (2002) (in the Hilbert
space case with p = 2). The example in Remark 5.1.14 is due to George Weiss
(private communication).

Section 5.2 Boundary control problems for partial differential equations are
the most important single source of interesting well-posed linear systems, and
the literature about these problems is huge. The formalism where the basic
building blocks in the construction of the solution are � and � was introduced
by Fattorini (1968), who studies a mixed boundary/interior control problem of
the type presented in Theorem 5.2.16 with the output equal to the state, and
gives several examples of such boundary control systems. Since then work on
the boundary control problem for partial differential equations has been car-
ried on by, for example, Avalos and Lasiecka (1996), Avalos et al. (1999),
Barbu (1998), Bensoussan et al. (1992), Bradley and Horn (1995), Chang and
Lasiecka (1986), Curtain and Ichikawa (1996), Curtain and Salamon (1986),
Da Prato and Ichikawa (1985), Da Prato et al. (1986), Delfour et al. (1986),
Desch et al. (1985), Flandoli (1984, 1986, 1987, 1993), Hansen and Zhang
(1997), Hendrickson and Lasiecka (1993, 1995), Ho and Russell (1983), Horn
(1992a, b, 1994, 1996, 1998a, b), Horn and Lasiecka (1994), Komornik (1997),
Lagnese (1977, 1978, 1980, 1983a, b, 1989, 1995), Lagnese and Lions (1988),
Lasiecka (1980, 1992), Lasiecka et al. (1995), Lasiecka et al. (1997), Lasiecka
and Triggiani (1981, 1983a, b, c, 1986, 1987a, b, c, 1988, 1989a, b, 1990a, b,
1991b, c, d, 1992a, b, c, 1993a, b, 2000a, b), Lions (1971), Lions and Magenes
(1972), McMillan and Triggiani (1994a, b, c), Morgül (1990, 1994), Pandolfi
(1989, 1998), Russell (1971, 1973a, b, 1978), and Triggiani (1979, 1980a, b,
1988, 1989, 1991, 1992, 1993a, b, 1994a, b, 1997). Boundary control systems
also arise naturally in the theory of control of delay equation; see, e.g., Bensous-
san et al. (1992), Delfour and Karrakchou (1987), Pandolfi (1990, 1995), and
Salamon (1984, 1987). Our presentation in Section 5.2 has been modeled after
Salamon (1987, Section 2.2) (some of the details were worked out by Jarmo
Malinen).

Section 5.3 The summability results presented in this section are classic. This
section can be regarded as an expanded version of Hille and Phillips (1957,
Sections 10.6 and 18.2).

Section 5.4 The strong Yosida and Cesàro extensions (of order one) of C were
introduced in G. Weiss (1989b, Section 4) and G. Weiss (1994a, Definition 5.6).
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He calls the former the ‘$-extension’ and the latter the ‘Lebesgue’ extension.4

The Cesàro extensions of order different from one are new. Theorems 5.4.3 and
5.4.8 and Lemmas 5.4.5, 5.4.6, and 5.4.10 (with β = γ = 1) is due to G. Weiss
(1989b, Proposition 4.3), G. Weiss (1994a, Remark 5.7 and Lemma 6.1), and
G. Weiss (1994b, Section 5). G. Weiss (1994a, Theorem 5.2) proves Lemma
5.4.5(iv) directly (for p > 1 and β = 1) without using Pitt’s tauberian theorem
as we do.

Section 5.5 Theorem 5.5.3 is formally new, but the main part of this theorem
is mentioned in G. Weiss (1989c) without proof. Theorem 5.5.5 is an expanded
version of Staffans and Weiss (2002, Theorem 3.2).

Section 5.6 Uniform regularity was introduced by Ober and Montgomery-
Smith (1990) and Ober and Wu (1996), strong regularity by G. Weiss (1989c),
and weak regularity by M. Weiss and G. Weiss (1997) and Staffans and G.
Weiss (2002). The strong version of Theorem 5.6.5 with p > 1 is due to G.
Weiss (1994a, Theorem 5.8), and the weak version is due to Staffans and Weiss
(2002). The case p = 1 appears to be new. For the proof of this theorem it
is important that we define regularity in the case p = 1 in a slightly different
way from that which G. Weiss (1994a, Remark 5.9) does: we use the Yosida
extension of C whereas G. Weiss uses the Cesàro extension of order one (these
produce the same class of regular systems for p > 1, but we do not know if
this is true when p = 1). A strong version of Theorem 5.6.6 was announced
in G. Weiss (1994a) without proof. All the different type of regularity (weak,
strong, or uniform) are realization independent, i.e., they depend only on the
input/output map of the system and its transfer function. On the contrary, the
compatibility property appears to be realization dependent.

Section 5.7 Theorem 5.7.3 (which is part of the folklore in the literature for
parabolic partial differential equations) is found in, e.g., Staffans (1998e) and
Staffans and Weiss (1998). Example 5.7.4 is taken from Staffans and Weiss
(2004).

4 In his early work G. Weiss uses a nonstandard definition of ‘Lebesgue point.’ In that
terminology, a function u has a Lebesgue point at t if the Cesàro mean of order one of u
exists at t and is equal to u(t). Most authors define a Lebesgue point in the same way as we do
in Definition 5.4.9 with p = 1.
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Anti-causal, dual, and inverted systems

In this chapter we introduce various transformations on a system. An anti-causal
system evolves in the backward time direction. To get the flow-inverted system
we interchange the roles of the input and the output. Time-inversion means
that we reverse the direction of time. To get a time-flow-inverted system we
perform both of these transformations at the same time. Both well-posed and
non-well-posed versions of these transformations are given.

6.1 Anti-causal systems

Up to now we have only considered causal systems which are well-posed in the
forward time direction, i.e., we have always chosen the initial time to be smaller
than the final time. It is possible to develop a completely analogous theory
for anti-causal systems which are well-posed in the backward time direction.
These systems appear naturally, e.g., when we want to pass from a system to its
dual.

To get an anti-causal system it suffices to take a causal system and reverse
the time direction as follows.

Definition 6.1.1 Let U , X , and Y be Banach spaces, and let 1 ≤ p ≤ ∞.
An anti-causal L p|Reg-well-posed linear system � on (Y, X,U ) consists of
a quadruple � = [A B

C D

]
satisfying the following conditions:

(i) the operator family Ãt = A−t , t ≥ 0, is a C0 semigroup on X ;
(ii) B : L p|Regc(R

+
; U )→ X satisfies AsBu = Bτ sπ+u for all

u ∈ L p|Regc(R
+

; U ) and all s ≤ 0;
(iii) C : X → L p|Regloc(R−; Y ) satisfies CAs x = π−τ sCx for all x ∈ X and

all s ≤ 0;

332
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(iv) D : L p|Regloc,c(R; U )→ L p|Regloc,c(R; Y ) satisfies τ sDu = Dτ su,
π+Dπ−u = 0, and π−Dπ+u = CBu for all u ∈ L p|Regloc,c(R; U ) and
all s ∈ R.

The different components of � are given the same names as in the causal
case, with the prefix ‘backward’. Thus, A is the backward semigroup, B is the
backward input map, C is the backward output map, and D is the backward
input/output map.

Here L p|Regloc,c and Regloc,c stand for the subspace of functions in L p|Regloc

whose support is bounded to the right.
By comparing Definition 6.1.1 with Definitions 2.2.1 and 2.2.3 we find the

following obvious connection (see also Definition 3.5.12):

Lemma 6.1.2 The quadruple
[A B

C D

]
is an anti-causal L p|Reg-well-posed lin-

ear system on (Y, X,U ) if and only if the reflected quadruple[
Ãt B̃

C̃ D̃

]
=
[

A−t C R

RB RD R

]
is an L p|Reg-well-posed linear system on R.

Definition 6.1.3 Let U , X , and Y be Banach spaces, and let � = [A B

C D

]
be

an anti-causal L p|Reg-well-posed linear system on (Y, X,U ). For each t ∈ R,
xt ∈ X , s ≤ t , and u ∈ L p|Regloc((−∞, t); U ) we define the backward state
trajectory x and backward output function y of � with initial time t , initial
state xt , and input function u by

x(s) = As−t x
t +Bτ sπ[s,t)u, s ≤ t,

y = τ−tCxt +Dπ(−∞,t)u.
(6.1.1)

In particular, if the initial time t is zero and the initial state x0, then

x(s) = As x0 +Bτ sπ[s,0)u, s ≤ 0,

y = Cx0 +Dπ(−∞,0]u.
(6.1.2)

The definition of the backward state trajectory and backward output function
in Definition 6.1.3 is motivated in part by the following result.

Lemma 6.1.4 Let x and y be the backward state trajectory and backward
output function of the anti-causal system�with initial state x0, initial time t, and
input function u (cf. Definition 6.1.3). Let �̃ be the corresponding causal system
described in Lemma 6.1.2, and let s ∈ R. Define x̃ and ỹ by x̃(v) = x(s + t − v),
v ≥ s, and ỹ = R(s+t)/2 y. Then x and y are the state trajectory and output
function of �̃with initial state x0, initial time s, and input function ũ = R(s+t)/2u.
Conversely, if x̃ and ỹ are the state trajectory and output function of the causal
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system �̃ with initial state x0, initial time s, and input function ũ, then the
functions x and y defined by x(v) = x̃(s + t − v), v ≤ t , and y = R(s+t)/2 ỹ are
the backward state trajectory and backward output function of � with initial
state x0, initial time t, and input function u = R(s+t)/2ũ.

We leave the easy (algebraic) proof to the reader.
We define the system node of an anti-causal system in the following way.

Definition 6.1.5 Let � = [A B

C D

]
be an anti-causal L p|Reg-well-posed linear

system on (Y, X,U ). The system node S of � is the operator

S =
[

A&B
C&D

]
=
[
− Ã&B

C̃&D

]
=
[−1 0

0 1

]
S̃,

where S̃ =
[

Ã&B
C̃&D

]
is the system node of the corresponding causal system de-

scribed in Lemma 6.1.2.

Observe that the domain of S in this definition is the same as the domain of
S̃.

The reason for this definition is the following result.

Theorem 6.1.6 Let � = [A B

C D

]
be an anti-causal L p|Reg-well-posed linear

system on (Y, X,U ) with system node S.

(i) If � is L p-well-posed for some p <∞ then, for each t ∈ R,
u ∈ W 1,p

loc ((−∞, t]; U ), and xt ∈ X satisfying
[

xt

u(t)

] ∈ D (S), the
backward state trajectory x and the backward output function y of �
with initial time t, initial value xt and input function u satisfy
x ∈ C1((−∞, t],

[
x
u

] ∈ C((−∞, t];D (S)), y ∈ W 1,p
loc ((−∞, t]; Y ), and[

ẋ(s)
y(s)

]
= S

[
x(s)
u(s)

]
, s ≤ t. (6.1.3)

(ii) The same claims are true if � is L∞-well-posed or Reg-well-posed and
u ∈ Reg1

loc((−∞, t]; U ), provided we replace the claim
y ∈ W 1,p

loc ((−∞, t]; Y ) by y − Du ∈ C1((−∞, t]; Y ), where D is the
feedthrough operator of �. In this case y(s) = C|X x(s)+ Du(s) for all
s ≤ t , where C|X stands for the unique extension of C to B(X ; Y ).

Proof This follows from Lemma 6.1.4 and Theorem 4.6.11. �

Clearly, we could add a number of conclusions to this theorem by transform-
ing the rest of Theorem 4.6.11, too, into an anti-causal setting.

For later use, let us develop the theory of anti-causal systems a little further,
along the same lines as we developed the theory for causal systems in Section
2.2. We begin with the following analogue of Definition 2.2.6.
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Definition 6.1.7 Let � = [A B

C D

]
be an anti-causal L p|Reg-well-posed linear

system on (Y, X,U ).

(i) We interpret B as an operator L p|Regloc,c(R; U )→ X by defining
Bu = Bπ+u for all u ∈ L p|Regloc,c(R; U ).

(ii) We interpret C as an operator X → L p|Regloc,c(R; Y ) by defining
Cx = π−Cx for all x ∈ X .

(iii) The backward state transition map At
s , the backward input map Bt

s , the
backward output map Ct

s , and the backward input/output map Dt
s with

initial time t ∈ R and final time s ≤ t are defined by[
At

s Bt
s

Ct
s Dt

s

]
:=
[

As−t Bτ sπ[s,t)

π[s,t)τ
−tC π[s,t)Dπ[s,t)

]
, s ≤ t.

(iv) The backward input map Bs and the backward input/output map Ds with
final time s ∈ R (and initial time +∞) are defined by

Bs = B∞s := Bτ s, Ds = D∞s := π[s,∞)D, t ∈ R.

(v) The backward output map Ct and the backward input/output map Dt with
initial time t ∈ R (and final time −∞) are defined by

Ct = Ct
−∞ := τ−tC, Dt = Dt

−∞ := Dπ(−∞,t), t ∈ R.

We can reinterpret the algebraic conditions listed in Definition 6.1.1 in terms
of the operators introduced in Definition 6.1.7 as follows.

Lemma 6.1.8 Let� = [A B

C D

]
be a anti-causal L p|Reg-well-posed linear sys-

tem on (Y, X,U ), and let �̃ =
[

Ã B̃

C̃ D̃

]
be the corresponding causal L p-well-

posed linear system (cf. Lemma 6.1.2). For each h ∈ R, define (see also Defi-
nition 3.5.12)

Rh = τ−h Rτ h(= Rτ 2h = τ−2h R). (6.1.4)

Then the (backward) maps introduced in Definition 6.1.7 (applied to the anti-
causal system�) and the (forward) maps introduced in Definition 2.2.6 (applied
to the causal system �̃) are related to each other in the following way for all
s ≤ t [

At
s Bt

s

Ct
s Dt

s

]
=
[

Ãt
s B̃t

s R(s+t)/2

R(s+t)/2C̃
t
s R(s+t)/2D̃

t
s R(s+t)/2

]
,

[
Bs

Ds

]
=
[

B̃s Rs

RsD̃s Rs

]
,

[
Ct Dt

] = [ Rt C̃t RtD̃t Rt
]
.

(6.1.5)
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We leave the straightforward algebraic proof to the reader. Observe that Rh
is a reflection of the real axis around the point h which in the Reg-case has been
modified so that it maps Regloc onto itself. In particular,

R(s+t)/2χ(−∞,t) = χ[s,∞),

R(s+t)/2χ[s,t) = χ[s,t)),

R(s+t)/2χ[s,∞) = χ(−∞,t)).

Lemma 6.1.9 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ). Then the operators At
s , Bt

s , Ct
s , and Dt

s introduced in Definition
6.1.7 have the following algebraic properties:

(i) The initial condition (2.2.3) holds for all t ∈ R.
(ii) The causality condition (2.2.4) holds for all s ≤ t .

(iii) The time-invariance condition (2.2.5) holds for all s ≤ t and h ∈ R,.
(iv) For all s ≤ r ≤ t , the following composition condition holds:

[
At

s Bt
s

Ct
s Dt

s

]
=
[

Ar
s Br

s 0

Cr
s Dr

s 1

]At
r Bt

r

0 1
Ct

r Dt
r


=
[

Ar
sA

t
r Br

s + Ar
sB

t
r

Cr
sA

t
r + Ct

r Dr
s + Cr

sB
t
r +Dt

r

]
.

(6.1.6)

The proof of this lemma is analogous to the proof of Lemma 2.2.8, and we
leave it to the reader.

Our following theorem is an anti-causal version of Theorem 2.2.14.

Theorem 6.1.10 Let U, X, and Y be Banach spaces, and let
At

s : X → X, Bt
s : L p|Regloc,c(R; U )→ X, Ct

s : X → L p|Regloc,c(R; Y ), and
Dt

s : L p|Regloc,c(R; U )→ L p|Regloc,c(R; Y ) be four families of bounded linear
operators indexed by−∞ < s ≤ t <∞. Suppose that A0

0x = lims↑0 A0
s x = x

for all x ∈ X, that for all s ≤ t and h ∈ R time-invariance condition (2.2.5)
holds, and that for all s ≤ r ≤ t ,

[
At

s Bt
s

Ct
s Dt

s

]
=
[

1 0 0
0 π[s,r ) π[r,t)

]Ar
s Br

s 0

Cr
s Dr

s 0
0 0 1



×

At
r 0 Bt

r

0 1 0
Ct

r 0 Dt
r


1 0

0 π[s,r )

0 π[r,t)

 .

(6.1.7)
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Then we get an anti-causal L p|Reg-well-posed linear system � = [A B

C D

]
by

defining As = A0
s for s ≤ 0 and, for all x ∈ X and u ∈ L p|Regloc,c(R; U ),

Bu = lim
t→∞Bt

0u, Cx = lim
s→−∞C0

s x, Du = lim
s→−∞
t→∞

Dt
su (6.1.8)

(in particular, these limits exist in X, L p|Regloc(R+; Y ), respectively
L p|Regloc,c(R; Y )). Moreover, the given operator families At

s , Bt
s , Ct

s , and Dt
s

are identical to those derived from � as described in Definition 6.1.7.

Observe that the only significant difference in the assumptions of Theorems
2.2.14 and 6.1.10 is that two of the factors in (6.1.7) have changed places
compared to (2.2.10). We leave this proof, too, to the reader (it is the same
as the proof of Theorem 2.2.14, with the positive and negative time directions
interchanged).

6.2 The dual system

The theory developed in Sections 3.5 and 6.1 makes it possible to introduce the
dual of an L p-well-posed linear system.

Theorem 6.2.1 Let 1 ≤ p <∞, and let � = [A B

C D

]
be an L p-well-posed

linear system on the reflexive Banach spaces (Y, X,U ). Define�† =
[

A† B†

C† D†

]
,

where, for all t ≤ 0,

(A†)t = (A∗)−t , B† = C∗

C† = B∗ D† = D∗.
(6.2.1)

Then �† is an anti-causal Lq-well-posed linear system on (U ∗, X∗, Y ∗), where
1/p + 1/q = 1 (and 1/∞ = 0).

Here the formula (6.2.1) requires some explanation. We fix some ω > ωA,
where ωA is the growth bound of A. Then, by Theorem 2.5.4,

B ∈ B(L p
ω(R−; U ); X ),

C ∈ B(X ; L p
ω(R+; Y )),

D ∈ B(L p
ω(R; U ); L p

ω(R; Y )).

We can therefore compute the duals of these operators as in Lemma 3.5.9, and
get

B† = C∗ ∈ B(Lq
−ω(R+; Y ∗); X∗),

C† = B∗ ∈ B(X∗; Lq
−ω(R−; U ∗)),

D† = D∗ ∈ B(Lq
−ω(R; Y ∗); Lq

−ω(R; U ∗)).

(6.2.2)
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By restricting the domain of C∗ we can interpret C∗ as an operator
Lq

c (R+; Y ∗)→ X∗, and the operator B∗ can be interpreted as an operator
X∗ → Lq

loc(R−; U ∗). As part of the proof of Theorem 6.3.1 we show that D∗ is
anti-causal and time-invariant, and this fact can be used to restrict and extend this
operator to an operator mapping Lq

loc,c(R; Y ∗)→ Lq
loc,c(R; U ∗), as required by

Definition 6.1.1. The resulting operators do not depend on the value of ω ≥ ωA

(we prove this as part of the proof of Theorem 6.2.1).

Proof of Theorem 6.2.1 By Theorem 3.5.6, A∗ is a C0 semigroup on X∗. As
indicated in the discussion above, the operators C∗, B∗, and D∗ have the right
continuity properties required from a backward input map, output map, and
input/output map of an anti-causal Lq -well-posed linear system. The algebraic

conditions in Definition 6.1.1 with
[A B

C D

]
replaced by

[
A† B†

C† D†

]
follow di-

rectly from the corresponding algebraic conditions in Definition 2.2.1, since
(τ t )∗ = τ−t , π∗− = π−, and π∗+ = π+. Thus, the only thing which needs to
be checked is that the resulting system is independent of the constant ω in
(6.2.2).

To show that B† does not depend on ω it suffices to show that B† ap-
plied to y∗ does not depend on ω in the case where y∗ ∈ Lq

c (R+; Y ∗). A suffi-
cient condition for this to be true is that, for all x ∈ X and y∗ ∈ Lq

c (R+; Y ∗),
the value of 〈x,B†y∗〉(X,X∗) does not depend on ω. However, this is true
since

〈x,B†y∗〉(X,X∗) = 〈x,C∗y∗〉(X,X∗) = 〈Cx, y∗〉(L p
ω(R+;Y ),Lq

−ω(R+;Y ∗))

=
∫ ∞

0
〈(Cx)(s), y∗(s)〉(Y,Y ∗),

and the integral does not depend on ω. To show that C† does depend on ω

it suffices to show that, for all x∗ ∈ X∗ and all u ∈ L p
c (R−; U ), the value of∫ 0

−∞〈u(s), (C†x∗)(s)〉 ds does not depend on ω, and this is true since

∫ 0

−∞
〈u(s), (C†x∗)(s)〉 ds =

∫ 0

−∞
〈u(s), (B∗x∗)(s)〉 ds

= 〈u,B∗x∗〉(L p
ω(R−;U ),Lq

−ω(R−;U ∗))

= 〈Bu, x∗〉(X,X∗).

By the anti-causality and time-invariance of D†, to show that this operator does
not depend on ω it suffices to know, for all compactly supported u ∈ L p

c (R; U )
and y∗ ∈ Lq

c (R; Y ∗) the value of
∫∞
−∞〈u(s), (D†y∗)(s)〉 ds does not depend on
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ω, and this is true since∫ ∞
−∞
〈u(s), (D†y∗)(s)〉 ds =

∫ ∞
−∞
〈u(s), (D∗y∗)(s)〉 ds

= 〈u,D∗y∗〉(L p
ω(R;U ),Lq

−ω(R,U ∗))

= 〈Du, y∗〉(L p
ω(R;Y ),Lq

−ω(R,Y ∗))

=
∫ ∞
−∞
〈(Du)(s), y∗(s)〉 ds.

�

Definition 6.2.2 The system�† in Theorem 6.2.1 is called the anti-causal dual
of �.

By reversing the direction of time in Theorem 6.2.1 we get the following
causal system.

Theorem 6.2.3 Let 1 ≤ p <∞, and let � = [A B

C D

]
be an L p-well-posed

linear system on the reflexive Banach spaces (Y, X,U ). Define

�d =
[

Ad Bd

Cd Dd

]
=
[

A∗ C∗ R

RB∗ RD∗ R

]
(6.2.3)

where A∗t = (At )∗ for all t ≥ 0. Then�d is an Lq-well-posed linear system on
(U ∗, X∗, Y ∗), where 1/p + 1/q = 1 (and 1/∞ = 0).

Proof This follows from Lemma 6.1.2 and Theorem 6.2.1. �

Definition 6.2.4 The system �d in Theorem 6.2.3 is called the causal dual of
�.

Example 6.2.5 Let � = [A B

C D

]
be an L p-well-posed linear system on the

reflexive Banach spaces (Y, X,U ), with 1 ≤ p <∞.

(i) For each α ∈ C, the dual Ad
α of the exponentially shifted system �α in

Example 2.3.5 is

�d
α =
[

Ad
α Bd

α

Cd
α Dd

α

]
=
[

eαA C∗ Re−α

eα RB∗ eα RD∗ Re−α

]
.

(ii) For each λ > 0, the dual Ad
λ of the time compressed system �λ in

Example 2.3.6 is

�d
λ =
[

Ad
λ Bd

λ

Cd
λ Dd

λ

]
=
[

A∗λ C∗ Rγ1/λ

γλ RB∗ γλ RD∗ Rγ1/λ

]
.
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(iii) For each (boundedly) invertible E ∈ B(X1; X ), the dual Ad
E of the

similarity transformed system �E in Example 2.3.7 is

�d
E =
[

Ad
E Bd

E

Cd
E Dd

E

]
=
[

E∗A∗E−∗ E∗C∗ R

RB∗E−∗ RD∗ R

]
.

This follows from Examples 2.3.5–2.3.7 and Theorem 6.2.3.

Example 6.2.6 We consider the systems in Examples 2.3.10–2.3.13 in the L p-
setting with 1 ≤ p <∞ and with reflexive input spaces, state spaces and output
spaces.

(i) The dual Ad of the cross-product of the systems �1 and �2 in Example
2.3.10 is the cross-product of the duals �d

1 and �d
2 .

(ii) The dual Ad of the sum junction of the systems �1 and �2 in Example
2.3.11 is the T-junction of the duals �d

1 and �d
2 .

(iii) The dual Ad of the T-junction of the systems �1 and �2 in Example
2.3.12 is the sum junction of the duals �d

1 and �d
2 .

(iv) The dual Ad of the parallel connection of the systems �1 and �2 in
Example 2.3.13 is the parallel connection of the duals �d

1 and �d
2 .

This follows from Examples 2.3.10–2.3.13 and Theorem 6.2.3.

Example 6.2.7 The dual of the delay line example 2.3.4 in L p with 1 < p <∞
and reflexive U is a similarity transformed version of the same delay line
in Lq , 1/p + 1/q = 1, with the similarity transformation given in Lemma
3.5.13(iv)(d). (The signal enters at the left end of the line, and leaves at the
right end.)

This follows from Example 2.3.4, Theorem 6.2.3, and Lemma 3.5.13.

Example 6.2.8 Let D ∈ TICp
ω(U ; Y ) where 1 < p <∞, ω ∈ R and U and Y

are reflexive Banach spaces. Then the exactly controllable shift realization of D
in Example 2.6.5(i) and the exactly observable shift realization of Dd in Example
2.6.5(ii) are duals of each other. Also the bilateral input shift realization of D

in Example 2.6.5(iii) and the bilateral output shift realization of Dd in Example
2.6.5(iv) are duals of each other.

This is obvious (see Lemma 3.5.13).
The formal relationships between the finite time input/state/output maps[

At
s Bt

s

Ct
s Dt

s

]
and the corresponding maps for the anti-causal dual system are sim-

pler than the relationships with the causal dual system, due to the absence of
reflection operators. Specifically, we have the following result.
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Lemma 6.2.9 Let 1 ≤ p <∞, and let � = [A B

C D

]
be an L p-well-posed lin-

ear system on the reflexive Banach spaces (Y, X,U ), and let �† be the cor-
responding anti-causal dual system. Then the (forward) maps introduced in
Definition 2.2.6 (applied to the original system �) and the (backward) maps
introduced in Definition 6.1.7 (applied to �†) are related in the following way
for all −∞ < s < t <∞,[

(A†)t
s (B†)t

s

(C†)t
s (D†)t

s

]
=
[

(At
s)∗ (Ct

s)∗

(Bt
s)∗ (Dt

s)∗

]
,

[
(B†)s

(D†)s

]
=
[

(Cs)∗

(Ds)∗

]
,

[
(C†)t (D†)t

] = [ (Bt )∗ (Dt )∗
]
.

(6.2.4)

Proof This follows immediately from Definitions 2.2.6, 6.1.7, and 6.2.2. �

By combining this result with Lemma 6.1.8 we get the corresponding rela-
tionships between the original system � and the causal dual system �d .

Theorem 6.2.10 Let 1 ≤ p <∞, 1/p + 1/q = 1, s < t , xs ∈ X, x∗t ∈ X∗,
u ∈ L p((s, t); U ), and y∗ ∈ Lq ((s, t); Y ∗). Let x and y be the state trajectory
and output function (restricted to (s, t)) of� = [A B

C D

]
with initial time s, initial

state xs , and input function u, and let x∗ and u∗ be the backward state trajectory
and output function (restricted to (s, t)) of the anti-causal dual system �† with
initial time t, initial state x∗t , and input function y∗. Then

〈x(t), x∗t 〉(X,X∗) +
∫ t

s
〈y(r ), y∗(r )〉(Y,Y ∗) dr

= 〈xs, x∗(s)〉(X,X∗) +
∫ t

s
〈u(r ), u∗(r )〉(U,U ∗) dr.

Of course, it is also possible to write this identity by using the causal dual
of � instead, at the expense of having to add a number of reflection operators
R, leading to a more complicated formula.

Proof We observe that u = π[s,t)u and y∗ = π[s,t) y∗, and use Definitions 2.2.7
and 6.1.3 and Lemma 6.2.9 to get

〈x(t), x∗t 〉 + 〈y, y∗〉 = 〈At
s xs +Bt

su, x∗t 〉 + 〈Ct
s xs +Dt

su, y∗〉
= 〈At

s xs, x∗t 〉 + 〈Ct
s xs, y∗〉 + 〈Bt

su, x∗t 〉 + 〈Dt
su, y∗〉

= 〈xs, (At
s)∗x∗t + (Ct

s)∗y∗〉 + 〈u, (Bt
s)∗x∗t + (Dt

s)∗y∗〉
= 〈xs, x∗(s)〉 + 〈u, u∗〉.

�
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It is possible to formulate versions of Theorem 6.2.10 where either s =
−∞ or t = +∞. For simplicity we only give the former result, and leave the
formulation of the latter to the reader.

Corollary 6.2.11 Let � = [A B

C D

]
be an L p-well-posed linear system on

(Y, X,U ) with 1 ≤ p <∞, and let ω > ωA. Let 1/p + 1/q = 1, x∗t ∈ X∗,
u ∈ L p

ω((−∞, t); U ), and y∗ ∈ Lq
−ω((−∞, t); Y ∗). Let x and y be the state tra-

jectory and output function of � with initial time −∞, initial state zero, and
input function u, and let x∗ and u∗ be the backward state trajectory and output
function of the anti-causal dual system �† with initial time t, initial state x∗t ,
and input function y∗. Then

〈x(t), x∗t 〉(X,X∗) +
∫ t

−∞
〈y(s), y∗(s)〉(Y,Y ∗) ds

=
∫ t

−∞
〈u(s), u∗(s)〉(U,U ∗) ds.

To prove this it suffices to let s →−∞ in Theorem 6.2.10.
As our following theorem shows, there is a simple connection between

the causal dual of � and the adjoint of the Lax–Phillips model induced
by �.

Theorem 6.2.12 Let 1 ≤ p <∞, 1/p + 1/q = 1, let � = [A B

C D

]
be an L p-

well-posed linear system on the reflexive Banach spaces (Y, X,U ), and let �d

be the causal dual of�. Let ω ∈ R, and let T be the Lax–Phillips model of type
L p
ω induced by �. Then the Lax–Phillips model Td of type Lq

ω induced by �d

is given by

Td =
0 0 R

0 1 0
R0 0

T∗

0 0 R
0 1 0
R0 0

 . (6.2.5)

Proof The state space of Td , which is
[

Lq
ω(R−;U ∗)

X

]
Lq
ω(R+; Y ∗), coincides with

the state space of the semigroup of the right hand side of (6.2.5) since we
identify the duals of L p

ω(R−; Y ) and L p
ω(R+; U ) with Lq

−ω(R−; Y ∗), respec-
tively Lq

−ω(R+; U ∗), and since Rmaps Lq
−ω(R−; Y ∗) and Lq

−ω(R+; U ∗) onto
Lq
ω(R+; Y ∗), respectively Lq

ω(R−; U ∗). The rest of the proof is a simple alge-
braic computation based on Definitions 2.2.6 and 2.7.4, Example 3.5.11, and
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Lemma 3.5.13:

Td =
τ tπ− π−τ t RB∗ π−τ t RD∗ Rπ+

0 A∗t C∗ Rτ tπ+
0 0 π+τ t


=
 Rτ−tπ+ R Rπ+τ−tB∗ Rπ+D∗τ−tπ− R

0 A∗t C∗τ−tπ− R
0 0 Rπ−τ−t R


=
0 0 R

0 1 0
R0 0

 π−τ−t 0 0
C∗τ−tπ− A∗t 0

π+D∗τ−tπ− π+τ−tB∗ τ−tπ+

0 0 R
0 1 0
R0 0


=
0 0 R

0 1 0
R0 0

τ tπ− π−τ tC π−τ tDπ+
0 At Bτ tπ+
0 0 π+τ t

∗0 0 R
0 1 0
R0 0


=
0 0 R

0 1 0
R0 0

T∗t

0 0 R
0 1 0
R0 0

 .
�

Theorem 6.2.13 Let 1 ≤ p <∞, and let � = [A B

C D

]
be an L p-well-posed

linear system on the reflexive Banach spaces (Y, X,U ), with system node
S = [ A&B

C&D

]
, semigroup generator A, control operator B, observation oper-

ator C, transfer function D̂, and growth bound ωA. We denote the correspond-

ing operators for the causal dual �d =
[

Ad Bd

Cd Dd

]
by the same letters and the

superscript d. Then ωAd = ωA, and

Sd =
[

[A&B]d

[C&D]d

]
=
[

A&B
C&D

]∗
= S∗.

Moreover, Ad = A∗, Bd = C∗ and Cd = B∗, and the transfer functions of �
and �d are related by

D̂d (z) = D̂(z)∗, z ∈ σ (A). (6.2.6)

The proof of Theorem 6.2.13 is partially based on the following lemma,
which is also of independent interest.

Lemma 6.2.14 Let S be an operator node on (Y, X,U ), where X is reflexive.
We denote the main operator of S by A, the control operator by B, the obser-
vation operator by C, and the transfer function D̂. Let X∗−1 be the analogue of
X−1 constructed in Section 3.6 with X replaced by X∗ and A replaced by A∗



344 Anti-causal, dual, and inverted systems

(cf. Remark 3.6.1). Then the (unbounded) adjoint of S is given by

S∗ =
[

[A&B]d

[C&D]d

]
:

[
X∗

Y ∗

]
⊃ D (S∗)→ [X∗

U ∗

]
,

where [A&B]d = [A∗|X∗ C∗
]
|D(S∗)

and

D (S∗) :=
{[

x∗

y∗

]
∈
[

X∗

Y ∗

] ∣∣∣∣ A∗|X∗x
∗ + C∗y∗ ∈ X∗

}
,

[C&D]d

[
x∗

y∗

]
:= B∗

(
x∗ − (α − A∗|X∗ )

−1C∗y∗
)+ D̂(α)∗y∗,

(6.2.7)

where α is an arbitrary number in ρ(A) = ρ(A|X−1 ) (the resulting operator
[C&D]d is independent of α). In particular, S∗ is an operator node (in the
sense of Definition 4.7.2), and if S is a system node, then so is S∗. The main
operator of S∗ is A∗, the control operator is C∗, the observation operator is
B∗, and the transfer function is z �→ (D̂(z))∗, z ∈ ρ(A∗).

Proof Let α ∈ ρ(A), and define

Eα :=
[

1 (α − A|X )−1 B
0 1

]
.

This operator is bounded and invertible on
[

X
U

]
, and it maps

[
X1
U

]
one-to-one

onto D (S) (see Lemma 4.7.3(viii)). Therefore, by Lemma 3.5.5,

S∗ = (SEαE−1
α

)∗ = E−∗α (SEα)∗ .

In particular, D (S∗) = D ((SEα)∗). The first factor above is the adjoint of

E−1
α =

[
1 −(α−A|X )−1 B
0 1

]
, and it is given by E−∗α =

[
1 0

−B∗(α−A∗)−1 1

]
. By (4.7.16),

SEα =
[

A α(α − A|X )−1 B
C D̂(α)

]
.

This operator can be interpreted in two ways: on one hand, it is an unbounded
operator from

[
X
U

]
to
[

X
Y

]
with domain

[
X1
U

]
. On the other hand, it can also be

interpreted as a bounded operator from
[

X1
U

]
to
[

X
Y

]
. The adjoint of the latter

operator is a bounded operator from
[

X∗
Y ∗
]

to
[

X∗−1
U ∗

]
(recall that we identify the

dual of X1 with X∗−1; see Remark 3.6.1), and it is given by
[

A∗|X∗ C∗

αB∗(α−A∗)−1 (D̂(α))∗

]
.
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This implies, in particular, that for all
[

x
u

] ∈ [ X1
U

]
and all

[
x∗
y∗
] ∈ [ X∗

Y ∗
]
,〈[

x∗

y∗

]
, SEα

[
x
u

]〉([
X∗
Y ∗
]
,
[

X
Y

])
=
〈[

A∗|X∗ C∗

αB∗(α − A∗)−1 (D̂(α))∗

] [
x∗

y∗

]
,

[
x
u

]〉([
X∗−1
Y ∗
]
,
[

X1
Y

])
= 〈A∗|X∗x∗ + C∗y∗, x〉(X∗−1;X1)

+ 〈αB∗(α − A∗)−1x∗ + (D̂(α))∗y∗, y〉(Y ∗;Y ).

By the definition of the domain of the adjoint of an unbounded operator, if we
interpret SEα :

[
X
U

] ⊃ D (SEα)→ [ X
U

]
as an unbounded operator, then

[
x∗
y∗
] ∈

D ((SEα)∗) if and only if the above expression, regarded as a function of
[

x
u

] ∈[
X1
U

]
, can be extended to a bounded linear functional on

[
X
Y

]
. Clearly, this is

true if and only if A∗|X∗x
∗ + C∗y∗ ∈ X∗. Thus,D ((SEα)∗) = D (S∗) = {[ x∗

y∗
] ∈[

X∗
Y ∗
] ∣∣ A∗|X∗x

∗ + C∗y∗ ∈ X∗
}
. Furthermore, the same computation shows that

(SEα)∗ =
[

A∗|X∗ C∗

αB∗(α − A∗)−1 (D̂(α))∗

]
|D(S∗)

.

Multiplying this identity by E−∗α =
[

1 0
−B∗(α−A∗)−1 1

]
to the left we get for all[

x∗
y∗
] ∈ D (S∗),

S∗
[

x∗

y∗

]
= E−∗α (SEα)∗

[
x∗

y∗

]
=
[

1 0
−B

∗
(α − A∗)−1 1

] [
A∗|X∗ C∗

B∗α(α − A∗)−1 D̂(α)∗

] [
x∗

y∗

]
=
[

1 0
−B

∗
(α − A∗)−1 1

] [
A∗|X∗x

∗ + C∗y∗

B∗α(α − A∗)−1x∗ + D̂(α)∗y∗

]
=
[

A∗|X∗x
∗ + C∗y∗

B∗(α − A∗)−1[(α − A∗|X∗ )x
∗ + C∗y∗]+ D̂(α)∗y∗

]
=
[

A∗|X∗x
∗ + C∗y∗

B∗(x − (α − A∗|X∗ )
−1C∗y∗)+ D̂(α)∗y∗

]
=
[

[A&B]d

[C&D]d

] [
x∗

y∗

]
,

which gives equation (6.2.7).
Checking Definition 4.7.2 we find that S∗ is an operator node on (U ∗, X∗, Y ∗)

(that D (A∗) is dense in X∗ follows from Lemma 3.5.1(iv)). If A is the generator
of a C0 semigroup, then so is A∗, so S∗ is a system node whenever S is so. The
claims concerning the main operator, the control operator, and the observation
operator have already been established. If we denote the transfer function of
S∗ by D̂d , then, by taking x∗ = (α − A∗|X∗ )

−1C∗y∗ in (6.2.7) we get for all
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α ∈ ρ(A∗) and y∗ ∈ Y ∗,

D̂d (α)y∗ = [C&D]d

[
(α − A∗|X∗ )

−1C∗y∗

y∗

]
= D̂(α)∗y∗.

�

Proof of Theorem 6.2.13 Fix some h > 0, and let
[ x0

u0

] ∈ D (S),
[

xd
0

yd
0

]
∈

D (Sd
)
, and u ∈ W 1,p([0, h]; U ) with u(0) = u0. If p > 1, then we take

yd ∈ W 1,q ([0, h]; Y ), and if p = ∞, then we take y ∈ Reg1([0, h]; Y ). In both
cases we require, in addition, that yd (0) = yd

0 . Let x be the state trajectory and
let y be the output function (restricted to [0, h]) of� with initial state x0, initial
time 0, and input function u, and let xd be the state trajectory and let ud be the
output function (restricted to [0, h]) of�d with initial state xd

0 , initial time 0, and

input function yd . Then, by Theorem 4.6.11, for all t ∈ [0, h],
[

x(t)
u(t)

]
∈ D (S),[

xd (t)
ud (t)

]
∈ D (Sd

)
, and

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

[
(xd )′(t)
ud (t)

]
= Sd

[
xd (t)
yd (t)

]
, t ∈ [0, h].

This combined with Theorem 6.2.10 and Lemma 6.1.4 (with s = 0 and t = h)
implies that

〈x0, xd (h)− xd
0 〉 +

∫ h

0

〈
u(t), [C&D]d

[
xd (h − t)
yd (h − t)

]〉
dt

= 〈x(h)− x0, xd
0 〉 +

∫ h

0

〈
C&D

[
x(t)
u(t)

]
, yd (h − t)

〉
dσ.

Divide by h and let h ↓ 0 to get〈
S

[
x0

u0

]
,

[
xd

0

yd
0

]〉
=
〈[

x0

u0

]
, Sd

[
xd

0

yd
0

]〉
. (6.2.8)

This being true for all
[ x0

u0

] ∈ D (S) and
[

xd
0

yd
0

]
∈ D (Sd

)
, we conclude that

D (Sd
) ⊂ D (S∗), and that Sd is the restriction of S∗ to D (Sd

)
.

In Theorem 6.2.13 we introduced Sd as the system node of the dual system
�d , and by Lemma 6.2.14, also S∗ is a system node on the same triple of spaces
(U ∗, X∗, Y ∗). These two nodes have the same main operator A∗; see Theorem
3.5.6(v) and Lemma 6.2.14. They must also have the same control operator
C∗, since Sd is a restriction of S∗, and since the extended operator

[
A∗|X∗ C∗

]
is determined uniquely by its restriction to D (Sd

)
(which is dense in

[
X∗
Y ∗
]
).
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However, this implies that

D (Sd
) = {[ x∗

y∗
] ∈ [ X∗

Y ∗
] ∣∣ A∗|X∗x

∗ + C∗y∗ ∈ X∗
} = D (S∗) .

The remaining claims follow from Lemma 6.2.14. �

Theorem 6.2.15 Let 1 ≤ p <∞, and let � be a compatible L p-well-posed
linear system on the reflexive Banach spaces (Y, X,U ), with semigroup gen-
erator A, control operator B, extended observation operator C|W defined on
W ⊂ X, and corresponding feedthrough operator D. We denote the corre-
sponding operators for the causal dual system �d by the same letters with a
superscript d.

(i) If X1 is dense in W , then �d is compatible with extended observation
operator Cd

|V ∗ = B∗|V ∗ : V ∗ → U ∗, where V ∗ is the dual of the space
V = W−1, and B∗|V ∗ is the adjoint of the operator B : U → V . The
corresponding feedthrough operator Dd is given by Dd = D∗.

(ii) If 1 < p <∞, then � is weakly regular if and only if �d is weakly
regular, and the feedthrough operators D and Dd satisfy Dd = D∗.

(iii) � is uniformly regular if and only if �d is uniformly regular, and the
feedthrough operators D and Dd satisfy Dd = D∗.

Proof (i) We begin with some comments on the assumption that X1 is dense
in W . If this is true, then Xk+1 is dense in Wk for all k = 0,±1,±2, . . .
(see Lemma 5.1.3). By Lemma 9.10.2(ii), the adjoints of the embeddings
Xk+1 ⊂ Wk ⊂ Xk are then injective, and they define embeddings X∗−k ⊂
(Wk)∗ ⊂ X∗−(k+1) (where X∗−(k+1) is the dual of Xk+1, cf. Remark 3.6.1). In
particular X∗1 ⊂ V ∗ ⊂ X∗.

By Definition 5.1.1, the compatibility of � (together with the closed graph
theorem) implies that B ∈ B(U ; V ) and C|W ∈ B(W ; Y ). Therefore Cd

|V ∗ =
B∗|V ∗ ∈ B(V ∗; U ∗) and Bd = C∗ ∈ B(Y ∗; W ∗) = B(Y ∗; V ∗−1), and hence �d is
compatible.

To prove that Dd = D∗ we fix some α ∈ ρ(Ad ) and make the following
computation (cf. (5.1.2) and (6.2.6)):

Dd = D̂d (α)− Cd
|V ∗ (α − Ad

|X )−1 Bd

= D̂∗(α)− B∗|V ∗ (α − A∗|V )−1C∗

= (D̂(α)− C|W (α − A|X )−1 B
)∗ = D∗.

(ii) Weak regularity of � means that for all u ∈ U and all y∗ ∈ Y ∗,

lim
α→+∞〈D̂(α)u, y∗〉(Y,Y ∗) = 〈Du, y∗〉(Y,Y ∗)
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for D ∈ B(U ; Y ), whereas weak regularity of �d means that for all u ∈ U ∗∗ =
U ,

lim
α→+∞〈u, D̂

d (α)y∗〉(U,U ∗) = 〈u, Dd y∗〉(U,U ∗)

for some Dd ∈ B(Y ∗; U ∗). But

〈D̂(α)u, y∗〉(Y,Y ∗) = 〈u, D̂∗(α)y∗〉(U,U ∗) = 〈u, D̂d (α)y∗〉(U,U ∗),
so if one of these limits exists, then so does the other, and the two limits coincide.
Furthermore, also in this case Dd = D∗ because

〈Du, y∗〉(Y,Y ∗) = 〈u, D∗y∗〉(U,U ∗) = 〈u, Dd y∗〉(U,U ∗).
(iii) This follows from the fact that D̂(α)→ D inB(U ; Y ) iff D̂d (α) = D̂∗(α)

to D∗ in B(Y ∗; U ∗) since

‖D̂(α)− D‖ = ‖D̂∗(α)− D∗‖;
cf. Lemma 3.5.1. �

Let us end this section by showing that the more general dual system nodes
discussed in Lemma 6.2.14 satisfy an appropriate version of Theorem 6.2.10.

Lemma 6.2.16 Let S be a system node on (Y, X,U ), where X is reflexive,
let x0 ∈ X and u ∈ W 2,1

loc (R
+

; U ) with
[ x0

u(0)

] ∈ D (S), and let x and y be the
corresponding state trajectory and output function of S given by Lemma 4.7.8.
Let S∗ be the dual system node on (U ∗, X∗, Y ∗) (see Lemma 6.2.14), let xd

0 ∈
X∗, and yd ∈ W 2,1

loc (R
+

; Y ∗) with
[

xd
0

yd (0)

]
∈ D (S∗), and let xd and ud be the

corresponding state trajectory and output function of S∗ given by Lemma 4.7.8.
Then, for all t > 0,

〈x(t), xd
0 〉(X,X∗) +

∫ t

0
〈y(s), y∗(t − s)〉(Y,Y ∗) ds

= 〈x0, xd (t)〉(X,X∗) +
∫ t

0
〈u(s), u∗(t − s)〉(U,U ∗) ds.

(6.2.9)

Proof By Lemma 4.7.8, for all s ∈ [0, t],〈[
ẋ(s)
y(s)

]
,

[
xd (t − s)
yd (t − s)

]〉
=
〈
S

[
x(s)
u(s)

]
,

[
xd (t − s)
yd (t − s)

]〉
=
〈[

x(s)
u(s)

]
, S∗
[

xd (t − s)
yd (t − s)

]〉
=
〈[

x(s)
u(s)

]
,

[
(xd )′(t − s)
ud (t − s)

]〉
,
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or equivalently,

d

ds
〈x(s), xd (t − s)〉(X,X∗) + 〈y(s), yd (t − s)〉(Y,Y ∗)
= 〈u(s), ud (t − s)〉(U,U ∗).

Integrating this identity over [0, t] we get (6.2.9). �

6.3 Flow-inversion

The idea behind flow-inversion is the following.1 We start with a well-posed
linear system � = [A B

C D

]
on (Y, X,U ). Let x be the state trajectory and let y

be the output function of this system with initial time zero, initial state x0, and
input function u ∈ L p|Regloc(R

+
; U ), i.e.,

x(t) = At
0x0 +Bt

0u = At x0 +Bτ tπ+u, t ≥ 0,

y = C0x0 +D0u = Cx0 +Dπ+u.
(6.3.1)

If D has an inverse in TICloc(Y ; U ), then we can solve both x(t) and u in terms
of x0 and y to get[

x(t)
π+u

]
=
[
At Bτ t

0 1

] [
x0

π+u

]
=
[
At Bτ t

0 1

] [
1 0
C D

]−1 [
x0

π+y

]
=
[
At −Bτ tD−1C BD−1τ t

−D−1C D−1

] [
x0

π+y

]
, t ≥ 0.

(6.3.2)

This set of equations is of the same nature as (6.3.1), and it suggests that it
may be possible to interpret x and u as the state trajectory and output func-
tion of another well-posed linear system with initial time zero, initial state x0,
and input function y. Indeed, this is true if we exclude the L∞-well-posed
case, and restrict our attention to well-posed linear systems, i.e, systems that
are either L p-well-posed for some p <∞ or Reg-well-posed (cf. Definition
2.2.4).2

1 The results presented in this section are equivalent to the output feedback results presented in
Chapter 7 in the sense that the flow-inverted system can be interpreted as an output feedback
connection (see Remark 7.1.10), and an output feedback connection can be interpreted as a
flow-inverse (see Remark 7.2.3). Therefore, to avoid undue repetition we leave some of the
proofs to the reader.

2 It is possible to include the case p = ∞, too, by adding the requirement that the input/output
map D is invertible both in TIC∞loc and in TICReg

loc ; this is needed for the strong continuity of the
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Theorem 6.3.1 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and suppose that D has an inverse in TICloc(Y ; U ). Then the system

�× =
[

A× B×τ

C× D×

]
=
[

A Bτ

0 1

][
1 0

C D

]−1

=
[

1 −Bτ

0 D

]−1 [
A 0

−C 1

]

=
[

A−BτD−1C BD−1τ

−D−1C D−1

]

=
[

A 0

0 0

]
+
[

Bτ

1

]
D−1

[−C 1
]

(6.3.3)

is a linear system on (U, X, Y ) which is well-posed in the same sense as �. If x
and y are the state trajectory and output function of � with initial time s ∈ R,
initial state xs ∈ X, and input function u ∈ L p|Regloc([s,∞); U ), then x and
u are the state trajectory and output function of �× with the same initial time
s, the same initial state xs , and input function y. In particular, for s = 0 we
have [

x(t)
π+u

]
=
[
At
× B×τ t

C× D×

] [
x0

y

]
, t ≥ 0. (6.3.4)

The proof of Theorem 6.3.1 is based on the following formula for the Hankel
operator of the causal inverse of an operator in TICα(U ):

Lemma 6.3.2 Let D ∈ TICloc(U ; Y ) have an inverse in TICloc(Y ; U ). Then

π+D−1π− = −D−1π+Dπ−D−1.

Proof This follows from the causality of D and D−1 as follows:

0 = D−1π+π− = D−1π+D(π+ + π−)D−1π−
= D−1Dπ+D−1π− +D−1π+Dπ−D−1

= π+D−1π− +D−1π+Dπ−D−1.

�

Proof of Theorem 6.3.1 We begin by observing that all the different formulas
for components of�× are equivalent; this follows from Lemma A.4.2 and some
easy algebraic manipulations. Moreover, if �× is a well-posed linear system,

closed-loop semigroup. It is not clear if the latter condition is implied by the former or not. If it
is true, then the L∞ case could be treated in the same way as the other cases.
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then these formulas show that the state trajectory x and the output function u
of �× with initial time zero, initial value x0, and input function y, are given by
(6.3.4). This together with a time shift implies that x and u are the state trajectory
and output function of �× with initial time s, initial state xs , and input function
y if and only if x and y are the state trajectory and output function of � with
initial time s ∈ R, initial state x , and input function u.

The continuity of the operators in �× is obvious. The strong continuity of
A× follows from the strong continuity of τ in L p

c,loc(R; U ) (see Example 2.5.3)
for p <∞ or from the strong continuity of Bτ from Regc,loc(R; U ) to X (see
Theorem 4.3.1(ii)).3 Thus, to complete the proof it suffices to check that the
algebraic properties in Definition 2.2.1 hold.

The key ingredient in the proof of the algebraic properties is the formula

π+D−1π− = −D−1CBD−1, (6.3.5)

which follows from Lemma 6.3.2 and the fact that π+Dπ− = CB.
(i) Clearly A0

× = A0 = 1. To show that A× is a semigroup we use Defini-
tion 2.2.1(i)–(iv), Lemma A.4.1, the causality and time-invariance of D−1, and
(7.1.4) to compute

As
×At
× =

(
As −Bτ sD−1C

)(
At −BD−1τ tC

)
= AsAt − AsBD−1τ tC−Bτ sD−1CAt

+Bτ sD−1CBD−1τ tC

= As+t −Bτ sπ−D−1π−τ tC

−Bτ sπ+D−1π+τ tC

−Bτ sπ+D−1π−τ tC

= As+t −Bτ sτ tD−1C

= As+t
× .

(ii) The proof of the identity At
×B× = B×τ tπ− in Definition 2.2.1(ii) uses

the same ingredients:

At
×B× =

(
At −Bτ tD−1C

)
BD−1

= AtBD−1 −Bτ tD−1CBD−1

= Bτ tπ−D−1π− +Bτ tπ+D−1π−
= BD−1τ tπ− = B×τ tπ−.

3 If it is true that D−1 maps Regloc(R
+

; Y ) into Regloc(R
+

; U ) also in the L∞-case (which seems
plausible), then the closed-loop semigroup is strongly continuous also in the L∞-case, and we
can remove the restriction p <∞ imposed on the system at the beginning of this chapter.



352 Anti-causal, dual, and inverted systems

(iii) Also the proof of the identity C×At
× = π+τ tC× in Definition 2.2.1(iii)

is similar:

C×At
× = D−1C

(
At +BD−1τ tC

)
= D−1CAt +D−1CBD−1τ tC

= π+D−1π+τ tC+ π+D−1π−τ tC

= π+τ tD−1C = π+τ tC×.

(iv) The time-invariance and causality of D× = D−1 are part of the assump-
tion of the theorem, and by (6.3.5), the Hankel operator of D× is

π+D×π− = −D−1CBD−1 = C×B×.

�

Definition 6.3.3 We say that � is flow-invertible if its input/output map is
invertible in TICloc, and we call the system �× in Theorem 6.3.1 the flow-
inverse of �.

Remark 6.3.4 In the classical system

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t), t ≥ 0,

x(0) = x0,

(6.3.6)

it is possible to interpret y as the input function and u as the output function if
and only if D is invertible. In this case the flow-inverted system �× is again a
classical system with generators[

A× B×
C× D×

]
=
[

A B
0 1

] [
1 0
C D

]−1

=
[

1 − B
0 D

]−1 [
A 0
−C 1

]
=
[

A − B D−1C B D−1

−D−1C D−1

]
=
[

A 0
0 0

]
+
[

B
1

]
D−1
[−C 1

]
.

(6.3.7)

Observe the striking similarity between this formula and the one given in The-
orem 6.3.1. Operator node versions of this result are given in Theorems 6.3.6
and 6.3.16.

The crucial assumption in Theorem 6.3.1 is, of course, that D has an inverse
in TICloc(Y ; Y ). This assumption can be characterized in many different ways:
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Theorem 6.3.5 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U )

with growth bound ωA. Then the following conditions are equivalent:

(i) � is flow-invertible.
(ii) For some T > 0, the operator π[0,T )Dπ[0,T ) has a bounded inverse

defined on L p|Reg([0, T ); Y ).
(iii) For all s and t, −∞ < s < t <∞, the operator π[s,t)Dπ[s,t) has a

bounded inverse defined on L p|Reg([s, t); Y ).
(iv) The operator D has an inverse in TICloc(Y ; U ).
(v) The operator D has an inverse in TICα(Y ; U ) for some α > ωA.

(vi) In the set of equations (6.3.1) we can interpret x(t) and π+u as the state
trajectory and output function of a well-posed linear system with initial
state x0 ∈ X and input function y ∈ L p|Regloc(R

+
; Y ).

Proof (i)⇔ (iv): See Definition 6.3.3.
(i)⇒ (vi): This follows from Theorem 6.3.1.
(vi)⇒ (v): By taking x0 = 0 in (6.3.1) we get

y = Dπ+u.

This equation determines u uniquely and continuously in L p|Regα(R
+

; U ) for

some α ∈ R as a function of v ∈ L p|Regα(R
+

; U ) (if and) only if D has an
inverse in TICα(Y ; U ).

(v) ⇒ (ii): If (v) holds, then π[0,T )D
−1π[0,T ) is the inverse to

π[0,T )Dπ[0,T ) in B(L p|Reg([0, T ); U )) (for all T > 0).
(ii)⇒ (iii): Let (ii) hold. With the notation introduced in Definition 2.2.6,

this means that DT
0 has an inverse in B(L p|Reg([0, T ); U )). This and the

time-invariance of D imply that π[s,s+T )Dπ[s,s+T ) = Ds+T
s has an inverse in

B(L p|Reg([s, s + T ); U )) for all s ∈ R (cf. Lemma 2.2.8(iii)).
The last identity in Lemma 2.2.8(iv) can be written in block matrix form as

(for all s ≤ r ≤ t)

Dt
s =
[
π[s,r ) π[r,t)

] [ Dr
s 0

Ct
rB

r
s Dt

r

] [
π[s,r )

π[r,t)

]
,

hence,

π[s,t)D
t
s =
[
π[s,r ) π[r,t)

] [ Dr
s 0

−Ct
rB

r
s Dt

r

] [
π[s,r )

π[r,t)

]
. (6.3.8)

In particular, π[s,r )D
t
s = D[s,r ) and Dt

sπ[r,t) = Dt
r . If we here replace t by s + T

and r by t , with s < t < s + T , then the invertibility of Ds+T
s implies that Dt

s

maps L p|Reg([s, t); U ) onto itself, and that Ds+T
t is injective on L p|Reg([t, s +

T ); U ). The latter condition implies that Dt
s is injective on L p|Reg([s, t); U )

(use the time-invariance and replace 2s + T − t by t ; note that s < t < s + T
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iff s < 2s + T − t < s + T ). Thus, for all t satisfying 0 < t − s ≤ T , Dt
s maps

L p|Reg([s, t); U ) one-to-one onto itself. By the closed graph theorem, Dt
s has

a continuous inverse.
We still need to remove the restriction t − s < T . Clearly, to do this it is

enough to show that if DT
0 is invertible, then so is D2T

0 (because then we
can first iterate this argument to show that D2n T

0 is invertible for all positive
integers n, and then replace T by 2nT in the argument given above to show
that Dt

0 is invertible whenever 0 < t − s < 2nT ). However, the invertibility of
D2T

0 follows from (6.3.8) with s = 0, r = T , and t = 2T , since all the block
matrices on the right hand side are invertible (cf. Lemma A.4.2(i)).

(iii)⇒ (iv): Trivially, (iii) implies that D maps L p
c,loc(R; U ) or Regc,loc(R; U )

one-to-one onto itself, and that the inverse is continuous. The time-invariance
of the inverse is also trivial. �

Let us next compute the system node of the flow-inverted system.

Theorem 6.3.6 Let � = [A B

C D

]
be a well-posed flow-invertible linear system

on (Y, X,U ) with system node S = [ A&B
C&D

]
. Denote the system node of the

flow-inverted system by S× =
[

[A&B]×
[C&D]×

]
. Then the operator

[
1 0

C&D

]
maps D (S)

continuously onto D (S×), its inverse is
[

1 0
[C&D]×

]
, and[

A&B
C&D

]
=
[

[A&B]×
0 1

] [
1 0

[C&D]×

]−1

(on D (S)), (6.3.9)[
[A&B]×
[C&D]×

]
=
[

A&B
0 1

] [
1 0
C&D

]−1

(on D (S×)). (6.3.10)

Proof Let
[ x0

u0

] ∈ D (S), i.e., x0 ∈ X , u0 ∈ U , and A|X−1 x0 + Bu0 ∈ X . Define

y0 = C&D

[
x0

u0

]
.

Choose an arbitrary u ∈ C1(R
+

; U ) with u(0) = u0. Let x and y be the state
trajectory and output function of � with initial time zero, initial state x0, and
input function u. Then, by Theorem 4.6.11, x is continuously differentiable in
X , y ∈ W 1,p

loc (R
+

; Y ) (or y ∈ C1(R
+

; Y ) in the Reg-well-posed case), and for
all t ≥ 0, [

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

[
x(t)
y(t)

]
=
[

1 0
C&D

] [
x(t)
u(t)

]
. (6.3.11)

In particular, y(0) = y0. On the other hand, we can also consider the system
�× with initial time zero, initial state x0, and input function y. By Theorem
6.3.1, the state trajectory and output function of this system are x and u, where
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x and u are the same functions as above. By Theorem 4.3.7, Corollary 4.3.8,
and Theorem 4.6.11,

[ x0
y(0)

] = [ x0
y0

] ∈ D (S×), and, for all t ≥ 0,[
ẋ(t)
u(t)

]
= S×

[
x(t)
y(t)

]
,

[
x(t)
u(t)

]
=
[

1 0
[C&D]×

] [
x(t)
y(t)

]
. (6.3.12)

In particular, taking t = 0 in (6.3.11) and (6.3.12) we find that
[

1 0
C&D

]
maps

D (S) into D (S×), that it has a left inverse
[

1 0
[C&D]×

]
, and that

S

[
x0

u0

]
=
[

ẋ(0)
y0

]
=
[

[A&B]×
0 1

] [
x0

y0

]
=
[

[A&B]×
0 1

] [
1 0
C&D

] [
x0

y0

]
.

Thus, S = [ [A&B]×
0 1

] [
1 0

C&D

]
. By interchanging the roles of � and �× we find

that
[

1 0
[C&D]×

]
is also a right inverse of

[
1 0

C&D

]
, and that S× =

[
A&B
0 1

] [
1 0

[C&D]×

]
.

�

Motivated by Theorem 6.3.6 we extend Definition 6.3.3 to arbitrary operator
nodes as follows.

Definition 6.3.7 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ). We call this

operator node flow-invertible if there exists an operator node S× =
[

[A&B]×
[C&D]×

]
on (U, X, Y ) which together with S satisfies the following conditions: the oper-
ator
[

1 0
C&D

]
maps D (S) continuously onto D (S×), its inverse is

[
1 0

[C&D]×

]
, and

(6.3.9)–(6.3.10) hold. In this case we call S and S× flow-inverses of each other.

Obviously, the flow-inverse of a node S is unique (when it exists). Further-
more, by Theorem 6.3.6, if a well-posed linear system is flow-invertible, then
its system node is flow-invertible, and the flow-inverted operator node is well-
posed. As we shall see in Corollary 6.3.15, the converse statement is also true,
at least in the L p-well-posed case with p <∞. However, before proving this
converse statement, let us first look at some easy consequences of Definition
6.3.7.

Lemma 6.3.8 Let S = [ A&B
C&D

]
be a flow-invertible operator node on (Y, X,U ),

with main operator A, control operator B, observation operator C, and transfer

function D̂, and let S× =
[

[A&B]×
[C&D]×

]
be its flow-inverse, with main operator A×,

control operator B×, observation operator C×, and transfer function D̂×. Then
the following claims are true.

(i) α ∈ ρ(A×) if and only if
[
α 0
0 0

]− S is invertible, in which case([
α 0
0 0

]
− S

)−1

=
[

(α − A×)−1 − (α − A×|X )−1 B×
C×(α − A×)−1 − D̂×(α)

]
. (6.3.13)
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(ii) α ∈ ρ(A) if and only if
[
α 0
0 j0

]− S× is invertible, in which case([
α 0
0 0

]
− S×

)−1

=
[

(α − A)−1 − (α − A|X )−1 B
C(α − A)−1 − D̂(α)

]
. (6.3.14)

(iii) If α ∈ ρ(A), then α ∈ ρ(A×) if and only if D̂(α) is invertible. In this case[
(α − A×)−1 − (α − A×|X )−1 B×

C×(α − A×)−1 − D̂×(α)

]
=
[

(α − A)−1 0
0 0

]
−
[

(α − A|X )−1 B
1

]
[D̂(α)]−1

[
C(α − A)−1 1

]
.

(6.3.15)

In particular, in this case D̂×(α) = D̂−1(α), and U is isomorphic to Y
(hence they have the same dimension).

(iv) If α ∈ ρ(A×), then α ∈ ρ(A) if and only if D̂×(α) is invertible. In this
case[

(α − A)−1 − (α − A|X )−1 B
C(α − A)−1 − D̂(α)

]
=
[

(α − A×)−1 0
0 0

]
−
[

(α − A×|X )−1 B×
1

]
[D̂×(α)]−1

[
C×(α − A×)−1 1

]
.

(6.3.16)

The right-hand side of formulas (6.3.15) and (6.3.16) can be written in several
equivalent forms. See Lemma 4.7.18.

Proof (i) By (6.3.9) (note that
[
α 0
] [

1 0
[C&D]×

] = [α 0
]
),[

α 0
0 0

]
− S =

([
α 0
0 − 1

]
−
[

[A&B]×
0

])[
1 0

[C&D]×

]−1

. (6.3.17)

The second factor on the right-hand side is a bounded bijection between D (S)
and D (S×), and the first factor on the right-hand side has a bounded inverse
defined on

[
X
U

]
if and only if α ∈ ρ(A×) (see Lemma 4.7.18(i)). Thus,

[
α 0
0 0

]−
S is invertible if and only if α ∈ ρ(A×). Formula (6.3.13) follows from Lemma
4.7.18(i) with S replaced by S×.

(ii) We get (ii) from (i) by interchanging S and S×.
(iii) This follows from (i) and Lemma 4.7.18(iv).
(iv) We get (iv) from (iii) by interchanging S and S×. �

Our following theorem lists a number of equivalent conditions for two op-
erator nodes to be flow-inverses of each other.

Theorem 6.3.9 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ), with main

operator A, control operator B, observation operator C, and transfer func-

tion D̂, and let S× =
[

[A&B]×
[C&D]×

]
be an operator node on (U, X, Y ), with main
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operator A×, control operator B×, observation operator C×, and transfer func-
tion D̂×. Then the following conditions are equivalent:

(i) S and S× are flow-inverses of each other.
(ii) The operator

[
1 0

[C&D]×

]
maps D (S×) one-to-one onto D (S), and (6.3.9)

holds.
(iii) For all α ∈ ρ(A×), the operator

[
α 0
0 0

]− S maps D (S) one-to-one onto[
X
Y

]
, and its (bounded) inverse is given by (6.3.13).

(iv) For some α ∈ ρ(A×), the operator
[
α 0
0 0

]− S maps D (S) one-to-one
onto

[
X
Y

]
and (6.3.13) holds.

(v) The operator
[

1 0
C&D

]
maps D (S) one-to-one onto D (S×), and (6.3.10)

holds.
(vi) For all α ∈ ρ(A), the operator

[
α 0
0 0

]− S× maps D (S×) one-to-one onto[
X
Y

]
, and its (bounded) inverse is given by (6.3.14).

(vii) For some α ∈ ρ(A), the operator
[
α 0
0 0

]− S× maps D (S×) one-to-one
onto

[
X
Y

]
and (6.3.14) holds.

When these equivalent conditions hold, then
[

1
C

]
mapsD (A) intoD (S×),

[
1

C×

]
maps D (A×) into D (S), and

A = A×|D(A) + B×C, A× = A|D(A×) + BC×,

0 = [C&D]×

[
1
C

]
, 0 = C&D

[
1

C×

]
.

(6.3.18)

Proof It suffices to prove that (i)–(iv) are equivalent, because the remaining
equivalences follow from the facts that (i) is symmetric with respect to S and
S×, and that we get (v)–(vii) by interchanging S and S× in (ii)–(iv). Also observe
that (6.3.18), which is equivalent to[

[A&B]×
[C&D]×

] [
1
C

]
=
[

A
0

]
,

[
A&B
C&D

] [
1

C×

]
=
[

A×
0

]
, (6.3.19)

follows from (i) and (6.3.9)–(6.3.10) since
[ D(A)

0

] ∈ D (S) and
[ D(A×)

0

] ∈
D (S×).

(i)⇒ (ii): This is obvious (see Definition 6.3.7).
(ii) ⇒ (i): Suppose that (ii) holds. Then

[
1 0

C&D

] [
1 0

[C&D]×

] = [ 1 0
0 1

]
on

D (S×) (since, by assumption, C&D
[

1 0
[C&D]×

] = [0 1
]
, and we always have[

1 0
] [

1 0
[C&D]×

] = [1 0
]
). Thus,

[
1 0

C&D

]
is a left-inverse of

[
1 0

[C&D]×

]
. However,

as (by assumption)
[

1 0
[C&D]×

]
is both injective and onto, it is invertible, so the left

inverse is also a right inverse, i.e., the inverse of
[

1 0
[C&D]×

]
is
[

1 0
C&D

]
. The identity

(6.3.10) can equivalently be written in the form
[

[A&B]×
[C&D]×

]
= [ A&B

0 1

] [
1 0

[C&D]×

]
.

The top part [A&B]× = A&B
[

1 0
[C&D]×

]
of this identity is contained in (6.3.9),
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and the bottom part [C&D]× =
[
0 1
] [

1 0
[C&D]×

]
is always valid. We conclude

that (ii)⇒ (i).
(i)⇒ (iii): See Lemma 6.3.8(i).
(iii)⇒ (iv): This is obvious.
(iv)⇒ (ii): By Lemma 4.7.18(i) with S replaced by S×, (6.3.13) implies([

α 0
0 0

]
− S

)−1 [1 0
0 − 1

]
=
[

1 0
[C&D]×

] [
α − A|X× − B×

0 − 1

]−1

.

The second factor on the right-hand side maps
[

X
U

]
one-to-one ontoD (S×), and

the left-hand side maps
[

X
U

]
one-to-one ontoD (S). Thus,

[
1 0

[C&D]×

]
mapsD (S×)

one-to-one onto D (S). Inverting this equation we get (6.3.17). As we noticed
in the proof of Lemma 6.3.8(i), formula (6.3.17) is equivalent to (6.3.9). �

With the help of Theorem 6.3.9 we are now able to give a necessary and
sufficient condition for the flow-invertibility of an operator node.

Theorem 6.3.10 An operator node S = [ A&B
C&D

]
on (Y, X,U ) is flow-invertible

if and only if the following condition holds. For some α ∈ C, the operator[
α 0
0 0

]− S maps D (S) one-to-one onto
[

X
Y

]
, and if we denote its inverse by[

M11(α) M12(α)
M21(α) M22(α)

]
:=
([

α 0
0 0

]
− S

)−1

, (6.3.20)

then M11(α) is injective and has dense range. In this case the main operator, the
control operator, the observation operator, and the transfer function (evaluated
at α) of S× are given by

A× = α − M−1
11 (α), B× = −(α − A×|X )M12(α),

C× = M21(α)(α − A×), D̂(α) = −M22(α).
(6.3.21)

In particular, α ∈ ρ(A×).

Proof The necessity of the given conditions follows from Lemma 6.3.8(i) (since
(6.3.20)–(6.3.21) are equivalent to (6.3.13)) . Conversely, suppose that the op-
erator

[
α 0
0 0

]− S maps D (S) one-to-one onto
[

X
Y

]
, and that M11(α) is injec-

tive and has dense range. Then A× defined in (6.3.21) is densely defined, and
α ∈ ρ(A×). By Lemma 4.7.6, the equations listed in (6.3.21) define a unique
operator node S×. By Theorem 6.3.9(iv), S and S× are flow-inverses of each
other. �

In most cases we are able to add four more conditions which are equivalent
to those listed in Theorem 6.3.9:

Theorem 6.3.11 Make the same assumptions and introduce the same notation
as in Theorem 6.3.9. In addition, suppose that ρ(A) ∩ ρ(A×) �= ∅ (this is, in
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particular, true if both S and S× are system nodes). Then the conditions (i)–(vii)
listed in Theorem 6.3.9 are equivalent to each one of the following conditions:

(viii) For all α ∈ ρ(A) ∩ ρ(A×), D̂(α) is invertible and (6.3.15) holds.
(ix) For some α ∈ ρ(A) ∩ ρ(A×), D̂(α) is invertible and (6.3.15) holds.
(x) For all α ∈ ρ(A) ∩ ρ(A×), D̂×(α) is invertible and (6.3.16) holds.

(xi) For some α ∈ ρ(A) ∩ ρ(A×), D̂×(α) is invertible and (6.3.16) holds.

Proof As in the proof of Theorem 6.3.9 it suffices to show that (viii) and (ix)
are equivalent to the conditions listed in Theorem 6.3.9, because we get (x)
and (xi) by interchanging S and S× in (viii) and (ix). Below, when we refer to
(i)–(vii) we mean the conditions listed in Theorem 6.3.9.

(iii)⇒ (viii): This follows from Lemma 4.7.18(iv) (applied to allα ∈ ρ(A) ∩
ρ(A×)).

(viii)⇒ (ix): This is obvious.
(ix)⇒ (iv): This, too, follows from Lemma 4.7.18(iv) (applied to a particular

α ∈ ρ(A) ∩ ρ(A×)). �

The right-hand side of formulas (6.3.15) and (6.3.16) can be written in several
equivalent forms. See Lemma 4.7.18.

Corollary 6.3.12 Under the assumption of Theorem 6.3.11, for all α ∈ ρ(A) ∩
ρ(A×), we have D̂×(α) = [D̂(α)]−1. In particular, U and Y are isomorphic
(hence they have the same dimension). Moreover, the operator (α − A×)−1(α −
A) which maps D (A) onto D (A×) is given by

(α − A×)−1(α − A) = 1− (α − A|X )−1 BD̂×(α)C

= 1− (α − A×|X )−1 B×C

and its inverse (α − A)−1(α − A×) is given by

(α − A)−1(α − A×) = 1+ (α − A×|X )−1 B×D̂(α)C×
= 1+ (α − A|X )−1 BC×.

Proof The above formulas are part of the conclusion of Theorem 6.3.11. That
U and Y must be isomorphic follows from the fact that D̂(α) is a continuously
invertible bijection of U onto Y . �

By using Theorem 6.3.11 we can make the following addition to Theorem
6.3.10.

Theorem 6.3.13 The operator node S = [ A&B
C&D

]
on (Y, X,U ), with main op-

erator A, control operator B, observation operator C, and transfer function
D̂ is flow-invertible if the following condition holds. For some α ∈ C, D̂(α) is



360 Anti-causal, dual, and inverted systems

invertible, and the operator

1− (α − A|X )−1 B[D̂(α)]−1C

maps D (A) one-to-one onto a dense subset of X. When these conditions hold,
then the flow-inverted operator node S× is determined by (6.3.15) and Lemma
4.7.6.

The proof is analogous to the proof of Theorem 6.3.10, and we leave it to
the reader (replace (6.3.13) by (6.3.15) and Theorem 6.3.9 by Theorem 6.3.11).
Note that the condition given in this theorem is sufficient but not necessary for
flow-invertibility (see Example 6.5.10 which is flow-invertible, but has ρ(A) ∩
ρ(A×) = ∅). It is also necessary if we require, in addition, that both S and S×
are system nodes, because then ρ(A) ∩ ρ(A×) �= ∅ (see Lemma 6.3.8(iii)).

The original idea behind the flow-inversion of a well-posed linear system
was to interchange the roles of the input and output (see Theorem 6.3.1). A
similar interpretation is valid for the flow-inversion of system nodes, too.

Theorem 6.3.14 Let S = [ A&B
C&D

]
be a flow-invertible system node on (Y, X,U ),

whose flow-inverse S× is also a system node (on (U, X, Y )). Let x and y be
the state trajectory and output function of S with initial time s ∈ R, initial
state xs ∈ X, and input function u ∈ L1

loc([s,∞); U ), and suppose that x ∈
W 1,1

loc ([s,∞); X ). Then y ∈ L1
loc([s,∞); Y ), and x and u are the state trajectory

and output function of S× with initial time s, initial state xs and input function y.

Proof By Theorem 4.7.11,
[

x
u

] ∈ L1
loc([s,∞);D (S)), y ∈ L1

loc([s,∞); Y ), and[ x
y
]

is the unique solution with the above properties of the equation[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
for almost all t ≥ s, x(s) = xs .

Since
[

1 0
C&D

]
maps D (S) continuously onto D (S×), this implies that

[ x
y
] =[

1 0
C&D

] [
x
u

] ∈ L1
loc([s,∞);D (S×)). Moreover, since

[
1 0

C&D

]−1 = [ 1 0
[C&D]×

]
, we

have for almost all t ≥ s,[
ẋ(t)
u(t)

]
=
[

A&B
0 1

] [
x(t)
u(t)

]
=
[

A&B
0 1

] [
1 0

[C&D]×

] [
1 0
C&D

] [
x(t)
u(t)

]
=
[

[A&B]×
[C&D]×

] [
x(t)
y(t)

]
.

By Theorem 4.7.11, this implies that x and u are the state and output function
of S× with initial time s, initial state xs , and input function y. �

With the help of Theorem 6.3.14 we are now ready to prove the following
result, that we announced after Definition 6.3.7.
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Corollary 6.3.15 Let � = [A B

C D

]
be an L p-well-posed linear system on

(Y, X,U ) with 1 ≤ p <∞. Then � is flow-invertible (in the sense of Defi-
nition 6.3.3) if and only if its system node S is flow-invertible (in the sense of
Definition 6.3.7) and the flow-inverted operator node S× is an L p-well-posed
system node.

Proof As we already observed after Definition 6.3.7, the necessity of the con-
dition above on S for � to be flow-invertible is clear from Theorem 6.3.6.
Conversely, suppose that S is flow-invertible, and that S× is a well-posed sys-
tem node. Denote the system induced by S× by �×. Then it follows from
Lemma 4.7.8 and Theorem 6.3.14 that for all x0 ∈ X and u ∈ W 2,1

loc (R+; U )
with

[ x0
u(0)

] ∈ D (S), and for all t ≥ 0,[
At Bτ t

0 1

] [
x0

π+u

]
=
[

x(t)
π+u

]
=
[
At
× B×τ t

C× D×

] [
x0

π+y

]
=
[
At
× B×τ t

C× D×

] [
1 0
C D

] [
x0

π+u

]
.

This set of data is dense in
[ X

L p(R+;U )

]
, so the same identity must be true for

all x0 ∈ X and u ∈ L p(R+; U ). In particular, this implies that D×π+ is a left-
inverse of Dπ+. A similar argument with � interchanged with �× shows that
D×π+ is also a right inverse of Dπ+. By Theorem 6.3.5, � is flow-invertible.

�

Our next theorem shows that compatibility is preserved under flow-inversion
in most cases.

Theorem 6.3.16 Let S = [ A&B
C&D

]
be a compatible operator node on (Y, X,U ),

and let
[

A|W B
C|W D

]
∈ B([ W

U

]
;
[

W−1
Y

])
be a compatible extension of S (here X1 ⊂

W ⊂ X and W−1 is defined as in Lemma 5.1.3). Suppose that S is flow-invertible.

Denote the flow-inverted operator node by S× =
[

[A&B]×
[C&D]×

]
, let X×1 and X×−1

be the analogues of X1 and X−1 for S×, and let W×−1 be the analogue of W−1

for S× (i.e., W×−1 = (α − A×)|W W for some α ∈ ρ(A×)).

(i) If D has a left inverse D−1
left ∈ B(Y ; U ), then X×1 ⊂ W and S× is

compatible with extended observation operator C×|W : W → U and
corresponding feedthrough operator D× given by

C×|W = −D−1
leftC|W ,

D× = D−1
left,

(6.3.22)

and the main operator A× of S× is given by

A× =
(

A|X − B D−1
leftC|W

)
|X×1

.
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In this case the space W−1 can be identified with a closed subspace of
W×−1, so that X ⊂ W−1 ⊂ X−1 ∩ X×−1. With this identification,

A|W = A×|W + B×C|W , B = B×D

(where by A|W and A×|W we mean the restrictions of A|X and A×|X to
W ).

(ii) If D is invertible, then W−1 = W×−1, A×W ⊂ W−1, B×U ⊂ W−1, and

the operator
[

A×|W B×
C×|W D×

]
∈ B([ W

U

]
;
[

W−1
Y

])
defined by[

A×|W B×
C×|W D×

]
=
[

A|W − B D−1C|W B D−1

−D−1C|W D−1

]
=
[

A|W 0
0 0

]
+
[

B
1

]
D−1
[−C|W 1

]
=
[

A|W 0
0 0

]
+
[

B
1

] [
C×|W 1

]
=
[

A|W 0
0 0

]
+
[

B×
1

] [−C|W 1
]

is a compatible extension of S×.

Proof (i) Take
[ x

y
] ∈ D (S×), and define u = [C&D]×

[ x
y
]
. Then

[
x
u

] ∈ D (S)
and y = C&D

[
x
u

] = C|W x + Du. Multiplying the above identity by D−1
left to

the left we get for all
[ x

y
] ∈ D (S×),

u = [C&D]×
[ x

y
] = −D−1

leftC|W x + D−1
left y.

The right-hand side is defined (and continuous) on all of W × Y . By (6.3.15),
for all y ∈ Y and all α ∈ ρ(A) ∩ ρ(A×),

(α − A×)−1 B×y = (α − A)−1 BD̂×(α)y ∈ W,

so R (B×) ∈ W×−1. This implies that
[

A×|W B×
C×|W D×

]
is a compatible extension of

S×, with C×|W = −D−1
leftC|W and D× = D−1

left. By (6.3.18), for all x ∈ X×1, we
have A×x = (A|X + BC×)x = (A|X − B D−1

leftC|W )x , as claimed.
Next we construct an embedding operator J : W−1 → W×−1. This operator

is required to be injective, and its restriction to X should be the identity operator.
We define

J = (α − A×|W − B×C|W )(α − A|W )−1,

J× = (α − A|W − BC×|W )(α − A×|W )−1.
(6.3.23)

The compatibility of S and S× implies that J ∈ B(W−1; W×−1) and J× ∈
B(W×−1; W−1) and by (6.3.18), both J and J× reduce to the identity opera-
tor on X .
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We claim that J× ∈ B(W×−1; W−1) is a left inverse of J ∈ B(W−1; W×−1),
or equivalently, that (α − A|W )−1 J× J (α − A)|W is the identity on W . To see
that this is the case we use (6.3.23), (6.3.22), (6.3.15), and (5.1.3) (in this order)
to compute

(α − A|W )−1 J× J (α − A)|W
= (α − A|W )−1(α − A|W − BC×|W )

× (α − A×|W )−1(α − A×|W − B×C|W )

= (1− (α − A|W )−1 BC×|W )(1− (α − A×|W )−1 B×C|W )

= (1+ (α − A|W )−1 B D−1
leftC|W )(1− (α − A|W )−1 BD̂−1(α)C|W )

= 1+ (α − A|W )−1 B
[
D−1

left−D̂−1(α)−D−1
leftC|W (α − A|W )−1 BD̂−1(α)

]
C|W

= 1+ (α − A|W )−1 B D−1
left

[
D̂(α)− D − C|W (α − A|W )−1 B

]
D̂−1(α)C|W

= 1.

This implies that the operator J is injective; hence it defines a (not necessarily
dense) embedding of W−1 into W×−1. In the sequel we shall identify W−1 with
the range of J . That W−1 is closed in W×−1 follows from the fact that J has a
bounded left inverse.

The identification of W−1 with a subspace of W×−1 means that the embed-
ding operator J = (α − A×|W − B×C|W )(α − A|W )−1 becomes the identity on
W−1, and hence, with this identification, (α − A)|W = (α − A×|W − B×C|W ),
or equivalently,

A|W = A×|W + B×C|W .

The remaining identity B = B×D can be verified as follows. By (6.3.15)
and the fact that A×|W = A|W − B×C|W ,

B×D̂(α) = (α − A×|W )(α − A|W )−1 B

= (α − A|W + B×C|W )(α − A|W )−1 B

= B + B×C|W (α − A|W )−1 B

= B + B×(D̂(α)− D)

= B×D̂(α)+ B − B×D.

Thus B = B×D.
(ii) Part (ii) follows from part (i) if we interchange S and S×. (This will also

interchange W−1 with W×−1 and J with J×.) �

Let us finally look at the flow-inversion of a regular system.

Theorem 6.3.17 Let � = [A B

C D

]
be a weakly regular (L p|Reg-well-posed)

flow-invertible linear system on (Y, X,U ) with system node S = [ A&B
C&D

]
,
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semigroup generator A, control operator B, and observation operator C. We
define the extensions C̃w and C̃s of the observation operator C as in Defini-
tion 5.4.1, and let D be the corresponding feedthrough operator (see Theorem
5.6.5).

(i) The system node S is compatible with extended system node
[

A|W B
C|W D

]
where W = D (C̃w) and C|W = C̃w, hence parts (i) and (ii) of Theorem
6.3.16 apply whenever D is left invertible or invertible, respectively. In
particular, if D is left-invertible, then the flow-inverted system �× is
compatible.

(ii) If S is strongly regular, then the operator D is coercive (see Definition
9.10.1). If, in addition, the closure of the range of D is complemented in
Y (this is, in particular, true if Y is a Hilbert space), then D is left
invertible, D (C̃×s

)
is a closed subspace of D (C̃s), and Theorem

6.3.16(i) applies with W = D (C̃s) and C|W = C̃×s (in particular, the
flow-inverted system �× is compatible).

(iii) Suppose that � is strongly regular. Then the flow-inverted system is
strongly regular iff D is invertible. In this case D (C̃×s

) = D (C̃s), and
Theorem 6.3.16(ii) applies with W = D (C̃s) and C|W = C̃s .

(iv) In the Reg-well-posed case both the original and the flow-inverted system
are strongly regular, D is invertible, and Theorem 6.3.16(ii) applies with
W = D (C̃s) and C|W = C̃s .

(v) In the L1-well-posed case with a reflexive state space X both the original
and the flow-inverted system are strongly regular, D is invertible, and
Theorem 6.3.16(ii) applies with W = D (C̃s) and C|W = C̃s .

(vi) If � is uniformly regular then the flow-inverted system �× is uniformly
regular, D is invertible, and Theorem 6.3.16(ii) applies with W = D (C̃s)
and C|W = C̃s .

Proof (i) See Theorem 5.6.4.
(ii) Let u ∈ U . Then, by the strong regularity of �,

lim
α→+∞

[
D̂(α)u − Du

] = 0.

Multiplying the function inside the limit by the bounded function D̂−1(α) (see
Lemma 4.6.2 and Corollary 6.3.12) to the left we get

u = lim
α→+∞ D̂−1(α)Du.

This implies

|u|U ≤ lim sup
α→+∞

‖D̂−1(α)‖ |Du|U ,
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or equivalently,

|Du|U ≥ L|u|U ,

where L = (lim supα→+∞‖D̂−1(α)‖)−1
> 0. Thus, D is coercive (see Defini-

tion 9.10.1), and it has a bounded left inverse defined on R (D). If R (D) is
complemented then this left inverse can be extended to all of Y (we extend it to
R (D) by continuity and define it to be zero on the complement). By Theorem
5.6.4, � is compatible with W = D (C̃s) and C|W = C̃s , and Theorem 7.5.1(i)
applies.

Next we intend to show that D (C̃×s

) ⊂ D (C̃s), and that, on its domain,
C̃×s = D−1

leftC̃s . Let x0 ∈ D (C̃×s

)
, i.e., suppose that the strong limit

C̃×s x0 = lim
α→+∞αC×(α − A×)−1x0

= lim
α→+∞αD̂−1(α)C(α − A)−1x0

exists; to get the second equality we have used Theorem 6.3.11. Subtract C̃×s x0

from both sides of this equation and multiply by the bounded function D̂(α) to
get

0 = lim
α→+∞

[
αC(α − A)−1x0 − D̂(α)C̃×s x0

]
= lim

α→+∞αC(α − A)−1x0 − DC̃×s x0.

This shows that D (C̃×s

) ⊂ D (C̃s), and that, on its domain, C̃×s = D−1
leftC̃s .

To show that D (C̃×s

)
is a closed subspace of D (C̃s) we must show that the

norms on these two spaces are equivalent. These norms are given by

|x |C̃s
= |x |X + sup

α>1+ωA

∣∣αC(α − A)−1x
∣∣,

|x |C̃×s
= |x |X + sup

α>1+ωA×

∣∣αC×(α − A×)−1x
∣∣

= |x |X + sup
α>1+ωA×

∣∣D̂−1(α)αC(α − A)−1x
∣∣.

Indeed, these norms are equivalent since we can always dominate the suprema
over (1+min{ωA, 1+ ωA×},max{ωA, ωA×}) by a constant times |x |X , and
both D̂(α) and D̂−1(α) are uniformly bounded on (1+max{ωA, 1+ ωA×},∞).

(iii) If D is invertible then, for each u ∈ U ,

lim
α→+∞

[
u − D̂(α)D−1u

] = 0.
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Multiplying the function inside the limit by the bounded function D̂×(α) =
D̂−1(α) to the left we get

0 = lim
α→+∞

[
D̂×(α)u − D−1u

] = lim
α→+∞ D̂×(α)u − D−1u.

Thus, the closed-loop system is strongly regular (and its feedthrough operator
is the expected D−1).

Conversely, suppose that the closed-loop system is strongly regular with
feedthrough operator D×. We know from (ii) that D is left invertible and that
D×D = 1. If we interchange � and �×, then the same argument shows that
D× is left invertible and that DD× = 1. Thus D and D× are invertible and
D× = D−1.

We know from (ii) that D (C̃×s

) ⊂ D (C̃s). To prove the converse inclusion
it suffices to interchange � and �× and apply (ii).

(iv)–(v) See (iii) and Lemma 5.7.1.
(vi) We know from (ii) that D is coercive, and by applying (ii) to the dual

system�d (see Theorem 6.2.15(iii)) we find that also D∗ is coercive. By Lemma
9.10.2(iii)–(iv), D is invertible. Repeating the computation at the beginning of
the proof of (iii) with strong limits replaced by limits in the operator norm (and
u replaced by the identity operator) we find that D×(α) tends to D−1 in operator
norm as α→+∞. �

In the case of a system with an analytic semigroup of the type studied in
Theorem 5.7.3 the question of the flow-invertibility of the system is particularly
easy:

Example 6.3.18 Let � = [A B

C D

]
be one of the systems considered in Theo-

rem 5.7.3. In all the different cases considered there, � is flow-invertible if
and only if D is invertible, in which case the closed-loop system is of the same
type as �. More precisely, the closed-loop semigroup A× can be extended
to an analytic semigroup on A×|Xα−1

on Xα−1. For all γ ∈ [α − 1, β + 1],
the spaces Xγ are invariant under A×|Xα−1

, and the restriction A×|Xγ
of

A×|Xα−1
to Xγ is an analytic semigroup on Xγ . The generator of A×|Xγ

is
(A − B D−1C)|Xγ+1 if γ ∈ [α − 1, β], and it is the part of A − B D−1C in
Xγ if γ ∈ (β, β + 1]. If we define X×α−1 = Xα−1, and let X×γ be the frac-
tional order space with index γ − α − 1 constructed by means of the semigroup
A×|Xα−1

on Xα−1, then X×γ = Xγ for all γ ∈ [α − 1, β + 1]. The closed-loop
observation operator is C× = (1− DK )−1C, the closed-loop control opera-
tor is B× = B(1− K D)−1, and the closed-loop feedthrough operator is D×
= D(1− K D)−1.

Proof Let us begin by showing that � is flow-invertible if and only if D is
invertible. Suppose that � is flow-invertible. Then, by Theorem 6.3.17(vi), D
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is invertible (and the flow-inverted system is uniformly regular). Conversely, if
D is invertible, then for all T > 0 and almost all t ∈ [0, T ],

D−1π[0,t)(Dπ[0,t)u)(t) = u(t)+
∫ t

0
D−1CAt−s

|Xα−1
Bu(s) ds.

The operator-norm of the integral term is dominated by the L1-norm of t �→
D−1CAt

|Xα−1
B (see, e.g., Theorems A.3.4(i) and A.3.7(i)), and by choosing T

small enough we can make this norm less than 1
2 . By the contraction mapping

principle, the right-hand side is invertible in B(L p|Reg([0, T );B(U ))), hence
π[0,t)Dπ[0,t) is invertible in B(L p|Reg([0, T );B(U ; Y ))). It then follows from
Theorem 6.3.5 that � is flow-invertible.

The formulas for the generators of the flow-inverted system are found in
Theorems 6.3.17(vi) and 6.3.16(ii). All the extra claims about the closed-loop
semigroup can be derived from Theorem 3.10.11. �

As the following theorem says, flow-inversion almost commutes with
duality:

Theorem 6.3.19 Let (Y, X,U ) be reflexive Banach spaces, let 1 < p <∞, let
� be an L p-well-posed linear system on (Y, X,U ), and let S be an operator
node on (Y, X,U ) (not necessarily the one induced by �).

(i) The system � is flow-invertible if and only if the causal dual system �d is
flow-invertible, in which case the flow-inverted systems satisfy
(�d )× =

[
1 0
0 −1

]
(�×)d

[
1 0
0 −1

]
.

(ii) The operator node S is flow-invertible if and only if S∗ is flow-invertible,
in which case the flow-inverted operator nodes satisfy
(S∗)× =

[
1 0
0 −1

]
(S×)∗

[
1 0
0 −1

]
.

(iii) If S is flow-invertible and both S and S∗ are strongly regular with
feedthrough operators D, respectively D∗, then D is invertible. In this
case both S× and (S∗)× are strongly regular.

Proof (i) It follows from Definition 6.3.3, Lemmas 3.5.2 and 3.5.13, and Theo-
rems 6.2.3 and 6.3.5 that� is flow-invertible if and only if�d is flow-invertible.
That (�d )× =

[
1 0
0 −1

]
(�×)d

[
1 0
0 −1

]
follows from (6.2.3) and (6.3.3) (recall

that, by Lemma 3.5.13 and Example 3.5.11, R∗ = R, τ t R= Rτ−t , and (τ t )∗ =
τ−t ).

(ii) By Theorem 6.3.9, the operator node S is flow-invertible with flow-
inverse S× if and only if (6.3.13) holds (for some α ∈ ρ(A×)). This identity
holds if and only if the dual identity holds which we get by taking the adjoint of
each side. The adjoint of the left-hand side of (6.3.13) is

([
α 0
0 0

]− S∗
)−1

, i.e.,
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it is equal to the left-hand side of (6.3.13) with α replaced by α and S replaced
by S∗. The adjoint of the right-hand side of (6.3.13) is[

(α − (A×)∗)−1 (α − A×∗|X∗ )
−1(C×)∗

−(B×)∗(α − (A×)∗)−1 − (D̂×(α))∗

]
,

and by Lemma 6.2.14, this is equal to the right-hand side of (6.3.13) with
α replaced by α and S× replaced by

[
1 0
0 −1

]
(S×)∗

[
1 0
0 −1

]
. Thus, S is flow-

invertible with flow-inverse S× if and only if S∗ is flow-invertible with flow-
inverse

[
1 0
0 −1

]
(S×)∗

[
1 0
0 −1

]
.

(iii) The regularity of � and �d combined with (ii) and Theorem 6.3.17(ii)
implies that both D and D∗ are coercive. By Lemma 9.10.2(iii)–(iv), D
is invertible. The strong regularity of S× and (S∗)× follow from Theorem
6.3.17(ii). �

6.4 Time-inversion

The systems that we have studied so far have been either causal and prop-
agate information in the forward time direction, or anti-causal and propa-
gate information in the backward time direction. In the finite-dimensional
case this distinction is not necessary: a linear system with finite-dimensional
state space can be solved both forward in time and backward in time.
Some infinite-dimensional systems have the same property. We shall refer
to this property as time-invertibility. Whereas flow-invertibility is a property
of the input/output map of the system, time-invertibility is a property of the
semigroup.

Let x and y be the state trajectory and output function of an L p|Reg-well-
posed linear system � = [A B

C D

]
on (Y, X,U ) with initial time s ∈ R, initial

state x(s) ∈ X , and input function u ∈ L p|Regloc([s,∞,U ). Then, for all t ≥ s,
by Definitions 2.2.6 and 2.2.7,

x(t) = At−s x(s)+Bt
su,

π[s,t) y = Ct
s x(s)+Dt

su, t ≥ s.
(6.4.1)

We fix t > s and try to interpret t as the initial time and s as the final time, still
regarding u to be the input function and y the output function. Since x(t) and
π[s,t) y depend only on x(s) and the restriction of u to [s, t), we can, without loss
of generality, assume that u vanishes outside of [s, t), i.e., u = π[s,t)u. Clearly,
we can solve x(s) and π[s,t) y from (6.4.1) for all possible choices of x(t) ∈ X
and u ∈ L p|Reg([s, t); U ) if and only if At−s is invertible. When this is the case,
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we denote (At−s)−1 by As−t and get from (6.4.1),[
x(s)
π[s,t) y

]
=
[

1 0
Ct

s Dt
s

] [
x(s)
π[s,t)u

]
=
[

1 0
Ct

s Dt
s

] [
At−s Bt

s

0 1

]−1 [
x(t)
π[s,t)u

]
=
[

As−t − As−tBt
s

Ct
sA

s−t Dt
s − Ct

sA
s−tBt

s

] [
x(t)
π[s,t)u

]
, t ≥ s.

(6.4.2)
This equation resembles (6.4.1), but it cannot correspond to a causal system
since the initial time t is bigger than the final time s. However, as the following
theorem says, it can be interpreted as the input/state/output relationship of an
anti-causal system.

Theorem 6.4.1 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ), and suppose that At is invertible for some t > 0. Then At is invertible
for all t ≥ 0 and A becomes a strongly continuous group if we define At =
(A−t )−1 for t < 0. For all −∞ < s ≤ t <∞ we define[

(Aa)t
s (Ba)t

s

(Ca)t
s (Da)t

s

]
=
[

1 0

Ct
s Dt

s

][
At−s Bt

s

0 1

]−1

. (6.4.3)

Then�a = [Aa Ba

Ca Da

]
is an anti-causal L p|Reg-well-posed linear system, where

Aa
s = (Aa

s )0 = As for s ≤ 0 and

Ba = lim
t→∞(Ba)t

0, Ca = lim
s→−∞(Ca)0

s , Da = lim
s→−∞
t→∞

(Da)t
s . (6.4.4)

Moreover, if x and y are the state trajectory and output function of � with
initial time s, initial state x(s), and input function u ∈ L p|Regloc([s,∞); U ),
then, for all t ≥ s, [

x(s)
π[s,t) y

]
=
[

(Aa)t
s (Ba)t

s

(Ca)t
s (Da)t

s

][
x(t)
π[s,t)u

]
. (6.4.5)

The intuitive interpretation of this theorem is that �a is the ‘same’ system
as �, but it propagates information in the backward time direction instead of
the forward time direction. Observe, in particular, that Aa

t = At for all t ≤ 0.

Proof of Theorem 6.4.1 We begin with the proof of the fact that At is invertible
for all t > 0 if it is invertible for one t > 0. Assume that At0 is invertible.
Then for all 0 ≤ t ≤ t0, At0 = At0−tAt = AtAt0−t . This implies that At is both
injective and onto, hence invertible. By the closed graph theorem, the inverse
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is continuous. To remove the condition t ≤ t0, it suffices to observe that A2t0 =
At0At0 is invertible, hence A4t0 = A2t0A2t0 is invertible, etc.

Since At is invertible for all t ≥ 0, we can define At for t < 0 by At =
(A−t )−1, and the semigroup property As+t = AsAt is then valid for all s, t ∈ R,
as is easily shown. The strong left-continuity at zero of this group follows from
the strong left-continuity of At at t = 1 (see Lemma 2.2.13) and the fact that
At = At+1A−1.

In particular, we observe that t �→ Aa
−t = A−t is a C0 semigroup, as required

by Definition 6.1.1.
The remainder of the proof of the fact that �a is an anti-causal L p|Reg-

well-posed linear system appeals to Theorem 6.1.10. To be able to apply this
theorem, we must first show that the time-invariance condition (2.2.5) and
the composition condition (6.1.7) hold when we replace At

s , Bt
s , Ct

s , and Dt
s

by (Aa)t
s , (Ba)t

s , (Ca)t
s , and (Da)t

s . The time invariance condition for (Aa)t
s ,

(Ba)t
s , (Ca)t

s , and (Da)t
s follows from (2.2.5) and (6.4.3), so this only leaves the

composition property.
Let x and y be the state trajectory and output function of� with initial time s,

initial state x(s), and input function u ∈ L p|Regloc([s,∞); U ). Then, by (6.4.2)
and (6.4.3), x(t) and π[s,t) y are given by (6.4.5) for all t ≥ s. In particular, for
all t ≥ r ≥ s,  x(s)

π[s,r ) y
π[r,t) y

 =
 1 0 0

Cr
s Dr

s 0
0 0 1

 x(s)
π[s,r )u
π[r,t) y

 ,
 x(r )
π[s,r )u
π[r,t) y

 =
Ar−s Br

s 0
0 1 0
0 0 1

 x(s)
π[s,r )u
π[r,t) y

 ,
 x(r )
π[s,r )u
π[r,t) y

 =
 1 0 0

0 1 0
Ct

r 0 Dt
r

 x(r )
π[s,r )u
π[r,t)u

 ,
 x(t)
π[s,r )u
π[r,t)u

 =
At−r 0 Bt

r

0 1 0
0 0 1

 x(r )
π[s,r )u
π[r,t)u

 .

(6.4.6)

We now interpret
[

x(t)
π[s,t)u

]
as the initial data, and solve successively (working

backwards) x(r )
π[s,r )u
π[r,t)u

 ,
 x(r )
π[s,r )u
π[r,t) y

 ,
 x(s)
π[s,r )u
π[r,t) y

 ,
 x(s)
π[s,r ) y
π[r,t) y

 , [
x(s)
π[s,t) y

]
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to get (the inverses below exist since Ar−s and At−r are invertible)[
(Aa)t

s (Ba)t
s

(Ca)t
s (Da)t

s

]
=
[

1 0 0
0 π[s,r ) π[r,t)

] 1 0 0
Cr

s Dr
s 0

0 0 1

Ar−s Br
s 0

0 1 0
0 0 1

−1

×
 1 0 0

0 1 0
Ct

r 0 Dt
r

At−r 0 Bt
r

0 1 0
0 0 1

−11 0
0 π[s,r )

0 π[r,t)



=
[

1 0 0
0 π[s,r ) π[r,t)

] (Aa)r
s (Ba)r

s 0

(Ca)r
s (Da)r

s 0
0 0 1



×

 (Aa)t
r 0 (Ba)t

r

0 1 0
(Ca)t

r 0 (Da)t
r


1 0

0 π[s,r )

0 π[r,t)

 ,
which is exactly (6.1.7) with At

s , Bt
s , Ct

s , and Dt
s replaced by (Aa)t

s , (Ba)t
s ,

(Ca)t
s , and (Da)t

s .
By Theorem 6.1.10, the system �a is an anti-causal L p|Reg-well-posed

linear system. �

By reversing the direction of time in Theorem 6.4.1 we get a new causal
system:

Definition 6.4.2 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ). We call � time-invertible if At is invertible for some t > 0. When
this is the case, then we call the system �a in Theorem 6.4.1 the backward
system and the system � Rthat we get from �a by reflecting the time axis, i.e.,

� R=
[

(A R)t B R

C R D R

]
=
[

(Aa)−t Ba R

RCa RDa R

]
,

the time-inverted system.

Theorem 6.4.3 Let � = [A B

C D

]
be a time-invertible well-posed linear system

on (Y, X,U ) with system node S = [ A&B
C&D

]
. Then the backward system �a in

Theorem 6.4.1 has the same system node S as �, and the system node S Rof

the time-inverted system � Ris given by
[

[A&B] R

[C&D] R

]
= [ −A&B

C&D

]
. In particular,

D (S R) = D (S) and � Ris compatible if and only if � is compatible.

Proof Let
[ x0

u0

] ∈ D (S), i.e., x0 ∈ X , u0 ∈ U , and A|X x0 + Bu0 ∈ X . Choose
an arbitrary u ∈ C1(R+; U ) satisfying u(0) = u0, and let x and y be the state
trajectory and output function of � with initial time zero, initial state x0, and
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input function u. By Theorem 4.6.11, x ∈ C1(R
+

; X ), y ∈ W 1,p
loc (R

+
; Y ) (or

y ∈ C1(R
+

; Y ) in the Reg-well-posed case),
[

x(t)
u(t)

]
∈ D (S) for all t ≥ 0, and[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0.

Define x̃(t) = x(−t) for t ≤ 0, ũ = Ru, and ỹ = Ry. Then obviously x ∈
C1((R

−
; X ), u ∈ W 1,p(R

−
; Y ), y ∈ W 1,p(R

−
; Y ),

[
x̃(t)
ũ(t)

]
∈ D (S) for all t ≤ 0,

and [− ˙̃x(t)
ỹ(t)

]
= S

[
x(t)
u(t)

]
, t ≤ 0. (6.4.7)

On the other hand, by Theorem 6.4.1 and Definition 6.4.2, the restriction of x̃
and ỹ to [−1, 0] are the state trajectory and output function of � Rwith initial
time−1, initial state x̃(−1), and input functionπ[−1,0]ũ. Therefore, by Theorem
4.6.11, [

˙̃x(t)
ỹ(t)

]
= S R

[
x(t)
u(t)

]
, −1 ≤ t ≤ 0.

Taking t = 0 we find that, for all
[ x0

u0

] ∈ D (S),[
[A&B] R

[C&D] R

] [
x0

u0

]
=
[−A&B

C&D

]
.

This shows that D (S) ⊂ D (S R), and that
[

[A&B] R

[C&D] R

]
= [ −A&B

C&D

]
on D (S). To

get the opposite inclusion D (S R) ⊂ D (S) we interchange � and � Rwith each
other and repeat the same argument. That �a has the same system node as �
follows from Definition 6.1.5.

Since � Rhas the same observation/feedthrough node as �, and since B R=
−B, it is obvious that � Ris compatible if and only if � is compatible. �

The notion of time-inversion can easily be extended to an arbitrary operator
node.

Definition 6.4.4 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ). Then we

call the operator node S R= [ −A&B
C&D

]
the time-inverse of S.

Indeed, by Definition 4.7.2,
[ −A&B

C&D

]
is an operator node on (Y, X,U ) when-

ever S is so.
There is a very simple relationship between the transfer function of a given

operator node and the transfer function of its time-inverse.

Lemma 6.4.5 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ) with main

operator A and transfer function D̂. Then the main operator A R, the control
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operator B R, and the transfer function D̂ Rof the time-inverted operator node
S R= [ −A&B

C&D

]
are given by

A R= −A, B R= −B, D̂ R(z) = D̂(−z), −z ∈ ρ(A).

In particular, ρ(A R) = −ρ(A).

Proof Obviously A R= −A and B R= −B. This together with (4.7.1) implies
that ρ(A R) = −ρ(A) and that D̂ R(z) = D̂(−z) for z ∈ ρ(A R). �

As the following lemma shows, time-inversion almost commutes with dual-
ity (in the same sense as flow-inversion almost commutes with duality):

Theorem 6.4.6 Let (Y, X,U ) be reflexive Banach spaces, let 1 < p <∞, let
� be an L p-well-posed linear system on (Y, X,U ), and let S be an operator
node on (Y, X,U ) (not necessarily the one induced by �).

(i) The system � is time-invertible if and only if the causal dual system �d is
time-invertible, in which case the time-inverted systems satisfy
(�d ) R= [ −1 0

0 1

]
(� R)d

[ −1 0
0 1

]
.

(ii) The time-inverse S Rof S and the time-inverse (S∗) Rof the dual operator
node S∗ are related by (S∗) R= [ −1 0

0 1

]
(S R)∗

[ −1 0
0 1

]
.

We leave the easy proof to the reader.
We end this section with a number of examples which illustrate various

things that can happen when a well-posed linear system is time-inverted. (Some
of these examples also refer to the notion of time-flow-inversion, which will be
discussed in the next section.)

Example 6.4.7 The circular shift � in Example 7.7.1 is time-invertible.
Both this system and the corresponding time-inverted system are regular.
The space W = (X + BU )1 introduced in Lemma 4.3.12 is given by W =
W 1,p([0, T ]; U ). On this space, the ‘forward extension’ of C (i.e., the extension
of C with respect to the original system) is given by Cx = x(0) and the cor-
responding ‘forward feedthrough operator’ is D = 0, whereas the ‘backward
extension’ of C (i.e., the extension of C with respect to the time-inverted system)
is given by C̃x = x(0)− x(T ) and the corresponding ‘backward feedthrough
operator’ is D̃u = u. In particular, the forward and backward extensions are
different.

Proof In this proof we use the same notation as in Example 7.7.1.
Clearly, by the construction in Lemma 4.3.12 and by the description of

D (S) given in Example 7.7.1, W = W 1,p([0, T ]; U ). By the same example and
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Definition 5.6.1, the forward and backward feedthrough operators are given by

D = lim
λ→+∞

D̂(λ) = 0, D̃ = lim
λ→−∞

D̂(λ) = 1.

For all (x, u) ∈ D (S) we have C&D
[

x
u

] = x(0) (see Example 7.7.1), and by
Theorem 5.6.4,

Cx = Cx + Du = C&D

[
x
u

]
= x(0) = C̃x + D̃u = C̃x + u.

For each x ∈ W we can choose a unique u ∈ U so that
[

x
u

] ∈ D (S), namely
u = x(T ). Therefore we must have Cx = x(0) and C̃x = x(0)− x(T ). �

Example 6.4.8 There exists a regular time-invertible L2-well-posed linear sys-
tem on (C, X,C) (where X is a Hilbert space) whose input/output map is zero,
such that the corresponding time-inverted system is not regular (and its in-
put/output map is nonzero). In particular, weak, strong, and uniform regularity
are not preserved under time-inversion in general.

Proof Define D̂(z) = g∗(z)g(z), where g is the function defined in Example
5.7.4. Then D̂ is a bounded analytic function in the half-plane 
z ≥ 0, and
limλ→+∞ D̂(λ) does not exist, if we choose a to be large enough. By Theorem
10.3.5, D̂ is the transfer function of some D ∈ TIC(C). Let

� =
[

A B

C D

]
=
[

τ π−

π+D D

]

be the bilateral input shift realization of D on (C, L2(C); C) introduced in
Example 2.6.5(iii). This system is not regular (in this case weak, strong, and
uniform regularity are equivalent since both the input and the output space
are one-dimensional). It is time-invertible since τ is a group. Let us compute
the anti-causal time-inverted input/output map (Da)t

s in Theorem 6.4.1. By
Definition 2.2.6(iii), (6.4.2), and (6.4.3),

(Da)t
s = Dt

s − π[s,t)τ
−sπ+Dτ s−tπ−τ tπ[s,t)

= Dt
s − π[s,t)τ

−sDτ s−tτ tπ[s,t)

= Dt
s − π[s,t)Dπ[s,t) = 0.

Thus, the input/output map of the time-inverted system is zero, and the time-
inverted system is regular. We get the system described in Example 6.4.8 by
interchanging � and � R. �

Note that in this example the spectrum of the generator (which is the imagi-
nary axis) separates the open right half-plane C+ from the open left half-plane
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C−, and the restrictions of D̂ to C+, respectively C−, are not analytic continu-
ations of each other. The restriction of D̂ to C− is zero, and so is the restriction
of D̂ Rto C+, whereas the restriction of D̂ to C+ and the restriction of D̂ Rto
C− are nonzero.

Our following example is of a similar nature, but it is even more striking:

Example 6.4.9 Let U and Y be Hilbert spaces, let D̂+ be an arbitrary bounded
analytic B(U ; Y )-valued function on the open right half-plane C+, and let D̂−
be an arbitrary bounded analyticB(U ; Y )-valued function on the open left half-
plane C−. Then there is a stable time-invertible L2-well-posed linear system
� on (Y, L2(R; U ),U ) whose transfer function D̂ is defined on C \ jR, and
satisfies

D̂(z) =
{

D̂+(z), 
z > 0,

D̂−(z), 
z < 0.

The semigroup of this system is the left-shift group τ on L2(R; U ), and its
spectrum separates C+ from C−.

Here ‘stable’ means that � is ω-bounded with ω = 0. See Definition 8.1.1.

Proof Our construction of the realization of the given transfer function is a
slight modification of the bilateral input shift realization described in Example
2.6.5(iii); another possibility would have been to modify the bilateral output
shift realization described in Example 2.6.5(iv).

We take the state space of� to be X = L2(R; U ) and we take the semigroupA

of� to be the bilateral left shift group τ on X described in Example 2.3.2(i). The
generator d

ds of this group is described in Example 3.2.3. The space X1 = D ( d
ds

)
is given by X1 = W 1,2

ω (R; U ), and the resolvent set of d
ds is C− jR.

We let D+ ∈ TIC2(U ; Y ) be the causal time-invariant operator from
L2(R; U ) to L2(R; Y ) whose transfer function, restricted to C+, is D̂+ (see
Theorem 10.3.5), and we let D− be the causal time-invariant operator from
L2(R; U ) to L2(R; Y ) whose transfer function, restricted to C−, is D̂− in the
following sense: we require the transfer function of the causal time-invariant
operator RD− Rto be the function z �→ D̂−(−z) for z ∈ C+. Both of these oper-
ators map X1 = W 1,2

ω (R; U ) into W 1,2
ω (R; Y ) since they intertwine the left-shifts

on L2(R; U ) and on L2(R; Y ) (see Theorem 3.14.15).
We define the system � by

� =
[

A B

C D

]
=
[

τ π−

π+(D+ −D−) D+

]
.

Indeed, it is easy to see that this is an L2-well-posed linear system. If D− =
0, then this system is identical to the bilateral input realization described in
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Example 2.6.5(iii). In particular, it has the same control operator B as that
realization (see Example 4.2.6). Its observation operator is different, namely

Cu = (D+u)(0)− (D−u)(0), u ∈ W 1,2
ω (R; U ).

The system � is time-invertible, since A is a group. Let us first compute the
anti-causal time-inverted system�a described in Theorem 6.4.1. Using (6.4.3),
we get (as for any time-inverted system)[

(Aa)t
s (Ba)t

s

(Ca)t
s (Da)t

s

]
=
[

As−t −As−tBt
s

Ct
sA

s−t (Dt
s − Ct

sA
s−tBt

s)

]
,

which in this particular case simplifies into[
(Aa)t

s (Ba)t
s

(Ca)t
s (Da)t

s

]
=
[

τ s−t −τ sπ[s,t)

π[s,t)(D+ −D−)τ−t π[s,t)D−π[s,t)

]
.

Letting s →−∞ and t →+∞ as described in Theorem 6.1.10 we get for all
t ∈ R, [

(Aa)t Ba

Ca Da

]
=
[

τ−t −π+
π−(D+ −D−) D−

]
.

In particular, the input/output of the time-inverted system � Ris D R= RD− R,
and this implies that the restriction of the transfer function D̂ Rof � Rto C+ is
the function z �→ D̂−(−z). Equivalently, the restriction of the transfer function
of the original system � to C− is D̂−. �

Example 6.4.10 There is a stable L2-well-posed time-invertible single input
single output system � such that neither � nor the time-inverted system � R

is regular. The spectrum of the semigroup generator A is contained in the
imaginary axis jR and it does not separate the open right half-plane from the
open left half-plane.

This example is based on Example 6.4.9, with U = Y = C and with specific
choices of D̂− and D̂+, but using a smaller state space, after factoring out a
redundant subspace of L2(R).

Proof Let E = (−∞,−1] ∪ [1,∞) and put % = C \ j E . Thus, % contains
the open left and right half-planes and also a connecting bridge between them.
For s ∈ %, s2 + 1 is not a real number in R

−
. Since the logarithm function can

be defined to be analytic on C \ R
−

and such that log z is real for z > 0, we can
define

D̂(s) = cos log(s2 + 1), s ∈ %. (6.4.8)
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Then D̂ is a bounded analytic function on% (its nontangential limits on j E are
different, depending if we come from the right or from the left). Moreover, D̂

does not have limits as s →+∞ or s →−∞ along the real axis.
We now use Example 6.4.9 to construct a time-invertible realization � of D̂

(which is not yet the final realization). We simply take D̂+ to be the restriction
of D̂ to C+, and D̂− to be the restriction of D̂ to C−. According to Example
6.4.9 we get a realization � whose state space is L2(R; C), whose main group
is τ t , with generator d

ds and D ( d
ds

) = W 1,2
ω (R; C). The input map is π−, and

the output map is π+(D+ −D−).
Since D̂+( jω)− D̂−( jω) = 0 if (and only if) ω ∈ [−1, 1], the space X0 of

all band-limited functions in L2(R; C) whose spectrum is confined to [−1, 1]
(i.e., their bilateral Laplace transforms vanish on j E) is an unobservable sub-
space for� (this means that X0 is an invariant subspace for A and X0 ⊂ N (C)).
Moreover, X0 is invariant also for the adjoint semigroup A∗. We factor out X0,
obtaining a reduced system � whose state space is the orthogonal complement
of X0 (see Theorem 9.1.9(ii)). Thus, the state space of � is

X = {x ∈ L2(RC) | x̂ ∈ L2( j E ; C)}.
Thus, the functions in X contain ‘only high frequencies.’ The semigroup A of the
reduced system� is the restriction of τ to X . The spectrum of the generator A of
this semigroup is j E , and so ρ(A) = % is connected. Denoting the orthogonal
projection of L2(R; C) onto X by πX , we find that the input map is B = πXπ−.
The output map of � is C = π+(D+ −D−)|X . The extended input/output map
of the reduced system � coincides with that of �, and therefore the restriction
of the transfer function D̂ of � to C+ is D̂+. As % is connected, the transfer
function of � must be equal to the (analytic) function D̂ defined in (6.4.8) on
all of %.

Finally, we make an interesting observation. In this example D̂+(s) =
D̂−(−s) for all s ∈ C+, and% is invariant under a 180◦ rotation of the complex
plane. In particular, D− = RD R. This implies that the realization� constructed
as in Example 6.4.9 has the property that � Ris unitarily similar to�, with sim-
ilarity operator− R. Since Rcommutes with πX , the reduced system � has the
same property: � Ris unitarily similar to �, with similarity operator − R. �

Remark 6.4.11 The construction presented in Example 6.4.10 can be extended
into a general procedure to construct time-invertible systems with ρ(A) con-
nected, whose transfer functions behave in a specified way at+∞ and−∞. In
all the cases we may choose the group A to be the same left-shift as in Example
6.4.10, and we only vary the transfer function D̂. We start with an arbitrary
H∞ function ϕ in the unit disk D−. Then we use a conformal map η to map the
unit disk onto the region % in Example 6.4.10 in such a way that 1 is mapped
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onto +∞ and −1 is mapped onto −∞. After that we define D̂(s) = ϕ(η−1(s))
and realize D̂ in the same way as we did in Example 6.4.10. By an appropriate
choice of ϕ we can adjust the behavior of D̂ at ±∞ (and also at any point of
j E). For example, if ϕ is bounded away from zero at ±1 but does not have
limits (taken along the real axis) at these points, then the system that we get is
time-invertible, flow-invertible, and time-flow-invertible, but neither the system
itself nor any of the inverted systems is regular.

6.5 Time-flow-inversion

Suppose that we have a well-posed time-invertible system � for which the
time-inverted system is flow-invertible, or alternatively, suppose that� is flow-
invertible and that the flow-inverted system is time-invertible. In both cases
the final result will be the same in the following sense. Let x and y be the
state trajectory and output function of � = [A B

C D

]
on (Y, X,U ) with initial

time s ∈ R, initial state x(s) ∈ X , and input function u ∈ L p|Regloc([s,∞,U ).
Then, for all t ≥ s, (6.4.1) holds. Time-inversion of this system means that we
interpret x(t) and u as the given data and solve for x(s) and y, and flow-inversion
of the resulting system means that we interpret x(t) and π[s,t) y as initial data
and solve for x(s) and π[s,t)u. If we do the inversions in the opposite order we
still end up with the same interpretation.

Actually, the final result, namely the interpretation of x(t) and π[s,t) y as the
given data and x(s) and π[s,t)u as the derived data is possible under weaker
assumptions than those indicated above: the original system � need neither
be time-invertible nor flow-invertible. The only important property is that the

operator �t
s =
[

At
s Bt

s

Ct
s Dt

s

]
on the right-hand side of (6.4.1) is invertible from[

X
L p |Reg([s,t);U )

]
to
[

X
L p |Reg([s,t);Y )

]
for all s < t . In this case we call the system

time-flow-invertible. Solving (6.4.1) for x(s) and π[s,t)u we get[
x(s)
π[s,t)u

]
=
[
At

s Bt
s

Ct
s Dt

s

]−1 [
x(t)
π[s,t) y

]
, t ≥ s. (6.5.1)

By now it should come as no surprise that this can be interpreted as a well-posed
linear system, which must be anti-causal since the initial time t is bigger than
the final time s.

Theorem 6.5.1 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and suppose that�t
s =
[

At
s Bt

s

Ct
s Dt

s

]
is invertible as an operator from

[
X

L p |Reg([s,t);U )

]
to
[

X
L p |Reg([s,t);Y )

]
for some −∞ < s < t <∞. Then �t

s is invertible between
these spaces for all−∞ < s ≤ t <∞ (note that �t

t is the identity operator on
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[
X
0

]
). For all −∞ < s ≤ t <∞ we define

(�b)t
s =
[

(Ab)t
s (Bb)t

s

(Cb)t
s (Db)t

s

]
=
[

At
s Bt

s

Ct
s Dt

s

]−1

, (6.5.2)

and extend (Cb)t
s and (Db)t

s to L p|Regloc(R; U ) by requiring (Cb)t
s = (Cb)t

sπ[s,t)

and (Db)t
s = (Db)t

sπ[s,t). Then �b =
[

Ab Bb

Cb Db

]
is an anti-causal L p|Reg-well-

posed linear system, where Ab
s = (Ab

s )0 = As for s ≤ 0 and

Bb = lim
t→∞(Bb)t

0, Cb = lim
s→−∞(Cb)0

s , Db = lim
s→−∞
t→∞

(Db)t
s . (6.5.3)

Moreover, if x and y are the state trajectory and output function of � with
initial time s, initial state x(s), and input function u ∈ L p|Regloc([s,∞); U ),
then, for all t ≥ s, [

x(s)
π[s,t)u

]
=
[

(Ab)t
s (Bb)t

s

(Cb)t
s (Db)t

s

][
x(t)
π[s,t) y

]
. (6.5.4)

Proof of Theorem 6.5.1 We begin with the proof of the fact that�t
s is invertible

for all s < t if it is invertible for some s < t . Assume that �t0
s0

is invertible
from

[
X

L p |Reg([s0,t0);U )

]
to
[

X
L p |Reg([s0,t0);Y )

]
where s0 < t0. For every r ∈ [s0, t0], it

follows from (2.2.10) that �r
s0

is injective and that �t0
r is onto. Using the time

invariance (2.2.5) we observe that �s0+t0−r
s0

is onto, and replacing s0 + t0 − r
by r we find that�r

s0
is onto. Being both injective and onto,�r

s0
is invertible. By

the closed graph theorem, the inverse is continuous. We use the time-invariance
(2.2.5) once more to conclude that �t

s is invertible whenever t − s ≤ T where
T = t0 − s0. To remove the condition t − s ≤ T we observe that, by (2.2.10)
with s = 0, r = T , and t = 2T , �2T

0 is invertible, hence �4T
0 is invertible, etc.

Thus,�t
s is invertible for all s < t , and (�b)t

s is well-defined. It follows from
(6.5.1) and (6.5.2) that (6.5.4) holds.

Next we claim that (6.1.7) holds with �t
s replaced by (�b)t

s . However, this
follows immediately from (6.5.2) and the fact that �t

s satisfies (2.2.10) (see
Lemma 2.2.8).

By definition, (Ab)0
0x = x for all x ∈ X . Let us show that also

limt↑0(Ab)0
t x = x for all x ∈ X . Take an arbitrary x0 ∈ X , and define[

x(−1)
π[−1,0)u

]
=
[

(Ab)0
−1

(Cb)0
−1

]
x0,

x(t) = At
−1x(−1)+Bt

−1u, −1 < t ≤ 0.

Then x(t) is the state trajectory of� with initial time−1, initial state x(−1), and
input function u. By (6.5.2), x(0) = x0 and the corresponding output function
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vanishes on [0, 1). This combined with (6.5.4) shows that x(t) = (Ab)0
t x0 for all

t ∈ [−1, 0]. By Theorems 2.2.12 and 2.3.3, limt↑0 x(t) = limt↑0(Ab)0
t x0 = x0.

By Theorem 6.1.10, �b is an anti-causal L p|Reg-well-posed linear
system. �

It is often convenient to replace the anti-causal system �b in Theorem 6.5.1
by the corresponding causal system.

Definition 6.5.2 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

We call � time-flow-invertible if �t
s =
[

At
s Bt

s

Ct
s Dt

s

]
is invertible for some s < t .

When this is the case, then we call the system � R
× that we get from the system

�b in Theorem 6.5.1 by reflecting the time axis, i.e.,

� R
× =

[
(A R
×)t B R

×
C R
× D R

×

]
=
[

(Ab)−t Bb R

RCb RDb R

]
,

the time-flow-inverted system.

As our following theorem shows, there is a simple connection between the
time-flow-inversion of � and the inverse of the Lax–Phillips model induced by
�.

Theorem 6.5.3 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ), let ω ∈ R, and let T be the Lax–Phillips model of type L p|Regω
induced by �. Then � is time-flow-invertible if and only if T is invertible, in
which case the Lax–Phillips model T R

× of type L p|Reg−ω induced by � R
× is

given by

T R
× =

0 0 R
0 1 0
R0 0

T−1

0 0 R
0 1 0
R0 0

 . (6.5.5)

Proof Clearly, as Rmaps L p|Regω(R−; Y ) and L p|Regω(R+; U ) onto
L p|Reg−ω(R+; Y ), respectively L p|Reg−ω(R−; U ), the state space of the semi-
group on the right hand side of (6.5.5) coincides with the state space of T R

×.

Let
[ y0

x0
u0

]
∈
[

L p |Regω(R−;Y )
X

L p |Regω(R+;U )

]
, let t > 0, and let

[ yt
xt
ut

]
= Tt

[ y0
x0
u0

]
. This means

explicitly that

π(−∞,−t) yt = τ t y0,[
xt

π[0,t)τ
−t yt

]
=
[
At Bt

0

Ct
0 Dt

0

] [
x0

π[0,t)u0

]
,

ut = τ tπ[t,∞)u0.
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The first and last equations define invertible mappings of L p|Reg(R−; Y ) and
L p|Reg([t,∞); U ) onto L p|Reg((−∞,−t); Y ), respectively L p|Reg(R+; U ),
so T is invertible if and only if � is time-flow-invertible. In this case we get
(see also Lemma 6.1.8)

y0 = τ−tπ(−∞,−t) yt ,[
x0

Rt/2π[0,t)u0

]
=
[

(A R)t
s (B R)t

s

(C R)t
s (D R)t

s

] [
xt

Rt/2π[0,t)τ
−t yt

]
,

π[t,∞)u0 = τ−t ut ,

or equivalently,

π(−∞,−t) Ru0 = τ t Rut ,[
x0

τ−tπ[−t,0) Ru0

]
=
[

(A R)t
s (B R)t

s

(C R)t
s (D R)t

s

] [
xt

π[0,t) Ryt

]
,

Ry0 = τ tπ[t,∞) Ryt .

This is just another way of writing the formula which we get by applying both

sides of (6.5.5) to
[

Rut
xt
Ryt

]
. �

Next we investigate the system node of the time-flow-inverted system.

Theorem 6.5.4 Let � = [A B

C D

]
be a time-flow-invertible well-posed linear

system on (Y, X,U ) with system node S = [ A&B
C&D

]
. Then the operator

[
1 0

C&D

]
maps D (S) continuously onto D (S R

×
)
, its inverse is

[
1 0

[C&D] R
×

]
, and

[
A&B
C&D

]
=
[−[A&B] R

×
0 1

] [
1 0

[C&D] R
×

]−1

(on D (S)), (6.5.6)[
[A&B] R

×
[C&D] R

×

]
=
[−A&B

0 1

] [
1 0
C&D

]−1

(on D (S R
×
)
). (6.5.7)

As we shall see, the proof of this theorem is a combination of the proofs of
Theorems 6.3.6 and 6.4.3.

Proof We begin the proof exactly in the same way as the proof of Theorem
6.4.3, up to formula (6.4.7). In addition, we observe that[

x0

y0

]
=
[

1 0
C&D

] [
x0

u0

]
.

By Theorem 6.5.1 and Definition 6.5.2, the restriction of x̃ and ũ to [−1, 0]
are the state trajectory and output function of � R

× with initial time −1, initial
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state x̃(−1), and input function π[−1,0] ỹ. Therefore, by Theorem 4.6.11,[
˙̃x(t)
ũ(t)

]
= S R

×

[
x̃(t)
ỹ(t)

]
,

[
x̃(t)
ũ(t)

]
=
[

1 0
[C&D] R

×

] [
x̃(t)
ỹ(t)

]
, −1 ≤ t ≤ 0.

Taking t = 0 we find that, for all
[ x0

u0

] ∈ D (S), we have
[ x0

y0

] = [ 1 0
C&D

] [ x0
u0

] ∈
D (S R

×
)
, and[
[A&B] R

×
[C&D] R

×

] [
x0

y0

]
=
[

[A&B] R
×

[C&D] R
×

] [
1 0
C&D

] [
x0

u0

]
=
[−A&B

C&D

] [
x0

u0

]
.

By interchanging the roles of � and � R
× (and, at the same time, interchanging

the roles of u and y), we can prove in the same way that, for all
[ x0

y0

] ∈ D (S R
×
)
,

we have
[ x0

y0

] = [ 1 0
[C&D] R

×

] [ x0
y0

] ∈ D (S), and that[
A&B
C&D

] [
x0

u0

]
=
[

A&B
C&D

] [
1 0

[C&D] R
×

] [
x0

y0

]
=
[−[A&B] R

×
[C&D] R

×

] [
x0

y0

]
.

These two identities show that
[

1 0
C&D

]
maps D (S) onto D (S R

×
)

with inverse[
1 0

[C&D] R
×

]
, and that all the other identities listed in Theorem 6.5.4 hold. �

Motivated by Theorem 6.5.4 we extend Definition 6.5.2 to arbitrary operator
nodes as follows.

Definition 6.5.5 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ). We call

this operator node time-flow-invertible if there exists an operator node S R
× =[

[A&B] R
×

[C&D] R
×

]
on (U, X, Y ) which together with S satisfies the following condi-

tions: the operator
[

1 0
C&D

]
maps D (S) continuously onto D (S R

×
)
, its inverse is[

1 0
[C&D] R

×

]
, and (6.5.6)–(6.5.7) hold. In this case we call S and S R

× time-flow-

inverses of each other.

Formulas involving the operator nodes S and S R
× can readily be obtained

from our earlier formulas for time-inversion and flow-inversion with the help
of the following lemma.

Lemma 6.5.6 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ). Then S is

time-flow-invertible if and only if S is time-flow-invertible, in which case the
time-flow-inverse S R

× of S is given by S R
× = (S×) R= (S R)× (where (S×) Ris the

time-inverse of the flow-inverse of S and (S R)× is the flow-inverse of the time-
inverse of S).

Proof This is obvious (see Definitions 6.3.7, 6.4.4, and 6.5.5). �

Lemma 6.5.7 Let S = [ A&B
C&D

]
be a time-flow-invertible operator node on

(Y, X,U ), with main operator A, control operator B, observation operator
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C, and transfer function D, and let S R
× =

[
[A&B] R

×
[C&D] R

×

]
be its time-flow-inverse,

with main operator A R
×, control operator B R

×, observation operator C R
×, and

transfer function D R
×. Then the following claims are true.

(i) α ∈ ρ(A R
×) if and only if

[
α 0
0 0

]+ S is invertible, in which case([
α 0
0 0

]
+ S

)−1

=
[

(α − A R
×)−1 (α − A R

×|X )−1 B R
×

C R
×(α − A R

×)−1 D̂ R
×(α)

]
. (6.5.8)

(ii) α ∈ ρ(A) if and only if
[
α 0
0 0

]+ S R
× is invertible, in which case([

α 0
0 0

]
+ S R

×

)−1

=
[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

]
. (6.5.9)

(iii) If α ∈ ρ(−A), then α ∈ ρ(A R
×) if and only if D̂(−α) is invertible. In this

case[
(α − A R

×)−1 (α − A R
×|X )−1 B R

×
C R
×(α − A R

×)−1 D̂ R
×(α)

]
=
[

(α + A)−1 0
0 0

]
+
[−(α + A|X )−1 B

1

]
[D̂(−α)]−1

[−C(α + A)−1 1
]
.

(6.5.10)

In particular, in this case D̂ R
×(α) = D̂−1(−α), and U is isomorphic to Y

(hence they have the same dimension).
(iv) If α ∈ ρ(−A R

×), then α ∈ ρ(A) if and only if D̂ R
×(−α) is invertible. In this

case [
(α − A)−1 (α − A|X )−1 B

C(α − A)−1 D̂(α)

]
=
[

(α + A R
×)−1 0

0 0

]
+
[
−(α + A R

×|X )−1 B R
×

1

]
[D̂ R
×(−α)]−1

[−C R
×(α + A R

×)−1 1
]
.

(6.5.11)

Proof See Lemmas 6.3.8, 6.4.5, and 6.5.6. �

Corollary 6.5.8 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ), with main

operator A, control operator B, observation operator C, and transfer function

D, and let S R
× =

[
[A&B] R

×
[C&D] R

×

]
be an operator node on (U, X, Y ), with main oper-

ator A R
×, control operator B R

×, observation operator C R
×, and transfer function

D R
×. Then the following conditions are equivalent:

(i) S and S R
× are time-flow-inverses of each other.

(ii) The operator
[

1 0
[C&D] R

×

]
maps D (S R

×
)

one-to-one onto D (S), and (6.5.6)

holds.
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(iii) For all α ∈ ρ(A R
×), the operator

[
α 0
0 0

]+ S maps D (S) one-to-one onto[
X
Y

]
, and its (bounded) inverse is given by (6.5.8).

(iv) For some α ∈ ρ(A R
×), the operator

[
α 0
0 0

]+ S maps D (S) one-to-one
onto

[
X
Y

]
and (6.5.8) holds.

(v) The operator
[

1 0
C&D

]
maps D (S) one-to-one onto D (S R

×
)
, and (6.5.7)

holds.
(vi) For all α ∈ ρ(A), the operator

[
α 0
0 0

]+ S R
× maps D (S R

×
)

one-to-one
onto

[
X
Y

]
, and its (bounded) inverse is given by (6.5.9).

(vii) For some α ∈ ρ(A), the operator
[
α 0
0 0

]+ S R
× maps D (S R

×
)

one-to-one
onto

[
X
Y

]
and (6.5.9) holds.

When these equivalent conditions hold, then
[

1
C

]
mapsD (A) intoD (S R

×
)
,
[

1
C R
×

]
maps D (A R

×
)

into D (S), and

A = −A R
×|D(A) − B R

×C, A R
× = −A|D(A R×) − BC R

×,

0 = [C&D] R
×

[
1
C

]
, 0 = C&D

[
1

C R
×

]
.

(6.5.12)

Proof See Theorem 6.3.9 and Lemma 6.5.6. �

Corollary 6.5.9 Make the same assumptions and introduce the same notation
as in Corollary 6.5.8. In addition, suppose that ρ(−A) ∩ ρ(A R

×) �= ∅. Then the
conditions (i)–(vii) listed in Corollary 6.5.8 are equivalent to each one of the
following conditions:

(viii) For all α ∈ ρ(−A) ∩ ρ(A R
×), D̂(−α) is invertible and (6.5.10) holds.

(ix) For some α ∈ ρ(−A) ∩ ρ(A R
×), D̂(α) is invertible and (6.5.10) holds.

(x) For all α ∈ ρ(A) ∩ ρ(−A R
×), D̂ R

×(−α) is invertible and (6.5.11) holds.
(xi) For some α ∈ ρ(A) ∩ ρ(−A R

×), D̂ R
×(−α) is invertible and (6.5.11) holds.

In particular, when these conditions hold, then U and Y are isomorphic (hence
they have the same dimension).

Proof This follows from Theorem 6.3.11 and Lemma 6.5.6 (see also Corollary
6.3.12). �

In the finite-dimensional case (i.e., the case where the state space is finite-
dimensional) the condition ρ(−A) ∩ ρ(A R

×) �= ∅ is redundant, and the system
is time-flow-invertible if and only if D̂(∞) is invertible. In particular, a finite-
dimensional system cannot be time-flow-invertible unless the dimension of the
input space is the same as the dimension of the output space. However, as the
following example shows, this condition is no longer necessary in the infinite-
dimensional case. In this example the input and output spaces are of different
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dimension, and Corollary 6.5.9 does not apply due to the fact that we here have
ρ(−A) ∩ ρ(A R

×) = ∅ (since A and A R
× have the same spectrum, namely the

closed left half-plane C
−

).

Example 6.5.10 Let U = 0, Y = C, let At = τ t
+ be the left-shift on X =

L2(R+; C), and let C = 1. Then � = [A

C

]
is a time-flow-invertible system on

(Y ; X ; U ) (with no input) whose time-flow-inverted system � R
× coincides with

its causal dual system �d = [Ad Bd
]

(which has no output). In particular,
(A R
×)t = (Ad )t = (τ t

+)∗ is the right-shift on L2(R+; C) and B R
× = 1.

Proof This system is conservative, meaning that the operator �t
0 =
[

At

Ct
0

]
is

unitary from X to
[

X
L2(0,t)

]
for all t ≥ 0, hence invertible. The inverse of a

unitary operator coincides with its adjoint; hence the time-flow-inverted system
coincides with the causal dual system in this case. �

The system described above is time-flow-invertible but neither time-
invertible (since the semigroup is not a group) nor flow-invertible (since the
input and output dimensions are not the same). Note that both the system itself
and the time-flow-inverted system are regular.

Finally, we observe that time-flow-inversion commutes with duality:

Theorem 6.5.11 Let (Y, X,U ) be reflexive Banach spaces, let 1 < p <∞, let
� be an L p-well-posed linear system on (Y, X,U ), and let S be an operator
node on (Y, X,U ) (not necessarily the one induced by �).

(i) The system � is time-flow-invertible if and only if the causal dual system
�d is time-flow-invertible, in which case the time-flow-inverted systems
satisfy (�d ) R= (� R)d .

(ii) The operator node S is time-flow-invertible if and only if the dual
operator node S∗ is time-flow-invertible, in which case the
time-flow-inverted operator nodes satisfy (S∗) R= (S R)∗.

Thus, time-flow-inversion commutes with the duality transformation.

We leave the easy proof to the reader.

Remark 6.5.12 It is easy to find examples of well-posed systems � where
none, or any one but not the other two, or any two but not the third one, or all three
of the ‘inverted’ systems � R, �×, and � R

× exist. Indeed, all combinations are
possible, as can be seen by comparing the different conditions for the existence
of the different inverses. By inspecting (6.3.3), (6.4.3), and (6.5.2) we can
draw some additional conclusions. For example, if � is both time-invertible
and flow-invertible, then both the time-inverted and flow-inverted systems are
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time-flow-invertible, and they are time-flow-inverses of each other. Similar
statements are true when � is both time-invertible and time-flow-invertible, or
both flow-invertible and time-flow-invertible. Finally, if all three inverses � R,
�×, and � R

× exist, then they are all time-invertible, flow-invertible, and time-
flow-invertible, and a combination of any two of the inversions gives the third.

6.6 Partial flow-inversion

In Section 6.3 we introduced the operation of interchanging the input and the
output of a system with each other, and called it flow-inversion. Here we shall
look at a more general situation where we split both the input and the output
into two parts, and only the second part of the input is interchanged with the
second part of the output (the first parts of the input and output are not changed).
We call this partial flow-inversion. (Another commonly used name is the chain
scattering transformation.)

Let � =
[

A B1 B2

C1 D11 D12
C2 D21 D22

]
be a well-posed linear system on

([ Y1
Y2

]
, X,
[ U1

U2

])
.

Let x be the state trajectory and let
[ y1

y2

]
be the output function of this system with

initial time zero, initial state x0, and input function
[ u1

u2

] ∈ L p|Regloc

(
R
+

;
[ U1

U2

])
,

i.e.,

x(t) = At x0 +B1τ
tπ+u1 +B2τ

tπ+u2, t ≥ 0,

y1 = C1x0 +D11π+u1 +D12π+u2,

y2 = C2x0 +D21π+u1 +D22π+u2,

(6.6.1)

If D22 has an inverse in TICloc(Y2; U2), then we can solve for x(t), y1 and u2 in
terms of x0, u1, and y2 to get for all t ≥ 0, x(t)

π+y1

π+u2

 =
At B1τ

t B2τ
t

C1 D11 D12

0 0 1

 x0

π+u1

π+u2



=
At B1τ

t B2τ
t

C1 D11 D12

0 0 1

 1 0 0
0 1 0
C2 D21 D22

−1 x0

π+u1

π+y2

 .
(6.6.2)

It should not come as a great surprise that this formula can be interpreted as a
new well-posed linear system.

Theorem 6.6.1 Let � =
[

A B1 B2

C1 D11 D12
C2 D21 D22

]
be a well-posed linear system on([ Y1

Y1

]
, X,
[ U1

U2

])
, and suppose that D22 has an inverse in TICloc(Y2; U2). Then
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the system

�
 =

A
 B

1 τ B


2 τ

C

1 D


11 D

12

C

2 D


21 D

22



=

 A B1τ B2τ

C1 D11 D12

0 0 1


 1 0 0

0 1 0
C2 D21 D22


−1

=

1 0 −B2τ

0 1 −D12

0 0 D22


−1 A B1τ 0

C1 D11 0
−C2 −D21 1



=

At B1τ
t 0

C1 D11 0
0 0 0

+
B2τ

t

D12

1

D−1
22

[−C2 −D21 1
]

(6.6.3)

is a linear system on
([ Y1

U2

]
, X,
[ U1

Y2

])
which is well-posed in the same sense as

�. If x and
[ y1

y2

]
are the state trajectory and output function of� with initial time

s ∈ R, initial state xs ∈ X, and input function
[ u1

u2

] ∈ L p|Regloc

(
[s,∞);

[ U1
U2

])
,

then x and
[ y1

u2

]
are the state trajectory and output function of�
 with the same

initial time s, the same initial state xs , and input function
[ u1

y2

]
. In particular,

for s = 0 we have x(t)
π+y1

π+u2

 =
A
 B


1 τ B

2 τ

C

1 D


11 D

12

C

2 D


21 D

22

 x(t)
π+u1

π+y2

 , t ≥ 0. (6.6.4)

We leave the proof of this theorem to the reader. The most obvious (and
easiest) way is to imitate the proof of Theorem 6.3.1. Another possibility is
to absorb the first input u1 and the first output y1 into the semigroup, i.e.,

to write
[

A B1

C1 D11

]
as a Lax–Phillips semigroup, and to then apply Theorem

6.3.1 to the new system whose state is
[ y1

x
u1

]
, with input function u2 and output

function y2.

Definition 6.6.2 We say that the L p|Reg-well-posed linear system � =[
A B1 B2

C1 D11 D12
C2 D21 D22

]
is partially flow-invertible if D22 is invertible in TICloc, and we

call the system �
 in Theorem 6.6.1 the partial flow-inverse of �.
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Corollary 6.6.3 The L p|Reg-well-posed linear system

[
A B1 B2

C1 D11 D12
C2 D21 D22

]
is par-

tially flow-invertible if and only if the system
[

A B2

C2 D22

]
is flow-invertible, and,

with the notation of Theorems 6.3.1 and 6.6.1,[
A× B×

C×2 D×22

]
=
[

A
 B


C

2 D


22

]
.

This follows from Definitions 6.3.3 and 6.6.2.

Remark 6.6.4 In the classical system

ẋ(t) = Ax(t)+ B1u1(t)+ B2u2(t),

y1(t) = C1x(t)+ D11u1(t)+ D12u2(t),
(6.6.5)

y2(t) = C2x(t)+ D21u1(t)+ D22u2(t), t ≥ 0,

x(0) = x0,

it is possible to interpret
[ u1

y2

]
as the input function and

[ y1
u2

]
as the output

function if and only if D22 is invertible. In this case the partially flow-inverted
system �
 is again a classical system with generatorsA
 B


1 B

2

C

1 D


11 D

12

C

2 D


21 D

22

 =
 A B1 B2

C1 D11 D12

0 0 1

 1 0 0
0 1 0

C2 D21 D22

−1

=
1 0 − B2

0 1 − D12

0 0 D22

−1 A B1 0
C1 D11 0
−C2 − D21 1


=
 A B1 0

C1 D11 0
0 0 0

+
 B2

D12

1

 D−1
22

[−C2 − D21 1
]
.

(6.6.6)

Observe the striking similarity between this formula and the one given in The-
orem 6.6.1. Operator node versions of this result are given in Theorems 6.6.5
and 6.6.17.

Let us next compute the system node of the partially flow-inverted system.

Theorem 6.6.5 Let � =
[

A B1 B2

C1 D11 D12
C2 D21 D22

]
be a well-posed partially flow-

invertible linear system on
([ Y1

Y2

]
, X,
[ U1

U2

])
with system node S =

[ A&B
[C&D]1
[C&D]2

]
.

Denote the system node of the partially flow-inverted system by S
 =
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[
[A&B]�

[C&D]�

1
[C&D]�

2

]
. Then the operator

[
1 0 0
0 1 0

[C&D]2

]
mapsD (S) continuously ontoD (S
),

its inverse is
[ 1 0 0

0 1 0
[C&D]�

2

]
, and

S =
[A&B]


[C&D]

1

0 0 1

 1 0 0
0 1 0

[C&D]

2

−1

(on D (S)), (6.6.7)

S
 =
 A&B

[C&D]1

0 0 1

 1 0 0
0 1 0

[C&D]2

−1

(on D (S
)). (6.6.8)

We leave this proof, too, to the reader (it is very similar to the proof of
Theorem 6.3.6).

Motivated by Theorem 6.6.5 we extend Definition 6.6.2 to arbitrary operator
nodes as follows.

Definition 6.6.6 Let S =
[ A&B

[C&D]1
[C&D]2

]
be an operator node on

([ Y1
Y2

]
, X,
[ U1

U2

])
.

We call this operator node partially flow-invertible if there exists an operator

node S
 =
[

[A&B]�

[C&D]�

1
[C&D]�

2

]
on
([ Y1

U2

]
, X,
[ U1

Y2

])
which together with S satisfies

the following conditions: the operator
[

1 0 0
0 1 0

[C&D]2

]
maps D (S) continuously onto

D (S
), its inverse is
[ 1 0 0

0 1 0
[C&D]�

2

]
, and (6.6.7)–(6.6.8) hold. In this case we call

S and S
 partial flow-inverses of each other.

We again first look at some immediate consequences of this lemma.

Lemma 6.6.7 Let S =
[ A&B

[C&D]1
[C&D]2

]
be an operator node on

([ Y1
Y2

]
, X,
[ U1

U2

])
,

with main operator A, control operator B = [B1 B2
]
, observation opera-

tor C = [ C1
C2

]
, and transfer function D̂ =

[
D̂1

D̂2

]
=
[

D̂11 D̂12

D̂21 D̂22

]
, and let S
 =[

[A&B]�

[C&D]�

1
[C&D]�

2

]
be its flow-inverse, with main operator A
, control operator

B
 = [B

1 B


2

]
, observation operator C
 =

[
C�

1
C�

2

]
, and transfer function

D̂
 =
[

D̂�

1

D̂�

2

]
=
[

D̂�

11 D̂�

12

D̂�

21 D̂�

22

]
. Then the following claims are true.
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(i) α ∈ ρ(A
) if and only if
[
α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

]
is invertible, in which

case

 1 0 0
[C&D]1

0 0 1

α 0 0
0 1 0
0 0 0

−
 A&B

0
[C&D]2

−1

=
 (α − A
)−1 (α − A


|X )−1 B

1 − (α − A


|X )−1 B

2

C

1 (α − A
)−1 D̂


11 (α) − D̂

12 (α)

C

2 (α − A
)−1 D̂


21 (α) − D̂

22 (α)

 .
(6.6.9)

(ii) α ∈ ρ(A) if and only if
[
α 0 0
0 1 0
0 0 0

]
−
[

[A&B]�

0
[C&D]�

2

]
is invertible, in which

case

 1 0 0
[C&D]


1

0 0 1

α 0 0
0 1 0
0 0 0

−
[A&B]


0
[C&D]


2

−1

=
 (α − A)−1 (α − A|X )−1 B1 − (α − A|X )−1 B2

C1(α − A)−1 D̂11(α) − D̂12(α)
C2(α − A)−1 D̂21(α) − D̂22(α)

 .
(6.6.10)

(iii) If α ∈ ρ(A), then α ∈ ρ(A
) if and only if D̂22(α) is invertible. In this
case

 (α − A
)−1 (α − A

|X )−1 B


1 − (α − A

|X )−1 B


2

C

1 (α − A
)−1 D̂


11 (α) − D̂

12 (α)

C

2 (α − A
)−1 D̂


21 (α) − D̂

22 (α)



=
 (α − A)−1 (α − A|X )−1 B1 0

C1(α − A)−1 D̂11(α) 0
0 0 0



−
(α − A|X )−1 B2

D̂12(α)
1

 [D̂22(α)]−1
[
C2(α − A)−1 D̂21(α) 1

]
.

(6.6.11)



6.6 Partial flow-inversion 391

(iv) If α ∈ ρ(A
), then α ∈ ρ(A) if and only if D̂

22 (α) is invertible. In this

case (α − A)−1 (α − A|X )−1 B1 − (α − A|X )−1 B2

C1(α − A)−1 D̂11(α) − D̂12(α)
C2(α − A)−1 D̂21(α) − D̂22(α)


=
 (α − A
)−1 (α − A


|X )−1 B

1 0

C

1 (α − A
)−1 D̂


11 (α) 0
0 0 0


−
(α − A


|X )−1 B

2

D̂

12 (α)
1

 [D̂

22 (α)]−1

[
C


2 (α − A
)−1 D̂

21 (α) 1

]
.

(6.6.12)

Proof (i) By (6.6.7),α 0 0
0 1 0
0 0 0

−
 A&B

0
[C&D]2



=
α 0 0

0 1 0
0 0 − 1

−
[A&B]


0
0

 1 0 0
0 1 0

[C&D]

2

−1

.

(6.6.13)

The second factor on the right-hand side is a bounded bijection between D (S)
and D (S
), and the first factor on the right-hand side has a bounded in-

verse defined on
[ X

U1
U2

]
if and only if α ∈ ρ(A
) (see Lemma 4.7.18(i)). Thus,[

α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

]
is invertible if and only if α ∈ ρ(A
). Inverting (6.6.13)

we get 1 0 0
[C&D]1

0 0 1

α 0 0
0 1 0
0 0 0

−
 A&B

0
[C&D]2

−1

=
 1 0 0

[C&D]1

0 0 1

 1 0 0
0 1 0

[C&D]

2

α − A

|X − B


1 − B

1

0 1 0
0 0 − 1

−1

,

where, according to (6.6.8),
[

1 0 0
[C&D]1
0 0 1

] [ 1 0 0
0 1 0

[C&D]�

2

]
=
[

1 0 0
[C&D]�

1
[C&D]�

2

]
. We get formula

(6.6.9) from Lemma 4.7.18(i) with S replaced by S
.
(ii) We get (ii) from (i) by interchanging S and S
.
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(iii) Assume that α ∈ ρ(A). Then (cf. Lemma 4.7.18(iii))α 0 0
0 1 0
0 0 0

−
 A&B

0
[C&D]2

α 0 0
0 1 0
0 0 1

−
A&B

0
0

−1

=
 1 0 0

0 1 0
−C2(α − A)−1 − D̂21(α) − D̂21(α)

 ,
where the second factor on the left-hand side maps

[ X
U1
U2

]
one-to-one ontoD (S).

Thus, it follows from (i) thatα ∈ ρ(A
) if and only if D̂22(α) is invertible in this
case. We leave the computation which shows that the left-hand side of (6.6.9)
is equal to the right-hand side of (6.6.11) to the reader (cf. Lemma 4.7.18).

(iv) We get (iv) from (iii) by interchanging S and S
. �

Our following theorem lists a number of equivalent conditions for two op-
erator nodes to be partial flow-inverses of each other.

Theorem 6.6.8 Let S =
[ A&B

[C&D]1
[C&D]2

]
be an operator node on

([ Y1
Y2

]
, X,
[ U1

U2

])
,

with main operator A, control operator B = [B1 B2
]
, observation operator

C = [ C1
C2

]
, and transfer function D̂ =

[
D̂11 D̂12

D̂21 D̂22

]
, and let S
 =

[
[A&B]�

[C&D]�

1
[C&D]�

2

]
be

an operator node on
([ Y1

U2

]
, X,
[ U1

Y2

])
, with main operator A
, control operator

B
 = [B

1 B


2

]
, observation operator C
 =

[
C�

1
C�

2

]
, and transfer function

D̂
 =
[

D̂�

11 D̂�

12

D̂�

21 D̂�

22

]
. Then the following conditions are equivalent:

(i) S and S
 are partial flow-inverses of each other.

(ii) The operator
[ 1 0 0

0 1 0
[C&D]�

2

]
maps D (S
) one-to-one onto D (S) and

(6.6.7) holds.

(iii) For all α ∈ ρ(A
), the operator
[
α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

]
maps D (S)

one-to-one onto
[ X

U1
Y2

]
and (6.6.9) holds.

(iv) For some α ∈ ρ(A
), the operator
[
α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

]
maps D (S)

one-to-one onto
[ X

U1
Y2

]
and (6.6.9) holds.

(v) The operator
[

1 0 0
0 1 0

[C&D]2

]
maps D (S) one-to-one onto D (S
) and (6.6.8)

holds.

(vi) For all α ∈ ρ(A), the operator
[
α 0 0
0 1 0
0 0 0

]
−
[

[A&B]�

0
[C&D]�

2

]
maps D (S
)

one-to-one onto
[ X

U1
U2

]
and (6.6.10) holds.
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(vii) For some α ∈ ρ(A), the operator
[
α 0 0
0 1 0
0 0 0

]
−
[

[A&B]�

0
[C&D]�

2

]
maps D (S
)

one-to-one onto
[ X

U1
U2

]
and (6.6.10) holds.

When these equivalent conditions hold, then
[

1
0

C2

]
maps D (A) into D (S
),[ 1

0
C�

2

]
maps D (A
) into D (S), and

A = A

|D(A) + B


2 C2, A
 = A|D(A�) + B2C

2 ,[

C1

0

]
=
[

[C&D]

1

[C&D]

2

] 1
0

C2

 , [
C


1

0

]
=
[

[C&D]1

[C&D]2

] 1
0

C

2

 .
(6.6.14)

Proof It suffices to prove that (i)–(iv) are equivalent, because the remaining
equivalences follow from the facts that (i) is symmetric with respect to S and
S
, and that we get (v)–(vii) by interchanging S and S
 in (ii)–(iv). Also
observe that (6.6.14), which is equivalent to[A&B]


[C&D]

1

[C&D]

2

 1
0

C2

 =
 A

C1

0

 ,
 A&B

[C&D]1

[C&D]2

 1
0

C

2

 =
A


C

1

0

 , (6.6.15)

follows from (i) and (6.6.7)–(6.6.8) since
[ D(A)

0
0

]
∈ D (S) and

[ D(A�)
0
0

]
∈

D (S
).
(i)⇒ (ii): This is obvious (see Definition 6.6.6).
(ii) ⇒ (i): This proof is very similar to the proof of the corresponding

implication in Theorem 6.3.9.
(i)⇒ (iii): See Lemma 6.6.7(i).
(iii)⇒ (iv): This is obvious.
(iv)⇒ (ii): Clearly (6.6.9) implies thatα 0 0

0 1 0
0 0 0

−
 A&B

0
[C&D]2

−11 0 0
0 1 0
0 0 − 1


=
 (α − A
)−1 (α − A


|X )−1 B

1 (α − A


|X )−1 B

2

Z0 Z1 Z2

C

2 (α − A
)−1 D̂


21 (α) D̂

22 (α)

 ,
where Z0 ∈ B(X ), Z1 ∈ B(U1; X ), and Z2 ∈ B(Y2; X ). Multiplying this identity

by
[
0 1 0

]
to the left we get u1 = Z0x + Z1u1 + Z3 y2 for all

[ x
u1
y2

]
∈
[ X

U1
Y2

]
.
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Thus, Z0 = 0, Z1 = 1, and Z2 = 0, and we find thatα 0 0
0 1 0
0 0 0

−
 A&B

0
[C&D]2

−11 0 0
0 1 0
0 0 − 1


=
 (α − A
)−1 (α − A


|X )−1 B

1 (α − A


|X )−1 B

2

0 1 0
C


2 (α − A
)−1 D̂

21 (α) D̂


22 (α)

 .
(6.6.16)

We can factor the operator on the right-hand side (cf. Lemma 4.7.18) to getα 0 0
0 1 0
0 0 0

−
 A&B

0
[C&D]2

−11 0 0
0 1 0
0 0 − 1



=
 1 0 0

0 1 0
[C&D]


2

α 0 0
0 1 0
0 0 1

−
[A&B]


0
0

−1

.

(6.6.17)

Here the second factor on the right-hand side maps
[ X

U1
Y2

]
one-to-one onto

D (S
), whereas the left-hand side maps
[ X

U1
Y2

]
one-to-one onto D (S). Thus[ 1 0 0

0 1 0
[C&D]�

2

]
maps D (S
) one-to-one onto D (S).

It follows from (6.6.9) and (6.6.16) thatα 0 0
0 0 0
0 0 0

− S


×
 (α − A
)−1 (α − A


|X )−1 B

1 (α − A


|X )−1 B

2

0 1 0
C


2 (α − A
)−1 D̂

21 (α) D̂


22 (α)


=
 1 0 0
−C


1 (α − A
)−1 − D̂

21 (α) − D̂


22 (α)
0 0 − 1

 .
This equation can be simplified: we multiply it by

[
α 0 0
0 1 0
0 0 1

]
−
[

[A&B]�

0
0

]
from

the right to getα 0 0
0 0 0
0 0 0

− S

 1 0 0
0 1 0

[C&D]

2

 =
α 0 0

0 0 0
0 0 0

−
[A&B]


[C&D]

1

0 0 1

 ,
which can easily be seen to be equivalent to (6.6.7). �
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In most cases we are able to add four more conditions which are equivalent
to those listed in Theorem 6.6.8:

Theorem 6.6.9 Make the same assumptions and introduce the same notation
as in Theorem 6.6.8. In addition, suppose that ρ(A) ∩ ρ(A
) �= ∅ (this is, in
particular, true if both S and S
 are system nodes). Then the conditions (i)–(vii)
listed in Theorem 6.6.8 are equivalent to each one of the following conditions:

(viii) For all α ∈ ρ(A) ∩ ρ(A
), D̂22(α) is invertible and (6.6.11) holds.
(ix) For some α ∈ ρ(A) ∩ ρ(A
), D̂22(α) is invertible and (6.6.11) holds.
(x) For all α ∈ ρ(A) ∩ ρ(A
), D̂


22 (α) is invertible and (6.6.12) holds.
(xi) For some α ∈ ρ(A) ∩ ρ(A
), D̂
(α) is invertible and (6.6.12) holds.

We leave the easy proof to the reader (it is similar to the proof of Theorem
6.3.11, and it consists primarily of a number of algebraic manipulations).

We remark that the right-hand side of formulas (6.6.11) and (6.6.12) can
be written in several equivalent forms, similar to those appearing in Lemma
4.7.18(iv).

Corollary 6.6.10 Under the assumption of Theorem 6.6.9, for all α ∈ ρ(A) ∩
ρ(A
), we have D̂


22 (α) = [D̂22(α)]−1. In particular, U2 and Y2 are isomorphic
(hence they have the same dimension). Moreover, the operator (α − A
)−1(α −
A) which maps D (A) onto D (A
) is given by

(α − A
)−1(α − A) = 1− (α − A|X )−1 B2D̂


22 (α)C2

= 1− (α − A

|X )−1 B


2 C2

and its inverse (α − A)−1(α − A
) is given by

(α − A)−1(α − A
) = 1+ (α − A

|X )−1 B


2 D̂22(α)C

2

= 1+ (α − A|X )−1 B2C

2 .

Proof The above formulas are part of the conclusion of Theorem 6.6.9. That U2

and Y2 must be isomorphic follows from the fact that D̂22(α) is a continuously
invertible bijection of U2 onto Y2. �

With the help of Theorem 6.6.8 we are able to give a necessary and sufficient
condition for the partial flow-invertibility of an operator node.

Theorem 6.6.11 An operator node S =
[ A&B

[C&D]1
[C&D]2

]
on
([ Y1

Y2

]
, X,
[ U1

U2

])
is par-

tially flow-invertible if and only if the following condition holds. For some

α ∈ C, the operator
[
α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

]
maps D (S) one-to-one onto

[ X
U1
Y2

]
,

and if we denote its inverse by

[
M11(α) M12(α) M13(α)
M21(α) M22(α) M23(α)
M31(α) M32(α) M33(α)

]
, then M11(α) is injective
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and has dense range. In this case the partially flow-inverted operator node S


can be recovered from (6.6.9) and Lemma 4.7.6.

We leave the straightforward proof to the reader (see the proof of Theorem
6.3.10).

It is possible to sharpen Theorem 6.6.11 by proving an analogue of Corollary
6.6.3 for arbitrary operator nodes. In order to do this we need to study the
‘reduced’ operator node that we get by ‘removing inactive inputs and outputs’.
This removal is done in the following way.

Definition 6.6.12 Let S =
[ A&B

[C&D]1
[C&D]2

]
be an operator node on

([ Y1
Y2

]
, X,
[ U1

U2

])
,

with main operator A, control operator B = [B1 B2
]
, observation operator

C = [ C1
C2

]
, and transfer function D̂ =

[
D̂1

D̂2

]
=
[

D̂11 D̂12

D̂21 D̂22

]
. By the restriction of

S to (Y2, X,U2) we mean the operator node whose whose main operator is A,
control operator B2, observation operator C2, and transfer function D̂22.

It is not difficult to check that this is, indeed, an operator node on (Y2, X,U2)
(see Lemma 4.7.6). Moreover, if we denote this node by S0, then

D (S0) =
{[ x

u2

] ∣∣∣ [ x
0
u2

]
∈ D (S)

}
. (6.6.18)

Lemma 6.6.13 Let S =
[ A&B

[C&D]1
[C&D]2

]
be an operator node on

([ Y1
Y2

]
, X,
[ U1

U2

])
,

and let S0 =
[ [A&B]0

[C&D]0

]
be the restriction of S to (Y2, X,U2). Then the following

two conditions are equivalent, for all α ∈ C:

(i)
[
α 0
0 0

]− S0 maps D (S0) one-to-one onto
[

X
Y2

]
;

(ii)
[
α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

]
maps D (S) one-to-one onto

[ X
U1
Y2

]
.

Proof Let us denote the common main operator of S and S0 by A. Fix
any β ∈ ρ(A). Then

([
β 0
0 1

]− [ [A&B]0
0 0

])−1
maps

[
X
Y2

]
one-to-one onto D (S0)

and
([

β 0 0
0 1 0
0 0 1

]
−
[

A&B
0
0

])−1
maps

[ X
U1
Y2

]
one-to-one onto D (S) (see Lemma

4.7.18). Thus, to prove the equivalence of (i) and (ii) it suffices to show
that

([
α 0
0 0

]− S0
)([

β 0
0 1

]− [ [A&B]0
0 0

])−1
is invertible on

[
X
Y2

]
if and only if([

α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

])([
β 0 0
0 1 0
0 0 1

]
−
[

A&B
0
0

])−1
is invertible on

[ X
U1
Y2

]
. The first

of the two operators above is explicitly given by (in obvious notation)[
(α − A)(β − A)−1 (α − β)(β − A|X )−1 B2

−C(β − A)−1 − D̂22(β)

]
, (6.6.19)
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and the latter is given by(α − A)(β − A)−1 (α − β)(β − A|X )−1 B1 (α − β)(β − A|X )−1 B2

0 1 0
−C(β − A)−1 − D̂21(β) − D̂22(β)

 .
(6.6.20)

By permuting second and third row and column we can make this operator
upper block triangular, where the first diagonal block is the operator in (6.6.19)
and the second diagonal block is the identity operator. It follows from Lemma
A.4.2(i) that the operator in (6.6.20) is invertible if and only if the one in (6.6.19)
is invertible. �

Corollary 6.6.14 Let S =
[ A&B

[C&D]1
[C&D]2

]
be an operator node on

([ Y1
Y2

]
, X,
[ U1

U2

])
,

and let S0 =
[ [A&B]0

[C&D]0

]
be the restriction of S to (Y2, X,U2). Then S is partially

flow-invertible if and only if S0 is flow-invertible. Moreover, if we denote the
partial flow-inverse of S by S
 and the flow-inverse of S by S×, then (in an
obvious notation)

A
 = A0×, B

2 = B0×,

C

2 = C0×, D̂


22 = D̂0×.

Proof See Theorems 6.3.10 and 6.6.11, Lemma 6.6.13, and the identities
(6.3.13) and (6.6.9).

�

Our following theorem is an extension of Theorem 6.3.14.

Theorem 6.6.15 Let S =
[ A&B

[C&D]1
[C&D]2

]
be a flow-invertible system node on([ Y1

Y2

]
, X,
[ U1

U2

])
, whose flow-inverse S
 is also a system node (on([ Y1

U2

]
, X,
[ U1

Y2

])
). Let x and y = [ y1

y2

]
be the state trajectory and output func-

tion of S with initial time s ∈ R, initial state xs ∈ X, and input function
u = [ u1

u2

] ∈ L1
loc

(
[s,∞);

[ U1
U2

])
, and suppose that x ∈ W 1,1

loc ([s,∞); X ). Then
y ∈ L1

loc

(
[s,∞);

[ Y1
Y2

])
), and x and

[ y1
u2

]
are the state trajectory and output

function of S
 with initial time s, initial state xs and input function
[ u1

y2

]
.

The proof is very similar to the proof of Theorem 6.3.14, and we leave it to
the reader.

Corollary 6.6.16 Let � =
[ A&B

[C&D]1
[C&D]2

]
be an L p-well-posed linear system on([ Y1

Y2

]
, X,
[ U1

U2

])
with 1 ≤ p <∞. Then � is partially flow-invertible (in the

sense of Definition 6.6.2) if and only if its system node S is partially flow-
invertible (in the sense of Definition 6.6.6) and the partially flow-inverted op-
erator node S
 is an L p-well-posed system node.
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The proof is analogous to the proof of Corollary 6.3.15 (and it is left to the
reader).

Our next theorem is an extension of Theorem 6.3.16.

Theorem 6.6.17 Let S =
[ A&B

[C&D]1
[C&D]2

]
be a compatible operator node on([ Y1

Y2

]
, X,
[ U1

U2

])
, and let

[
A|W B1 B2

[C1]|W D11 D12

[C2]|W D21 D22

]
∈ B
([ W

U1
U2

]
;

[
W−1
Y1
Y2

])
be a compati-

ble extension of S (here X1 ⊂ W ⊂ X and W−1 is defined as in Lemma 5.1.3).
Suppose that S is partially flow-invertible and that D22 is invertible. Denote

the partially flow-inverted operator node by S
 =
[

[A&B]�

[C&D]�

1
[C&D]�

2

]
, let X


1 and

X

−1 be the analogues of X1 and X−1 for S
, and let W 


−1 be the analogue
of W−1 for S
 (i.e., W 


−1 = (α − A
)|W W for some α ∈ ρ(A
)). Then W 

−1

can be identified with W−1, and S
 is compatible over W with the compatible
extension[A
]|W B


1 B

2

[C

1 ]|W D


11 D

12

[C

2 ]|W D


21 D

22

 =
 A|W B1 B2

[C1]|W D11 D12

0 0 1

 1 0 0
0 1 0

[C2]|W D21 D22

−1

=
1 0 − B2

0 1 − D12

0 0 D22

−1 A|W B1 0
[C1]|W D11 0
−[C2]|W − D21 1


=
 A B1 0

[C1]|W D11 0
0 0 0


+
 B2

D12

1

 D−1
22

[−[C2]|W − D21 1
]
.

(6.6.21)

We leave the formulation and proof of the corresponding result where D22

is only left-invertible to the reader (see part (i) of Theorem 6.3.16).

Proof By (6.6.8),[
[C&D]


1

[C&D]

2

]
=
[

[C&D]1

0 0 1

] 1 0 0
0 1 0

[C&D]2

−1

.

This operator has an obvious extension to an operator inB
([ W

U1
U2

]
;
[ Y1

Y2

])
, namely

[
[C1]|W D11 D12

0 0 1

] 1 0 0
0 1 0

[C2]|W D21 D22

−1

.
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Thus, S
 is compatible over W . We identify W 

−1 with W−1 in the same way

as in Theorem 6.3.16, applied to the operator node that we get by dropping the
first input and the first output of S (the flow-inverse of this operator node is the
one that we get from S
 by again dropping the first input and the first output).
With this identification, the operator given in (6.6.21) is an obvious extension

to an operator in B
([ W

U1
U2

]
;

[
W−1
Y1
Y2

])
of

[
[A&B]�

[C&D]�

1
[C&D]�

2

]
=
[

A&B
[C&D]1
0 0 1

] [
1 0 0
0 1 0

[C&D]2

]−1
. �

Let us finally look at the partial flow-inversion of a regular system.

Theorem 6.6.18 Let � =
[

A B1 B2

C1 D11 D12
C2 D21 D22

]
be a weakly regular (L p|Reg-well-

posed) partially flow-invertible linear system on
([ Y1

Y1

]
, X,
[ U1

U2

])
with system

node S =
[ A&B

[C&D]1
[C&D]2

]
, semigroup generator A, control operator B = [B1 B2

]
,

and observation operator C = [ C1
C2

]
. We define the extensions C̃w and C̃s of

the observation operator C as in Definition 5.4.1, and let D = [ D11 D12
D21 D22

]
be

the corresponding feedthrough operator (see Theorem 5.6.5).

(i) If D22 is invertible, then Theorem 6.6.17 applies with W = D (C̃w) and
C|W = C̃w (in particular, both � and the partially flow-inverted system
�
 are compatible).

(ii) If � is strongly regular, then the partially flow-inverted system is strongly
regular iff D22 is invertible. In this case D (C̃


s

) = D (C̃s), and Theorem
6.6.17 applies with W = D (C̃s) and C|W = C̃s .

(iii) In the Reg-well-posed case both the original and the partially
flow-inverted system are strongly regular, D22 is invertible, and Theorem
6.6.17 applies with W = D (C̃s) and C|W = C̃s .

(iv) In the L1-well-posed case with a reflexive state space X both the original
and the flow-inverted system are strongly regular, D22 is invertible, and
Theorem 6.6.17 applies with W = D (C̃s) and C|W = C̃s .

(v) If � is uniformly regular then the partially flow-inverted system �
 is
uniformly regular, D22 is invertible, and Theorem 6.6.17 applies with
W = D (C̃s) and C|W = C̃s .

Once more we leave the proof to the reader (it resembles the proof of Theorem
6.3.17).

The following analogue of Theorem 6.3.19 is true as well.

Theorem 6.6.19 Let
([ Y1

Y2

]
, X,
[ U1

U2

])
be reflexive Banach spaces, let 1 < p <

∞, let � be an L p-well-posed linear system on
([ Y1

Y2

]
, X,
[ U1

U2

])
, and let S

be an operator node on
([ Y1

Y2

]
, X,
[ U1

U2

])
(not necessarily the one induced

by �).
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(i) The system � is partially flow-invertible if and only if the causal dual
system �d is partially flow-invertible, in which case the partially

flow-inverted systems satisfy (�d )
 =
[

1 0 0
0 1 0
0 0 −1

]
(�
)d

[
1 0 0
0 1 0
0 0 −1

]
.

(ii) The operator node S is partially flow-invertible if and only if S∗ is
partially flow-invertible, in which case the partially flow-inverted

operator nodes satisfy (S∗)
 =
[

1 0 0
0 1 0
0 0 −1

]
(S
)∗

[
1 0 0
0 1 0
0 0 −1

]
.

(iii) If S is partially flow-invertible and both S and S∗ are strongly regular

with feedthrough operators D = [ D11 D12
D21 D22

]
respectively D∗ =

[
D∗11 D∗21
D∗12 D∗22

]
,

then D22 is invertible. In this case both S
 and (S∗)
 are strongly
regular.

Proof (i) The proof of part (i) is similar to the corresponding part of the proof
of Theorem 6.3.19, and it is left to the reader.

(ii) The proof of part (ii) is also similar to the corresponding part of the proof
of Theorem 6.3.19, but it is significantly longer (too long to be given here in
detail). If we base it on (6.6.9) which is the partial flow-inversion analogue of
(6.3.13), then the right-hand side does not cause any problems: the adjoint of the
right-hand side of (6.6.9) is equal to the right-hand side of (6.6.9) withα replaced

by α and S
 replaced by
[

1 0 0
0 1 0
0 0 −1

]
(S
)∗

[
1 0 0
0 1 0
0 0 −1

]
. However, this time we

cannot appeal directly to Lemma 6.2.14 to compute the adjoint of the operator
on the left-hand side of (6.6.9). This can be done approximately in the same way

as in the proof of Lemma 6.2.14, if we start by multiplying both
[

1 0 0
[C&D]1
0 0 1

]
and([

α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

])
to the right by

[
(β−A)−1 (β−A|X )−1 B1 (β−A|X )−1 B2

0 1 0
0 0 1

]
, where

β ∈ ρ(A). Unfortunately, this leads to a lengthy computation. Therefore, let
us only prove part (ii) in the special case where ρ(A) ∩ ρ(A
) �= ∅, so that
Theorem 6.6.9 applies. In this case, instead of computing the adjoint of the
left-hand side of (6.6.9), we may compute the adjoint of the right-hand side of
(6.6.11), which is easy. (We leave the proof of the general case to the reader.)

(iii) The proof of part (iii) is similar to the corresponding part of the proof
of Theorem 6.3.19, and it is left to the reader. �

6.7 Comments

The main part of the results presented in this chapter are taken from Staffans
and Weiss (2004) (the well-posed case) and from Malinen et al. (2003) and
Staffans (2001a, 2002a, c) (for general system or operator nodes).

Section 6.1 Anti-causal systems have been used especially in connection with
the anti-causal dual; see, e.g., Salamon (1987) and Staffans (1997, 1998a). Our
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presentation has been modeled after Staffans (1997, 1998a) and Staffans and
Weiss (2004).

Section 6.2 Most of the duality theory has been part of the folklore in well-
posed linear systems and in partial differential equations for quite some time.
The traditional definition of a dual system is based on the generating op-
erators of the system. Our treatment of the dual of an L p-well-posed sys-
tem is an extension of the corresponding discussions in Staffans (1997) and
Staffans (1998a). Slightly different but equivalent versions (in the Hilbert
space case with p = 2) are given in Arov and Nudelman (1996) and Staffans
and Weiss (2004). Theorem 6.2.10 is found in Salamon (1987, Theorem
3.3) and in Staffans (1998a, Lemma 2.15) (in the Hilbert space case with
p = 2). Theorem 6.2.13 is proved in Staffans and Weiss (2004) (in the
Hilbert space case with p = 2). Lemma 6.2.14 is taken from Malinen et al.
(2003). An early version of this lemma appears in Šmuljan (1986). Theo-
rem 6.2.15(ii) is due to Staffans and Weiss (2004), and Theorem 6.2.15(iii) to
Ober and Montgomery-Smith (1990, Section 6).

Section 6.3 Flow-inversion does not change the relationships between the dif-
ferent signals appearing in the system (only the grouping of ‘external’ signals
into inputs and outputs changes), so in Willems’ (1991) behavioral sense the
system stays the same. The main part of the results on flow-inversion are taken
from Staffans and Weiss (2004) (the well-posed case) and from Staffans (2001a,
2002a, c) (for general system or operator nodes). In particular, one direction of
Lemma 6.3.8(i),(iii) was proved in Staffans and Weiss (2004, Corollary 5.3) (in
the well-posed setting). The other direction was used implicitly in Staffans and
Weiss (2004, Theorem 5.4), and it was explicitly formulated and proved (inde-
pendently) by Kalle Mikkola in the spring of 2003 (in a the feedback setting;
cf. Lemma 7.4.4).

As we already mentioned earlier, flow-inversion is very closely connected to
output feedback. See Chapter 7 for additional comments on various feedback
results.

Section 6.4 Time-inversion has been used in the study of optimal control of
hyperbolic partial differential equations for quite some time; see, e.g., Flandoli
et al. (1988, Section 2.4). This notion was formalized (in the well-posed case) in
Staffans and Weiss (2004). The examples in this section are taken from Staffans
and Weiss (2004).

Section 6.5 Again, the first formal study of time-flow-inversion (in the well-
posed case) seems to be Staffans and Weiss (2004). In the conservative case
(which will be discussed in Chapter 11) the time-flow-inversion coincides with
the duality transformation, and many of the results of this section were known
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from before in this form (see Sz.-Nagy and Foiaş (1970) and the comments in
Chapter 11).

Section 6.6Partial flow-inversion plays an important role in the theory of doubly
coprime factorizations presented in Section 8.3, and also in the standard H∞

control theory. There this transformation is often referred to as a chain scattering
transformation. See, for example, Staffans (1998d).
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Feedback

Feedback plays a central role in control theory. We describe different types of
feedback, such as output feedback, state feedback, and output injection, both
in the well-posed case and in the non-well-posed case. Feedback and partial
feedback can be seen as special cases of flow-inversion or partial flow-inversion,
and the converse is also true.

7.1 Static output feedback

The notions of stabilization and detection deal with the possibility of stabilizing
a well-posed linear system by the use of either a state feedback or an output
injection. Therefore, before we can study these notions, we must first look at
different kinds of feedback connections.

We start by presenting the most basic type of feedback, namely static output
feedback. It is possible to regard this type of feedback as a special case of
flow-inversion, which was discussed in Section 6.3 (see Remark 7.2.3), and
conversely, it is possible to regard flow-inversion as a special case of static output
feedback (see Remark 7.1.10). In particular, this means that we for technical
reasons have to exclude the L∞-well-posed case, and restrict the discussion in
this chapter to well-posed linear systems, i.e, systems that are either L p-well-
posed for some p <∞ or Reg-well-posed (cf. Definition 2.2.4).1

Figure 7.1 contains a diagram describing static output feedback. In that di-
agram K is a bounded linear operator from the output space into the input

1 It is possible to include the case p = ∞, too, by adding the requirement that the return
difference (the operator (1−DK ) in Theorem 7.1.2, etc.) is invertible both in TIC∞loc and in

TICReg
loc ; this is needed for the strong continuity of the closed-loop semigroup. It is not clear if

the latter condition is implied by the former or not. If it is true, then the L∞ case could be
treated in the same way as the other cases.

403
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x

x0

u

K
+ +z p+v

y
A Bt

DC

Figure 7.1 Static output feedback connection

space. Thus, if we consider this feedback configuration with initial time
zero, initial value x0, and input v, we find that the state x(t) at time t ≥ 0,
the output y, the effective input u, and the feedback signal z satisfy the
equations

x(t) = At x0 +Bτ t u,

y = Cx0 +Du,

u = z + π+v,

z = K y,

(7.1.1)

which can be formally solved as

x(t) = (At +Bτ t K (1−DK )−1 C
)
x0 +B (1− KD)−1 τ tπ+v,

y = (1−DK )−1 (Cx0 +Dπ+v) ,

u = (1− KD)−1 (KCx0 + π+v) ,

z = (1− KD)−1 K (Cx0 +Dπ+v) .

(7.1.2)

We say that the feedback operator K is admissible whenever these equations
are valid.

For the notions used in the following definition, see Definitions 2.2.4 and
2.6.2. See also Remark 2.2.5.

Definition 7.1.1 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

Then K ∈ B(Y ; U ) is called an admissible (static) output feedback operator for
� if the operator 1− KD has an inverse in TICloc(U ).

It is a fundamental fact that x and y in (7.1.2) can be interpreted as the
state and output of another well-posed linear system with initial state x0 and
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input u if (and only if; see Theorem 7.1.8) K is an admissible output feedback
operator:

Theorem 7.1.2 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and let K ∈ B(Y ; U ) be an admissible output feedback operator for �. Then
the system

�K =
[

AK BK τ

CK DK

]

=
[

A+BτK (1−DK )−1 C B (1− KD)−1 τ

(1−DK )−1 C D (1− KD)−1

] (7.1.3)

is another well-posed linear system on (Y, X,U ). We call this system the closed-
loop system with (output) feedback operator K . The state x(t) at time t and the
output y of �K with initial time zero, initial value x0, and input v, are given by
(7.1.2).

It is possible to prove this theorem by reducing it to a special case of Theorem
6.3.1 (see Remark 7.2.3), but for the convenience of the reader we have chosen
to give an independent proof, analogous to that of Theorem 6.3.1.

Proof of Theorem 7.1.2 Clearly, if �K is a well-posed linear system, then the
state x(t) at time t and the output y of �K with initial time zero, initial value
x0, and input v, are given by (7.1.2).

The continuity of the operators in �K is obvious. The strong continuity of
AK follows from the strong continuity of τ in L p

c,loc(R; U ) (see Example 2.5.3)
for p <∞ or from the strong continuity of Bτ from Regc,loc(R; U ) to X (see
Theorem 4.3.1(ii)).2 Thus, to complete the proof it suffices to check that the
algebraic properties in Definition 2.2.1 hold.

The key ingredients in the proof of the algebraic properties are the
formulas

π+(1− KD)−1π− = K (1−DK )−1CB(1− KD)−1,

π+(1−DK )−1π− = (1−DK )−1CB(1− KD)−1 K ,
(7.1.4)

which follow from Lemmas 6.3.2, A.4.1, and the fact that π+Dπ− = CB.
(i) Clearly (AK )0 = A0 = 1. To show that AK is a semigroup we use

Definition 2.2.1(i)–(iv), Lemma A.4.1, the causality and time-invariance of

2 If it is true that (1−DK )−1 maps Regloc(R
+

; Y ) into itself also in the L∞-case (which seems
plausible), then the closed-loop semigroup is strongly continuous also in the L∞-case, and we
can remove the restriction p <∞ imposed on the system at the beginning of this chapter.
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(1− KD)−1, and (7.1.4) to compute

(AK )s(AK )t = (As +Bτ s K (1−DK )−1 C
)(

At +BK (1−DK )−1 τ tC
)

= AsAt + AsBK (1−DK )−1 τ tC

+Bτ s K (1−DK )−1 CAt

+Bτ s K (1−DK )−1 CB (1− KD)−1 K τ tC

= As+t +Bτ sπ−K (1−DK )−1 π−τ tC

+Bτ sπ+K (1−DK )−1 π+τ tC

+Bτ sπ+K (1−DK )−1 π−τ tC

= As+t +Bτ sτ t K (1−DK )−1 C

= (AK )s+t .

(ii) The proof of the identity (AK )tBK = BK τ tπ− in Definition 2.2.1(ii)
uses the same ingredients:

(AK )tBK = (At +Bτ t K (1−DK )−1 C
)
B (1− KD)−1

= AtB (1− KD)−1 +Bτ t K (1−DK )−1 CB (1− KD)−1

= Bτ tπ− (1− KD)−1 π− +Bτ tπ+ (1−DK )−1 π−
= B (1− KD)−1 τ tπ− = BK τ tπ−

(iii) Also the proof of the identity CK (AK )t = π+τ tCK in Definition 2.2.1(iii)
is similar:

CK (AK )t = (1−DK )−1 C
(
At +B (1− KD)−1 K τ tC

)
= (1−DK )−1 CAt + (1−DK )−1 CB (1− KD)−1 K τ tC

= π+ (1−DK )−1 π+τ tC+ π+ (1−DK )−1 π−τ tC

= π+τ t (1−DK )−1 C = π+τ tCK .

(iv) The time-invariance and causality of DK = D (1− KD)−1 follow from
the time-invariance and causality of D and (1− KD)−1. Thus, to verify part
(iv) of Definition 2.2.1 it suffices to compute the Hankel operator of DK as
follows:

π+DKπ− = π+D(π+ + π−) (1− KD)−1 π−
= Dπ+ (1− KD)−1 π− + π+Dπ− (1− KD)−1

= DK (1−DK )−1 CB (1− KD)−1 + CB (1− KD)−1

= (1+ (1− 1+DK ) (1−DK )−1)CB (1− KD)−1

= (1−DK )−1 CB (1− KD)−1

= CK BK .

�
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Remark 7.1.3 The system �K defined in (7.1.3) can be written in many dif-
ferent equivalent block matrix forms, namely

�K =
[

AK BK τ

CK DK

]

=
[

A+BτK (1−DK )−1 C B (1− KD)−1 τ

(1−DK )−1 C D (1− KD)−1

]

=
[

A Bτ

C D

][
1 0

−KC 1− KD

]−1

=
[

1 −BK τ

0 1−DK

]−1 [
A Bτ

C D

]

=
[

A Bτ

C D

]
+
[

Bτ

D

]
K (1−DK )−1 [C D

]
=
[

A Bτ

C D

]
+
[

Bτ

D

]
K
[
CK DK

]
=
[

A Bτ

C D

]
+
[

BK τ

DK

]
K
[
C D

]
.

(7.1.5)

We leave the simple algebraic proofs of these identities to the reader. It is
possible to give direct interpretations of these block matrix forms of the closed-

loop system in terms of the diagram in Figure 7.1. The factor
[

1 0
−KC 1−KD

]−1

in the first block matrix form is simply the mapping from [ x0
v ] to

[
x0
u

]
. The

factor
[A Bτ

C D

]
in the second block matrix form is the (open-loop) mapping

from [ x0
v ] to

[
x(t)

y

]
if we cut the loop at either of the two loop break points

(marked with crosses), and the factor
[

1 −BK τ

0 1−DK

]−1
is the correction term

which is introduced when the loop is closed. In the next block matrix form
the first term

[A Bτ

C D

]
on the right hand side is the system response from[ x0

π+v
]

to
[ x

y
]

when the loop is cut at the break point located at the input
to K . In the second term,

[
C D

]
is the open-loop mapping from

[ x0
π+v
]

to
this break point, (1−DK )−1 is the closed-loop response to an external sig-
nal entering at the break point (the closed-loop system sensitivity to an exter-
nal signal entering at this point), and

[Bτ

D

]
K is the open-loop mapping from

the break point to
[ x

y
]
. The last two block matrix forms have similar inter-

pretations.



408 Feedback

Remark 7.1.4 If in the classical system

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t), t ≥ 0,

x(0) = x0,

(7.1.6)

we replace u by u = K y + v, then we get a new well-defined system of the
same type iff 1− DK is invertible, or equivalently, iff 1− K D is invertible. In
the new system the operators

[ A B
C D

]
have been replaced by[

AK BK

C K DK

]
=
[

A + BK (1− DK )−1 C B (1− K D)−1

(1− DK )−1 C D (1− K D)−1

]

=
[

A B

C D

][
1 0

−K C 1− K D

]−1

=
[

1 −BK

0 1− DK

]−1 [
A B

C D

]

=
[

A B

C D

]
+
[

B

D

]
K (1− DK )−1

[
C D

]
=
[

A B

C D

]
+
[

B

D

]
K
[

C K DK
]

=
[

A B

C D

]
+
[

BK

DK

]
K
[

C D
]
.

(7.1.7)

Observe the striking similarity between this formula and (7.1.5). (Usually the
feedthrough operator D is taken to be zero, in which case this formula simplifies
significantly and the invertibility condition on 1− DK drops out.) This remark
is actually valid in a much more general setting; see Remark 7.7.4.

Definition 7.1.5 With reference to Figure 7.1, we call KD the input loop gain
operator, DK the output loop gain operator, 1− KD the input return differ-
ence operator, 1−DK the output return difference operator, (1− KD)−1 the
input sensitivity operator, (1−DK )−1 the output sensitivity operator, KD(1−
KD)−1 the input complementary sensitivity operator, and DK (1−DK )−1 the
output complementary sensitivity operator.

Remark 7.1.6 It is possible, without loss of generality, to assume that Y = U
and that K = 1 in Theorem 7.1.2 by modifying the system �; see Theorem
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p+v

x0

x

y

u
+

+

A Bt

DC

Figure 7.2 Positive identity feedback

7.2.1 and Figure 7.7. We shall refer to this case as (positive) identity feedback.
In this case the formulas for the closed-loop system drawn in Figure 7.2 with
input v and outputs

[
y
u

]
become

A+Bτ (1−D)−1 C B (1−D)−1 τ

(1−D)−1 C D (1−D)−1

(1−D)−1 C (1−D)−1



=

A Bτ

C D

0 1

[ 1 0

−C 1−D

]−1

=

1 −Bτ 0

0 1−D 0
0 −1 1


−1A Bτ

C D

0 1



=

A Bτ

C D

0 1

+
Bτ

D

1

 (1−D)−1 [C D
]

=

A 0

0 −1
0 0

+
Bτ

1
1

 (1−D)−1 [C 1
]
.

The interpretations of these block matrix forms in terms of Figure 7.2 are
similar to those given in Remark 7.1.3. If we instead use negative iden-
tity feedback as drawn in Figure 7.3, then we get the analogous closed-loop
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x

y

p+v

x0

+
−

A Bt

DC

u

Figure 7.3 Negative identity feedback

system A−Bτ (1+D)−1 C B (1+D)−1 τ

(1+D)−1 C D (1+D)−1

− (1+D)−1 C (1+D)−1



=

A Bτ

C D

0 1

[ 1 0

C 1+D

]−1

=

1 Bτ 0

0 1+D 0
0 1 1


−1A Bτ

C D

0 1



=

A Bτ

C D

0 1

−
Bτ

D

1

 (1+D)−1 [C D
]

=

A 0

0 1
0 0

−
Bτ

−1
1

 (1+D)−1 [C −1
]
.

Repeated feedbacks behave in the expected way:

Lemma 7.1.7 Let K ∈ B(Y ; U ) be an admissible output feedback operator for
�. Then L ∈ B(Y ; U ) is an admissible output feedback operator for the closed-
loop system�K iff L + K is an admissible output feedback operator for�, and
�L+K = (�K )L . In particular,−K is always an admissible feedback operator
for �K , and (�K )−K = �.

Proof That L ∈ B(Y ; U ) is an admissible output feedback operator for the
closed-loop system �K iff K + L is an admissible output feedback operator
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for � follows from the fact that

1− LDK = 1− LD (1− KD)−1 = (1− KD− LD) (1− KD)−1

= (1− (L + K )D
)

(1− KD)−1

is invertible in TICloc(U ) if and only if
(
1− (L + K )D

)
is invertible in

TICloc(U ). Moreover, this computation and another similar one where 1− LDK

is replaced by 1−DK L shows that

(1− LDK )−1 = (1− KD)
(
1− (L + K )D

)−1
,

(1−DK L)−1 = (1−D(L + K )
)−1

(1−DK ) .

Using these facts in (7.1.5) we get �L+K = (�K
)L

. �

As the following theorem shows, there are several different ways to charac-
terize the admissibility of a feedback operator:

Theorem 7.1.8 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U )

with growth boundωA, and let K ∈ B(Y ; U ). Then the following conditions are
equivalent:

(i) K is an admissible output feedback operator for �.
(ii) For some T > 0, the operator π[0,T )(1− KD)π[0,T ) has an inverse in

B(L p|Reg([0, T ); U )).
(ii′) For some T > 0, the operator π[0,T )(1−DK )π[0,T ) has an inverse in

B(L p|Reg([0, T ); Y )).
(iii) For all s and t, −∞ < s < t <∞, the operator π[s,t)(1− KD)π[s,t) has

an inverse in B(L p|Reg([s, t); U )).
(iii′) For all s and t, −∞ < s < t <∞, the operator π[s,t)(1−DK )π[s,t) has

an inverse in B(L p|Reg([s, t); U )) for all s and t.
(iv) The operator 1− KD has an inverse in TICloc(U ).
(iv′) The operator 1−DK has an inverse in TICloc(Y ).
(v) The operator 1− KD has an inverse in TICα(U ) for some α ≥ ωA.
(v′) The operator 1−DK has an inverse in TICα(Y ) for some α ≥ ωA.
(vi) The functions x and y in the diagram in Figure 7.1 (i.e., the set of

equations (7.1.1)) can be interpreted as the state and output of a
well-posed linear system with initial state x0 ∈ X and input
v ∈ L p|Regloc(R

+
; U ).

(vii) There is some α ≥ ωA for which the diagram in Figure 7.1 (i.e., the set
of equations (7.1.1)) with x0 = 0 defines a continuous linear mapping
from the external input v ∈ L p|Regα(R

+
; U ) to the internal input

u ∈ L p|Regα(R
+

; U ).
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Proof That (ii)⇔ (ii′), (iii)⇔ (iii′), (iv)⇔ (iv′), and (v)⇔ (v′) follows from
Lemma A.4.1. The proof of the equivalence of (i)–(vi) is a copy of the proof of
the corresponding equivalence in Theorem 6.3.5, with D replaced by 1− KD.
Thus, the only additional thing which we have to prove is that (vii) is equivalent
to the other conditions.

(vi) ⇒ (vii): By (7.1.1), u = K y + π+v. Thus, if (vi) holds, then it
follows from Theorem 2.5.4 that the mapping v �→ u is continuous from
L p|Regα(R

+
; U ) to itself. Thus (vii) holds.

(vii)⇒ (v): By taking x0 = 0 and eliminating the variable z from (7.1.1) we
get

(1− KD)u = π+v.

This equation determines u uniquely and continuously in L p|Regα(R
+

; U ) for

some α ∈ R as a function of v ∈ L p|Regα(R
+

; U ) if and only if 1− KD has
an inverse in TICα(U ). �

Corollary 7.1.9 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and let K ∈ B(Y ; U ). Then K is an admissible output feedback operator for �
if any one of the following conditions hold:

(i) ‖π[0,T )(KD)π[0,T )‖B(L p |Reg([0,T );U )) < 1 for some T > 0;
(ii) ‖π[0,T )(DK )π[0,T )‖B(L p |Reg([0,T );Y )) < 1 for some T > 0;

(iii) limT↓0‖π[0,T )Dπ[0,T )‖B(L p |Reg([0,T );U );L p |Reg([0,T );Y )) = 0;
(iv) D is a convolution operator of the type given in Theorem A.3.7(i);
(v) p = 1 and D is a convolution operator of the type given in Theorem

A.3.8.

Proof (i)–(ii) In these cases condition (ii) or (ii′) in Theorem 7.1.8 is satisfied.
(iii) This is a special case of both (i) and (ii).
(iv)–(v) These two cases are contained in (iii). �

Remark 7.1.10 Corollary 6.3.12 enables us to interpret a flow-inversion as a
feedback connection wheneverρ(A) ∩ ρ(A×) �= ∅; see Figure 7.4. In this figure

x

x0

u+ −

A Bt

D − EC

p+y
E−1

Figure 7.4 Flow-inversion
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E is an arbitrary continuous linear operator which maps U onto Y , and the result
is independent of the choice of E . For example, we may take E = D̂(α) with
α ∈ ρ(A) ∩ ρ(A×).

7.2 Additional feedback connections

It is possible to add some inputs and outputs to the basic output feedback connec-
tion described in the preceding section. This does not have any significant impact
on the theory, as long as the feedback loop stays the same. For example, let us
consider the feedback connection drawn in Figure 7.5. The difference compared
to Figure 7.1 is that we have added another input labeledw and regarded the in-
ternal signal z as an additional output. An almost equivalent connection is drawn
in Figure 7.6. Here the inputs are the same as in Figure 7.5, but the outputs are y1

and u instead of y and z. The appropriate equations describing these systems are

x(t) = At x0 +Bτ t u,
y = Cx0 +Du,
z = K y + Kπ+w,

y1 = y + π+w,
u = z + π+v,

(7.2.1)

x

x0

u

K

+

++
+ zp+w

p+v

y
A Bt

DC

Figure 7.5 Another static output feedback

y1

x

x0

u

K

+ +

+ +z p+v

p+w y
A Bt

DC

Figure 7.6 A third static output feedback
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which can be formally solved as

x(t) = (At +Bτ t K (1−DK )−1 C
)
x0 +B (1− KD)−1 K τ tπ+w,

+B (1− KD)−1 τ tπ+v,

y = (1−DK )−1 (Cx0 +DKπ+w +Dπ+v) ,

z = (1− KD)−1 K (Cx0 + π+w +Dπ+v) ,

y1 = (1−DK )−1 (Cx0 + π+w +Dπ+v) ,

u = (1− KD)−1 (KCx0 + Kπ+w + π+v) .

(7.2.3)

This leads us to the following theorem.

Theorem 7.2.1 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and let K ∈ B(Y ; U ) be an admissible output feedback operator for �.

(i) The systemA+BτK (1−DK )−1 C B (1− KD)−1 K τ B (1− KD)−1 τ

(1−DK )−1 C D (1− KD)−1 K D (1− KD)−1

K (1−DK )−1 C (1− KD)−1 K K (1−DK )−1 D



=

A 0 Bτ

C 0 D

0 K 0


 1 0 0

−C 1 −D

0 −K 1


−1

=

1 0 −Bτ

0 1 −D

0 −K 1


−1A 0 Bτ

C 0 D

0 K 0



=

A 0 Bτ

C 0 D

0 K 0

+
 0 Bτ

0 D

K 0

[ 1 −D

−K 1

]−1 [
C 0 D

0 K 0

]

=

A 0 0

0 −1 0
0 0 −1

+
0 Bτ

1 0
0 1

[ 1 −D

−K 1

]−1 [
C 1 0
0 0 1

]

where [
1 −D

−K 1

]−1

=
[

(1−DK )−1 D(1− KD)−1

(1− KD)−1 K (1− KD)−1

]
is another well-posed linear system on (Y, X,U ). The state x(t) at time t
and the outputs y and z of this system with initial time zero, initial value
x0, and inputs w and v are given by (7.2.2), and it is the closed-loop
system corresponding to the feedback drawn in Figure 7.5.
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(ii) The systemA+BτK (1−DK )−1 C B (1− KD)−1 K τ B (1− KD)−1 τ

(1−DK )−1 C (1−DK )−1 D (1− KD)−1

K (1−DK )−1 C (1− KD)−1 K (1− KD)−1



=

A 0 Bτ

0 1 0
0 0 1


 1 0 0

−C 1 −D

0 −K 1


−1

=

1 0 −Bτ

0 1 −D

0 −K 1


−1A 0 0

C 1 0
0 0 1



=

A 0 Bτ

C 1 D

0 K 1

+
 0 Bτ

0 D

K 0

[ 1 −D

−K 1

]−1 [
C 0 D

0 K 0

]

=

A 0 0

0 0 0
0 0 0

+
0 Bτ

1 0
0 1

[ 1 −D

−K 1

]−1 [
C 1 0
0 0 1

]

is another well-posed linear system on (Y, X,U ). The state x(t) at time t
and the outputs y1 and u of this system with initial time zero, initial value
x0, and inputs w and v are given by (7.2.3), and it is the closed-loop
system corresponding to the feedback drawn in Figure 7.6.

Proof The simplest way to prove (i) is to observe that Figure 7.5 is equivalent
to (a part of) Figure 7.7, which is an identity output feedback connection for

x

x0

u

K

+
+

+
+

p+w

p+v

y
z

y

y1

z

A Bt

DC

0

0

00

Figure 7.7 Output feedback in block form
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the system A 0 Bτ

C 0 D

0 K 0

 ,
cf. Remark 7.1.6. This identity output feedback operator is admissible iff[

1 −D
−K 1

]
is invertible in TICloc

([
Y
U

])
, and by Lemma A.4.1, this condition

is equivalent to the admissibility of K as an output feedback operator for the
original system. To prove (ii) it suffices to observe that the only difference be-
tween the system drawn in Figure 7.6 and the one drawn in Figure 7.5 is that
there is an extra feedthrough term

[
1 0
0 1

]
from the inputs to the outputs. �

Observe that Figure 7.7 has been drawn in such a way that it contains all
of Figures 7.1, 7.5, and 7.6. To get Figure 7.1 we delete the input w and the
outputs y1, z, and u. To get Figure 7.5 we delete the outputs y1 and u. To get
Figure 7.6 we delete the outputs y and z.

The preceding result enable us to add some additional equivalent conditions
to the list in Theorem 7.1.8.

Corollary 7.2.2 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U )

with growth boundωA, and let K ∈ B(Y ; U ). Then the following conditions are
equivalent to those listed in Theorem 7.1.8:

(ii′′) The operator π[0,T )
[

1 −D
−K 1

]
π[0,T ) has an inverse in

B(L p|Reg([0, T );
[

Y
U

])
for some T > 0.

(iii′′) The operator π[s,t)
[

1 −D
−K 1

]
π[s,t) has an inverse in

B(L p|Reg([s, t);
[

Y
U

])
for all s and t, −∞ < s < t <∞.

(iv′′) The operator
[

1 −D
−K 1

]
has an inverse in TICloc

([
Y
U

])
.

(v′′) The operator
[

1 −D
−K 1

]
has an inverse in TICα

([
Y
U

])
for some α ≥ ωA.

(vi′′) The functions x and
[

y
z

]
in the diagrams in Figures 7.5 and 7.7 can be

interpreted as the state and output of a well-posed linear system with
initial state x0 ∈ X and input [ wv ] ∈ L p|Regloc

(
R
+

;
[

Y
U

])
.

(vi′′′) The functions x and
[

y1
u

]
in the diagrams in Figures 7.6 and 7.7 can be

interpreted as the state and output of a well-posed linear system with
initial state x0 ∈ X and input [ wv ] ∈ L p|Regloc

(
R
+

;
[

Y
U

])
.

This follows from Theorem 7.2.1 and its proof.

Remark 7.2.3 The diagrams in Figure 7.6 and 7.7 have the interesting property
that it is possible to recover the extended version of the original system

[A B

C D

]
drawn in Figure 7.8 by reversing the directions of two of the lines, i.e, by
interchanging the inputs [ wv ] with the outputs

[
y1
u

]
. This is a typical case of

partial flow-inversion. Actually, it suffices to change the direction of one of the
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x

x0

K

+

+

−

−

w

vp+u

y
z

y

p+y1

z

A Bt
DC

0

0

00

Figure 7.8 Cancellation of static output feedback

u2

x2

y2

x0
1

p+u1

A2

C2 D2

B2t A1

C1 D1

B1t
x1

y1

x0
2

K
p+v

+ +
Figure 7.9 Cascade connection through K

two lines to get (slightly different) extended versions of the original system.
This is maybe most easily seen from Figure 7.6.

Example 7.2.4 Let �1 =
[

A1 B1

C1 D1

]
be a well-posed linear system on

(Y1, X1,U1), let�2 =
[

A2 B2

C2 D2

]
be another linear system on (Y2, X2,U2) which

is well-posed in the same sense, and let K ∈ B(Y1; X2). Define U = [ U1
U2

]
, X =[ X1

X2

]
, Y = [ Y1

Y2

]
, and

� =
[

A Bτ

C D

]
=


A1 0 B1τ 0

B2τKC1 A2 B2 KD1τ B2τ

C1 0 D1 0
D2 KC1 C2 D2 KD1 D2

 .
Then

[A B

C D

]
is a linear system on (Y, X,U ) which is well-posed in the same

sense as �1 and �2. See the equivalent Figures 7.9 and 7.10. We call � the
cascade connection of �1 and �2 through K .
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x1

y1
y1

u2

y2

x2

x0
1

x0
2

K
++

p+v

p+u1

A1

A2

0

0

C1

C2

0

0

D1

D2

0

0

B1t
B2t

0

0

Figure 7.10 Cascade connection in block form

Proof This is an output feedback connection for the cross-product of �1 and
�2 described in Example 2.3.10 with feedback operator

[
0 0
K 0

]
. Since[

1 0
0 1

]
−
[

0 0
K 0

] [
D1 0
0 D2

]
=
[

1 0
−KD1 1

]
is always invertible (the inverse is

[
1 0

KD1 1

]
), this feedback connection is al-

ways well-posed. The explicit formulas for the closed-loop system follow from
Theorem 7.1.2 and (7.1.5). �

Example 7.2.5 Let �1 =
[

A1 B1

C1 D1

]
be a well-posed linear system on

(Y, X1,U ), and let �2 =
[

A2 B2

C2 D2

]
be another linear system on (U, X2, Y )

which is well-posed in the same sense. Suppose that 1−D2D1 is invertible in
TICloc(U ). Define X = [ X1

X2

]
and

� =
[

A Bτ

C D

]
=


A1 0 0 B1τ
0 A2 B2τ 0

C1 0 0 D1
0 C2 D2 0



+


0 B1τ

B2τ 0

0 D1
D2 0

[ 1 −D1
−D2 1

]−1 [
C1 0 0 D1
0 C2 D2 0

]

=


A1 0 0 0
0 A2 0 0

0 0 −1 0
0 0 0 −1



+


0 B1τ

B2τ 0

1 0
0 1

[ 1 −D1
−D2 1

]−1 [
C1 0 1 0
0 C2 0 1

]
,
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Figure 7.12 Dynamic feedback in block form

where [
1 −D1

−D2 1

]−1

=
[

(1−D1D2)−1 D1(1−D2D1)−1

(1−D2D1)−1D2 (1−D2D1)−1

]
.

Then
[A B

C D

]
is a linear system on

([
Y
U

]
, X,
[

Y
U

])
which is well-posed in the

same sense as �1 and �2. See the equivalent Figures 7.11 and 7.12. We call �
the dynamic feedback connection of �1 and �2.

Proof This can be interpreted as an output feedback connection for the cross-
product of �1 and �2 described in Example 2.3.10 with feedback operator[

0 1
1 0

]
. However, we can simplify the computations slightly if we reorder the

two inputs u1 and y2 into
[ y2

u1

]
(and keep the order of the outputs as

[ y1
u2

]
.

Then we get an identity feedback, and the result follows from Remark 7.1.6.
Observe that this identity feedback is admissible iff

[ 1 −D1
−D2 1

]
is invertible

in TICloc
([

Y
U

])
, which by Lemma A.4.1 is true iff 1−D2D1 is invertible in

TICloc(U ), or equivalently, iff 1−D1D2 is invertible in TICloc(Y ). �
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In many applications the notion of a partial feedback plays a very important
role. By this we mean the following. The inputs and outputs of the system are
grouped into two parts, an active and an inactive part, out of which only the
active part is allowed to be part of a feedback loop. This is the same situation
that we encountered in partial flow-inversion.

Lemma 7.2.6 Let � = [A B

C D

] = [ A B1 B2

C1 D11 D12
C2 D21 D22

]
be a well-posed linear system

on
([ Y1

Y2

]
, X,
[ U1

U2

])
, and let K ∈ B(Y2; U2).

(i) The operator
[

0 0
0 K

]
is an admissible feedback operator for � if and only

if K is an admissible feedback operator for the (reduced) system[
A B2

C2 D22

]
(see Figure 7.13). The closed-loop system, which for simplicity

we denote by �K , is given by

�K =

AK BK
1 τ BK

2 τ

CK
1 DK

11 DK
12

CK
2 DK

21 DK
22



=

 A B1τ B2τ

C1 D11 D12

C2 D21 D22


 1 0 0

0 1 0
−KC2 −KD21 1− KD22


−1

=

1 0 −B2 K τ

0 1 −D12 K
0 0 1−D22 K


−1 A B1τ B2τ

C1 D11 D12

C2 D21 D22



=

 A B1τ B2τ

C1 D11 D12

C2 D21 D22

+
B2τ

D12

D22

 K (1−D22 K )−1 [C2 D21 D22
]

=

 A B1τ B2τ

C1 D11 D12

C2 D21 D22

+
B2τ

D12

D22

 K
[
CK

2 DK
21 DK

22

]

=

 A B1τ B2τ

C1 D11 D12

C2 D21 D22

+
BK

2 τ

DK
12

DK
22

 K
[
C2 D21 D22

]
.

We call �K the closed-loop system with partial (output) feedback
operator K .

(ii) In the case of partial positive identity feedback where Y2 = U2 and
K = 1 it is possible to write the closed-loop system in the alternative
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Figure 7.13 Partial feedback

form

�

[
0 0
0 1

]
=

AK BK
1 τ BK

2 τ

CK
1 DK

11 DK
12

CK
2 DK

21 DK
22



=

 A B1τ B2τ

C1 D11 D12

C2 D21 D22

+
B2τ

D12

D22

 (1−D22)−1 [C2 D21 D22
]

=

 A B1τ 0

C1 D11 0
0 0 −1

+
B2τ

D12

1

 (1−D22)−1 [C2 D21 1
]
.

(iii) In the case of partial negative identity feedback where Y2 = U2 and
K = −1 it is possible to write the closed-loop system in the alternative
form

�

[
0 0
0 −1

]
=

AK BK
1 τ BK

2 τ

CK
1 DK

11 DK
12

CK
2 DK

21 DK
22



=

 A B1τ B2τ

C1 D11 D12

C2 D21 D22

−
B2τ

D12

D22

 (1+D22)−1 [C2 D21 D22
]

=

 A B1τ 0

C1 D11 0
0 0 1

−
B2τ

D12

−1

 (1+D22)−1 [C2 D21 −1
]
.
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Proof By Lemma A.4.2(i)–(ii),
[

1 0
0 1

]− [ 0 0
0 K

] [
D11 D21
D21 D22

] = [ 1 0
−KD21 1−KD22

]
is

invertible in TICloc
([ U1

U2

])
if and only if 1− KD22 is invertible in TICloc(U2).

Thus, Lemma 7.2.6 follows from Theorems 7.1.2 and 7.1.8 (and some simple
algebra; cf. Theorem 6.6.1). �

The cascade connection in Example 7.2.4 is a simple example of partial
positive identity feedback. This connection is always well-posed since the iden-
tity operator is a well-posed output feedback operator for the reduced system[

A1 0 0
0 A2 B2

C1 0 0

]
.

7.3 State feedback and output injection

The notion of a state feedback can be regarded as a special case of the partial
identity feedback described in Lemma 7.2.6(ii). Intuitively, a state feedback
means that an additional output is created, and this output is then fed back
into the input, as shown in Figure 7.14. In this figure the original system is
represented by

[A B

C D

]
. We find two additional components, namely a new

observability map K (from the initial state to the new output) and a new in-
put/output map F (from the original input to the new output). The pair

[
K F

]
is admissible if the resulting system is well-posed, i.e., if

[
0 1
]

is an admissible
output feedback operator for the extended system:

Definition 7.3.1 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

The pair
[
K F

]
is an admissible state feedback pair for � if the extended

system

[
A B

C D
K F

]
is a well-posed linear system on

([
Y
U

]
, X,U

)
and
[
0 1
]

is an

admissible output feedback operator for this extended system.

+
+

x

x0

u

z

p+u×

z

y
A Bt

D

F

C

K

Figure 7.14 State feedback
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−
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Figure 7.15 Output injection

The notion of an output injection is analogous. In this case a new input
is created, into which we feed the negative of the original output y plus a
new perturbation w×, as shown in Figure 7.15. The original system is still
represented by

[A B

C D

]
. Observe that this time we use negative feedback instead

of positive feedback.3 In this figure we find a new controllability map H (from
the new input to the state) and a new input/output map G (from the new input
to the original output). The pair

[ H

G

]
is admissible if the resulting system is

well-posed:

Definition 7.3.2 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

The pair
[ H

G

]
is an admissible output injection pair for � if the extended

system
[A H B

C G D

]
is a well-posed linear system on

(
Y, X,

[
Y
U

])
, and

[ −1
0

]
is an admissible output feedback operator for this extended system. See
Figure 7.15.

Lemma 7.3.3 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

(i) The following conditions are equivalent:
(a) the pair

[
K F

]
is an admissible state feedback pair for �;

(b) the extended system

[
A B

C D
K F

]
is a well-posed linear system on([

Y
U

]
, X,U

)
, and 1− F has an inverse in TICloc(U ).

When these conditions hold, then the closed-loop state feedback system
�× with input u× and outputs y, and z that we get by using the output
feedback operator

[
0 1
]

in the extended system (see Figure 7.14) is

3 Our use of positive feedback in the state feedback loop and negative feedback in the output
injection loop is motivated by the fact that in this way we get the ‘standard’ distribution of
minus signs in the doubly coprime factorization (8.3.3). Positive or negative feedback in both
the state feedback loop and the output injection loop leads to one minus sign in each of the two
factors in (8.3.3).
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given by

�× =

A× B×τ

C× D×
K× F×



=

A+Bτ (1− F)−1 K B (1− F)−1 τ

C+D (1− F)−1 K D (1− F)−1

(1− F)−1 K F (1− F)−1



=

A Bτ

C D

K F

[ 1 0

−K 1− F

]−1

=

A Bτ

C D

K F

+
Bτ

D

F

 (1− F)−1 [K F
]

=

A 0

C 0
0 −1

+
Bτ

D

1

 (1− F)−1 [K 1
]
.

(ii) The following conditions are also equivalent:
(a) the pair

[ H

G

]
is an admissible output injection pair for �;

(b) the extended system
[A H B

C G D

]
is a well-posed linear system on

(Y, X,
[

Y
U

]
), and 1+G has an inverse in TICloc(Y ).

When these conditions hold, then the closed-loop output injection system
�× with inputs w× and u and output y that we get by using the output
feedback operator

[
1
0

]
in the extended system (see Figure 7.14) is given

by

�× =
[

A× H×τ B×τ

C× G× D×

]

=
[

A− Hτ (1+G)−1 C H (1+G)−1 τ Bτ − H (1+G)−1 Dτ

(1+G)−1 C (1+G)−1 G (1+G)−1 D

]

=
[

1 Hτ

C 1+G

]−1 [
A Hτ Bτ

C G D

]

=
[

A Hτ Bτ

C G D

]
−
[

Hτ

G

]
(1+G)−1 [C G D

]
=
[

A 0 Bτ

0 1 0

]
−
[

Hτ

−1

]
(1+G)−1 [C −1 D

]
.
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Proof See Lemma 7.2.6(ii)–(iii). �

Remark 7.3.4 We shall frequently regard the signal u in Figure 7.14 (i.e., the
input to the open-loop system) as an additional output of the closed-loop state
feedback system. This output has the same observability map (1− F)−1K as
the output z, and its input/output map, given by (1− F)−1, differs from the
input/output map from u× to z by an identity operator (see Theorem 7.2.1 and
Lemma 7.3.3). Similar remarks apply to the signals w in Figure 7.15, u× and
w× in Figure 8.1, u and w× in Figure 8.2, u× and w in Figure 8.3, etc. See also
Remark 7.1.6.

7.4 The closed-loop generators

Let us next look at the closed-loop system node and combined observa-
tion/feedthrough operator.

Theorem 7.4.1 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and let K ∈ B(Y ; U ) be an admissible output feedback operator for �. Let

S = [ A&B
C&D

]
and SK =

[
[A&B]K

[C&D]K

]
be the open- and closed-loop system nodes.

Then the operator

M =
[

1 0
0 1

]
−
[

0
K [C&D]

]
(7.4.1)

maps D (S) continuously onto D (SK
)
. Its inverse is given by

M−1 =
[

1 0
0 1

]
+
[

0
K [C&D]K

]
, (7.4.2)

and

SK = SM−1. (7.4.3)

It is possible to derive this theorem from Theorem 6.6.5, but for completeness
we give a separate proof.

Proof Let
[ x0

u0

] ∈ D (S), i.e., x0 ∈ X , u0 ∈ U , and A|X−1 x0 + Bu0 ∈ X . Define

v0 = u0 − K [C&D]

[
x0

u0

]
.

Choose an arbitrary u ∈ C1(R
+

; U ) with u(0) = u0. Let x , y, and v be the
state and the two outputs of the system drawn in Figure 7.16 with initial time
zero, initial state x0, and input u. Then, by Theorem 4.6.11, x is continuously
differentiable in X , y ∈ W 1,p

loc (R
+

; Y ), v ∈ W 1,p
loc (R

+
; U ) (or y ∈ C1(R

+
; Y ),
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Figure 7.16 Original system with one extra output

+ +

u

x

x0

K
p+v
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Figure 7.17 Closed-loop system with one extra output

v ∈ C1(R
+

; U ) in the Reg-well-posed case), and for all t ≥ 0,

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

[
x(t)
v(t)

]
=
[

x(t)
u(t)− K y(t)

]
= M

[
x(t)
u(t)

]
. (7.4.4)

In particular,
[ x0
v0

] = M
[ x0

u0

]
. On the other hand, we can also consider the

system drawn in Figure 7.17 with initial time zero, initial state x0, and input v,
where v is the same function as above. This is a special case of the closed-loop
system studied in Theorem 7.2.1(ii). Clearly, the relationships between u and v
is exactly the same in both diagrams (although u is the input in the first figure,
and v is the input in the second). Therefore, the two states labeled x and also
the two outputs labeled y in Figure 7.16 and Figure 7.17 will be identical, and
the output u in Figure 7.17 will be identical to the input u in Figure 7.16. By
Theorem 4.3.7, Corollary 4.3.8, and Theorem 4.6.11,

[ x0
v(0)

] = [ x0
v0

] ∈ D (SK
)
,
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and, for all t ≥ 0,[
ẋ(t)
y(t)

]
= SK

[
x(t)
v(t)

]
,[

x(t)
u(t)

]
=
[

x(t)
v(t)+ K y(t)

]
=
([

1 0
0 1

]
+
[

0
K [C&D]K

])[
x(t)
v(t)

]
.

(7.4.5)

In particular, taking t = 0 in (7.4.4) and (7.4.5) we get

S

[
x0

u0

]
= SK

[
x0

v0

]
,

[
x0

u0

]
=
([

1 0
0 1

]
+
[

0
K [C&D]K

])[
x0

v0

]
.

This shows that the operator defined by the right hand side of (7.4.2) is a left
inverse to M , and that (7.4.1)–(7.4.3) are valid if M is invertible. To show that
the operator in (7.4.2) is also a right inverse of M we argue as above, but start
by first fixing

[ x0
v0

] ∈ D (SK
)
, defining u0 by

u0 = v0 + K [C&D]K

[
x0

v0

]
,

and interchanging the role of Figures 7.16 and 7.17. �

Motivated by Theorem 7.4.1 we extend Definition 7.1.1 to arbitrary operator
nodes as follows.

Definition 7.4.2 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ). Then K ∈

B(Y ; U ) is an admissible output feedback operator for the operator node S if

there exists another operator node SK =
[

[A&B]K

[C&D]K

]
on (Y, X,U ) which together

with S satisfies the following conditions: the operator

M =
[

1 0
0 1

]
−
[

0
K [C&D]

]
(7.4.1)

maps D (S) continuously onto D (SK
)
, its inverse is given by

M−1 =
[

1 0
0 1

]
+
[

0
K [C&D]K

]
, (7.4.2)

and

SK = SM−1. (7.4.3)

In this case we call SK the closed-loop node with output feedback operator
K . If both S and SK are system nodes, then we call K system node admis-
sible.

Remark 7.4.3 It is obvious that if K is an admissible output feedback for the
operator node S, then−K is an admissible output feedback for the closed-loop
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operator node SK . Moreover, the closed-loop operator node that we get from
SK by using −K as the feedback operator is the original node S.

Definition 7.4.2 has some immediate consequences.

Lemma 7.4.4 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ), with main

operator A, control operator B, observation operator C, and transfer function
D. Let K ∈ B(Y ; U ) be an admissible output feedback operator for S, and

let SK =
[

[A&B]K

[C&D]K

]
be the closed-loop operator node with main operator AK ,

control operator BK , observation operator C K , and transfer function DK . Then
the following claims are true.

(i) α ∈ ρ(AK ) if and only if
([

α 0
0 1

]− [ A&B
K [C&D]

])
is invertible, in which case

[
1 0
C&D

]([
α 0
0 1

]
−
[

A&B
K [C&D]

])−1

=
[

(α − AK )−1 (α − AK
|X )−1 BK

C K (α − AK )−1 D̂K (α)

]
.

(7.4.6)

(ii) α ∈ ρ(A) if and only if
([

α 0
0 1

]+ [ −[A&B]K

K [C&D]K

])
is invertible, in which

case

[
1 0

[C&D]K

] ([
α 0
0 1

]
+
[−[A&B]K

K [C&D]K

])−1

=
[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

]
.

(7.4.7)

(iii) If α ∈ ρ(A), then α ∈ ρ(AK ) if and only if 1− K D̂(α) is invertible. In
this case

[
(α − AK )−1 (α − AK

|X )−1 BK

C K (α − AK )−1 D̂K (α)

]
=
[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

]
+
[

(α − A|X )−1 B
D̂(α)

]
(1− K D̂(α))−1 K

[
C(α − A)−1 D̂(α)

]
.

(7.4.8)
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(iv) If α ∈ ρ(AK ), then α ∈ ρ(A) if and only if 1+ K D̂K (α) is invertible. In
this case [

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

]
=
[

(α − AK )−1 (α − AK
|X )−1 BK

C K (α − AK )−1 D̂K (α)

]
−
[

(α − AK
|X )−1 BK

D̂K (α)

]
(1+ K D̂K (α))−1 K

× [C K (α − AK )−1 D̂K (α)
]
.

(7.4.9)

Proof We shall derive this lemma from Lemmas 6.3.8 and 6.6.7, applied to the

operator nodes S0 =
[

A&B
[C&D]2

]
, respectively S2 =

[
A&B
C&D

[C&D]2

]
, where [C&D]2 =[

0 1
]− K [C&D]. It is not difficult to check that the assumption that K is an

admissible output feedback operator for S implies that S0 is flow-invertible, with

the flow-inverse S0× =
[

[A&B]K

[C&D]K
2

]
, where [C&D]K

2 =
[
0 1
]+ K [C&D]K . The

operator node S2 can be interpreted as a node of the type treated in Lemma 6.6.7
if we take U1 = 0 and U2 = U (so that the first input u1 is absent). By Corollary
6.6.14, S2 is partially flow invertible since S0 is flow-invertible. Let us denote
the partial flow-inverse of S2 by S


2 . Comparing Definitions 6.6.6 and 7.4.2 to
each other we find that, in the same way as we obtain S from S2 by dropping
the second output, we obtain SK from S


2 by dropping the second output. In
particular, [A&B]K = [A&B]


2 . The conclusion of Lemma 7.4.4 now follows

from Lemma 6.6.7. (The operator
[
α 0 0
0 1 0
0 0 0

]
−
[

A&B
0

[C&D]2

]
in Lemma 6.6.7 collapses

into
([

α 0
0 0

]− S0
)

since the first input is absent. The sign changes in some of
the formulas are due to the fact that

([
α 0
0 1

]− [ A&B
K [C&D]

]) = [ 1 0
0 −1

] ([
α 0
0 0

]− S0
)

and that
([

α 0
0 1

]+ [ −[A&B]K

K [C&D]K

])
= [ 1 0

0 −1

] ([
α 0
0 0

]− S0×
)
.) �

The following theorem is the feedback version of Theorem 6.3.9.

Theorem 7.4.5 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ), with main

operator A, control operator B, observation operator C, and transfer function

D, let K ∈ B(Y ; U ), and let SK =
[

[A&B]K

[C&D]K

]
be an operator node on (Y, X,U ),

with main operator AK , control operator BK , observation operator C K , and
transfer function DK . Let M be the operator defined in (7.4.1), and denote the
operator on the right hand side of (7.4.2) by M K . Then the following conditions
are equivalent:

(i) K is an admissible output feedback operator for S, and the closed-loop
system node is SK .

(ii) The operator M K maps D (SK
)

one-to-one onto D (S), and SK = SM K .
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(iii) For all α ∈ ρ(AK ) the operator
([

α 0
0 1

]− [ A&B
K [C&D]

])
maps D (S)

one-to-one onto
[

X
U

]
and (7.4.6) holds.

(iv) For some α ∈ ρ(AK ) the operator
([

α 0
0 1

]− [ A&B
K [C&D]

])
maps D (S)

one-to-one onto
[

X
U

]
and (7.4.6) holds.

(v) The operator M maps D (S) one-to-one onto D (SK
)
, and S = SK M.

(vi) For all α ∈ ρ(A) the operator
([

α 0
0 1

]+ [ −[A&B]K

K [C&D]K

])
maps D (SK

)
one-to-one onto

[
X
U

]
and (7.4.7) holds.

(vii) For some α ∈ ρ(A), the operator
([

α 0
0 1

]+ [ −[A&B]K

K [C&D]K

])
maps D (SK

)
one-to-one onto

[
X
U

]
and (7.4.7) holds.

When these equivalent conditions hold, then
[

1
−K C

]
maps D (A) into D (SK

)
,[

1
K C K

]
maps D (AK

)
into D (S), and

A = AK
|D(A) − BK K C, AK = A|D(AK ) + BK C K ,

C = [C&D]K

[
1
−K C

]
, C K = C&D

[
1

K C K

]
.

(7.4.10)

Proof As in the proof of Lemma 7.4.4, let us define the two auxiliary operator

nodes S0 =
[

A&B
[C&D]2

]
, respectively S2 =

[
A&B
C&D

[C&D]2

]
, where [C&D]2 =

[
0 1
]−

K [C&D]. Arguing in the same way as in the proof of that lemma we find that
S0 is flow-invertible whenever K is an admissible feedback operator for S, that
S2 is partially flow-invertible whenever S0 is flow-invertible, and that K is an
admissible feedback operator for S whenever S2 is partially flow-invertible.
Thus, these three conditions are equivalent. This argument reduces Theorem
7.4.5 to a special case of Theorems 6.3.9 and 6.6.8. We leave the details to the
reader (e.g., show that each of the conditions (i)–(iv) in these three theorems
are equivalent to each other). �

With the help of Theorem 7.4.5 we are able to give a necessary and sufficient
condition for the admissibility of a feedback operator.

Theorem 7.4.6 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ), and let

K ∈ B(Y ; U ). Then K is an admissible output feedback operator for S if and
only if the following condition holds. For some α ∈ C, the operator

([
α 0
0 1

]−[
A&B

K [C&D]

])
maps D (S) one-to-one onto

[
X
U

]
, and if we denote

[
M11(α) M12(α)
M21(α) M22(α)

]
:=
[

1 0
C&D

]([
α 0
0 1

]
−
[

A&B
K [C&D]

])−1

, (7.4.11)

then M11(α) is injective and has dense range. In this case the main operator, the
control operator, the observation operator, and the transfer function (evaluated
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at α) of the closed-loop operator node SK are given by

AK = α − M−1
11 (α), BK = (α − AK

|X )M12(α),

C K = M21(α)(α − AK ), D̂(α) = M22(α).
(7.4.12)

In particular, α ∈ ρ(AK ).

The proof is analogous to the proof of Theorem 6.3.10, and we leave it to
the reader.

In most cases we are able to add four more conditions which are equivalent
to those listed in Theorem 7.4.5:

Theorem 7.4.7 Make the same assumptions and introduce the same notation
as in Theorem 7.4.5. In addition, suppose that ρ(A) ∩ ρ(AK ) �= ∅ (this is, in
particular, true if both S and SK are system nodes). Then the conditions (i)–(vii)
listed in Theorem 7.4.5 are equivalent to each one of the following conditions:

(viii) For all α ∈ ρ(A) ∩ ρ(AK ), 1− K D̂(α) is invertible and (7.4.8) holds.
(ix) For some α ∈ ρ(A) ∩ ρ(AK ), 1− K D̂(α) is invertible and (7.4.8) holds.
(x) For all α ∈ ρ(A) ∩ ρ(AK ), 1+ K D̂K (α) is invertible and (7.4.9) holds.

(xi) For some α ∈ ρ(A) ∩ ρ(AK ), 1+ K D̂K (α) is invertible and (7.4.9)
holds.

We leave the easy proof to the reader (see the proof of Theorem 6.3.11).
We remark that the right-hand sides of formulas (7.4.8) and (7.4.9) can

be written in several equivalent forms, similar to those appearing in Lemma
4.7.18(iv).

Corollary 7.4.8 Under the assumption of Theorem 7.4.7, for all α ∈ ρ(A) ∩
ρ(AK ), we have 1+ K D̂K (α) = (1− K D̂(α))−1 and 1+ D̂K (α)K = (1−
D̂(α)K )−1. Moreover, the operator (α − AK )−1(α − A) which mapsD (A) onto
D (AK

)
is given by

(α − AK )−1(α − A) = 1+ (α − A|X )−1 B(1− K D̂(α))−1 K C

= 1+ (α − AK
|X )−1 BK K C

and its inverse (α − A)−1(α − AK ) is given by

(α − A)−1(α − AK ) = 1− (α − AK
|X )−1 BK (1− K D̂(α))K C K

= 1− (α − A|X )−1 BK C K .

Proof The above formulas are part of the conclusion of Theorem 7.4.7 (see
also Lemma A.4.2). �

By using Theorem 7.4.7 we can make the following addition to Theorem
7.4.6.



432 Feedback

Theorem 7.4.9 Let S = [ A&B
C&D

]
be an operator node on (Y, X,U ), with main

operator A, control operator B, observation operator C, and transfer function
D̂. An operator K ∈ B(Y ; U ) is an admissible output feedback operator for S
if the following condition holds: For some α ∈ C, 1− K D̂(α) is invertible, and
the operator

1− (α − A|X )−1 B[1− K D̂(α)]−1 K C

maps D (A) one-to-one onto a dense subset of X. When these conditions hold,
then the closed-loop operator node SK is determined by (7.4.8) and Lemma
4.7.6.

The proof is analogous to the proof of Theorem 6.3.10, and we leave it to
the reader (replace (6.3.13) by (7.4.6) and Theorem 6.3.9 by Theorem 7.4.7).
Note that the condition given in this theorem is sufficient but not necessary for
the admissibility of K . However, it is necessary if we require, in addition, that
both S and SK are system nodes, because then ρ(A) ∩ ρ(AK ) �= ∅ (see Lemma
7.4.4(iii)).

The original idea that we used to introduce the notion of (partial) output
feedback for a well-posed linear system was to feed a part of the output back
into the input. A similar interpretation is valid for the output feedback of system
nodes, too.

Theorem 7.4.10 Let S = [ A&B
C&D

]
be a system node on (Y, X,U ), let K ∈

B(Y ; U ) be a system node admissible output feedback operator for S, and

denote the closed-loop system by SK =
[

[A&B]K

[C&D]K

]
. Let x and y be the state

trajectory and output of S with initial time s ∈ R, initial state xs ∈ X, and in-
put function u ∈ L1

loc([s,∞); U ), and suppose that x ∈ W 1,1
loc ([s,∞); X ). Then

y ∈ L1
loc([s,∞); Y ), and x and y are the state trajectory and output of SK with

initial time s, initial state xs and input function v = y − K u.

Proof By Theorem 4.7.11,
[

x
u

] ∈ L1
loc([s,∞);D (S)), y ∈ L1

loc([s,∞); Y ), and[ x
y
]

is the unique solution with the above properties of the equation

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
for almost all t ≥ s, x(s) = xs .

Let M be the operator defined in (7.4.1), and let v = u − K y. Then M maps
D (S) continuously onto D (SK

)
, SM−1 = SK , and M

[
x
u

] = [ x
v ]. Therefore
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[ x
v ] ∈ L1

loc

(
[s,∞);D (SK

))
, and for almost all t ≥ s,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
= SM−1 M

[
x(t)
u(t)

]
= SK

[
x(t)
v(t)

]
.

By Theorem 4.7.11, this implies that x and u are the state and output function
of SK with initial time s, initial state xs , and input function y. �

The following corollary is a state feedback version of Corollary 6.3.15.

Corollary 7.4.11 Let � = [A B

C D

]
be an L p-well-posed linear system on

(Y, X,U ) with 1 ≤ p <∞, and let K ∈ B(Y ; U ). Then K is an admissible
output feedback operator for � (in the sense of Definition 7.1.1) if and only
if K is a system node admissible output feedback operator for its system node
S (in the sense of Definition 7.4.2) and the closed-loop system node SK is
L p-well-posed.

Proof By Theorem 7.4.1, the above condition on S for K to be an admissible
feedback operator for � is necessary. Conversely, suppose that K is an admis-
sible feedback operator for�, and that SK is a well-posed system node. Denote
the system induced by SK by �K . Then it follows from Lemma 4.7.8 and The-
orem 7.4.10 that for all x0 ∈ X and u ∈ W 2,1

loc (R+; U ) with
[ x0

u(0)

] ∈ D (S), and
for all t ≥ 0,[

At Bτ t

0 1

] [
x0

π+u

]
=
[

x(t)
π+u

]
=
[

(AK )t BK τ t

KCK 1+ KDK

] [
x0

π+v

]
=
[

(AK )t BK τ t

KCK 1+ KDK

] [
1 0
−KC 1− KD

] [
x0

π+u

]
.

This set of data is dense in
[ X

L p(R+;U )

]
, so the same identity must be true for all

x0 ∈ X and u ∈ L p(R+; U ). In particular, this implies that 1+ KDKπ+ is a
left-inverse of 1− KDπ+. A similar argument with � interchanged with �K

shows that 1+ KDKπ+ is also a right inverse of 1− KDπ+. By Theorem
7.1.8, K is an admissible feedback operator for �. �

7.5 Regularity of the closed-loop system

If the original operator node S is compatible or regular, then it is possible
to say something more about the closed-loop generators. We begin with the
compatible case.
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Theorem 7.5.1 Let S = [ A&B
C&D

]
be a compatible operator node on (Y, X,U ),

and let
[

A|W B
C|W D

]
∈ B([ W

U

]
;
[

W−1
Y

])
be a compatible extension of S (here

X1 ⊂ W ⊂ X and W−1 is defined as in Lemma 5.1.3). Let K ∈ B(Y ; U ) be
an admissible output feedback operator for S. Denote the closed-loop operator

node by SK =
[

[A&B]×
[C&D]×

]
, let X K

1 and X K
−1 be the analogues of X1 and X−1 for

SK , and let W K
−1 be the analogue of W−1 for SK (i.e., W K

−1 = (α − AK )|W W
for some α ∈ ρ(AK )).

(i) If 1− DK has a left inverse (1− DK )−1
left ∈ B(Y ) (or equivalently,

1− K D has a left inverse (1− K D)−1
left ∈ B(U )), then X K

1 ⊂ W and SK

is compatible with the extended observation operator C K
|W : W → U and

corresponding feedthrough operator DK given by

C K
|W = (1− DK )−1

leftC|W ,

DK = (1− DK )−1
left,

(7.5.1)

and the the main operator AK of SK is given by

AK = (A|X + BK C K
|W
)
|X K

1
.

In this case the space W−1 can be identified with a closed subspace of
W K
−1, so that X ⊂ W−1 ⊂ X−1 ∩ X K

−1. With this identification,

A|W = AK
|W − BK K C|W , B = BK (1+ K D)

(where by A|W and AK
|W we mean the restrictions of A|X and AK

|X to W ).
(ii) If 1− DK is invertible (or equivalently, 1− K D is invertible), then

W−1 = W K
−1, AK W ⊂ W−1, BK U ⊂ W−1, and the operator[

AK
|W BK

C K
|W DK

]
∈ B([ W

U

]
;
[

W−1
Y

])
defined by[

AK
|W BK

C K
|W DK

]
=
[

A|W + BK (1− DK )−1C|W B(1− K D)−1

(1− DK )−1C|W D(1− K D)−1

]
=
[

A|W B
C|W D

]
+
[

B
D

]
K (1− DK )−1

[
C|W D

]
=
[

A|W B
C|W D

]
+
[

B
D

]
K
[
C K
|W DK

]
=
[

A|W B
C|W D

]
+
[

BK

DK

]
K
[
C|W D

]
is a compatible extension of SK .

Proof This can be regarded as a special case of Theorem 6.6.17 (or Theorem
6.3.16). See the proof of Theorem 7.4.5 and the equivalent Figures 7.16 and
7.17. �
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Remark 7.5.2 The (left) invertibility of 1− DK in Theorem 7.5.1 is not a
necessary condition for the compatibility of the closed-loop system. This has
to do with the possible nonuniqueness of D. For example, in the case of a
boundary control system the operator D can be chosen in an arbitrary way
(by adjusting the extended observation operator CW ; see Theorem 5.2.6). In
particular, in a boundary control system we can always choose D in such a way
that 1− DK is not invertible, as soon as K �= 0.

Next we look at the different regular cases.

Theorem 7.5.3 Let� = [A B

C D

]
be a weakly regular (L p|Reg-well-posed) lin-

ear system on (Y, X,U ) with system node S = [ A&B
C&D

]
, semigroup generator A,

control operator B, and observation operator C. We define the extensions C̃w

and C̃s of the observation operator C as in Definition 5.4.1, and let D be the
corresponding feedthrough operator (see Theorem 5.6.5). Let K ∈ B(Y ; U ) be
an admissible output feedback operator for �.

(i) The system node S is compatible with the extended system node
[

A|W B
C|W D

]
where W = D (C̃w) and C|W = C̃w, hence parts (i) and (ii) of Theorem
7.5.1 apply whenever 1− DK is left invertible or invertible, respectively.
In particular, if 1− DK if left-invertible, then the closed-loop system �K

is compatible.
(ii) If S is strongly regular, then the operators 1− K D and 1− DK are

coercive (see Definition 9.10.1). If, in addition, the closure of the range of
1− K D is complemented in U or the closure of the range of 1− DK is
complemented in Y (this is, in particular, true if U or Y is a Hilbert
space), then 1− K D is left invertible, D (C̃ K

s

)
is a closed subspace of

D (C̃s), and Theorem 7.5.1(i) applies with W = D (C̃s) and C|W = C̃ K
s

(in particular, the closed-loop system �K is compatible).
(iii) Suppose that � is strongly regular. Then the closed-loop system is

strongly regular iff 1− K D is invertible.4 In this case D (C̃ K
s

) = D (C̃s),
and Theorem 7.5.1(ii) applies with W = D (C̃s) and C|W = C̃s .

(iv) In the Reg-well-posed case both the original and the closed-loop system
are strongly regular, 1− K D is invertible, and Theorem 7.5.1(ii) applies
with W = D (C̃s) and C|W = C̃s .

(v) In the L1-well-posed case with a reflexive state space X both the original
and the closed-loop system are strongly regular, 1− K D is invertible,
and Theorem 7.5.1(ii) applies with W = D (C̃s) and C|W = C̃s .

(vi) If � is uniformly regular then the closed-loop system �K is uniformly
regular, 1− K D is invertible, and Theorem 7.5.1(ii) applies with
W = D (C̃s) and C|W = C̃s .

4 In the L p-well-posed strongly regular case it is not known if (1− K D) is always invertible, i.e.,
if the closed-loop system is always strongly regular.
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Proof This can be regarded as a special case of Theorem 6.6.18 (or Theorem
6.3.17). See the proof of Theorem 7.4.5 and the equivalent Figures 7.16 and
7.17. �

Remark 7.5.4 By using Example 5.7.4 we can show that weak regularity is
not preserved in general under feedback. Since a cascade connection can be
interpreted as a special case of feedback, it suffices to show that weak reg-
ularity is not preserved under cascade connections. Let � be the system in
Example 5.7.4, and let �d be its (causal) dual. Look at the cascade of � and
�d . Each of these is weakly regular. However, the transfer function of the cas-
cade is the scalar function g∗(s)g(s), which for real values of s is equal to
‖g(s)‖2. This transfer function is not regular since limα→+∞‖g(α)‖2 does not
exist.

7.6 The dual of the closed-loop system

As the following theorem says, output feedback commutes with duality:

Theorem 7.6.1 Let (Y, X,U ) be reflexive Banach spaces, let 1 < p <∞, let
� be an L p-well-posed linear system on (Y, X,U ), and let S be an operator
node on (Y, X,U ) (not necessarily the one induced by �). Let K ∈ B(Y ; U ).

(i) K is an admissible output feedback operator for � if and only if K ∗ is an
admissible output feedback operator for the causal dual system �d , in
which case the closed-loop systems satisfy (�d )K ∗ = (�K )d . In
particular, the generators and the transfer functions of these two systems
are also identical.

(ii) K is an admissible output feedback operator for the operator node S if
and only if S∗ is an admissible output feedback operator for the dual
operator node S∗, in which case the closed-loop operator nodes satisfy
(S∗)K ∗ = (SK )∗.

(iii) If K is an admissible output feedback operator for S and both S and S∗

are strongly regular with feedthrough operators D, respectively D∗, then
1− K D is invertible. In this case both SK and (S∗)K are strongly
regular.

Proof This can be regarded as a special case of Theorem 6.6.19. See the proof
of Theorem 7.4.5 and the equivalent Figures 7.16 and 7.17. �

7.7 Examples

In this section we present some feedback examples.
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Example 7.7.1 (Circular shift from delay line) Let � be the delay line de-
scribed in Example 2.3.4 with 1 ≤ p <∞. The system node of this delay line
is given by

S

[
x
u

]
=
[

A&B
C&D

] [
x
u

]
=
[

ẋ
x(0)

]
(7.7.1)

for all
[

x
u

] ∈ D (S) = {[ x
u

] ∈ [ W 1,p([0,T ])
C

] ∣∣ x(T )+ u = 0
}
, and the transfer

function is D̂(z) = e−T z. The identity operator on C is an admissible feedback
operator for this system, and the generators of the corresponding closed-loop
system �1 are given by [

[A&B]1

[C&D]1

] [
x
u

]
=
[

ẋ
x(0)

]
(7.7.2)

for all
[

x
u

] ∈ D ([C&D]1
) = {[ x

u

] ∈ [ W 1,p([0,T ])
C

] ∣∣ x(T )+ u = x(0)
}
. Thus,

the closed-loop semigroup A1 is the circular shift τTT , the closed-loop observa-
tion operator C1 is given by C1x = x(0) (for x ∈ D (A1

) = {x ∈ W 1,p([0, T ]) |
x(T ) = x(0)}), and the transfer function is

D̂1(z) = e−T z

1− e−T z
.

Proof The description of the generators of the delay line is taken from Example
4.8.1. By, for example, Theorem 7.1.8 with T replaced by T/2, the identity
operator is an admissible feedback operator (and it is easy to show that (1−
D)−1 =∑∞n=0 τ

−nT ). The delay line � is regular with feedthrough operator
D = 0, so by Theorem 7.5.3, the closed-loop system is also regular, and the
formulas in Theorems 7.4.5, 7.4.7, 7.5.1, and 7.5.3 apply. These formulas tell
us that the generators and the transfer function of the closed-loop system are
those given above. Comparing the closed-loop semigroup generator to that of
the circular shift in Example 3.2.3(v) we realize that they are the same, hence
the closed-loop semigroup is the circular shift. �

Sometimes it is possible to use the specific structure of a feedback sys-
tem to simplify the study of the compatibility or regularity of the closed-loop
system.

Example 7.7.2 Let � = [A B

C D

]
be the cascade connection of two well-posed

linear systems �1 =
[

A1 B1

C1 D1

]
and �2 =

[
A2 B2

C2 D2

]
through K ∈ B(Y1; X2)

presented in Example 7.2.4. Suppose that both �1 and �2 are compati-

ble, with extended system nodes
[

[A1]|W1 B1

[C1]|W1 D1

]
, respectively

[
[A2]|W2 B2

[C2]|W2 D2

]
, where
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D (A1) ⊂ W1 ⊂ X1 and D (A2) ⊂ W2 ⊂ X2. Then the following claims are
true:

(i) � is compatible, with extended system node

[
A|W B

C|W D

]
=


[A1]|W1 0 B1 0

B2 K [C1]|W1 [A2]|W2 B2 K D1 B2

[C1]|W1 0 D1 0

D2 K [C1]|W1 [A2]|W2 D2 K D1 D2

 ,

where W = [ W1
W2

]
. In particular,

D (A)=
{[

x1

x2

]
∈
[

X1

X2

]∣∣∣∣ x1 ∈D (A1) and B2 K C1x1 + [A2]|W2 x2 ∈ X2

}
.

(ii) If both �1 and �2 are strongly or uniformly regular, then so is �.

By (i), if both �1 and �2 are weakly regular, then � is compatible (but it
need not be weakly regular).

Proof This follows from Examples 5.7.2 and 7.2.4 and Theorems 7.5.1
and 7.5.3 (the operator

[
1 0

−K D1 1

]
is always invertible, with inverse[

1 0
K D1 1

]
). �

Example 7.7.2 can be regarded as a special case of the following more general
result:

Lemma 7.7.3 Consider the partial feedback for the well-posed linear system

� = [A B

C D

] = [ A B1 B2

C1 D11 D12
C2 D21 D22

]
on
([ Y1

Y2

]
, X,
[ U1

U2

])
with admissible feedback op-

erator K ∈ B(Y2; X2) described in Lemma 7.2.6. Suppose that� is compatible

with extended system node

[
A|W B1 B2

[C1]|W D11 D12
[C2]|W D21 D22

]
(where D (A) ⊂ W ⊂ X). Then the

following claims are true:

(i) If 1− K D22 is left-invertible, then the closed-loop system is compatible
over the same space W (and appropriate versions of the formulas in
Theorem 7.5.1(i) apply).
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(ii) If 1− K D22 is invertible, then the closed-loop system has the extended
system node AK

|W BK
1 BK

2

[C1]K
|W DK

11 DK
12

[C2]K
|W DK

21 DK
22



=

 A|W B1 B2

[C1]|W D11 D12

[C2]|W D21 D22



+

 B2

D12

D22

 K (1− D22 K )−1
[

[C2]|W D21 D22
]

=

 A|W B1 B2

[C1]|W D11 D12

[C2]|W D21 D22

+
 B2

D12

D22

 K
[

[C2]K
|W DK

21 DK
22

]

=

 A|W B1 B2

[C1]|W D11 D12

[C2]|W D21 D22

+
 BK

2

DK
12

DK
22

 K
[

[C2]|W D21 D22
]
.

Here AK
|W maps W continuously into (α − A)−1 X for all α ∈ C with

sufficiently large real part.
(iii) Suppose that � is strongly regular. Then the closed-loop system is

strongly regular iff 1− K D22 is invertible. In this case
D (C̃ K

s

) = D (C̃s), and the formulas in (ii) apply with W = D (C̃s).
(iv) In the Reg-well-posed case both the open and closed-loop system are

strongly regular, 1− K D22 is invertible, and the formulas in (ii) apply
with W = D (C̃s).

(v) In the L1-well-posed case with reflexive state space X both the open and
closed-loop system are strongly regular, 1− K D22 is invertible, and the
formulas in (ii) apply with W = D (C̃s).

(vi) If � is uniformly regular then the closed-loop system �K is uniformly
regular, 1− K D is invertible, and the formulas in (ii) apply with
W = D (C̃s).

Proof This follows from Example 5.7.2, Lemma 7.2.6, and Theorems 7.5.1
and 7.5.3 (the feedthrough operator of

[
D11 D12
D21 D22

]
is
[ D11 D12

D21 D22

]
, and

[
1 0
0 1

]−[
0 0
0 K

] [ D11 D21
D21 D22

] = [ 1 0
−K D21 1−K D22

]
is invertible if and only if 1− K D22 is in-

vertible). �
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Remark 7.7.4 The reader should compare the formulas for the closed-loop
systems in Theorem 7.1.2, Example 7.2.4, and Lemma 7.2.6 with the corre-
sponding formulas for the generators of these systems in the compatible case,
given in Theorem 7.5.1(ii), Example 7.7.2, and Lemma 7.7.3, respectively. The
analogy is striking! We invite the reader to use the same principle to formu-
late and prove the corresponding formulas for the generators of all the other
feedback systems discussed in Sections 7.2 and 7.3. In the literature it is often
assumed that all the feedthrough operators that appear inside a feedback loop
vanish, and in this case the needed invertibility conditions become vacuous
and the formulas for the generators simplify slightly. Thus, in these cases the
closed-loop systems are always compatible or strongly or uniformly regular
whenever the original systems are compatible or strongly or uniformly regular,
provided that the feedback is admissible. In this sense compatibility and strong
and uniform regularity are preserved under (static output) feedback.

Our final example concerns feedback in a system with an analytic semigroup
of the type studied in Theorem 5.7.3.

Example 7.7.5 Let � = [A B

C D

]
be one of the systems considered in Theorem

5.7.3, and let K ∈ B(Y ; U ). In all the different cases considered there, K is an
admissible output feedback operator for � if and only if 1− DK is invertible,
in which case the closed-loop system is of the same type as �. More precisely,
the closed-loop semigroup AK can be extended to an analytic semigroup on
AK
|Xα−1

on Xα−1. For all γ ∈ [α − 1, β + 1], the spaces Xγ are invariant under
AK
|Xα−1

, and the restriction AK
|Xγ

of AK
|Xα−1

to Xγ is an analytic semigroup on

Xγ . The generator of AK
|Xγ

is (A + BK (1− DK )−1C)|Xγ+1 if γ ∈ [α − 1, β],

and it is the part of A + BK (1− DK )−1C in Xγ if γ ∈ (β, β + 1]. If we define
X K
α−1 = Xα−1, and let X K

γ be the fractional order space with index γ − α − 1
constructed by means of the semigroup AK

|Xα−1
on Xα−1, then X K

γ = Xγ for
all γ ∈ [α − 1, β + 1]. The closed-loop observation operator is C K = (1−
DK )−1C, the closed-loop control operator is B K = B(1− K D)−1, and the
closed-loop feedthrough operator is DK = D(1− K D)−1.

The proof of this is similar to the proof of Example 6.3.18, and it is left to
the reader.

7.8 Comments

Feedback plays a central role in many different areas in mathematics and con-
trol theory. For example, many aspects of the theory of Volterra integral and
functional equation (see, e.g., Gripenberg et al. (1990)) can be formulated as
feedback problems. The PDE literature is full of different feedback notions and
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results (see, e.g., Lasiecka and Triggiani 2000a,b), many of which fit into the
setting of this chapter. Below we comment only on those results in the literature
which are most closely connected to the theory presented here.

Section 7.1 Theorem 7.1.2 is due to G. Weiss (1994b, Theorem 6.1) in the
Hilbert space case with p = 2. The part of this theorem which says that AK is a
C0 semigroup is in Salamon (1987, Theorem 4.2). Our proof has been modeled
after Malinen (2000). Lemma 7.1.7 is due to G. Weiss (1994b, Remark 6.4). The
equivalence (ii)⇔ (iii) in Theorem 7.1.8 was proved by Salamon (1987, Lemma
4.1). That condition (vii) in Theorem 7.1.8 implies that K is an admissible
feedback operator for � was pointed out by Staffans (1998a, Lemma 3.5(i)).
A particular Reg-well-posed version of Corollary 7.1.9 is found in Desch et al.
(1985, Theorem 2.1 and Corollary 2).

Section 7.2 The results in this section are straightforward extensions of the
corresponding classical results. The idea of recovering an extended version
of the original system from the feedback systems in Figures 7.6 and 7.7 by
partial flow inversion (i.e., by reversing the direction of some of the arrows
and changing some signs in the summation junctions) was used extensively in
Curtain, Weiss, and Weiss (1996) in a slightly different context. The same idea
can be applied to the flow-inversion in Figure 7.1. The cascade connection in
Example 7.2.4 has been modeled after Weiss and Curtain (1997, Lemma 5.1).

Section 7.3This sections is based mainly on Staffans (1998a) and to some extent
also on Weiss and Curtain (1997) (the first version of Staffans (1998a) was
written independently of Curtain, Weiss and Weiss (1996, 2001) and Weiss and
Curtain (1997), but there was some later cross-influence; see Staffans (1998a)).
State feedback with a bounded feedback operator K (and output injection with
a bounded injection operator H ) has been studied by Morris (1994).

Section 7.4 This sections is based mainly on Staffans (2002c) and Staffans and
Weiss (2004). Theorem 7.4.5 is (formally) new. In the L2-well-posed Hilbert
space case some parts of Theorem 7.4.7 are found in G. Weiss (1994b, Propo-
sition 3.7) and also in G. Weiss (1994b, formulas (6.14), (7.3), and (7.21)).
Non-well-posed feedbacks have also been studied in, e.g., Curtain et al. (2001),
Flandoli et al. (1988), Lasiecka and Triggiani (2000a, b), Mikkola (2002), Weiss
and Curtain (1997), and Weiss and Rebarber (2001).

Section 7.5 Theorem 7.5.1 is (formally) new. The claims related to AK and C K
|W

in the well-posed version of part (i) were discovered by Mikkola in 1997 while
he was working on his thesis (see the comments that Mikkola makes regarding
the history of Mikkola (2002, Proposition 6.6.18)), and we were later able to
add the claims involving BK . The main part of Theorem 7.5.3 is due to Weiss
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(1994a, Theorems 7.2 and 7.8). Our proof of this theorem is based on Theorem
7.5.1, and it differs from G. Weiss’s proof in the respect that we use a different
(and more general) method of embedding W−1 into W K

−1. In particular, we are
able to conclude that W−1 is closed in W K

−1, and that the closed-loop system is
compatible whenever 1− DK is left-invertible. (The latter fact was first proved
by Mikkola in an unpublished manuscript from 1997.) Remark 7.5.4 is taken
from Staffans and Weiss (2002).

Section 7.6 The main part of Theorem 7.6.1 was announced and used in Staffans
(1997) and Weiss and Weiss (1997). A formal proof was finally published in
Staffans and Weiss (2004).

Section 7.7 The regular Hilbert space L2-well-posed version of Example 7.7.2
is due to Weiss and Curtain (1997, Lemma 5.1). Lemma 7.7.3 and Remark 7.7.4
are used (implicitly) in Staffans (1998d).
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Stabilization and detection

A system is stabilizable if it is possible to make it stable by using state feedback.
It is detectable if it is possible to make it stable by using output injection.
The stability notion that we use implies well-posedness, but it is weaker than
exponential stability. For simplicity we require also the open-loop system to be
well-posed.

8.1 Stability

So far we have more or less ignored the question of the stability of a well-
posed linear system, but this will change from now on. The word ‘stable’ is
usually used as a synonym for ‘exponentially stable.’ We shall not use this
interpretation here, since there are many infinite-dimensional systems that are
not exponentially stable, but they are still stable in a weaker sense.1 Note,
however, that stability still implies well-posedness in the setting that we use.

Sometimes it is important to to know that a specific part of a system is stable,
although the rest of the system may be unstable, and for this reason we introduce
the following terminology:

Definition 8.1.1 Let � be a well-posed linear system � = [A B

C D

]
on

(Y, X,U ).

(i) With reference to Definition 2.5.6, we say that
(a) � is state/state bounded if A is bounded, i.e., A is ω-bounded with

ω = 0;
(b) � is input/state bounded if B is bounded, i.e., B is ω-bounded with

ω = 0;

1 For simplicity we treat only the case where the exponential growth bound ω in Definition 2.5.6
is zero, and leave the obvious extension to the case ω �= 0 to the reader.

443
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(c) � is state/output bounded if C is bounded, i.e., C is ω-bounded with
ω = 0;

(d) � is input/output bounded or input/output stable if D is bounded,
i.e., D is ω-bounded with ω = 0;

(e) � is input bounded or input stable if conditions (b) and (d) above
hold;

(f) � is output bounded or output stable if conditions (c) and (d) above
hold;

(g) � is bounded or stable if conditions (a)–(d) above hold.
(ii) We say that

(a) � is strongly state/state stable if A is strongly stable, i.e., for every
x ∈ X , At x → 0 in X as t →∞;

(b) � is strongly input/state stable if B is strongly stable, i.e., B is
ω-bounded with ω = 0 and, for every u ∈ L p|Reg0(R; U ),
Bτ t u → 0 in X as t →∞;

(c) � is strongly state/output stable if C is strongly stable, i.e., C is
ω-bounded with ω = 0, and, in the Reg-well-posed case we require,
in addition, that C maps X into BC0(R

+
; Y );

(d) � is strongly input/output stable if D is strongly stable, i.e., D is
ω-bounded with ω = 0, and, in the Reg-well-posed case we require,
in addition, that D maps Reg0(R; U ) into Reg0(R; Y );

(e) � is strongly input stable if conditions (b) and (d) above hold;
(f) � is strongly output stable if conditions (c) and (d) above hold;
(g) � is strongly stable if conditions (a)–(d) above hold.

(iii) � is weakly stable if conditions (a)–(d) in (ii) hold with strong
convergence replaced by weak convergence (thus, in (c) and (d) we use
the weak versions of Reg0(R

+
; Y ) and Reg0(R; Y )).

(iv) By exponential stability of � or one of its components we mean that �
or the corresponding component is ω-bounded for some ω < 0.

The different stability notions defined in Definition 8.1.1 are far from inde-
pendent of each other. The most basic relationships are given in the following
lemma:

Lemma 8.1.2 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

(i) For each component of �, exponential stability implies strong stability,
strong stability implies weak stability, and weak stability implies
boundedness.

(ii) Exponential stability of A implies exponential stability of B, C, and D,
and exponential stability of either B or C implies exponential stability
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of D. In particular, � is exponentially stable if and only if A is
exponentially stable.

(iii) If A and B are bounded, then B is weakly or strongly stable if and only
if the restriction of A to the closure of the range of B (i.e., the reachable
subspace; see Definition 9.1.2) is weakly or strongly stable.

(iv) Weak or strong stability of A together with boundedness of C implies
that C is weakly or strongly stable.

(v) Weak or strong stability of B together with boundedness of D implies
that D is weakly or strongly stable.

(vi) If B, C, and D are bounded, then D is weakly or strongly stable if and
only if the restriction of C to the closure of the range of B (i.e., the
reachable subspace; see Definition 9.1.2) is weakly or strongly stable.

(vii) � is weakly or strongly stable if and only if it is stable and A is weakly
or strongly stable.

(viii) In the L1-well-posed case, boundedness of A implies boundedness of B

and boundedness of C implies boundedness of D. In particular, � is
bounded if and only if both A and C are bounded, and � is weakly or
strongly stable if and only if A is weakly or strongly stable and C is
bounded.

(ix) In the Reg-well-posed case, boundedness of A implies boundedness of
C, and boundedness of B implies boundedness of D. In particular, � is
bounded if and only if both A and B are bounded, and � is weakly or
strongly stable if and only if A is weakly or strongly stable and B is
bounded.

Observe that, in most of the statements above we assume something about
A and say something about B or C, or we assume something about B or C and
say something about D. To go in the opposite direction we need stabilizability
or detectability conditions of some kind (see also (iii) and (vi)). These will be
discussed in the next section. Condition (ii) provides a partial explanation of
why exponential stability is in widespread use.

Proof of Lemma 8.1.2 (i) Most of this is obvious. The only non-obvious parts
are the claims that exponential stability of B implies strong stability, and that
exponential stability of D implies strong stability in the Reg-well-posed case.
The former of these two claims is true because, for every u ∈ L p|Reg0(R,U ) and
every ω < 0, τ tπ−u → 0 in L p|Regω(R−; U ) as t →∞, and B in bounded on
L p|Regω(R−; U ) for someω < 0. To prove the latter claim we first use Example
2.6.5 to get an exponentially stable realization of D, and then we apply part (v).

(ii) That exponential stability of A implies exponential stability of B, C,
and D follows from Theorem 2.5.4(ii). If B is exponentially stable, then D

satisfies condition (iii) in Theorem 2.6.6 for some ω < 0, and the realization of
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D given in Example 2.6.5(i) is exponentially stable. This means that also D is
exponentially stable. If C is exponentially stable, then D satisfies condition (iv)
in Theorem 2.6.6 for some ω < 0, and the realization of D given in Example
2.6.5(ii) is exponentially stable. Thus, again D is exponentially stable.

(iii) Suppose that the restriction of A to R (B) is weakly or strongly stable,
and let u ∈ L p|Reg0(R; U ). For each t ∈ R we can split x(t) = Bτ t u into

x(t) = Bτ t−T (π+ + π−)τ T u = Bτ tπ[T,∞)u + At−T Bτ T u.

Here the first term tends to zero in norm as T →∞, uniformly in t ≥ T ,
and the second term tends weakly or strongly to zero as t →∞ and T is
fixed. Thus, x(t)→ 0 weakly or strongly as t →∞. This shows that B is
weakly or strongly stable. Conversely, suppose that B is strongly stable. Let
x0 ∈ R (B), and choose some u ∈ L p|Reg0(R−; U ) such that x0 = Bu. Then
At x0 = AtBu = Bτ tπ−u → 0 weakly or strongly as t →∞. Thus, At x0 → 0
weakly or strongly for all x0 ∈ R (B). By continuity and the boundedness of
A, the same statement is also true for all x0 ∈ R (B).

(iv), (v), and (ix): The claims (iv) and (v) are vacuous in the L p-well-posed
case with p <∞, so it suffices to consider the Reg-well-posed case. In this
case (iv), (v) and (ix) follow from the boundedness of the observation operator
C (see Theorem 4.4.2(i)–(ii)) and the representation formula for D given in
Theorem 4.5.2.

(vi) This proof is similar to the proof of (iii) (only the Reg-well-posed case
needs a proof).

(vii) See (iii)–(v).
(viii) This follows from the representation formulas

B =
∞∑

n=0

AnT Bπ[−T,0)τ
−nT ,

D =
∞∑

n=−∞
τ−nT

(
CBπ[−T,0) + π[0,T )Dπ[0,T )

)
τ nT

in Lemma 2.4.3, since ‖τ−nT ‖ = ‖τ nT ‖ = 1, ‖Bπ[−T,0)‖ <∞,
‖Dπ[0,T )‖ <∞, and ‖u‖L1(R;U ) =

∑∞
n=−∞‖π[nT,(n+1)T )u‖L1(R;U ) for every

u ∈ L1(R; U ). �

As our next lemma shows, the stability of a system is reflected in its frequency
domain behavior.

Lemma 8.1.3 Let � = [A B

C D

]
be a well-posed linear system with semigroup

generator A, control operator B, observation operator C, and transfer function
D̂.
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(i) � is state/state bounded if and only if the right half-plane 
λ > 0
belongs to the resolvent set of A and there is a constant M <∞ such that∥∥(λ− A)−n

∥∥ ≤ M(
λ)−n

for 
λ > 0 and n = 1, 2, 3, . . .
(ii) If � is state/output bounded, then, for each n = 1, 2, 3, . . . , C(λ− A)−n

has an analytic extension to the right half-plane 
λ > 0 and there is a
constant M <∞ such that the extended functions satisfy

‖C(λ− A)−n‖ ≤ Mn−1/2p(
λ)1/p−n

for 
λ > 0 and n = 1, 2, 3, . . . if � is L p-well-posed and

‖C(λ− A)−n‖ ≤ M(
λ)−n

for 
λ > 0 and n = 1, 2, 3, . . . if � is Reg-well-posed.
(iii) If � is input/state bounded, then, for each n = 1, 2, 3, . . . , (λ− A)−1 B

has an analytic extension to the right half-plane 
λ > 0, and there is a
constant M <∞ such that the extended functions satisfy

‖(λ− A)−n B‖ ≤ Mn(1/p−1)/2(
λ)1−1/p−n

for 
λ > 0 and n = 1, 2, 3, . . . if � is L p-well-posed and

‖(λ− A)−n B‖ ≤ Mn−1/2(
λ)1−n

for 
λ > 0 and n = 1, 2, 3, . . . if � is Reg-well-posed.
(iv) If � is input/output bounded, then the transfer function D̂ has a bounded

analytic extension to the right half-plane 
λ > 0.

The converse of (iv) is true in the L2-well-posed Hilbert space case (see
Theorem 10.3.5). Some partial converses to (ii) and (iii) are also true in the
same setting (see Theorems 10.6.1 and 10.6.2).

Proof (i) This is a restatement of Corollary 3.4.4.
(ii) Let x0 ∈ X . As C isω-bounded withω = 0, the Laplace transform of Cx0

is an analytic function in the right half-plane 
λ > 0. By (3.2.6) and Theorem
4.4.2(iv), for 
λ > ωA and n = 0, 1, 2, . . . ,

C(λ− A)−(n+1)x0 = (−1)n

n!

∂n

∂λn
(Ĉx0)(λ).

Thus, the functions on the left-hand side can be analytically extended to the
right half-plane
λ > 0. To derive the given norm estimates we apply Hölder’s
inequality and Lemma 4.2.10 in the same way as we did in the proof of Propo-
sition 4.4.9.
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(iii) The proof of (iii) is similar to the proof of (ii), and we leave it to the
reader (replace Theorem 4.4.2 by Theorem 4.2.1).

(iv) Without loss of generality, we may assume that ωA ≤ 0 (choose a dif-
ferent realization of D, if necessary). By Lemma 4.5.3 and Definition 4.6.1, for
all u ∈ U and all λ in the right half-plane 
λ > 0,

D(eλu) = eλD̂(λ)u

where eλ(t) = eλt . In particular, by first taking the L p|Reg-norm over (−∞, 0]
and then dividing both sides by ‖eλ‖L p |Reg((−∞;0]) we get

‖D̂(λ)u‖Y ≤ ‖D‖TIC(U ;Y )‖u‖U , 
λ > 0.

�

There is also a version of Lemma 8.1.3 which deals with exponential stability
instead of boundedness:

Corollary 8.1.4 Let� = [A B

C D

]
be a well-posed linear system with semigroup

generator A, control operator B, observation operator C, and transfer function
D̂.

(i) � is exponentially state/state stable if and only if some right half-plane

λ > −ε with ε > 0 belongs to the resolvent set of A and there is a
constant M <∞ such that∥∥(λ− A)−n

∥∥ ≤ M(
λ+ ε)−n

for 
λ > −ε and n = 1, 2, 3, . . .
(ii) If � is exponentially state/output stable, then, for each n = 1, 2, 3, . . . ,

C(λ− A)−n has an analytic extension to some right half-plane 
λ > −ε
with ε > 0, and there is a constant M <∞ such that the extended
functions satisfy

‖C(λ− A)−n‖ ≤ Mn−1/2p(
λ+ ε)1/p−n

for 
λ > −ε and n = 1, 2, 3, . . . if � is L p-well-posed and

‖C(λ− A)−n‖ ≤ M(
λ+ ε)−n

for 
λ > −ε and n = 1, 2, 3, . . . if � is Reg-well-posed.
(iii) If � is exponentially input/state stable, then, for each n = 1, 2, 3, . . . ,

(λ− A)−1 B has an analytic extension to some right half-plane 
λ > −ε
with ε > 0, and there is a constant M <∞ such that the extended
functions satisfy

‖(λ− A)−n B‖ ≤ Mn(1/p−1)/2(
λ+ ε)1−1/p−n
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for 
λ > −ε and n = 1, 2, 3, . . . if � is L p-well-posed and

‖(λ− A)−n B‖ ≤ Mn−1/2(
λ+ ε)1−n

for 
λ > −ε and n = 1, 2, 3, . . . if � is Reg-well-posed.
(iv) If � is exponentially input/output stable, then the transfer function D̂ has

a bounded analytic extension to some right half-plane 
λ > −ε with
ε > 0.

This follows from Lemma 8.1.3 by an exponential shift; see Example 4.8.2(i).
Next we observe that in some cases exponential stability is equivalent to

input/state or state/output boundedness:

Theorem 8.1.5 Let � be an L p|Reg-well-posed linear system on (Y, X,U )
with control operator B and observation operator C.

(i) If � is L p-well-posed for some p <∞, and if ‖Cx‖Y ≥ ε‖x‖X for some
ε > 0 and all x ∈ X1, then � is exponentially stable if and only if it is
state/output bounded.

(ii) If � is Reg-well-posed or L p-well-posed for some p > 1, and if N (B) is
complemented in U and R (B) ⊃ X, then � is exponentially stable if and
only if it is input/state bounded.

Proof By Lemma 8.1.2(i), exponential stability always implies both input/state
and state/output boundedness, so it suffices to prove the converse claims.

(i) Suppose that � is state/output bounded. Then there is a constant K
such that ‖Cx‖L p(R+;Y ) ≤ K‖x‖X for all x ∈ X . Under the additional coercivity
condition on C , this together with Theorem 4.4.2(i) implies that, for all x ∈ X1,
‖t �→ At x‖L p(R+;Y ) ≤ K/ε‖xx‖ for some ε > 0. As X1 is dense in X , the same
inequality must hold for all x ∈ X , too. By Theorem 3.11.8(v), this implies the
exponential stability of A.

(ii) Without loss of generality we can assume that B is injective (see Proposi-
tion 4.10.1). By the closed graph theorem and the assumption that R (B) ⊃ X ,
B−1 maps X continuously into U . This implies that the system that we get by re-
placing U by X and B by the identity operator is also input/state bounded. Thus,
condition (vii) in Theorem 3.11.8 is satisfied withω = 0, and A is exponentially
stable. �

Our next result concerns the asymptotic behavior of the state and output of
a system which is strongly stable in the appropriate sense.

Theorem 8.1.6 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

(i) If A is strongly stable and B is bounded, then, for all s ∈ R, all xs ∈ X,
and all u ∈ L p|Reg0([s,∞); U ), the state x of � with initial time s, initial
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state xs and input u (see Definition 2.2.7) satisfies x ∈ BC0([s,∞); X ). If,
in addition, C and D are bounded, then the corresponding output y
satisfies y ∈ L p|Reg0([s,∞); Y ), and, in the Reg-well-posed case,
y − Du ∈ BC0([s,∞); Y ) (where D is the feedthrough operator of D).

(ii) If B is strongly stable, then, for each u ∈ L p|Reg0(R; U ), the equation
ẋ(t) = Ax(t)+ Bu(t), t ∈ R, has a solution in BC0(R; X ), namely
x = Bτu. This solution is unique in BC0(R; X ) if A is bounded. If B is
strongly stable and D is bounded, then the corresponding output y = Du
satisfies y ∈ L p|Reg0(R; U ), and, in the Reg-well-posed case,
y − Du ∈ BC0(R; Y ) (where D is the feedthrough operator of D).

Proof (i) The state x is given by x(t) = At−s xs +Bτ tπ[s,∞)u for t ≥ s. This
tends to zero as t →∞because of the strong stability of A and B (see Definition
8.1.1 and Lemma 8.1.2(iii)). The claim that y ∈ L p|Reg0([s,∞); Y ) can be de-
duced from Lemma 8.1.2(vii) and the representation y = τ−sCX S +Dπ[s,∞)u.
That y − Du is continuous in the regular case follows from the fact that
y(t) = Cx(t)+ Du(t) for all t ≥ s where C ∈ B(X ; Y ); see Theorem 4.4.2(ii)
and Corollary 4.5.5.

(ii) Most of the proof of (ii) is identical to the proof of Theorem 4.3.2,
i.e., by repeating that argument we find that x = Bτu is a strong solution
of the equation ẋ(t) = Ax(t)+ Bu(t), that x(t)→ 0 as t →−∞, and that
this equation has a unique strong solution in BC0(R; X ) if A is bounded. By
Lemma 8.1.2(iii), x(t)→ 0 as t →∞. Trivially, y = Du ∈ L p(R; Y ) in the
L p-case when D is bounded, and by Lemma 8.1.2(iii),(v), y ∈ Reg0(R; Y ) in
the Reg-well-posed case. In the regular case, if u has compact support, then, by
applying (i), we find that y − Du is continuous. By the boundedness of D, the
same must then be true for arbitrary u ∈ Reg0(R; U ) since Regc(R; U ) is dense
in Reg0(R; U ) and BC0(R; Y ) is closed in Reg0(R; Y ). �

Finally, let us investigate what type of stability is preserved under output
feedback:

Theorem 8.1.7 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

let K ∈ B(Y ; U ) be an admissible output feedback operator for �, and denote

the closed-loop system by �K =
[

AK BK

CK DK

]
.

(i) If B and KCK are bounded, then the following claims are true:
(a) AK is bounded if and only if A is bounded.
(b) If both A and KCK are strongly stable (the latter condition is

redundant in the L p-case with p <∞) then AK is strongly stable.
(c) In the L p-well-posed case with p <∞, if A is exponentially stable,

then so is AK .
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(ii) If C and BK K are bounded, then the following claims are true:
(a) AK is bounded if and only if A is bounded.
(b) If both A and BK K are strongly stable then AK is strongly stable.
(c) In the Reg-well-posed case and the L p-well-posed case with p > 1,

if A is exponentially stable, then so is AK .
(iii) If both B and KDK are bounded, or strongly stable, or exponentially

stable, then so is BK .
(iv) If both C and DK K are bounded, or strongly stable, or exponentially

stable, then so is CK .
(v) If � is bounded, then the the following conditions are equivalent:

(a) �K is bounded;
(b) �K is input/output bounded;
(c) the operator 1− KD has in inverse in TIC(U ) (where TIC stands for

TICω with ω = 0);
(d) the operator 1−DK has an inverse in TIC(Y );
(e) the operator

[
1 −D
−K 1

]
has an inverse in TIC

([
Y
U

])
;

(f) the diagram in Figure 7.1 (i.e., the set of equations (7.1.1)) with
x0 = 0 defines a continuous linear mapping from the external input
v ∈ L p|Reg(R

+
; U ) to the internal input u ∈ L p|Reg(R

+
; U ).

When these conditions hold, then
(g) in the L p-well-posed case with p <∞, �K is strongly stable if and

only if � is strongly stable,
(h) in the Reg-well-posed case, �K is strongly stable if � is strongly

stable and at least one of the components of �K is strongly stable,
and

(j) �K is exponentially stable if and only if � is exponentially stable.

Proof (i) By (7.1.5), AK = A+BτKCK , hence (a) holds. To prove (b) it suf-
fices to show that, for every x0 ∈ X , Bτ t KCK x0 → 0 as t →∞. But this fol-
lows from Theorem 8.1.6(ii) with u replaced by KCK x0 ∈ L p|Reg0(R

+
,U ). By

Theorem 3.11.8(v), to prove (c) it suffices to show that BτKCK x0 ∈ L p(R+; X )
for all x0 ∈ X . By the boundedness of KCK , KCK x0 ∈ L p(R+; U ). We can in-
terpret Bτ as the input/output map of the system with generating operators[ A B

1 0

]
(see Theorem 4.3.4). This system is exponentially stable, and by Theo-

rem 2.5.4, Bτ maps L p(R+; U ) into L p(R+; X ).
(ii) The proof of (ii) is very similar to the proof of (i), but this time we use

the formula AK = A+BK K τC in (7.1.5). The claim (a) follows immediately.
In case (b), by Lemma 8.1.2(iv), for each x0 ∈ S, Cx0 ∈ L p|Reg0(R

+
; Y ), and

by Theorem 8.1.6(ii), BK K τ tCx0 → 0 as t →∞. To prove (c) we shall ap-
peal to Theorem 3.11.8(vii). Let u ∈ C1

c (R; X1), and consider the system with
generating operators

[ A 1
C 0

]
(see Theorem 4.3.4). The exponential stability of
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A implies that this system is exponentially stable, hence its input/output map is
bounded. If we apply this input/output map to u, then, by Theorem 4.5.10, we
get the function

y(t) = C
∫ t

−∞
At−su(s) ds

and there is a constant M1 <∞ such that ‖y‖L p |Reg0(R;Y ) ≤ M1‖u‖L p |Reg0(R;X ).

To this function we apply BK K and get

x =
∫ 0

−∞
(AK )−t BK K C

∫ t

−∞
At−su(s) ds dt.

The boundedness of BK K implies that there is a constant M2 such that
‖x‖X ≤ M2‖y‖L p |Reg0(R;Y ) ≤ M2 M1‖u‖L p |Reg0(R;X ). On the other hand, we can
use Fubini’s theorem to write x in the form (note that BK K C ∈ B(X1; X K

−1))

x =
∫ 0

−∞

∫ 0

−s
(AK )−t BK K CAt−su(s) dt ds

=
∫ 0

−∞

∫ 0

−s
(AK )−t BK K (τ−sCu(s))(t) dt ds

=
∫ 0

−∞
BK K τ−sCu(s) ds

=
∫ 0

−∞
((AK )−s − A−s)u(s) ds.

By Theorem 3.11.8, AK is exponentially stable.
(iii)–(iv) This is true because BK = B+BKDK and CK = C+DK KC.
(v) Trivially, (a)⇒ (b), and we get the converse implication from, for ex-

ample, (i), (iii), and (iv). To prove that (b) ⇔ (c) it suffices to observe that
1+ KDK = (1− KD)−1. The equivalence of (c), (d), and (e) is proved in
Lemma A.4.1. Finally, (f) ⇔ (c) since the map from π+v to u in Figure 7.1
is (1− KD)−1. The claim (g) follows from (i)(b) and Lemma 8.1.2(vii), the
claim (h) from Lemma 8.1.2(vii), (i)(b), (ii)(b), and (iii), and the claim (j) from
(i)(c) and (ii)(c). �

Corollary 8.1.8 Suppose that D ∈ TIC(U ) has an inverse in TIC(U ) (and in
the Reg-well-posed case suppose, in addition, that D has a well-posed realiza-
tion; cf. Theorem 2.6.7). Then D is exponentially stable if and only if D−1 is
exponentially stable.

Proof We let D be exponentially stable and choose an exponentially stable
realization

[A B

C D

]
of D− 1 (cf. Theorems 2.6.6 and 2.6.7). To this system we

can apply negative identity feedback (cf. Remark 7.1.10) to get a realization
of D−1. By Theorem 8.1.7(v)(j), this realization is exponentially stable. In
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particular, D−1 is exponentially stable. The converse implication is proved in
the same way. �

8.2 Stabilizability and detectability

The notion of (closed-loop) stabilization is based on different types of feedback,
i.e., (static or dynamic) output feedback, state feedback, and output injection.
In addition we shall also study a case where we at the same time want to add
both a state feedback pair

[
K F

]
and an output injection pair

[ H

G

]
to a given

system
[A B

C D

]
. If we try to write a figure similar to Figures 7.14 and 7.15,

we immediately observe that we need one more input/output map E (from the
output injection input to the state feedback output); see Figure 8.1. This operator
need not always exist (as a bounded operator), and this forces us to introduce
still another definition:

Definition 8.2.1 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

The pairs
[
K F

]
and
[ H

G

]
are called jointly admissible state feedback and

output injection pairs for � if
[
K F

]
is an admissible state feedback pair for

�,
[ H

G

]
is an admissible output injection pair for�, and in addition, there exists

a operator E, called the interaction operator, such that the combined extended

system �ext =
[

A H B

C G D
K E F

]
is a well-posed linear system on

([
Y
X

]
, X,
[

Y
U

])
.

Lemma 8.2.2 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

Then the following conditions are equivalent:

(i) The pairs
[
K F

]
and
[ H

G

]
are jointly admissible state feedback and

output injection pairs with interaction operator E.

y

+
+

+
−

x0

u×

w×

z

p+u

p+w

x

y
A BtHt

DGC

K E F

Figure 8.1 The extended system
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y

+
+

u

z

y

x

+

+

w× p+w

p+u×

A BtHt
DGC

K E F

x0

Figure 8.2 Right coprime factor

(ii) The system �ext in Definition 8.2.1 is a well-posed linear system on([
Y
U

]
, X,
[

Y
U

])
, and both

[
0 0
0 1

]
and
[ −1 0

0 0

]
are admissible output

feedback operators for �ext.
(iii) The system �ext in Definition 8.2.1 is a well-posed linear system on([

Y
U

]
, X,
[

Y
U

])
, and 1− F and 1+G have inverses in TICloc(U ),

respectively TICloc(Y ).

Suppose that these conditions hold. Then the closed-loop system �× that we
get by using

[
0 0
0 1

]
as an output feedback operator for �ext with inputs u× and

w and outputs y and z (see Figure 8.22) is given by

�× =

A× H×τ B×τ

C× G× D×
K× E× F×



=

A+Bτ (1− F)−1 K Hτ +B (1− F)−1 Eτ B (1− F)−1 τ

C+D (1− F)−1 K G+D (1− F)−1 E D (1− F)−1

(1− F)−1 K (1− F)−1 E (1− F)−1 F



=

A Hτ Bτ

C G D

K E F

+
Bτ

D

F

 (1− F)−1 [K E F
]

=

A Hτ 0

C G 0
0 0 − 1

+
Bτ

D

1

 (1− F)−1 [K E 1
]
,

2 See the proof of Theorem 8.4.1 for an explanation of the captions of Figures 8.2 and 8.3.
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+
−

w

x0

u×

p+w×

p+u

A BtHt
DGC

K E F

Figure 8.3 Left coprime factor

and the closed-loop system�× that we get by using
[

1 0
0 0

]
as an output feedback

operator for �ext with inputs u and w× and outputs y and z (see Figure 8.3) is
given by

�× =

A× H×τ B×τ

C× G× D×

K× E× F×



=

A− Hτ (1+G)−1 C H (1+G)−1 τ Bτ − H (1+G)−1 Dτ

(1+G)−1 C G (1+G)−1 (1+G)−1 D

K− E (1+G)−1 C E (1+G)−1 F− E (1+G)−1 D



=

A Hτ Bτ

C G D

K E F

−
Hτ

G

E

 (1+G)−1 [C G D
]

=

A 0 Bτ

0 1 0
K 0 F

−


Hτ

−1

E

 (1+G)−1 [C −1 D
]
.

Proof See Lemma 7.2.6(ii)–(iii). �

Remark 8.2.3 According to Lemma 7.1.7, it is possible to recover the extended
system �ext from either of the systems �× or �× by using negative feedback.
For example,the feedback connection drawn in Figure 8.4 is equivalent to �ext.
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x

y

z

+

−

z

x0

u×

w×

p+u

p+w

A× B×tH×t
D×G×C×

K× E× F×

Figure 8.4 Cancellation of state feedback

We are now ready to define the most basic types of stabilizability and de-
tectability (coprime stabilization and detection and dynamic stabilization will
be introduced later in Definitions 8.4.5 and 8.5.1, respectively).3

Definition 8.2.4 Let � be a well-posed linear system on (Y, X,U ).

(i) An operator K ∈ B(Y ; U ) is called a stabilizing output feedback operator
for � if K is an admissible output feedback operator for � and the
resulting closed-loop system �K in Theorem 7.1.2 is bounded (see
Definition 8.1.1). The system � is (closed-loop) stabilizable by static
output feedback if there exists a stabilizing output feedback operator
K ∈ B(Y ; U ) for �.

(ii) A pair
[
K F
]

is called a stabilizing state feedback pair for � if
[
K F
]

is
an admissible state feedback pair for � and the resulting closed-loop
system �× in Lemma 7.3.3 is bounded. The system � is (closed-loop)
stabilizable if there exists a stabilizing state feedback pair for �.

(iii) A pair
[ H

G

]
is called a detecting output injection pair for � if

[ H

G

]
is an

admissible output injection pair for � and the resulting closed-loop
system �× in Lemma 7.3.3 is bounded. The system � is (closed-loop)
detectable if there exists a detecting output injection pair for �.

(iv) The pairs
[
K F
]

and
[ H

G

]
are called jointly stabilizing and detecting

state feedback and output injection pairs for � if they are jointly
admissible state feedback and output injection pairs with some
interaction operator E, and both the closed-loop systems �× and �× in
Lemma 8.2.2 are bounded. The system � is (closed-loop) jointly

3 For simplicity we shall throughout assume that the original system is well-posed. It is also
possible to develop a more general theory based on the notion of feedback for arbitrary operator
nodes.
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stabilizable and detectable if there exist some jointly stabilizing and
detecting state feedback and output injection pairs.

(v) To these definitions we add one of the words ‘weakly’, ‘strongly’, or
‘exponentially’ whenever the closed-loop system is stable in the
corresponding sense (see Definition 8.1.1).

(vi) If to these definitions we add one or several of the qualifiers ‘state/state’,
‘input/state’, ‘state/output’, ‘input/output’, ‘input’, or ‘output’, then we
mean that only the corresponding part of the closed-loop system has to be
bounded or stable in the appropriate sense (recall that ‘input’ means both
‘input/state’ and ‘input/output’ and that ‘output’ means both
‘state/output’ and ‘input/output’).

Of course, we could also introduceω-stabilizing versions of these notions by
requiring that the closed-loop systems (or the appropriate parts of the closed-
loop systems) are ω-bounded. See Definition 2.5.6.

Remark 8.2.5 Definition 8.2.4 deserves a comment. In the case of static output
feedback we do not add any new inputs or outputs to the system, and part (i) of
Definition 8.2.4 is straightforward. In the other parts of Definition 8.2.4 we do
not just require the original inputs and outputs of the system to be stabilized, but
also the added inputs and outputs. For example, in the case of state feedback, it
is not enough if A×, B×, C×, and D× are bounded or strongly stable, but also
K× and F× should be bounded or strongly stable (see Figure 7.14). In the case
of exponential stabilization this is not a problem, since exponential stability of
the closed-loop system is equivalent to exponential stability of its semigroup;
thus any added inputs or outputs are automatically stabilized.

We observe the following basic relationships between the different methods
of stabilization:

Lemma 8.2.6

(i) Exponential stabilizability implies strong stabilizability, strong
stabilizability implies weak stabilizability, and weak stabilizability
implies stabilizability.

(ii) Exponential detectability implies strong detectability, strong detectability
implies weak detectability, and weak detectability implies detectability.

(iii) Every system which is stabilizable by static output feedback in any of the
senses described in Definition 8.2.4(v),(vi) is jointly stabilizable and
detectable in the same sense.

(iv) Every system which is jointly stabilizable and detectable in any of the
senses described in Definition 8.2.4(v),(vi) is both stabilizable and
detectable in the same sense.
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The converse to (iii) is not true (even in the finite-dimensional situation). We
do not know if the converse to (iv) is true or not.

Proof (i)–(ii) See Lemma 8.1.2(i).
(iii) Take

[
K F
] = K

[
C D

]
,
[ H

G

] = − [B

D

]
K , and E = K − KDK (or

E = −KDK ).
(iv) This is obvious. �

The properties of a system of being stabilizable or detectable are preserved
under static output feedback:

Lemma 8.2.7 All the different notions of stabilizability and detectability listed
in Definition 8.2.4(i)–(vi) are preserved under (admissible) static output feed-
back, i.e., the closed-loop system is stabilizable or detectable in exactly the
same sense as the original system.

Proof In the case of output stabilizability this follows from Lemma 7.1.7: if K
is an arbitrary admissible output feedback operator for� and K1 is a stabilizing
output feedback for �, then K1 − K is a stabilizing output feedback for the
system�K in Theorem 7.1.2. The proof of the fact that the different versions of
(state feedback) stabilizability and (output injection) detectability are preserved
under static output feedback is left to the reader (it is a simplified version of the
argument below, where either the output injection column or the state feedback
row is ignored).

Let K be an admissible output feedback operator, and let
[
K F
]

and
[ H

G

]
be

a jointly stabilizing and detecting state feedback and output injection pair for
� with interaction operator E. Consider the extended system

�ext =

 A H B

C G D

K E F

 .
By Lemma 7.2.6, all the operators

[
0 0
K 0

]
,
[

0 0
0 1

]
, and

[ −1 0
0 0

]
are admissible

output feedback operators for �ext, and the latter two are stabilizing. Let us
denote the system that we get by using

[
0 0
K 0

]
as an output feedback operator by

�K =

AK HK BK

CK GK DK

KK EK FK

 .
This is an extended version of the system �K in Theorem 7.1.2. As in Lemma
8.2.2, we denote the systems that we get by using either

[
0 0
0 1

]
or
[ −1 0

0 0

]
as

output feedback operator by �× and �×, respectively. By Lemma 7.1.7, we
can recover �× from �K by using the output feedback operator

[
0 0
−K 1

]
, and
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we can recover �× from �K by using the output feedback operator − [ 1 0
K 0

]
.

However, to use
[

0 0
−K 1

]
as an output feedback operator for �K is almost the

same thing as using the output feedback operator
[

0 0
0 1

]
for the modified system AK HK BK

CK GK DK

KK − KCK EK − KGK FK − KDK

 ; (8.2.1)

this leads to the stable closed-loop system A× H× B×

C× G× D×
K× − KC× E× − KG× F× − KD×

 .
Let us replace �K by (8.2.1). We can still use − [ 1 0

K 0

]
as an output feedback

operator for this modified system, and it is almost the same thing as using the
output feedback operator

[ −1 0
0 0

]
for the further modified system AK HK +BK K BK

CK GK +DK K DK

KK − KCK EK − KGK + FK K − KDK K FK − KDK

 ;

the result is the stable closed-loop system A× H× +B×K B×

C× G× +D×K D×

K× − KC× E× − KG× + F×K − KD×K F× − KD×

 .
This modification does not affect the stability of the system that we get by using[ −1 0

0 0

]
as an output feedback operator (the result is analogous to the one above).

Thus,
[
KK − KCK FK − KDK

]
and
[

HK+BK K
G×+D×K

]
are jointly stabilizing and

detecting state feedback and output injection pairs for the output feedback

system
[

AK BK

CK DK

]
with interaction operator EK − KGK + FK K − KDK K .

Explicitly, these operators are given by[
GK +DK K DK

EK − KGK + FK K − KDK K FK − KDK

]
=
[

(1−DK )−1(G+DK ) D(1−KD)−1

E−(1−KD)−1 KG+F(1−KD)−1 K−KD(1−KD)−1 K (F−KD)(1−KD)−1

]
.

�

We have the following necessary conditions for stabilizability and detectabil-
ity:
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Lemma 8.2.8 Let � = [A B

C D

]
be a well-posed linear system with semigroup

generator A, control operator B, and observation operator C.

(i) If � is state/state stabilizable, then

R ([(λ− A) B
]) ⊃ X, 
λ > 0. (8.2.2)

If � is exponentially stabilizable, then (8.2.2) holds for all λ in some
right half-plane 
λ > −ε where ε > 0.

(ii) If � is state/state detectable, then

N
([

(λ− A)
C

])
= 0. 
λ > 0. (8.2.3)

If � is exponentially detectable, then (8.2.3) holds for all λ in some
half-plane 
λ > −ε where ε > 0.

In the finite-dimensional case conditions (8.2.2) and (8.2.3) are usually re-
ferred to as the Hautus rank conditions. See also Lemmas 9.6.6 and 9.6.9.

Proof We introduce the same notation as in Lemma 7.3.3. In addition, we de-
note the state feedback semigroup generator, control operator, and observation

operator by A×, B×, and
[

C×
K×

]
, and we denote the output injection semigroup

generator, control operator, and observation operator by A× and
[
H× B×

]
, and

C×.
(i) Choose some state/state stabilizing state feedback pair

[
K F
]
. By Lemma

7.3.3 and Corollary 7.4.8,

(λ− A×)−1 = (λ− A)−1 + (λ− A)−1 BK×(λ− A×)−1

for
λ > max{ωA, ωA×} (whereωA× ≤ 0 since
[
K F
]

is state/state stabilizing).
Multiply by (λ− A) to the left and reorder the terms to get

1 = [(λ− A) B
] [ 1
−K×

]
(λ− A×)−1

for 
λ > max{ωA, ωA×}; this should be interpreted as an operator iden-
tity in B(X ; X−1). Both sides are analytic functions of λ in 
λ > ωA× , so
the same identity extends to the half-plane 
λ > ωA× . This implies that
R ([(λ− A) B

]) ⊃ X for these λ.
(ii) This proof is similar to the proof of (i), but this time we use the identity

1 = (λ− A×)−1
[
1 H×

] [(λ− A)
C

]
,

valid for 
λ > max{ωA, ωA×}. �
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In the case where either the input dimension or the output dimension of the
system is finite, then we get some further necessary conditions for stabilizability
and detectability:

Lemma 8.2.9 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U )

with semigroup generator A, control operator B, observation operator C, and
transfer function D̂.

(i) If U is finite-dimensional, then stabilizability implies meromorphic
extendibility in the following sense:
(a) If � is state/state stabilizable then the resolvent (λ− A)−1 is

meromorphic in the right half-plane 
λ > 0.
(b) If � is input/output stabilizable then D̂ has a meromorphic extension

to the right half-plane 
λ > 0.
(c) If � is input/state and input/output stabilizable then (λ− A)−1 B has

a meromorphic extension to the right half-plane 
λ > 0.
(d) If � is state/output and input/output stabilizable then C(λ− A)−1 has

a meromorphic extension to the right half-plane 
λ > 0.
(e) If we replace ‘stabilizable’ by ‘exponentially stabilizable’ in (a)–(d)

above, then the conclusions of (a)–(d) are valid in some right
half-plane 
λ > −ε where ε > 0.

(ii) If Y is finite-dimensional, then claims (a)–(e) above remain true if we
replace ‘stabilizable’ by ‘detectable’.

Observe that, by (i)(a) and (ii)(a), a system where the semigroup is one of the
shift semigroups in Example 2.3.2(i)–(iii) can never be exponentially stabiliz-
able or detectable if the input, respectively output, space is finite dimensional,
because their resolvents are not meromorphic in any half-plane 
λ > −ε with
ε > 0 (see Example 3.3.1(i)–(iii)).

Proof We introduce the same notation as in the proof of Lemma 8.2.8. To
prove (i) it suffices to observe that, by Lemma 7.3.3 and Theorem 7.4.7, for

λ > max{ωA, ωA×},

(λ− A)−1 = (λ− A×)−1

− (λ− A×)−1 B×(1+ F̂×(λ))−1 K×(λ− A×)−1,

(λ− A)−1 B = (λ− A×)−1 B×(1+ F̂×(λ))−1,

C(λ− A)−1 = (C× − D̂×(λ)(1+ F̂×(λ))−1 K×
)

(λ− A×)−1,

D̂(λ) = D̂×(λ)(1+ F̂×(λ))−1,

where the right-hand side is meromorphic in 
λ > ωA× .
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(ii) The proof is similar to the one above, but it uses the facts that, for

λ > max{ωA, ωA×},

(λ− A)−1 = (λ− A×)−1

+ (λ− A×)−1 H×(1+ Ĝ×(λ))−1C×(λ− A×)−1,

(λ− A)−1 B = (λ− A×)−1
(
B× + H×(1− Ĝ×(λ))−1D̂×(λ)

)
,

C(λ− A)−1 = (1− Ĝ×(λ))−1C×(λ− A×)−1,

D̂(λ) = (1− Ĝ×(λ))−1D̂×(λ),

where the right-hand sides are meromorphic in 
λ > ωA× . �

As the following proposition shows, most of the different transformations
on systems that we have studied preserve stabilizability and detectability (with
the obvious exception of the exponential shift in Example 2.3.5):

Proposition 8.2.10 Let �, �1, and �2 be well-posed linear systems.

(i) The following systems derived from � have exactly the same
stabilizability and detectability properties (listed in Definition
8.2.4(i)–(vi)) as the original system �:
(a) the time compressed system �λ in Example 2.3.6;
(b) the similarity transformed system �E in Example 2.3.7;
(c) the closed-loop system with output feedback operator K in Theorem

7.1.2;
(d) the extended closed-loop system with output feedback operator K in

Theorem 7.2.1;
(e) the closed-loop system with partial output feedback operator K in

Lemma 7.2.6.
(ii) If both �1 and �2 are stabilizable or detectable in one of the senses listed

in Definition 8.2.4(i)–(vi), then the following systems derived from these
two are stabilizable or detectable in the same sense:
(a) the cross-product of �1 and �2 presented in Example 2.3.10;
(b) the cascade connection of �1 and �2 through K presented in

Example 7.2.4;
(c) the dynamic feedback connection of �1 and �2 presented in Example

7.2.5.

In the finite-dimensional case a converse to (ii) is true: if the cross-product,
or the cascade connection, or the dynamic feedback connection of �1 and �2

is stabilizable and detectable, then so are both �1 and �2. It was conjectured
by Weiss and Curtain (1997) that the same converse claim is true in the infinite-
dimensional situation, too.
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Proof of Proposition 8.2.10 (i) We leave the easy proof of (a), (b), and (d) to
the reader. The claims (c) and (e) follow from Lemma 8.2.7.

(ii) The straightforward proof of (a) is left to the reader. The claims (b) and
(c) follow from (a) and Lemma 8.2.7. �

Note that some of the transformed systems listed in Section 2.3 are not
mentioned in Proposition 8.2.10, namely the sum junction (Example 2.3.11),
the T-junction (Example 2.3.12), and the parallel connection (Example 2.3.13).
It is easy to see that these transformed systems do not necessarily inherit the
stabilizability and dectectability properties of the two subsystems. For exam-
ple, the finite-dimensional system on (C,C2,C) generated by the system node[ 1 0 1

0 1 1
1 1 0

]
is neither stabilizable nor detectable, but it is the parallel connection

of two copies of the system generated by
[ 1 1

1 0

]
, which is both stabilizable and

detectable.4

By Theorem 8.1.7(v)(j), if a system is bounded but not exponentially stable,
then it is impossible to make it exponentially stable by use of admissible output
feedback. An analogous result is true for strong stability in the L p-case with
p <∞. As the following theorem shows, a very similar result is true for state
feedbacks and output injections:

Theorem 8.2.11 Let � be a well-posed linear system.

(i) � is bounded if and only if � is stabilizable, detectable (not necessarily
jointly), and input/output bounded.

(ii) The following conditions are equivalent:
(a) � is strongly stable;
(b) � is bounded, strongly input/state stable, and strongly stabilizable.
In the L p-well-posed case with p <∞ these conditions are
equivalent to
(c) � is bounded and strongly detectable,
and in the Reg-well-posed case they are equivalent to
(d) � is bounded, strongly state/output stable, and strongly detectable.

(iii) In the Reg-well-posed case and the L p-well-posed case with p > 1 the
following conditions are equivalent:
(a) � is exponentially stable;
(b) � is bounded and exponentially stabilizable.
In the L p-well-posed case with p <∞ condition (a) is equivalent to
(c) � is bounded and exponentially detectable.

4 A related question will be discussed in Section 9.7. Note that in the above example the point
spectra of the semigroup generators of the two subsystems have a nonempty intersection.
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Proof Since boundedness implies stabilizability and detectability and strong
or exponential stability implies strong or exponential stabilizability and de-
tectability, it suffices to prove the converse claims.

(i) We introduce the same notation as in Lemma 7.3.3. The observability
map C is given by C = C× −DK×, hence C is bounded whenever C×, D,
and K× are so. The input map B is given by B = B× − H×D, hence B is
bounded whenever B×, H×, and D are so. Finally, A = A× −BτK×, hence A

is bounded whenever A×, B, and K× are so.
(ii) We use Lemma 7.1.7 to interpret � as a feedback connection of �× (cf.

Figure 8.4), and apply Theorem 8.1.7(ii)(b) with the replacements A→ A×,

K = [0 1
]
, AK → A, C→

[
C×
K×

]
, and BK → B. This gives us the implication

(b)⇒ (a). To get the two remaining implications (c)⇒ (a) and (d)⇒ (a) we in-
stead interpret� as a feedback connection of�×, and apply Theorem 8.1.7(i)(b)
with the replacements A→ A×, K = [ 1

0

]
, AK → A, B→ [H× B×

]
, and

CK → C. (Note that, by Lemma 8.1.2(ii),(vii), strong or exponential stabil-
ity of A together with the boundedness of � implies strong or exponential
stability of �.)

(iii) The proof is the same as the proof of (ii), except that this time we use
parts (ii)(c) and (i)(c) of Theorem 8.1.7. �

Note how in this proof we used the convention that not only is the original
system stabilized under state feedback or output injection, but also the added
inputs and outputs should be stabilized (cf. Remark 8.2.5). However, we did
not require any added inputs

[ H

G

]
or outputs

[
K F
]

to be open-loop stable, or
strongly stable, or exponentially stable (this is not true, in general, even in the
finite-dimensional case).

A number of additional conclusions could be added to Theorem 8.2.11, such
as the following: an input/output bounded system � is output stable if and
only if it is right output stabilizable, it is input stable if and only if it is input
stabilizable, etc.

Let us end this section by observing that, in the reflexive case, stabilizability
and detectability are dual to each other in the following sense:

Lemma 8.2.12 Let � be an L p-well-posed with 1 < p <∞ on the reflex-
ive Banach spaces (Y, X,U ), and let �d represent the causal dual system on
(U ∗, X∗, Y ∗) (see Theorem 6.2.3).

(i) The following relationships hold between the output feedback
stabilizability of � and �d :
(a) � is state/state stabilizable, or weakly stabilizable, or exponentially

stabilizable by output feedback if and only if �d has the same
property;
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(b) � is input/state stabilizable or exponentially stabilizable by output
feedback if and only if �d is state/output stabilizable in the same
sense;

(c) � is input/output stabilizable or exponentially stabilizable by output
feedback if and only if �d has the same property;

(d) � is stabilizable, or weakly stabilizable, or exponentially stabilizable
by output feedback if and only if �d has the same property.

(ii) The following relationships hold between the (state feedback)
stabilizability of � and the (output injection) detectability of �d :
(a) � is state/state stabilizable, or weakly stabilizable, or exponentially

stabilizable if and only if �d is detectable in the same sense;
(b) � is input/state stabilizable or exponentially stabilizable if and only

if �d is state/output detectable in the same sense;
(c) � is state/output stabilizable or exponentially stabilizable if and only

if �d is input/state detectable in the same sense;
(d) � is input/output stabilizable or exponentially stabilizable if and

only if �d detectable in the same sense;
(e) � is stabilizable, or weakly stabilizable, or exponentially

stabilizable by output feedback if and only if �d detectable in the
same sense.

(iii) All the claims in (i) remain true if we replace ‘stabilizable by output
feedback’ by ‘jointly stabilizable and detectable’ throughout.

Proof All of this follows directly from Theorem 6.2.3, Theorem 7.6.1, and
Definition 8.2.4. �

Observe that strong stabilization and detection are missing in the list above,
due to the fact that strong stability is not preserved under duality. For example,
if D is bounded, then the exactly observable shift realization of D in Example
2.6.5 is strongly stable, but its adjoint, the exactly controllable shift realization
of Dd (see Example 6.2.8), is not.

As the reader can easily check, much of Theorem 8.1.7 remains valid in the
case p = 1.

8.3 Coprime fractions and factorizations

The notions of stabilizability and detectability introduced in Definition 8.2.4
are closely related to the notions of coprime fractions. To introduce this notion
we must first define what we mean by ‘coprime’, which we interpret in the
Bezout sense.
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Definition 8.3.1

(i) The operators N ∈ TIC(U ; Y ) and M ∈ TIC(U ; Z ) are right coprime if
there exist operators Ỹ ∈ TIC(Y ; U ) and X̃ ∈ TIC(Z ; U ) that together
with N and M satisfy the right Bezout identity

X̃M− ỸN = 1 (8.3.1)

in TIC(U ). If the same conditions are true with TIC replaced by TICα for
some α < 0, then we call N and M exponentially right coprime.5

(ii) The operators Ñ ∈ TIC(U ; Y ) and M̃ ∈ TIC(Z ; Y ) are left coprime if
there exist operators Y ∈ TIC(Y ; U ) and X ∈ TIC(Y ; Z ) that together
with Ñ and M̃ satisfy the left Bezout identity

M̃X− ÑY = 1 (8.3.2)

in TIC(Y ). If the same conditions are true with TIC replaced by TICα for
some α < 0, then we call N and M exponentially left coprime.6

Thus, N and M are right coprime iff
[

N
M

]
has a left inverse in TIC

([
Y
Z

]
; U
)
,

and Ñ and M̃ are left coprime iff
[
Ñ M̃

]
has a right inverse in TIC

(
Y ;
[

U
Z

])
.

Definition 8.3.2 Let D ∈ TICω(U ; Y ) and Q ∈ TICω(Y ; U ) for some ω ≥ 0.

(i) We call NM−1 a right coprime fraction of D with numerator N and
denominator M if N ∈ TIC(U ; Y ) and M ∈ TIC(U ) are right coprime,
M has an inverse in TICβ(U ) for some β ≥ 0, and D = NM−1 in
TICγ (U ; Y ) where γ = max{ω, β}.

(ii) We call M̃−1Ñ a left coprime fraction of D with numerator Ñ and
denominator M̃ if M̃ ∈ TIC(Y ) and Ñ ∈ TIC(U ; Y ) are left coprime, M̃

has an inverse in TICβ(Y ) for some β ≥ 0, and D = M̃−1Ñ in
TICγ (U ; Y ) where γ = max{ω, β}.

(iii) A doubly coprime factorization of D consists of eight operators in TIC
(of the appropriate dimensions) satisfying[

M̃ − Ñ

−Ỹ X̃

][
X N

Y M

]
=
[

X N

Y M

][
M̃ − Ñ

−Ỹ X̃

]
= 1 (8.3.3)

in TIC
([

Y
U

])
, and, in addition, we require that NM−1 is a right and

M̃−1Ñ a left coprime fraction of D.

5 In the Reg-well-posed case we shall throughout require all the operators appearing in this
definition to have Reg-well-posed realizations. See Theorem 2.6.7.

6 We could, of course, have written the two Bezout identities in the form X̃M+ ỸN= 1 and
X̃M+ ỸN= 1. The reason for the extra minus sign is that we want these equations to be part
of the doubly coprime factorization (8.3.3).
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(iv) A joint doubly coprime factorization of D and Q is a doubly coprime
factorization (8.3.3) of D where, in addition, YX−1 is a right and X̃−1Ỹ a
left coprime fraction of Q.

(v) If all the involved operators (except D, Q, M−1, M̃−1, X−1, and X̃−1)
belong to TICα for some α < 0, then we call these fractions or
factorizations exponentially right or left or doubly coprime.

In (i) and (ii), it follows from Lemma 2.6.8 that TIC ⊂ TICω ⊂ TICγ and
that TIC ⊂ TICα ⊂ TICγ . However, as the following lemma shows, we can
always, without loss of generality, take ω = β = γ . This lemma also clarifies
some of the other basic relationships between the different parts of Definition
8.3.2.

Lemma 8.3.3 We make the same assumptions and introduce the same notation
as in Definition 8.3.2.

(i) If D has a right coprime fraction D = NM−1, then, for each γ ≥ 0,
D ∈ TICγ (U ; Y ) if and only if M−1 ∈ TICγ (U ). Thus, we may, without
loss of generality, take ω = β = γ in Definition 8.3.2(i).

(ii) If D has a left coprime fraction D = M̃−1Ñ, then, for each γ ≥ 0,
D ∈ TICγ (U ; Y ) if and only if M̃−1 ∈ TICγ (Y ). Thus, we may, without
loss of generality, take ω = β = γ in Definition 8.3.2(ii).

(iii) If D has both a right coprime fraction NM−1 and a left coprime fraction
Ñ−1M̃, then, for each γ ≥ 0, M−1 ∈ TICγ (U ) if and only if
M̃−1 ∈ TICγ (Y ), and this is true if and only if D ∈ TICγ (U ; Y ).

(iv) In parts (iii) and (iv) of Definition 8.3.2, it suffices to require that NM−1

is a right coprime fraction of D or M̃−1N is a right coprime fraction of
D because these two conditions are equivalent to each other whenever
(8.3.3) holds.

(v) In part (iii) of Definition 8.3.2, for each γ ≥ 0, the operator X is
invertible in TICγ (Y ) if and only if X̃ is invertible in TICγ (U ).

(vi) In part (iv) of Definition 8.3.2, it suffices to require that YX−1 is a right
coprime fraction of Q or X̃−1Y is a right coprime fraction of Q because
these two conditions are equivalent to each other whenever (8.3.3) holds.

(vii) Suppose that NM−1 is a right coprime fraction of D ∈ TICω(U ; Y ),
that X̃−1Ỹ is a left coprime fraction of Q ∈ TICω(Y ; U ), and that the
numerators and denominators satisfy the right Bezout identity
X̃M− ỸN = 1. Then M−QN and X̃− ỸD are invertible in
TICω(U ) and

X̃ = (M−QN)−1, Ỹ = (M−QN)−1Q,

M = (X̃− ỸD)−1, N = D(X̃− ỸD)−1.
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In particular, X̃ and Ỹ are determined uniquely by Q, M and N, and M

and N are determined uniquely by D, X̃ and Ỹ.

Proof (i)–(ii) Let ω and β be the constants in parts (i) and (ii) of Definition
8.3.2. Clearly D ∈ TICβ both in (i) and (ii) since D = NM−1 ∈ TICβ or D =
M̃−1Ñ ∈ TICβ . Conversely, multiplying the Bezout identity X̃M− ỸN = 1
by M to the right we get

M−1 = X̃− ỸD

in TICβ . Here the right-hand side belongs to TICω, hence M−1 ∈ TICω (cf.
Lemmas 2.6.4 and 2.6.8). The claim M̃−1 ∈ TICω in (ii) is proved analogo-
usly.

(iii) This follows from (i)–(ii).
(iv) By Lemma A.4.2(iv), M is invertible in TICω(U ) if and only if M̃

is invertible in TICω(Y ). Equation (8.3.3) implies that M̃N = ÑM, hence
NM−1 = M̃−1Ñ.

(v)–(vi) See the proof of (iv).
(vii) Substitute Ỹ = X̃Q in the right Bezout identity to get X̃(M−QN) =

1, and then multiply by X̃−1 to the left to get X̃−1 = (M−QN). This combined
with (i) implies that M−QN is invertible in TICω(U ) and that X̃ = (M−
QN)−1 and Ỹ = X̃Q = (M−QN)−1Q. The other claims are proved in an
analogous way. �

Above we have defined coprime fractions and factorizations in the operator
algebra T I C . These notions have natural extensions to the frequency domain.

Definition 8.3.4 Let U and Y be Banach spaces and let ω ∈ R. The space
H∞ω (U ; Y ) consists of all bounded analytic B(U ; Y )-valued functions ϕ on

z > ω with

‖ϕ‖H∞ω (U ;Y ) = sup

z>ω
‖ϕ(z)‖B(U ;Y ).

In the case ω = 0 we abbreviate H∞ω (U ; Y ) to H∞(U ; Y ).

We recall the following result which connects TIC(U ; Y ) to H∞(U ; Y ):

Lemma 8.3.5 Let D ∈ TICω(U ; Y ) and E ∈ TICω(Y ; Z ) for some ω ∈ R,
and denote the transfer functions of these operators by D̂ and Ê. Then
D̂ ∈ H∞ω (U ; Y ), Ê ∈ H∞ω (Y ; Z ), ‖D̂‖H∞ω (U ;Y ) ≤ ‖D‖TICω(U ;Y ), ‖Ê‖H∞ω (Y ;Z ) ≤
‖E‖TICω(Y ;Z ), and the transfer function of ED is ÊD̂. In particular, if D ∈
TIC(U ; Y ) then D̂ ∈ H∞(U ; Y ) and ‖D̂‖H∞ (U ; Y ) ≤ ‖D‖TIC(U ;Y ).

Proof See Corollary 4.6.10 and the proof of Lemma 8.1.3(iv). �
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A converse to this lemma is true in the L2-well-posed Hilbert space case
(and the norm inequalities become equalities); see Theorem 10.3.5.

Definition 8.3.6 We define the notions ‘right coprime’, ‘left coprime’, ‘co-
prime fraction’ and ‘doubly coprime factorization’ in H∞ in the same way as
in Definitions 8.3.1 and 8.3.2 with TIC replaced by H∞.

Remark 8.3.7 In the sequel we shall formulate our results almost exclusively
in the time domain, i.e., we work with the algebra TIC of input/output maps.
However, all the results carry over to the frequency domain; we simply replace
the input/output maps by their transfer functions, replace TIC by H∞, and use
Lemma 8.3.5 and Definition 8.3.4. In particular, as soon as we have a coprime
fraction or a doubly coprime factorization in the time domain, then we get
the corresponding coprime fraction or a doubly coprime factorization in the
frequency domain. Also Lemma 8.3.3 remains true in this setting (since the
analytic continuation of an analytic function is unique). We shall occasionally
apply a result originally formulated in the time domain setting to the frequency
domain case without specific warning. However, it may not always be possible
to go in the opposite direction (except in the L2-well-posed Hilbert space case)
since a coprime condition in H∞ is weaker than the corresponding coprime
condition in TIC (the H∞-factors in (8.3.1), (8.3.2) and (8.3.3) need not be the
transfer functions of input/output maps in TIC).

As a consequence of Remark 8.3.7 we get the following necessary conditions
for two operators in TIC to be right or left coprime:

Lemma 8.3.8 Let N ∈ TIC(U ; Y ), M ∈ TIC(U ), Ñ ∈ TIC(U ; Y ), M̃ ∈
TIC(Y ), D ∈ TICω(U ; Y ) (for some ω ≥ 0), and denote the corresponding

transfer functions by N̂, M̂, ̂̃N, ̂̃M, and D̂.

(i) If N and M are right coprime (in TIC) then
[

N̂
M̂

]
has a left inverse in

H∞
([

Y
U

]
; U
)
.

(ii) If Ñ and M̃ are left coprime (in TIC) then
[̂̃N ̂̃M] has a right inverse in

H∞
(
Y ;
[

U
Y

])
.

(iii) If NM−1 is a right coprime fraction of D (in TIC), then N̂M̂−1 is a right
coprime fraction of D̂ (in H∞).

(iv) If M̃−1Ñ is a left coprime fraction of D (in TIC), then ̂̃M−1̂̃N is a left
coprime fraction of D̂ (in H∞).

(v) The transfer functions of a doubly coprime factorization of D (in TIC)
define a doubly coprime factorization of D̂ (in H∞).

This follows from Remark 8.3.7.
A coprime fraction is unique, up to a unit:
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Lemma 8.3.9 Let D ∈ TICω(U ; Y ) for some ω ≥ 0.

(i) Let NM−1 be a right coprime fraction of D.
(a) If D = N1M

−1
1 where N1 ∈ TIC(U ; Y ), M1 ∈ TIC(U ), and M1 has

an inverse in TICω(U ) (but N1 and M1 are not necessarily right
coprime), then N1 = NU and M1 =MU, where U ∈ TIC(U ) and
U =M−1M1 in TICω(U ).

(b) The set of all right coprime fractions of D can be parametrized in the
form (NU)(MU)−1, where U is an invertible operator in TIC(U ).

(ii) Let M̃−1Ñ be a left coprime fraction of D.
(a) If D = M̃−1

1 Ñ1 where Ñ1 ∈ TIC(U ; Y ), M̃1 ∈ TIC(Y ), and M̃1 has
an inverse in TICω(Y ) (but Ñ1 and M̃1 are not necessarily right
coprime), then Ñ1 = UÑ and M̃1 = UM̃, where U ∈ TIC(Y ) and
U = M̃1M̃

−1 in TICω(Y ).
(b) Then the set of all left coprime fractions of D can be

parametrized in the form (ŨM̃)−1(ŨÑ), where Ũ is an invertible
operator in TIC(Y ).

Proof (i)(a) Choose some operators X̃ ∈ TIC(U ) and Ỹ ∈ TIC(Y ; U ) which
together with N and M satisfy the right Bezout identity X̃M− ỸN = 1 in
TIC(U ), hence also in TICω(U ) (see Lemma 2.6.8). Multiply this identity by
M−1M1 to the right to get

M−1M1 = X̃M1 − ỸN1

in TICω(U ). We get the conclusion of (a) by taking U = X̃M1 − ỸN1.
(i)(b) If U ∈ TIC(U ) is invertible in TIC(U ), then (NU)(MU)−1 is another

right coprime fraction (multiply (8.3.1) by U−1 to the left and by U to the right
and observe that, by Lemma 2.6.8, invertibility in TIC implies invertibility in
TICω). Conversely, suppose that we have two right coprime fractions NM−1

and N1M
−1
1 . Let U ∈ TIC(U ) be the operator given by (a). Then N1 = NU,

M1 =MU, and it follows from (a) with NM−1 interchanged with N1M
−1
1 that

U−1 =M−1
1 M can be extended to an operator in TIC(U ). Thus, U is invertible

in TIC(U ).
(ii) The proof of (ii) is completely analogous to the proof of (i). �

As the following lemma shows, every left and right coprime fraction can be
completed to a double coprime factorization:

Lemma 8.3.10 Let D ∈ TICω(U ; Y ) for some ω ≥ 0. If D has both a right
coprime fraction NM−1 and a left coprime fraction M̃−1Ñ, then these two
fractions can be completed to a doubly coprime factorization (8.3.3) that con-
tains the given operators N, M, M̃, and Ñ. Moreover, in this factorization
we can either choose X̃ and Ỹ to be an arbitrary solution of the right Bezout
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identity (8.3.1), or alternatively, we can choose Y and X to be an arbitrary
solution of the right Bezout identity (8.3.1).

Proof Choose some operators Ỹ, X̃,X, andY in TIC that together with the given
operators satisfy the Bezout identities X̃M− ỸN = 1 and M̃X− ÑY = 1.
Then a direct computation shows that[

M̃ −Ñ

−Ỹ X̃

][
X+N

(
ỸX− X̃Y

)
N

Y+M
(
ỸX− X̃Y

)
M

]
= 1.

By using the invertibility of M and M̃ in TICω, we get

XM̃−DYM̃ = 1, XÑ−DYÑ = D,

MX̃−MỸD = 1, NX̃−NỸD = D,

and by using these identities we find that[
X+N

(
ỸX− X̃Y

)
N

Y+M
(
ỸX− X̃Y

)
M

][
M̃ −Ñ

−Ỹ X̃

]
= 1

in TICω (as opposed to TIC). However, since all the operators above belong to
TIC, and since L p|Regω,0 ∩ L p|Reg0 is dense in L p|Reg0, we find that the same
identity must be true in TIC, too. Thus, we have a doubly coprime factorization
containing N, M, M̃, Ñ, X̃, and Ỹ. We leave the corresponding construction
where X̃ and Ỹ have been replaced by Y and X to the reader. �

Our next lemma parametrizes the set of all doubly coprime factorizations of
a given input/output map D:

Lemma 8.3.11 Let D ∈ TICω(U ; Y ) for some ω ≥ 0, and suppose that D has
a doubly coprime factorization (8.3.3).

(i) All possible choices of Y, X, X̃, and Y in (8.3.3) for a fixed set of N, M,
M̃, and Ñ are parametrized by([

X N

Y M

] [
1 0
Q 1

])−1

=
[

1 0
−Q 1

] [
M̃ − Ñ

−Ỹ X̃

]
,

or equivalently, by[
X+NQ N

Y+MQ M

]−1

=
[

M̃ − Ñ

−(Ỹ+QM̃) X̃+QÑ

]
,

where Q ∈ TIC(Y ; U ).
(ii) All possible completions of

[
N
M

]
to an invertible operator in TIC

([
Y
U

])
are parametrized by[

X N

Y M

] [
V 0
Q 1

]
=
[

XV+NQ N

YV+MQ M

]
,

where V ∈ TIC(Y ) is invertible in TIC(Y ) and Q ∈ TIC(Y ; U ).
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(iii) All doubly coprime factorizations of D are parametrized by([
X N

Y M

] [
V 0
Q U

])−1

=
([

V 0
Q U

]−1 [
M̃ − Ñ

−Ỹ X̃

])
,

where U ∈ TIC(U ) is invertible in TIC(U ), V ∈ TIC(Y ) is invertible in
TIC(Y ), and Q ∈ TIC(Y ; U ).

(iv) If (8.3.3) is a joint doubly coprime factorization of D and
Q ∈ TICω(Y ; U ), then all joint doubly coprime factorizations of D and
Q are parametrized by([

X N

Y M

] [
V 0
0 U

])−1

=
([

V 0
0 U

]−1 [
M̃ − Ñ

−Ỹ X̃

])
,

where U ∈ TIC(U ) is invertible in TIC(U ) and V ∈ TIC(Y ) is invertible
in TIC(Y ).

Proof (i) Clearly, the given formula gives a valid doubly coprime factorization
for all choices of Q ∈ TIC(Y ; U ) (and it contains the fixed operators N, M,
M̃, and Ñ). Conversely, suppose that (8.3.3) holds also with Y, X, X̃, and Y

replaced by Y1, X1, X̃1, and Y1. Then[
M̃ − Ñ

−Ỹ X̃

] [
X1 N

Y1 M

]
=
[

1 0
Q 1

]
,

where Q = X̃Y1 − ỸX1. Multiply this by
[

X N
Y M

]
to the left to get

[
X1 N
Y1 M

]
=[

X N
Y M

] [
1 0
Q 1

]
.

(ii) Again, for all choices of V and Q we have a valid doubly coprime
factorization. To prove the converse we argue as in the proof of (i), but this time
we get only [

M̃ − Ñ

−Ỹ X̃

] [
X1 N

Y1 M

]
=
[
V 0
Q 1

]
,

where V = M̃X1 − ÑY1 and Q = X̃Y1 − ỸX1. The invertibility of
[

V 0
Q 1

]
forces V to be invertible in TIC(Y ); see Lemma A.4.2(ii).

(iii) We get this (with Q replaced by UQ) by combining the parametrization
in (ii) with the one in Lemma 8.3.9(i).

(iv) Combine (iii) with Lemma 8.3.9. �

The property of having a right or left coprime fraction is not preserved under
addition of two arbitrary elements in TICω withω > 0. However, it is preserved
if one of the two terms is bounded.
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Lemma 8.3.12 Let D ∈ TICω(U ; Y ) for some ω ≥ 0, and let U ∈ TIC(U ; Y ).

(i) If D has a right coprime fraction D = NM−1, then (N+ UM)M−1 is a
right coprime fraction of D+ U.

(ii) If D has a left coprime fraction D = M̃−1Ñ, then M̃−1(Ñ+ M̃U) is a
left coprime fraction of D+ U.

(iii) If D has a doubly coprime factorization (8.3.3), then([
1 U

0 1

] [
X N

Y M

])−1

=
[

M̃ − Ñ

−Ỹ X̃

] [
1 − U

0 1

]
,

or equivalently,[
X+ UY N+ UM

Y M

]−1

=
[

M̃ − (Ñ+ M̃U)
−Ỹ X̃+ ỸU

]
,

is a doubly coprime factorization of D+ U.

Proof (i) The numerator and denominator in this fraction are right coprime
since (X̃+ ỸU)M− Ỹ(N+ UM) = 1 whenever X̃M− ỸN = 1.

(ii) The numerator and denominator in this fraction are left coprime since
M̃(X+ UY)− (Ñ+ M̃U)Ỹ = 1 whenever M̃X− ÑY = 1.

(iii) This can be verified by a direct computation. �

8.4 Coprime stabilization and detection

As the following theorem shows, if a well-posed linear system is jointly in-
put/output stabilizable and detectable, then its input/output map has a doubly
coprime factorization. A converse to this statement is true as well.

Theorem 8.4.1

(i) Let � = [A B

C D

]
be a jointly input/output stabilizable and detectable

well-posed linear system (in the sense of Definition 8.2.4). Then, with the
notation of Lemma 8.2.2 and Definition 8.3.2,[

M̃ − Ñ

−Ỹ X̃

] [
X N

Y M

]
=
[

1−G× −D×

−E× 1− F×

] [
1+G× D×

E× 1+ F×

]
is a doubly coprime factorization of D. If � is jointly exponentially
input/output stabilizable and detectable, then this is an exponentially
doubly coprime factorization of D.

(ii) Conversely, every D ∈ TICω(U ; Y ) (for some ω ≥ 0) which has a doubly
coprime factorization (and, in the Reg-well-posed case satisfies the
equivalent necessary conditions listed in Theorem 2.6.7) can be realized
as the input/output map of a jointly strongly stabilizable and detectable



474 Stabilization and detection

well-posed linear system � = [A B

C D

]
. It has a jointly exponentially

stabilizable and detectable realization if (and only if) D has an
exponentially doubly coprime factorization.

Proof (i) Let � = [A B

C D

]
be jointly stabilizable and detectable. Then both

the systems drawn in Figures 8.2 and 8.3 are bounded. In particular, both the
input/output map from

[
w
u×
]

to
[
w×
u

]
in Figure 8.2, and the input/output map

from
[
w×
u

]
to
[
w
u×
]

in Figure 8.3 are bounded. The former one is given by[
1+G× D×

E× 1+F×

]
(cf. Remark 7.3.4), and the latter one by

[
1−G× −D×
−E× 1−F×

]
. By com-

paring the two figures to each other we immediately realize that they are equiv-
alent in the sense that the relationships between the different signals with the
same names are identical in the two diagrams. This means that the input/output
maps given above are inverses of each other, i.e.,[

1+G× D×
E× 1+ F×

]
=
[

1−G× −D×

−E× 1− F×

]−1

.

Moreover, as is easily seen, D×(1+ F×)−1 is a right coprime fraction of D,
and (1−G×)−1D×) is a left coprime fraction of D. If both the closed-loop
systems are exponentially stable, then all the factors in this factorization are
exponentially stable. This proves part (i) of the theorem.

(ii) Conversely, suppose that there exists a doubly coprime factorization of
D. Our construction below starts with a realization of the closed-loop system
�×; another equally good choice would be to start with a realization of �×.
Motivated by the formula that we found above, we pick the input/output map
of �× to be given by [

G× D×
E× F×

]
=
[
X− 1 N

Y M− 1

]
and choose an arbitrary strongly stable realization of this input/output map, for
example, the exactly observable shift realization presented in Example 2.6.5.
Since M is supposed to have an inverse in TICω, the operator

[
0 0
0 −1

]
is an

admissible feedback operator for �×. Denote the resulting ω-bounded closed-
loop system by �ext and the system that we get by dropping the state feedback
row and the output injection column from �ext by �. By Lemma 7.2.6(iii) and
(8.3.3), the input/output map of �ext is[

G D

E F

]
=
[
X−NM−1Y− 1 NM−1

M−1Y 1−M−1

]
(8.4.1)

=
[
M̃−1 − 1 M̃−1Ñ

ỸM̃−1 1− X̃+ ỸM̃−1Ñ

]
.
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Observe, in particular, that the input/output map of � is the desired D =
NM−1 = M̃−1Ñ. It follows from Lemma 7.1.7 that the system � that we
get in this way is strongly stabilizable (and that the closed-loop state feedback
system is �×). Moreover, by Lemma 7.1.7 and Theorem 8.1.7, � is strongly
detectable if the operator − [ 1 0

0 1

]
is a stabilizing output feedback operator for

�×, or equivalently, if[
1 0
0 1

]
+
[
X− 1 N

Y M− 1

]
=
[
X N

Y M

]
has an inverse in TIC

([
Y
U

])
. But this is true because of the doubly coprimeness

assumption. Thus, � is jointly strongly stabilizable and detectable. In the case
where D has an exponentially coprime factorization we argue in the same way,
but start with an exponentially stable realization of �×; cf. Example 2.6.5. �

Let us immediately apply this to the case where D can be stabilized by static
output feedback:

Corollary 8.4.2 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ).

Then K ∈ B(U ; Y ) is an input/output stabilizing output feedback operator if
and only if, with the notation used in (8.3.3),[

X N

Y M

]
=
[

1 D(1− KD)−1

K (1− KD)−1

]
,[

M̃ − Ñ

−Ỹ X̃

]
=
[

(1−DK )−1 − (1−DK )−1D

−K 1

]
,

is a doubly coprime factorization of D. This factorization is exponentially dou-
bly coprime if and only if K is exponentially input/output stabilizing.

Proof Clearly, if this is a doubly coprime factorization, then D(1− KD)−1 ∈
TIC(U ; Y ) and K is input/output stabilizing. To prove the converse we can either
simply check that all the operators above are in TIC and that (8.3.3) holds (see
Lemma A.4.1), or use Lemma 8.2.6(iii) and Theorem 8.4.1 with

[
K F
] =

K
[
C D

]
,
[ H

G

] = − [B

D

]
K , and E = K − KDK . The exponentially stable

case is treated in the same way. �

In particular, an input/output map which can be stabilized by static output
feedback always has both a right and a left coprime fraction.

Lemma 8.4.3 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and let K ∈ B(Y ; U ).

(i) If D has a right coprime fraction D = NM−1, then K is an input/output
stabilizing output feedback operator for � if and only if M− KN has an
inverse in TIC(U ), in which case (1− KD)−1 =M(M− KN)−1 and
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D(1− KD)−1 = N(M− KN)−1 (these are the input/output maps from v

to u and y in Figure 7.6).
(ii) If D has a left coprime fraction D = M̃−1Ñ, then K is an input/output

stabilizing output feedback operator for � if and only if M̃− ÑK has an
inverse in TIC(Y ), in which case (1−DK )−1 = (M̃− ÑK )−1M̃ and
(1−DK )−1D = (M̃− ÑK )−1Ñ (these are the input/output maps from
w and v to y1 in Figure 7.6).

Proof (i) Clearly 1− KD = (M− KN)M−1, hence (1− KD)−1 =M(M−
KN)−1 and D(1− KD)−1 = N(M− KN)−1. If (M− KN)−1 ∈ TIC(U ),
then N(M− KN)−1 = D(1− KD)−1 ∈ TIC(U ; Y ) and the closed-loop sys-
tem is input/output stable (for this we did not need the assumption that N and
M are right coprime). Conversely, suppose that the closed-loop system is in-
put/output stable. Then, by Corollary 8.4.2,

[
D(1− KD)−1

] [
(1− KD)−1

]−1

is a right coprime fraction of D. By Lemma 8.3.9(i)(b), (1− KD)M =
M− KN is invertible in TIC(U ).

(ii) We leave this proof to the reader. �

Let us illustrate Theorem 8.4.1 and Corollary 8.4.2 with a simple finite-
dimensional example.

Example 8.4.4 We consider the regular system

ẋ1(t) = x1(t)+ u(t),

ẋ2(t) = 2x2(t)+ u(t),

y(t) = x1(t), t ≥ 0,

with input space U = C, state space X = C2, output space Y = C, generators[
A B

C D

]
=

1 0 1
0 2 1

1 0 0

 ,
and transfer function D̂(λ) = 1/(λ− 1).

It follows from Lemma 8.2.8(ii) that this system is not detectable, since[
λ−A

C

] = [ λ−1 0
0 λ−2
1 0

]
does not have full column rank for λ = 2. However, it is

exponentially input/output stabilizable by static output feedback. For example,
if we use the output feedback u = K y + v = −2y + v, then the closed-loop
system

ẋ1(t) = −x1(t)+ v(t),

ẋ2(t) = −x1(t)+ 2x2(t)+ v(t),

y(t) = x1(t), t ≥ 0,
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is exponentially output stable (i.e., exponentially input/output and state/output
stable). From Remark 8.3.7 and Corollary 8.4.2 we get the doubly coprime
factorization[

(λ− 1)/(λ+ 1) −1/(λ+ 1)
2 1

] [
1 1/(λ+ 1)
−2 (λ− 1)/(λ+ 1)

]
=
[

1 0
0 1

]
of D̂(λ) = 1/(λ− 1). In particular, we get the identical right and left coprime
fractions

1

(λ− 1)
= 1/(λ+ 1)

(λ− 1)/(λ+ 1)
.

This example is stabilizable (even controllable). One particular exponentially
stabilizing state feedback is u = 4x1 − 9x2 + u×, which leads to a closed-loop
system with generators (the last row is the feedback output) A× B×

C× D×
K× F×

 =


5 −9 1
4 −7 1

1 0 0
4 −9 0


(we get this state feedback if we decide to place both the poles at the point
λ = −1). We have

(λ− A×)−1 = (λ+ 1)−2

[
λ+ 7 −9

4 λ− 5

]
and the closed-loop transfer function is[

D̂×(λ)
F̂×(λ)

]
=
[

C×
K×

]
(λ− A×)−1 B×

= (λ+ 1)−2

[
1 0
4 − 9

] [
λ+ 7 − 9

4 λ− 5

] [
1
1

]
= (λ+ 1)−2

[
λ− 2
−5λ+ 1

]
.

The standard right coprime fraction formula formula for D̂ gives

D̂(λ) = D̂×(λ)

1+ F̂(λ)×
= (λ− 2)/(λ+ 1)2

(λ− 2)(λ− 1)/(λ+ 1)2
.

However, this is not a coprime fraction because the numerator and denominator
are not coprime in H∞: they have a common zero at λ = 2 (which is the location

of the original undetectable pole of the system), hence
[

D̂×
1+F̂×

]
does not have a

left inverse in H∞.
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It follows from Theorem 8.4.1 that it is impossible to find an output injection
that would be jointly stabilizing and detecting together with the state feedback
u = 4x1 − 9x2 + u×. This particular state feedback is exponentially stabilizing,
so it will automatically stabilize any added output injection column. However,
no output injection will stabilize the added state feedback row (because oth-
erwise we would get an input/output stabilizing and detecting state feedback
and output injection pair). This can be easily verified by direct computation: no
output injection will stabilize the input/output map F whose control operator is
B = [ 1

1

]
and observation operator K = [4 −9

]
.

As we have seen in the preceding example, some state feedbacks produce
right coprime fractions of the input/output map, whereas others do not. Let us
therefore introduce some additional terminology:

Definition 8.4.5 Let � be a well-posed linear system on (Y, X,U ), and intro-
duce the same notation as in Lemma 7.3.3.

(i) A stabilizing state feedback pair
[
K F
]

is right coprime stabilizing if D×
and 1+ F× are right coprime. The system � is right coprime stabilizable
if there exists a right coprime stabilizing state feedback pair for �.

(ii) A detecting output injection pair
[ H

G

]
is left coprime detecting if 1−G×

and D× and are left coprime. The system � is left coprime detectable if
there exists a left coprime detecting output injection pair for �.

(iii) To these definitions we add one of the words ‘weakly’, ‘strongly’, or
‘exponentially’ whenever the closed-loop system and all the factors in the
coprime fractions are stable in the corresponding sense (see Definition
8.1.1).

(iv) If to these definitions we add one or several of the qualifiers ‘state/state’,
‘input/state’, ‘state/output’, ‘input/output’, ‘input’, or ‘output’, then we
mean that only the corresponding part of the closed-loop system has to be
bounded or stable in the appropriate sense (we shall always assume at
least input/output boundedness of the closed loop system since the
coprimeness conditions require D×, F×, G×, D× ∈ TIC).

We have the following simple relationships between the right coprime sta-
bilizability of a system and the existence of a right coprime fraction of its
input/output map (and analogous results for left coprime detectability).

Theorem 8.4.6 In this theorem we use the notation of Lemma 7.3.3.

(i) If � = [A B

C D

]
is a right coprime input/output stabilizable system then

D×(1+ F×)−1 is a right coprime fraction of D. If � is exponentially
input/output right coprime stabilizable, then this is an exponentially right
coprime fraction of D.
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(ii) If � = [A B

C D

]
is a left coprime input/output detectable system then

(1−G×)−1D× is a left coprime fraction of D. If � is left coprime
exponentially input/output detectable, then this is an exponentially left
coprime fraction of D.

(iii) Every D ∈ TICω(U ; Y ) (for some ω ≥ 0) which has a right coprime
fraction (and, in the Reg-well-posed case satisfies the equivalent
necessary conditions listed in Theorem 2.6.7) can be realized as the
input/output map of a right coprime strongly stabilizable well-posed
linear system � = [A B

C D

]
. It has a right coprime exponentially

stabilizable realization if (and only if) D has an exponentially right
coprime fraction.

(iv) Every D ∈ TICω(U ; Y ) (for some ω ≥ 0) which has a left coprime
fraction (and, in the Reg-well-posed case satisfies the equivalent
necessary conditions listed in Theorem 2.6.7) can be realized as the
input/output map of a left coprime strongly detectable well-posed linear
system � = [A B

C D

]
. It has a left coprime exponentially detectable

realization if (and only if) D has an exponentially left coprime fraction.

Proof (i)–(ii) See Lemma 7.3.3 and Definition 8.4.5.
(iii)–(iv) The proof of (iii) is a simplified version of the proof of part (ii) of

Theorem 8.4.1. The proof of (iv) is similar, with �× replaced by �×. �

Lemma 8.4.7 Let� be a well-posed linear system on (Y, X,U ), and introduce
the same notation as in Lemma 7.3.3.

(i) If � is jointly input/output stabilizable and detectable, then � is both
right coprime input/output stabilizable and left coprime input/output
detectable. In particular, this is true if � is stabilizable by static output
feedback. The same statements are true if throughout we add one or
several of the qualifiers ‘weakly’, ‘strongly’, ‘exponentially’, ‘input’,
‘output’, ‘state/state’, ‘input/state’, ‘state/output’ (by adding the last
three qualifiers we can remove ‘input/output’).

(ii) If � is both right coprime stabilizable and left coprime detectable then D

has both a right coprime fraction D = D×(1+ F×)−1 and a left coprime
fraction D = (1−G×)−1D×. Moreover, in this case D has a jointly
strongly stabilizable and detectable realization.

Proof (i) See Lemma 8.2.6, Theorem 8.4.1 and Definition 8.4.5.
(ii) By Theorem 8.4.6, D×(1+ F×)−1 is a right coprime fraction and (1−

G×)−1D× is a left coprime fraction of D. By Lemma 8.3.10, D then has a doubly
coprime factorization, hence, by Theorem 8.4.1(ii), it has a jointly stabilizable
and detectable realization. �
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By applying Definition 8.4.5 we also get the following modified version of
Theorem 8.2.11.

Theorem 8.4.8 Let � be a well-posed linear system.

(i) The following conditions are equivalent:
(a) � is bounded;
(b) � is input/output bounded and right coprime stabilizable;
(c) � is input/output bounded and left coprime detectable.

(ii) In the L p-well-posed case with p <∞ the following conditions are
equivalent:
(a) � is strongly stable;
(b) � is input/output bounded and strongly right coprime stabilizable;
(c) � is input/output bounded and strongly left coprime detectable.

(iii) In the Reg-well-posed case the following conditions are equivalent:
(a) � is strongly stable;
(b) � is input/output bounded, strongly input/state stable, and strongly

right coprime stabilizable;
(c) � is input/output bounded, strongly state/output stable, and strongly

left coprime detectable;
(iv) The following conditions are equivalent:

(a) � is exponentially stable;
(b) � is input/output bounded and exponentially right coprime

stabilizable;
(c) � is input/output bounded and exponentially left coprime

detectable.

Proof (i) Clearly (a)⇒ (b) and (a)⇒ (c). The proof that (c)⇒ (a) is analogous
to the proof that (b)⇒ (a), so let us only prove the latter implication. Assume
that (b) holds. Then the closed-loop system �× in Lemma 7.3.3(i) is bounded
and D×(1+ F×)−1 is a right coprime fraction of D. Assume further that D is
bounded. Then DI−1 is another right coprime fraction of D. By Lemma 8.3.9,
1+ F× = (1− F)−1 is invertible in TIC(U ), i.e, 1− F ∈ TIC(U ). By Lemma
7.3.3(i) A Bτ

C D

K F

 =
A× B×τ

C× D×
K× F×

−
B×τ

D×
F×

 (1− F)
[
K× F×

]
.

This shows that the original system � (and even the extended system) is
bounded.

(ii) Again the implications (a) ⇒ (b) and (a) ⇒ (c) are trivial. To prove
the converse implications we observe as in the proof of (i) that the extended
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system (where to � we have added either
[
K F
]

or
[ H

G

]
) is bounded, and that

it can be strongly stabilized by output feedback. In particular, it is strongly de-
tectable. Thus, the strong stability of the extended system follows from Theorem
8.2.11(ii)(c).

(iii) This follows from part (i) and Theorem 8.2.11(ii).
(iv) As in (i), the implications (a)⇒ (b) and (a)⇒ (c) are trivial, and the

proof of the implication (c) ⇒ (a) is analogous to the proof of (b) ⇒ (a).
Assume (b). With the same notation as in the proof of (i), the system �× is
exponentially stable. The exponential stability of � then follows from (i) and
Theorem 8.1.7(v)(j). �

Also right coprime stabilizability and left coprime detectability are preserved
under static output feedback.

Lemma 8.4.9 All the different notions of right coprime stabilizability and left
coprime detectability listed in Definition 8.4.5 are preserved under (admissible)
static output feedback, i.e., the closed-loop system is right coprime stabilizable
or left coprime detectable in exactly the same sense as the original system.

Proof The proof is the same as the proof of Lemma 8.2.7. �

Theorem 8.4.10 Let � be a well-posed linear system.

(i) If � is right coprime stabilizable or left coprime detectable, then an
arbitrary static output feedback operator is stabilizing if and only if it is
input/output stabilizing.

(ii) In the L p-well-posed case with p <∞, if � is strongly right coprime
stabilizable or strongly left coprime detectable, then an arbitrary static
output feedback operator is strongly stabilizing if and only if it is
input/output stabilizing.

(iii) In the Reg-well-posed case,
(a) if � is strongly right coprime stabilizable, then an arbitrary static

output feedback operator is strongly stabilizing if and only if it is
input/output stabilizing and strongly input/state stabilizing, and

(b) if � is strongly left coprime delectable, then an arbitrary static
output feedback operator is strongly stabilizing if and only if it is
input/output stabilizing and strongly state/output stabilizing.

(iv) If � is exponentially right coprime stabilizable or exponentially left
coprime detectable, then an arbitrary static output feedback operator is
exponentially stabilizing if and only if it is input/output stabilizing.

Proof Apply first Lemma 8.4.9 and then Theorem 8.4.8 to the closed-loop
system. �
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Observe that, because of Corollary 8.4.2, the stabilization in Theorem 8.4.10
is always both right coprime stabilizing and left coprime detecting.

Slightly weaker versions of Theorem 8.4.10 are valid for state feedbacks and
output injections:

Theorem 8.4.11 Let � be a well-posed linear system.

(i) If � is right coprime stabilizable, then an arbitrary state feedback pair is
right coprime stabilizing if and only if it is right coprime output
stabilizing.

(ii) If � is left coprime detectable, then an arbitrary output injection pair is
left coprime detecting if and only if it is left coprime input detecting.

(iii) If � is strongly right coprime stabilizable, then
(a) in the L p-well-posed case with p <∞, an arbitrary state feedback

pair is strongly right coprime stabilizing if and only if it is output
right coprime stabilizing, and

(b) in the Reg-well-posed case, an arbitrary state feedback pair is
strongly right coprime stabilizing if and only if it is strongly
input/state stabilizing and output right coprime stabilizing.

(iv) If � is strongly left coprime detectable, then,
(a) in the L p-well-posed case with p <∞, an arbitrary output injection

pair is strongly left coprime detecting if and only if it is left coprime
input detecting, and

(b) in the Reg-well-posed case, an arbitrary output injection pair is
strongly left coprime detecting if and only if it is left coprime input
detecting and strongly state/output detecting.

(v) If � is exponentially right coprime stabilizable, then an arbitrary state
feedback pair is exponentially right coprime stabilizing if and only if it is
input/output stabilizing.

(vi) If � is exponentially left coprime detectable, then an arbitrary output
injection pair is exponentially left coprime detecting if and only if it is
input/output detecting.

Proof In all cases the ‘only if’ parts of the claims are trivial. Therefore, we
only prove the ‘if’ claims below.

(i) Let
[
K F
]

be a right coprime output stabilizing state feedback pair for
�, let

[
K1 F1

]
be a right coprime stabilizing state feedback pair for �, and

consider the system

�ext =


A B

C D

K F

K1 F1

 .
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We denote the system that we get by using
[
0 1 0

]
as a state feedback oper-

ator by �×, and the system that we get by using
[
0 0 1

]
as a state feedback

operator by �&. We also use the same subindices to denote components of the
corresponding closed-loop systems (cf. Lemmas 7.2.6(i) and 7.3.3(i)).

Clearly, the first, second, and fourth rows of �& are bounded since
[
K1 F1

]
is stabilizing. We claim that also the third row[

K& F&

] = [K+ F(1− F1)−1K1 F(1− F1)−1
]

of �& is bounded, or in other words, we claim that �& is bounded. To prove this
we use the assumption that

[
K F
]

is right coprime output stabilizing. By the
coprimeness assumption, D×(1+ F×)−1 is a right coprime fraction of D. On
the other hand, we can also write D in the form D = D&(1+ F1

& )
−1. Hence, by

Lemma 8.3.9(i)(a),

U = (1+ F×)−1(1+ F1
& ) = (1− F)(1− F1)−1 ∈ TIC(U ).

But

F& = F(1− F1)−1 = (1− F1)−1 − (1− F)(1− F1)−1 = F1
& + 1− U;

hence F& is bounded. To show that K& is bounded we use the fact that (by the
assumption) all of C×, C&, K×, and K1

& are bounded, and that (by some simple
algebra),

K× − K1
& = (1− F)−1[K& − K1

& ],

C× − C& = D(1− F)−1[K& − K1
& ].

By the coprimeness of D× = D(1− F)−1 and (1+ F×) = (1− F)−1, we can
choose some operators X̃ and Ỹ such that X̃(1− F)−1 − ỸD(1− F)−1 = 1.
Multiply the two equations above by X̃ and −Ỹ, respectively, and add the
result to get

K& = K1
& + X̃(C× − C&)− Ỹ(K× − K1

& ).

Thus, K& is bounded. This proves that �& is bounded. (So far we have not used
the assumption that the pair

[
K1 F1

]
is right coprime stabilizing.)

By interchanging the roles of the two feedback pairs
[
K F

]
and
[
K1 F1

]
and arguing as above we find that the system �× is output stable. The system
�× can be interpreted as a feedback connection of �& with output feedback
operator

[
0 1 −1

]
(cf. the proof of Lemma 8.2.7). By Theorem 8.1.7(v), �× is

bounded.
(ii) The proof of (ii) is analogous to the proof of (i), and we leave it to the

reader.
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(iii) With the notation used in the proof of (i), both �× and �& are bounded,
and by Lemma 8.1.2(vii), �& is strongly stable. Since �× can be obtained
from �& by output feedback, the strong stability of �× follows from Theorem
8.4.10(ii)–(iii).

(iv) This proof is similar to the proof of (iii).
(v) We introduce the same notation as in the proof of (i). The proof of the

exponential stability of �& (including the third row) is now trivial, since the ex-
ponential growth bound of a system is determined by the growth bound of the
semigroup (cf. Theorem 2.5.4(ii). The input/output stability of �× is proved in
the same way as in the proof of (i) (with�× and�& interchanged). By Theorem
8.1.7(v)(j), �× is exponentially stable. That D×(1+ F×)−1 is an exponen-
tially right coprime fraction of D follows from the exponential invertibility of
U = (1+ F×)−1(1+ F1

& ) (both U = F& − F1
& − 1 and U−1 = F1

× − F× − 1 are
exponentially stable) and the fact that D&(1+ F&)−1 is an exponentially right
coprime fraction of D (see Lemma 8.3.9(i)(b)).

(vi) This proof is similar to the proof of (v). �

Also Proposition 8.2.10 can be extended to the right coprime stabilizable
and left coprime detectable case:

Proposition 8.4.12 The list of stabilizability and detectability properties which
are inherited by the systems listed in Proposition 8.2.10 can be extended to
include all the versions of right coprime stabilizability and left coprime de-
tectability listed in Definition 8.4.5(i)–(iv).

Proof The proof is the same as the proof of Proposition 8.2.10, but we have
to check, in addition, that the coprimeness assumption for the closed-loop sys-
tem is preserved when we pass from the original system to the modified sys-
tem. This is straightforward in cases (i)(a) and (i)(b). Cases (i)(c) and (i)(e)
are output feedback connections covered by Lemma 8.4.9. Case (i)(d) con-
tains two parts, i.e., the systems in parts (i) and (ii) of Theorem 7.1.2. The
former is a special case of the cross-product in (ii)(a) to which we return
later, and the latter is obtained from the former by addition of an identity
feedthrough operator; by Lemma 8.3.12 this does not destroy the coprime-
ness condition. The right coprimeness in the case (ii)(a) follows from the fact
that if N1M

−1
1 is a right coprime fraction of D1 and N2M

−1
2 is a right co-

prime fraction of D2, then
[

N1 0
0 N2

] [
M1 0

0 M2

]−1
is a right coprime fraction of[

D1 0
0 D2

]
. Preservation of left coprimeness is proved in the same way. Finally,

(ii)(b) and (ii)(c) are static output feedback connections of (ii)(a) covered by
Lemma 8.4.9. �
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8.5 Dynamic stabilization

It is now time to take a closer look at the the notion of dynamic feedback stabi-
lization which plays an important role in optimal control theory. For example,
H∞ control theory deals extensively with measurement feedback stabilization,
which is a special case of dynamic feedback stabilization.

Definition 8.5.1 Let � = [A B

C D

]
be a well-posed linear system on (U, X, Y ).

(i) The well-posed linear system �1 =
[

A1 B1

C1 D1

]
on (Y, X1,U ) is called a

stabilizing dynamic feedback system for � if the dynamic feedback
connection in Figure 8.5 (cf. Example 7.2.5) is (admissible and) stable.
The system � is stabilizable by dynamic feedback if there exists a
stabilizing dynamic feedback system �1 for �.

(ii) To this definition we add one of the words ‘weakly’, ‘strongly’, or
‘exponentially’ whenever the closed-loop system is stable in the
corresponding sense (see Definition 8.1.1).

(iii) If to these definitions we add one or several of the qualifiers ‘state/state’,
‘input/state’, ‘state/output’, ‘input/output’, ‘input’, or ‘output’, then we
mean that only the corresponding part of the closed-loop system has to be
bounded or stable in the appropriate sense.

Observe that� and�1 can be interchanged with each other:�1 stabilizes�
if and only if � stabilizes �1. Therefore we shall also say that the two systems
(dynamically) stabilize each other.

In the sequel we shall primarily be concerned with dynamic input/output
stabilization. This is partially motivated by the following facts:

Theorem 8.5.2 Let � = [A B

C D

]
be a well-posed linear system on (U, X, Y ),

and let �1 =
[

A1 B1

C1 D1

]
be a well-posed linear system on (Y, X1,U ).

yy

x x1

y1

u1
u1

u
x0

1

+ +

+ +

x0

p+w

p+v

A Bt
DC

A1 B1t
D1C1

Figure 8.5 Dynamic stabilization
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(i) Suppose that at least one of the following conditions hold:
(a) both � and �1 are stabilizable and detectable (not necessarily

jointly);
(b) both � and �1 are right coprime stabilizable;
(c) both � and �1 are left coprime detectable.
Then � and �1 stabilize each other if and only if they input/output
stabilize each other.

(ii) Suppose both � and �1 are L p-well-posed with p <∞, and that at least
one of the following conditions hold:
(a) both � and �1 are strongly right coprime stabilizable;
(b) both � and �1 are stabilizable and strongly detectable;
(c) both � and �1 are strongly left coprime detectable.
Then, � and �1 stabilize each other strongly if and only if they
input/output stabilize each other.

(iii) Suppose both � and �1 are Reg-well-posed, detectable and strongly
stabilizable. Then they stabilize each other strongly if and only if they
input/output stabilize and strongly input/state stabilize each other.

(iv) Suppose both � and �1 are Reg-well-posed, and that at least one of the
following conditions hold:
(a) both � and �1 are stabilizable and strongly detectable;
(b) both � and �1 are strongly left coprime detectable.
Then, � and �1 stabilize each other strongly if and only if they
input/output stabilize and strongly state/output stabilize each other.

(v) Suppose that at least one of the following conditions hold:
(a) both � and �1 are Reg-well-posed or L p-well-posed with p > 1,

detectable and exponentially stabilizable;
(b) both � and �1 are exponentially right coprime stabilizable;
(c) both � and �1 are L p-well-posed with p <∞, stabilizable and

exponentially detectable;
(d) both � and �1 are exponentially left coprime detectable;
Then � and �1 stabilize each other exponentially if and only if they
input/output stabilize each other.

Proof First use Propositions 8.2.10(ii)(c) and 8.4.12 to show that the dynamic
feedback connection of � and �1 inherits the stabilizability and detectability
properties of the two subsystems, and then use Theorems 8.2.11 and 8.4.8 to
conclude that the dynamic feedback connection is stable in the appropriate
sense. �

As we mentioned above, we shall in the sequel concentrate on the problem of
dynamic input/output stabilization. This is motivated by Theorem 8.5.2, which
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says that, under appropriate assumptions, input/output stabilization implies sta-
bilization of the full dynamic feedback connection.

As the following lemma shows, dynamic input/output stabilization implies
that the input/output maps of the two systems have right and left fractions.

Lemma 8.5.3 Suppose that� = [A B

C D

]
and�1 =

[
A1 B1

C1 D1

]
input/output sta-

bilize each other. Then D and D1 have right and left fractions D = NM−1 =
M̃−1Ñ and D1 = N1M

−1
1 = M̃−1

1 Ñ1, where N, M, M̃, Ñ, N1, M1, M̃1,
Ñ1 ∈ TIC and the inverses belong to TICω for some ω ≥ 0. In particular, we
can choose these operators to be[

M1 N

N1 M

]
=
[

M̃ Ñ

Ñ1 M̃1

]
=
[

1 −D

−D1 1

]−1

.

Proof See the formula for
[

1 −D
−D1 1

]−1
given in Example 7.2.5 (and also

Lemma A.4.1). �

Remark 8.5.4 Observe that we do not claim the fractions in Lemma 8.5.3 to
be right or left coprime. We do not even claim that D or D1 have right or left
coprime fractions. However, at least in one important case D and D1 in Lemma
8.5.3 do have left and right coprime fractions, namely in the L2-well-posed
case with finite-dimensional input and output spaces. This follows from the
fact that a coprime fraction in TIC2 of an input/output map is equivalent to a
coprime fraction in H∞ of the corresponding transfer function, and according
to Smith (1989, Theorem 1), the existence of the frequency domain versions of
the fractions in Lemma 8.5.3 implies that D̂ and D̂1 have right and left coprime
fractions in H∞.

Lemma 8.5.5 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ), let

�1 =
[

A1 B1

C1 D1

]
be a well-posed linear system on (U, X1, Y ).

(i) Suppose that D and D1 have right coprime fractions D = NM−1 and
D1 = YX−1. Then � and �1 input/output stabilize each other if and only
if
[

X N
Y M

]
has an inverse in TIC

([
Y
U

])
. If this is the case, then by defining

[
M̃ − Ñ

−Ỹ X̃

]
=
[

X N

Y M

]−1

we get a joint doubly coprime factorization of D and D1 (in particular,
D = M̃−1Ñ and D1 = X̃−1Ỹ). Moreover, the input/output map of the
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closed-loop system is given by[
1 −D

−D1 1

]−1

− 1 =
[

0 N

Y 0

][
M̃ Ñ

Ỹ X̃

]

=
[

X N

Y M

][
0 Ñ

Ỹ 0

]
.

(ii) Suppose that D and D1 have left coprime fractions D = M̃−1Ñ and
D1 = X̃−1Ỹ. Then � and �1 input/output stabilize each other if and

only if
[

M̃ −Ñ

−Ỹ X̃

]
has an inverse in TIC

([
Y
U

])
. If this is the case, then by

defining [
X N

Y M

]
=
[

M̃ − Ñ

−Ỹ X̃

]−1

we get a joint doubly coprime factorization of D and D1, and all the
additional conclusions listed in (i) hold.

Thus, if the two systems input/output stabilize each other, and both the
input/output maps have coprime fractions from the same side, then they both
have doubly coprime factorizations (and we have a formula for how to compute
these factorizations).

Proof (i) By Example 7.2.5 and Lemma 8.4.3 with D, N, M, and K replaced
by
[

0 D
D1 0

]
,
[

0 N
Y 0

]
,
[

X 0
0 M

]
, and 1, respectively, the two systems input/output

stabilize each other if and only if[
X 0
0 M

]
−
[

0 N

Y 0

]
=
[

X −N

−Y M

]
=
[

1 0
0 − 1

] [
X N

Y M

] [
1 0
0 − 1

]
is invertible in TIC

([
Y
U

])
. This is equivalent to the invertibility of

[
X N
Y M

]
. Also

the two formulas for the closed-loop input/output map are found in Lemma
8.4.3. We leave the easy verification of the fact that the given factorization is a
joint doubly coprime factorization of D and D1 to the reader.

(ii) This proof is analogous to the proof of (i). �

Proposition 8.5.6 Let� = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and let �1 =
[

A1 B1

C1 D1

]
be a well-posed linear system on (U, X1, Y ).

(i) Suppose that D has a right coprime fraction D = NM−1. Then the
following conditions are equivalent.
(a) � and �1 input/output stabilize each other.
(b) D1 has a left coprime fraction D1 = X̃−1Ỹ satisfying

X̃M− ỸN = 1.
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(c) D1 has a left coprime fraction D1 = X̃−1Ỹ for which X̃M− ỸN is
invertible in TIC(U ).

If X̃ and Ỹ are chosen as in (c), then the closed-loop input/output map is
given by

[
1 −D

−D1 1

]−1

− 1 =
[
N

M

]
(X̃M− ỸN)−1

[
Ỹ X̃

]− [0 0
0 1

]
.

The same formula is valid with (X̃M− ỸN)−1 = 1 if X̃ and Ỹ are
chosen as in (b).

(ii) Suppose that D has a left coprime fraction D = M̃−1Ñ. Then the
following conditions are equivalent.
(a) � and �1 input/output stabilize each other.
(b) D1 has a right coprime fraction D1 = YX−1 satisfying

M̃X− ÑY = 1.
(c) D1 has a right coprime fraction D1 = YX−1 for which M̃X− ÑY

is invertible in TIC(Y ).
If Y and X are chosen as in (c), then the closed-loop input/output map is
given by

[
1 −D

−D1 1

]−1

− 1 =
[
X

Y

]
(M̃X− ÑY)−1

[
M̃ Ñ

]− [1 0
0 0

]
.

The same formula is valid with (M̃X− ÑY)−1 = 1 if Y and X are
chosen as in (b).

(iii) Suppose that � and �1 input/output stabilize each other. Then
(a) � has a right coprime fraction if and only if �1 has a left coprime

fraction,
(b) � has a left coprime fraction if and only if �1 has a right coprime

fraction,
and the following conditions are equivalent:
(c) � has a doubly coprime factorization;
(d) �1 has a doubly coprime factorization;
(e) D and D1 have a joint doubly coprime factorization;
(f) both � and �1 have right coprime fractions;
(g) both � and �1 have left coprime fractions.

Proof (i) (a) ⇒ (b): Suppose that the two systems input/output stabilize
each other. Then the closed-loop input/output map belongs to TIC

([
Y
U

])
. By
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Example 7.2.5 and Lemma A.4.1, this input/output map is given by[
D(1−D1D)−1D1 D(1−D1D)−1

(1−D1D)−1D1 (1−D1D)−1 − 1

]
=
[

N(M−D1N)−1D1 N(M−D1N)−1

M(M−D1N)−1D1 M(M−D1N)−1 − 1

]
.

Thus, all the input/output maps listed above belong to TIC (over the ap-
propriate spaces). By the coprimeness assumption,

[
N
M

]
has a left inverse

in TIC
([

Y
U

]
; U
)
, hence (M−D1N)−1D1 ∈ TIC(Y ; U ) and (M−D1N)−1 ∈

TIC(U ). Define X̃ = (M−D1N)−1 and Ỹ = (M−D1N)−1D1. Then D1 =
X̃−1Ỹ, the closed-loop input/output map is given by

[
NỸ NX̃

MỸ MX̃−1

]
, and

X̃M− ỸN = (M−D1N)−1(M−D1N) = 1;

in particular, X̃ and Ỹ are left coprime.
(b)⇒ (a): Suppose that D1 has a left coprime fraction D1 = X̃−1Ỹ such that

X̃M− ỸN = 1. Then 1−D1D = X̃−1(X̃M− ỸN)M−1 = X̃−1M−1, hence
the closed-loop input/output map is given by[

D(1−D1D)−1D1 D(1−D1D)−1

(1−D1D)−1D1 (1−D1D)−1 − 1

]
=
[

NỸ NX̃

MỸ MX̃− 1

]
.

Thus, the closed-loop system is input/output stable and all the additional claims
are true.

(b)⇔ (c): Trivially (b)⇒ (c). If D1 = X̃−1Ỹ and U := X̃M− ỸN is in-
vertible in TIC(U ), then, by Lemma 8.3.9(ii)(b), X̃−1Ỹ = (U−1X̃)−1(U−1Ỹ) is
another left coprime fraction of D1 satisfying X̃M− ỸN = 1.

The formula for the input/output map with X̃M− ỸN = 1 was part of the
proof of the equivalence (a) ⇔ (b), and this together with the proof of the
implication (c)⇒ (b) gives the general formula.

(ii) We leave this proof to the reader (it is analogous to the proof of (i).
(iii) See (i), (ii), and Lemmas 8.3.10 and 8.5.5. �

In the case where D has a doubly coprime factorization we can develop
Proposition 8.5.6 further.

Theorem 8.5.7 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

let �1 =
[

A1 B1

C1 D1

]
be a well-posed linear system on (U, X1, Y ), and suppose

that D has a doubly coprime factorization (8.3.3). Then the following conditions
are equivalent:

(i) � and �1 input/output stabilize each other.
(ii) D1 has a right coprime fraction D1 = TS−1 satisfying M̃S− ÑT = 1.
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(iii) D1 has a left coprime fraction D1 = S̃−1T̃ satisfying S̃M− T̃N = 1.
(iv) D and D1 have a joint doubly coprime factorization[

S N
T M

]−1 =
[

M̃ −Ñ

−T̃ S̃

]
.

(v) D1 has a right coprime fraction TS−1 of the type[
S

T

]
=
[
X N

Y M

] [
1
Q

]
=
[

X+NQ

Y+MQ

]
,

for some Q ∈ TIC(Y ; U ).
(vi) D1 has a left coprime fraction S̃−1T̃ of the type

[
T̃ S̃

] = [Q 1
] [M̃ Ñ

Ỹ X̃

]
= [Ỹ+QM̃ X̃+QÑ

]
,

for some Q ∈ TIC(Y ; U ).

All the operators appearing in (ii)–(vi) are unique (i.e., they are determined
uniquely by the factorization (8.3.3) and D1), the operators S and T in (ii),
(iv), and (v) are the same, the operators S̃ and T̃ in (iii), (iv), and (vi) are the
same, and the operators Q in (v) and (vi) are the same. In particular,

D1 = (Y+MQ)(X+NQ)−1

= (X̃+QÑ)−1(Ỹ+QM̃).
(8.5.1)

The closed-loop input/output map is given by[
1 −D

−D1 1

]−1

− 1 =
[
N

M

] [
T̃ S̃

]− [0 0
0 1

]
=
[
S

T

] [
M̃ Ñ

]− [1 0
0 0

]
=
[
N

M

] [
Ỹ X̃

]+ [N

M

]
Q
[
M̃ Ñ

]− [0 0
0 1

]
=
[
X

Y

] [
M̃ Ñ

]+ [N

M

]
Q
[
M̃ Ñ

]− [1 0
0 0

]
.

(8.5.2)

Recall that the conditions in (ii)–(vi) contain the implicit assumptions that
the denominators can be inverted in TICω(U ) or TICω(Y ) for some ω ≥ 0 (how
large ω must be depends on the growth bounds of D and D1; cf. Lemma 8.3.3).

Proof (i)⇔ (ii)⇔ (iii): See Proposition 8.5.6(i)–(ii).
(i)⇔ (iv): See Lemma 8.5.5 and Proposition 8.5.6(iii).
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(iv)⇒ (v) and (iv)⇒ (vi): By Lemma 8.3.11(i), all possible choices of
[

S
T

]
and
[
T̃ S̃

]
in (iv) are of the form[

S

T

]
=
[
X N

Y M

][
1

Q

]
=
[

X+NQ

Y+MQ

]
,

[
T̃ S̃

] = [Q 1
] [M̃ Ñ

Ỹ X̃

]
= [Ỹ+QM̃ X̃+QÑ

]
,

where Q ∈ TIC(Y ; U ). In addition (iv) contains the requirement that TS−1 is
a right and S̃−1T̃ a left coprime fraction of D1. Thus, (iv) implies both (v) and
(vi) (with the same value of the parameter Q in (v) and (vi)).

(v) ⇒ (iv): Choose
[

S
T

]
as in (v). Then, by Lemma 8.3.11(i),

[
S N
T M

]
is

invertible in TIC(
[

Y
U

]
), and

[
S N
T M

]−1 =
[

M̃ −Ñ

−T̃ S̃

]
, where

[
T̃ S̃
]

is given by

the formula in (x) with the same parameter Q. According to Lemma 8.3.3(vi),
this is a doubly coprime factorization of D and D1.

(vi)⇒ (iv): This proof is similar to the one above.
The uniqueness of the fractions and factorizations follows from Lemma

8.3.3(vii), as does the claim that we get the same operators S, T, S̃, and T̃

in all cases. The uniqueness of Q follows from the uniqueness of the other
operators and the fact that Q =M−1(T−N) = (T̃− Ñ)M̃−1, and we saw in
the proof of the implications (iv)⇒ (v) and (iv)⇒ (vi) that we get the same
parameter Q in (v) as in (vi). Finally, we get (8.5.2) from Proposition 8.5.6.

�

Theorem 8.5.7 immediately implies the following result:

Corollary 8.5.8 Let � = [A B

C D

]
be a well-posed linear system on (Y, X,U ),

and suppose that D has a doubly coprime factorization (8.3.3). Then the fol-
lowing conditions are equivalent:7

(i) � is input/output stabilizable by dynamic feedback.
(ii) The left Bezout identity M̃S− ÑT = 1 has a solution pair S and T

where S has an inverse in TICω(Y ) for some ω ≥ 0.
(iii) The right Bezout identity S̃M− T̃N = I has a solution pair S̃ and T̃

where S̃ has an inverse in TICω(U ) for some ω ≥ 0.

(iv) D has a doubly coprime factorization
[

S N
T M

]−1 =
[

M̃ −Ñ

−T̃ S̃

]
, where S

has an inverse in TICω(Y ) and S̃ has an inverse in TICω(U ) for some
ω ≥ 0.

7 In the Reg-well-posed case we assume throughout that all the operators appearing in this
theorem, including those in (8.3.3), have Reg-well-posed realizations. See Theorem 2.6.7.
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(v) For some Q ∈ TIC(Y ; U ) and some ω ≥ 0, X+NQ is invertible in
TICω(Y ).

(vi) For some Q ∈ TIC(Y ; U ) and some ω ≥ 0, X̃+QÑ is invertible in
TICω(U ).

When these conditions hold, then the set of all input/output maps D1 of the dy-
namically input/output stabilizing systems are parametrized by (8.5.1), where Q

ranges over those Q ∈ TIC(Y ; U ) for which X+NQ is invertible in TICω(Y ),
or equivalently, X̃+QÑ is invertible in TICω(Y ), for some ω ≥ 0. The corre-
sponding closed-loop input/output maps are given by (8.5.2).

The parametrization of all possible stabilizing input/output maps D1 in
(8.5.1) in terms of the parameter Q ∈ TIC(Y ; U ) is usually referred to as the
Youla parametrization. Observe, in particular, that the closed-loop input/output
map is affine in the Youla parameter Q.

Proof By Theorem 8.5.7, condition (i) implies all the others. To go in the
opposite directions we build a realization of the appropriate input/output map
D1, given by one of the expressions TS−1, S−1T̃, (Y+MQ)(X+NQ)−1,
or (X̃+QÑ)−1(Ỹ+QM̃), and apply Theorem 8.5.7 in the opposite direction.

�

In principle it does not matter which doubly coprime factorization of D we
use in Theorem 8.5.7 and Corollary 8.5.8. However, for computational rea-
sons, it makes sense to use a factorization which is a simple as possible. If the
original system is jointly stabilizable and detectable, then Theorem 8.4.1 pro-
vides us with a realization of a particular doubly coprime factorization whose
state space is the same as the state space of the original system (in particu-
lar, it has the same dimension). Below we shall describe this situation in more
detail. We begin with the special case where the Youla parameter Q in The-
orem 8.5.7 and Corollary 8.5.8 is zero, a case which is interesting in its own
right. The corresponding stabilizing system �1 is often referred to as a central
controller.

Lemma 8.5.9 Let � = [A B

C D

]
be a jointly stabilizable and detectable well-

posed linear system, and let �ext, �×, and �× denote the systems in Definition
8.2.1 and Lemma 8.2.2. Then the following conditions are equivalent:

(i) the operator
[ −1 0

0 1

]
is an admissible output feedback operator for �ext;

(ii) 1+G× has an inverse in TICω(Y ) for some ω ≥ 0;
(iii) 1− F× has an inverse in TICω(U ) for some ω ≥ 0.

In these cases the system �×× drawn in the upper half of Figure 8.6 with inputs
w̃× and ũ× and outputs ỹ, z̃, w̃ and ũ (i.e., the system that we get by using
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Figure 8.6 Dynamic stabilization

[ −1 0
0 1

]
as an output feedback operator for �ext) is a well-posed linear system,

and the coprime fraction presented in Theorem 8.4.1 is a joint doubly coprime
fraction of D and D1, where D1 = E×(1+G×)−1 = (1− F×)−1E×.

This follows from Lemma 7.1.7.
In the situation described above the input/output map of the closed-loop

system �×× is equal to the stabilizing compensator D1, and we can use the
observer connection drawn in Figure 8.6 to stabilize the system:

Theorem 8.5.10 Let� = [A B

C D

]
be a jointly stabilizable and detectable well-

posed linear system, and let �ext =
[

A H B

C G D
K E F

]
be the extended system in Defi-

nition 8.2.1. Then the connection drawn in Figure 8.6 defines a bounded well-
posed linear system. This system is exponentially stable whenever one of the
systems �× or �× in Lemma 8.2.2 is exponentially stable. In the L p-case with
p <∞, this system is strongly stable whenever one of the systems �× or �×
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Figure 8.7 Equivalent version of dynamic stabilization

is strongly stable, and in the Reg-well-posed case it is strongly stable whenever
both �× and �× are strongly stable. Moreover, the two outputs w̃ and u× are
given by[

w̃

u×

]
=
[
π+w
π+ũ×

]
+
[

1−G× D×

E× 1− F×

] [
π+ŵ
π+û

]
+
[−C×

K×

]
(x0 − x̃0).

(8.5.3)

Proof By Remark 8.2.3, we can regard �ext as a state feedback perturbed
version of the closed-loop system �×; see Remark 8.2.3. By substituting
this system for �ext in Figure 8.6 we get the equivalent Figure 8.7, which
can be interpreted as a feedback connection for a bounded system consist-
ing of two copies of �×. By part (i) of Theorem 8.1.7, it suffices to show
that the two internal inputs u× and w̃ depend continuously in L2

ω on the
four inputs. The six summation junctions in Figure 8.7 are described by the
equations
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w̃× = π+ŵ + w×,

w̃ = w̃× − C× x̃0 −G×w̃ −D×π+ũ×,

ũ = π+ũ× + K× x̃0 + E×w̃ + F×π+ũ×,

w× = π+w + C×x0 +G×π+w +D×u×,

u = ũ + π+û,

u× = u − K×x0 − E×π+w − F×u×.

From here we eliminate the variables u, ũ, w×, and w̃× to get

[
1+G× D×

E× 1+ F×

] [
π+w − w̃

u× − π+ũ×

]
=
[−π+ŵ
π+û

]
−
[
C×
K×

]
(x0 − x̃0).

By Theorem 8.4.1, the operator on the left hand side has an inverse in TICω.
Inverting this operator we get the formula given in Theorem 8.5.10.

The extra claim about the exponential stability of the feedback system fol-
lows from Theorem 8.1.7(v)(j): since both �× and �× are bounded, if one of
them is exponentially stable, then so is the other, hence so is the cross-product
of �× with itself, hence so is the system in Figure 8.7. The same argument
applies to prove the strong stability in the L p-well-posed case with p <∞. In
the Reg-well-posed case we instead appeal to Figure 8.9 (the argument given
below shows that it is equivalent to Figure 8.6): the cascade connection of two
strongly stable systems is always strongly stable (this is explained in more detail
below). �

It is possible to derive (8.5.3) by using another argument which is conceptu-
ally more complicated, but which gives us a better understanding of the system
drawn in Figure 8.6. Instead of interpreting that system as a feedback connection
of two copies of �× as we did in Figure 8.7 we may interpret it as a feedback
connection of two copies of �×; see Figure 8.8. We then make a change of
state variable by subtracting the bottom half of Figure 8.8 from the top half,
replacing x̃0 by x̃0 − x0, x̃ by x̃ − x , ỹ by ỹ − y, z̃ by z̃ − z, etc. In particular,
this means that we replace w̃× by w̃× − w× = π+ŵ and ũ by ũ − u = −π+û.
This has the effect of decoupling the upper part of Figure 8.8 from the lower
part; cf. the upper part of Figure 8.9. There we have, in addition, changed the
direction of the line below �× (making −π+û the input and π+ũ× − u× the
output), changed the sign of this output, and added π+w to w̃ − π+w and π+ũ×
to u× − π+ũ× to recover w̃ and u×. Once we know u× we can replace the lower
half of Figure 8.8 by the equivalent lower half of Figure 8.7 and reverse the
direction of the bottom line (making u× the input and ũ the output) to get
Figure 8.9. The connection in Figure 8.9 is equivalent to the connections in
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~

~

~

~

y

z

~

~

~ ~

~

Figure 8.8 Second equivalent version of dynamic stabilization

Figures 8.6, 8.7, and 8.8, but it contains no feedback loops (it is a particular
cascade connection of �× and �×), hence it is automatically well posed and
stable (and strongly stable if both�× and�× are strongly stable). From Figure
8.9 we can directly read off explicit formulas for the state and all the signals
generated by the system, among others, the formulas for w̃ and u× given in
(8.5.3).

Theorem 8.5.11 Let� = [A B

C D

]
be a jointly stabilizable and detectable well-

posed linear system on (Y, X,U ), let �ext =
[

A H B

C G D
K E F

]
be the extended system

in Definition 8.2.1, and let �Q =
[

AQ BQ

CQ Q

]
be a stable well-posed linear sys-

tem on (U, X, Y ). Then the connection drawn in Figure 8.10 defines a bounded
well-posed linear system. This system is strongly stable or exponentially stable
whenever �Q, �×, and �× are strongly or exponentially stable (here �× and
�× are the systems in Lemma 8.2.2). Moreover, the two outputs w̃ and u× are
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given by[
w̃

u×

]
=
[

1 0
Q 1

]([
π+w
π+v

]
+
[

1−G× D×

E× 1− F×

] [
π+ŵ
π+û

]
+
[−C×

K×

]
(x0 − x̃0)

)
.

(8.5.4)

Proof We can interpret the system in Figure 8.10 as a cascade connection of
three stable systems, namely �×, �Q, and �×: we simply replace the system
in Figure 8.6 which is part of Figure 8.10 by the equivalent system in Figure
8.9. From there we can also read off (8.5.4) (as well as formulas for all the other
signals in the system). �

The relationship between Theorems 8.5.7 and 8.5.11 is the following.

Theorem 8.5.12 Let� = [A B

C D

]
be a jointly stabilizable and detectable well-

posed linear system on (Y, X,U ).
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(i) The system drawn in Figure 8.11 (which is a part of the system drawn in
Figure 8.10) is a well-posed linear system if and only if 1+G× +D×Q

has an inverse in TICω(Y ) for some ω ≥ 0, or equivalently, if and only if
1− F× +QD× has an inverse in TICω(U ) for some ω ≥ 0, and when
this is the case, then this system dynamically stabilizes � (cf. Figure
8.10). The input/output map D1 of this system (from w̃× to ũ) has the
right and left coprime fractions

D1 = (E× + (1+ F×)Q)(1+G× +D×Q)−1

= (1− F× +QD×)−1(E× +Q(1−G×)).
(8.5.5)

(ii) If �1 =
[

A1 B1

C1 D1

]
is a well-posed linear system which dynamically

stabilizes �, then it is possible to find some system �Q such that (i)
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Figure 8.11 Youla parametrized stabilizing compensator

applies, and such that D1 has the right and left coprime fractions given in
(8.5.5). In particular, the system in Figure 8.11 (with input w̃× and output
ũ) gives us another realization of D1.

Proof (i) By using Remark 8.2.3, we can rewrite the system in Figure 8.11 in
two equivalent ways as feedback connections of �Q and either �× or �×; see
Figures 8.12 and 8.13. We can get rid of the feedback loop in Figure 8.12 by
reversing the line from w̃× to w̃, making the latter signal the input and the former
the output. The system that we get in this way is (well-posed and) stable. Thus,
the system drawn in Figure 8.12 can be interpreted as a partial flow-inversion
of a stable system, and it is well-posed if and only if the input/output map
1+G× +D×Q from w̃ to w̃× of that system has a well-posed inverse. The
first half of (8.5.5) can be read off from Figure 8.12 (where we eliminate w̃). To
get the second half of (8.5.5) we argue in essentially the same way, but replace
Figure 8.12 by Figure 8.13, which we interpret as a partial inversion of the
stable system that we get by reversing the line from v to ũ. That the system
in Figures 8.11–8.13 dynamically stabilizes � (independently of whether it is
well-posed or not) follows from Theorem 8.5.11.

(ii) See Theorem 8.5.7. �
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8.6 Comments

It is usually easier to work with exponential stability than with strong stability,
and most of the existing literature uses exponential stability throughout. This is,
in particular, true for all results on finite-dimensional systems, and also for, e.g.,
Curtain (1988) Curtain, Weiss, and Weiss (1996) Curtain and Zwart (1995),
Lasiecka and Triggiani (2000a, b), Bensoussan et al. (1992), Helton (1976),
Morris (1999), Rebarber (1993), van Keulen (1993), and Weiss and Rebarber
(2001). Boundedness or strong stability is used in Arov and Nudelman (1996),
Curtain and Oostveen (1998), Fuhrmann (1981), Jacob and Zwart (2001a, b,
2002), Staffans (1997, 1998a, b), and Weiss and Weiss (1997). Both types of
stability are discussed in Mikkola (2002).

Section 8.1 Theorem 8.1.5 (or Theorem 3.11.8) is sometimes used to guarantee
the exponential stability of the solution of some optimal control problems;
see, for example, Lasiecka and Triggiani (2000a, b) or Weiss and Rebarber
(2001).

Corollary 8.1.8 is trivially true in the L p-well-posed case if we replace
exponential stability by strong stability. Apparently it is not known if the inverse
D−1 inherits the strong stability of D in the Reg-well-posed case.

Section 8.2 This section has been modeled after Staffans (1998a) and Weiss
and Curtain (1997). Joint stabilizability and detectability were introduced inde-
pendently by Staffans (1998a) and (for regular systems) by Weiss and Curtain
(1997). Lemmas 8.2.6(iii), 8.2.7, and 8.2.12(ii) are generalizations of Proposi-
tion 3.3, Corollary 3.5, and Proposition 3.7, respectively, in Weiss and Curtain
(1997). A special case of Theorem 8.2.11 was proved by Rebarber (1993) (he
considers only the regular Hilbert space case with p = 2 and exponential sta-
bility). The same result is also found in Weiss and Curtain (1997, Proposition
3.2 and Theorem 3.8).

A different approach to Theorem 8.2.11 is taken by Weiss and Rebarber
(2001, Theorem 6.3). There only the exponentially stable case is considered,
but instead the stabilizability and detectability assumptions are replaced by
optimizability and estimatability assumptions (these assumptions are weaker
than exponential stabilizability and detectability).

An expanded version of Theorem 8.2.11 (which includes results related to
optimizability and estimatability) is given in Mikkola (2002, Theorem 6.7.10).

Section8.3This section has been modeled after Francis (1987), Mikkola (2002),
Staffans (1998a), and Vidyasagar (1985). We follow the sign convention of
Francis (1987), which appears to be the most common one today.

Our definition of coprimeness is slightly nonstandard. It is possible to study
coprime fractions in the quotient field of TIC without our additional assumption
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that D belongs to TICω(U ; Y ) and that M and M̃ are invertible in TICω(U ),
respectively TICω(Y ), for some ω ≥ 0; see, e.g., Georgiou and Smith (1993),
Logemann (1993), or Smith (1989). Much of the theory remains valid if we
replace the invertibility assumptions on M and M̃ by the assumptions that the
transfer functions of M and M̃ are invertible in at least one point in the half-
plane
z > 0. Observe that if M is invertible in any reasonable sense, then D ∈
TICω(U ; Y ) iff M−1 ∈ TICω(U ) because D = NM−1 and M−1 = X̃+ ỸD.
Likewise, if M̃ is invertible in any reasonable sense, then D ∈ TICω(U ; Y )
iff M̃−1 ∈ TICω(Y ) because D = M̃−1N and M̃−1 = X+DY. According to
Theorems 2.6.6 and 2.6.7, if D does not belong to TICω(U ; Y ) for any ω ≥ 0,
then D cannot be realized as the input/output map of a well-posed linear system
on a triple of Hilbert spaces.

As is well-known, input/output maps with a finite-dimensional realization
always have doubly coprime factorizations, and these factorizations can be
computed by the method presented in Theorem 8.4.1; see, e.g., Francis (1987).
A transfer function with finite-dimensional input and output spaces which is not
meromorphic in the right half-plane cannot have right or left coprime fractions
in H∞ (see Definition 8.3.6 and Lemma 8.3.8), and it is not even true that all
single-input single-output H∞/H∞ transfer functions have coprime fractions
(see Logemann 1993, p. 108). However, many transfer functions that can be
stabilized by a dynamic output feedback do; see Remark 8.5.4.

The converses of parts (i) and (ii) in Lemma 8.3.8 are closely related to
the famous corona theorem, which holds in the L2-well-posed Hilbert space
case with finite-dimensional U and Y , but not for infinite-dimensional U
and Y . See Mikkola (2002, Chapter 4) for an up-to-date discussion of these
implications.

Notions of coprimeness which are weaker than ours (which is based on the
Bezout identity) have been used in various places. For example, Fuhrmann
(1981) uses ‘weak’ and ‘strong’ coprimeness, whereas Mikkola (2002) intro-
duces the notions of ‘quasi-coprime’ and ‘pseudo-coprime.’ In the following,
let us only discuss the relationships between these notions in the case of ‘right’
coprimeness; the situation is analogous in the ‘left’ case. The strongest out
of the above mentioned weaker notions is the strong coprimeness (which is
the same as Mikkola’s pseudo-coprimeness), and it means that

[
N̂(z)
M̂(z)

]
has a

left-inverse everywhere in C+ which is uniformly bounded (over all z ∈ C+). It
follows from the corona theorem that if U is finite-dimensional and p = 2, then
strong coprimeness is equivalent to the notion of coprimeness that we use in this
work. The next weaker notion is weak coprimeness, which means that N̂ and
M̂ do not have any nontrivial common right divisor in H∞. Quasi-coprimeness
means that if a function u ∈ L2

loc(R+; U ) but u /∈ L2(R+; U ), then[
N
M

]
u /∈ L2

(
R+,
[

Y
U

])
.
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Section 8.4 Theorem 8.4.1 is essentially due to Staffans (1998a, Theorem 4.4)
(there it was assumed that the system is jointly stabilizable and detectable,
but the proof is the same). A special case of Theorem 8.4.1(i) was proved
independently by Curtain, Weiss, and Weiss (1996, Theorem 3.2).

We have adopted the notions of right coprime stabilizability and left coprime
detectability from Mikkola (2002), where the basic properties of these notions
are explored. In particular, Theorem 8.4.8 is essentially due to Mikkola (2002,
Theorem 6.7.10). An extension of Theorem 8.4.11 is given in Mikkola (2002,
Theorem 6.7.15). (This chapter was written concurrently with Mikkola (2002),
and there was a significant interaction. See the comments in Mikkola (2002,
Section 6.7) for details.)

It appears to be an open problem under what conditions a right coprime sta-
bilizing state feedback pair and left coprime detecting output injection pair can
be completed to a jointly input/output stabilizing and detecting state feedback
and output injection pair (cf. Lemma 8.4.7). In other words, with the notation
of Lemma 7.3.3, under what conditions is it true that KH is the Hankel operator
of some E ∈ TIC(Y ; U ) and that both the closed-loops systems �× and �×

are input/output stable? (The operator E is determined uniquely by K and H

modulo a static term.)

Section 8.5 All the main results of this section are taken from Mikkola (2002),
except Lemma 8.5.9 and Theorem 8.5.10 which are due (independently) to
Staffans (1998a) and Weiss and Curtain (1997) (in the regular case). Our proof
uses ingredients from both Staffans (1998a) and Weiss and Curtain (1997) (the
proof in Staffans (1998a) is based on Figure 8.7, and the proof in Weiss and
Curtain (1997) is based on Figure 8.9).

As we saw in Theorem 8.5.11, the system in Figure 8.10 is a (well-posed)
bounded linear system even if the ‘compensator’ drawn in Figure 8.11 is not
well-posed. Non-well-posed compensators of this type have been studied by
Weiss and Curtain (1997), Curtain et al. (2001), and Mikkola (2002) where they
are called ‘compensators with internal loop’ (because of the fact that they can
be interpreted as non-well-posed feedback connections of well-posed linear
systems). The use of such compensators makes it possible to stabilize some
systems (for example, by short-circuiting an output) which cannot be stabilized
by traditional methods. See the cited references for more details.
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Realizations

By a realization of a given time-invariant causal map D we mean a (often well-
posed) linear system whose input/output map is D. In this chapter we study
the basic properties of these realizations, such as minimality and similarity or
pseudo-similarity of two different realizations of the same input/output map.
We show that any two minimal realizations of the same input/output map are
pseudo-similar to each other. Furthermore, in the stable case all minimal real-
izations of a given input/output map are (strongly) similar to each other if and
only if the range of the Hankel operator is closed. The proof of this result is
based on the fact that every realization induces a factorization of the Hankel
operator of the input/output map. The converse is also true to some extent.

9.1 Minimal realizations

Let us begin by repeating the following definition (cf. Definition 2.6.3):

Definition 9.1.1 Let 1 ≤ p ≤ ∞, let U and Y be Banach spaces, and let
D ∈ TICp

loc(U ; Y ). By a L p-realization of D we mean an L p-well-posed linear
system on (Y, X,U ) (for some Banach space X ) with input/output map D. A
Reg-realization of an operator D ∈ TICReg

loc (U ; Y ) is defined in the same way,
with L p replaced by Reg.

In Section 2.6 we constructed some shift realizations of a given input/output

map D, namely the exactly controllable shift realization
[

τ− 1
π+Dπ− D

]
on

(Y, L p
ω(R−; U ),U ), and the exactly observable shift realization

[
τ+ π+Dπ−
1 D

]
on (Y, L2

ω(R+; Y ),U ). Neither of these realizations is, in general, minimal, i.e.,
it is often possible to replace the state space X by a ‘smaller’ state space. In
order to see how this can be done we introduce the notions of controllability and
observability. The former concept, also known under the name of reachability,

505
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is related to the properties of the input map, and the latter to the properties of
the output map.

In the classical case with finite-dimensional state space it is possible to
define controllability and observability in several different ways, but they are
all equivalent and lead to the same concepts. In the infinite-dimensional case
this is no longer true. We start by introducing the weakest possible versions of
these concepts, and postpone a more detailed discussion to Section 9.4.

Definition 9.1.2 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ).

(i) The (approximately) reachable subspace R (B) is the closure in X of the
range of B as a mapping from L p|Regc(R−; U ) into X .

(ii) The unobservable subspace N (C) is the null space of
C : X → L p|Regloc(R

+
; Y ).

(iii) � is (approximately) controllable if the reachable subspace is equal to X ,
and � is (approximately) observable if the unobservable subspace is 0.

(iv) A system is minimal if it is both controllable and observable.

In the preceding definition we regarded B as an operator from
L p|Regc(R−; U ) into X and C as an operator from X into L p|Regloc(R

+
; Y ).

As the following lemma shows, the notions of controllability and observability
defined above do not change if we replace L p|Regc and L p|Regloc by L p|Regω
where ω > ωA.

Lemma 9.1.3 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, and let ω > ωA.

(i) The reachable subspace R (B) is the closure in X of the range of B as a
mapping from L p|Regω(R−; U ) into X.

(ii) The unobservable subspace N (C) is the null space of
C : X → L p|Regω(R

+
; Y ).

(iii) The unobservable subspace is closed in X.

Proof (i) The density of L p|Regc(R−; U ) in L p|Regω(R−; U ) and the continuity
of B : L p|Regω(R−; U )→ X (see Theorem 2.5.4(ii)) imply that the image of
L p|Regc(R−; U ) under B is dense in the image of L p|Regω(R−; U ), thus these
images have the same closure.

(ii) This is obvious, since C maps X into L p|Regω(R
+

; Y ) (see Theorem
2.5.4(ii)).

(iii) The inverse image under a continuous map of the closed set {0} is always
closed. �
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The advantage with the characterization ofR (B) andN (C) given in Lemma
9.1.3 is that we can regard B and C as bounded operators mapping one Banach
space into another.

There is still another way of characterizing the reachable subspace in the
well-posed case (i.e., we exclude the L∞-case).

Lemma 9.1.4 Let � = [A B

C D

]
be a well-posed linear system. Then the reach-

able subspace is the closure in X of the range of B as a mapping from
C∞c (R

−
; U ) into X.

Proof In the L p-well-posed case this follows from the fact that C∞c (R
−

; U )

is dense in L p
c (R−; U ) for p <∞. It is also dense in BCc(R

−
; U ), and the

Reg-well-posed case then follows from Lemma 4.7.17. �

The purpose of this section is to show that every L p|Reg-well-posed linear
system can be reduced to a minimal system (Theorem 9.1.9). In this process the
state space is replaced by another ‘smaller’ state space. The semigroup, the input
map, and the output map change, but the input/output map stays the same. Thus,
this means that every realization of a given input/output map can be reduced to a
minimal realization. One part of the reduction consists of the replacement of the
state space by the quotient of the state space over the unobservable subspace.
Therefore, let us first make some preliminary comments about quotient spaces,
and about the operator or semigroup induced on a quotient space by an operator
or semigroups acting on the original space.

We recall from, e.g., Kato (1980, Section III.8) or Rudin (1973, pp. 29–30)
that the quotient space X/Z consists of all the cosets πx = x + Z = {x + z |
z ∈ Z} ⊂ X where x varies over X . The norm in this space is given by

|πx |X/Z = inf
z∈Z
|x − z|X .

The quotient map π : X → X/Z is both continuous and open (both the image
and the inverse image of an open set is open), and it maps the open unit ball
of X onto the open unit ball of X/Z . In particular, ‖π‖ = 1. If X is a Hilbert
space, then X/Z can be identified with the orthogonal complement to Z in X ,
and π can be identified with the orthogonal projection onto Z⊥.

Let K ∈ B(X, Y ), and suppose that K vanishes on Z , i.e., Z ⊂ N (K ). Then
we can define an operator K̃ : X/Z → Y by setting

K̃πx = K x .

This definition of K̃ is possible since Kπ (x1) = Kπ (x2) whenever π (x1) =
π (x2) (i.e., x1 − x2 ∈ Z , hence K x1 = K x2). This leads to a factorization of K
as K = K̃π . The new operator K̃ satisfies ‖K̃‖ = ‖K‖ since π maps the unit
ball of X onto the unit ball of X/Z . Obviously R (K̃ ) = R (K ). The null space
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of K̃ can be identified with πN (K ); hence K̃ is injective iff N (K ) = Z . In
this case K̃ has an inverse Y ⊃ R (K )→ X/Z , which we can identify with the
operator which maps y ∈ Y into the inverse image K−1 y ⊂ X . If X is a Hilbert
space, then we can identify K̃ with the restriction of K to Z⊥.

Definition 9.1.5 Let K ∈ B(X, Y ) vanish on the closed subspace Z of X . By
the operator induced by K on X/Z we mean the operator K̃ ∈ B(X/Z ; Y )
described above. We denote this operator, too, by K , whenever it is clear from
the context which of the two operators we refer to.

We remark that it is also possible to factor out (a closed subspace of) the
null space of a closed linear operator, and that the resulting operator is closed;
see Kato (1980, p. 231).

Lemma 9.1.6 Let A be a C0 semigroup on X, and suppose that Z ⊂ X is
closed and invariant under A (i.e., At Z ⊂ Z for t ≥ 0). Let π be the quotient
map X → X/Z. For each πx ∈ X/Z, define

Ãtπx = πAt x .

Then Ãt is a C0 semigroup on X/Z. If A is a contraction semigroup, then so
is Ã.

Proof First we must check that Ã is well-defined, i.e., πAt x = πAt y whenever
πx = πy. This follows from the invariance of Z under At : if x − y ∈ Z , then
At (x − y) ⊂ Z , and πAt (x − y) = 0. The same calculation shows that Z ⊂
N (πAt

)
, and that the operator Ãt is nothing but the operator induced by πAt

on X/Z .
Clearly, Ã0 is the identity on X/Z (it maps πx into πx). For s, t > 0, and

x ∈ X , we have

Ãs+tπx = πAs+t x = πAsAt x = ÃsπAt x = ÃsÃtπx,

and this shows that Ã is a semigroup on X/Z . The strong continuity of Ã is a
consequence of the fact that

|Ãtπx − πx |X/Z = |π (At x − x)|X/Z ≤ |At x − x |X ,
which tends to zero as t ↓ 0. Thus, Ã is a C0 semigroup on X/Z . If A is a
contraction semigroup, then for all t ≥ 0 and x ∈ X ,

|Ãtπx |X/Z = |πAt x |X/Z = inf
z∈Z
|At x − z|X ≤ inf

z∈Z
|At x − At z|X

= inf
z∈Z
|At (x − z)|X ≤ inf

z∈Z
|x − z|X = |πx |X/Z ,

so Ã is a contraction semigroup in this case. �
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Definition 9.1.7 Let A be a C0 semigroup on X , and suppose that Z ⊂ X is
closed and invariant under A. By the quotient semigroup induced by A on X/Z
we mean the C0-semigroup in Lemma 9.1.6. We denote this semigroup by πA

(where π is the quotient map X → X/Z ).

Corollary 9.1.8 If X is a Hilbert space, then the quotient semigroup in Lemma
9.1.6 can be written in the formπZ⊥A

t
|Z⊥ , whereπZ⊥ is the orthogonal projection

onto Z⊥.

This follows from our earlier comments about the interpretation of a quotient
of a Hilbert space over one of its subspaces.

We now arrive at the main theorem of this section.

Theorem 9.1.9 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ).

(i) Let XB = R (B) be the reachable subspace, and define

AB = A|XB
, CB = C|XB

.

Then
[

AB B

CB D

]
is a controllable L p|Reg-well-posed linear system on

(Y, XB,U ). It is observable whenever � is observable.
(ii) Let XC = X/N (C) (where N (C) is the unobservable subspace), and let

π be the quotient map X → X/N (C). Let AC = πA be the quotient
semigroup induced by A on X/N (C), let BC = πB, and let C̃ be the
operator induced on X/N (C) by C (see Definitions 9.1.5 and 9.1.7).
Then

[AC BC

C̃ D

]
is an observable L p|Reg-well-posed linear system on

(Y, XC,U ). It is controllable whenever � is controllable.
(iii) Let XB = R (B), let XB,C = XB/N

(
C|XB

)
, and let π be the quotient

map X → XB/N
(
C|XB

)
. Let AB,C be the quotient semigroup induced

by A|XB
on XB,C, let BC = πB, and let C̃B be the operator induced on

XB,C by C|XB
. Then

[
AB,C BC

C̃B D

]
is a minimal (i.e., controllable and

observable) L p|Reg-well-posed linear system on (Y, XB,C,U ).
(iv) Let XC = X/N (C), let π be the quotient map X → X/N (C), let

BC = πB, let X̃B,C = R (BC), let ÃB,C = πA|X̃B,C
, and let C̃ be the

restriction to X̃B,C of the operator induced by C on XC. Then
[

ÃB,C BC

C̃B D

]
is a minimal (i.e., controllable and observable) L p|Reg-well-posed linear
system on (Y, X̃B,C,U ).

Proof of Theorem 9.1.9 (i) It follows from the intertwining condition AtB =
Bτ t
− that R (B) is invariant under A, hence so is its closure. Thus A is a C0

semigroup on XB. The remaining conditions in Definition 2.2.1 are obviously
satisfied on (Y, XB,U ) whenever they are satisfied on (Y, X,U ). The observ-
ability of the resulting system is obvious.



510 Realizations

(ii) It follows from the intertwining condition CAt = τ t
+C that N (C) is

invariant under A. By Lemma 9.1.6, the quotient semigroup At
C = πA is a C0

semigroup on X/N (C). The input intertwining condition At
CBC = BCτ

t
− is

satisfied since

At
CBC = πAtB = πBτ t

− = BCτ
t
−,

and so is the output intertwining condition C̃AC = τ t
+AC since

C̃At
Cπx = C̃πAt x = CAt x = τ t

+C
t x = τ t

+C̃πx .

Finally,

C̃BC = CB = π+Dπ−,

so the Hankel operator of D is C̃BC. This proves that the system in (ii) is
L p|Reg-well-posed. By construction, this system is observable (N (C) is the
zero element in X/N (C)). If � is controllable then the new system is also
controllable, since the range of πB is dense in X/N (C) whenever the range
of B is dense in X .

(iii) We get (iii) by applying (ii) to the system obtained from (i).
(iv) We get (iv) by applying (i) to the system obtained from (ii). �

Corollary 9.1.10 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ), where X is a Hilbert space. Then X can be split into the orthogonal
sum of three subspaces X = Z ⊕ X̃ ⊕ Z∗ which induces a block matrix decom-
position of � of the following type (here πZ , πx̃ , and πZ∗ are the orthogonal
projections onto Z, X̃ , respectively Z∗)

[
A B

C D

]
=


A|Z πZA|X̃ πZA|Z∗ πZB

0 πX̃A|X̃ πX̃A|Z∗ πX̃B

0 0 πZ∗A|Z∗ 0

0 C|X̃ C|Z∗ D

 (9.1.1)

in such a way that

[
π

X̃
A|X̃ π

X̃
B

C|X̃ D

]
is a minimal realization of D. In particular,

Z is an invariant subspace of A which is contained in N (C) and Z ⊕ X̃ is an
invariant subspace of A which contains R (B). The decomposition (9.1.1) also
gives two additional (possibly nonminimal) realizations of D, namelyA|Z πZA|X̃ πZB

0 πX̃A|X̃ πX̃B

0 C|X̃ D

 and

πX̃A|X̃ πX̃A|Z∗ πX̃B

0 πZ∗A|Z∗ 0

C|X̃ C|Z∗ D

 .
Proof We get one decomposition of the type described above from part (iv)
of Theorem 9.1.9: take Z = N (C), let X̃ be the space X̃B,C in part (iv) of
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Theorem 9.1.9, and let Z∗ = (Z ⊕ X̃ )⊥. Then A, B, and C have the decompo-

sitions shown in (9.1.1), and by part (iv) of Theorem 9.1.9,

[
π

X̃
A|X̃ π

X̃
B

C|X̃ D

]
is a

minimal realization of D.
That the first of the two given additional systems is an L p|Reg-well-posed

linear system is proved in the same way as in the proof of part (i) of Theorem
9.1.9 (using the fact that Z ⊕ X̃ is an invariant subspace of A which contains
R (B)). That the second of the two given additional systems is an L p|Reg-well-
posed linear system is proved in the same way as in the proof of part (ii) of
Theorem 9.1.9 (using the fact that Z is an invariant subspace of A which is
contained in N (C)). �

Remark 9.1.11 In general, the two systems in parts (iii) and (iv) of Theorem
9.1.9 are not (strongly) similar to each other, only pseudo-similar (see the
next section). Both of these systems give rise to decompositions of the type
described in Corollary 9.1.10, so the decomposition in that corollary is far
from unique: the subspace X̃ is unique only up to pseudo-similarity, and even
the dimensions of Z and Z∗ need not be unique (the decomposition induced
by part (iv) of Theorem 9.1.9 gives the maximal subspace Z = N (C),1 and
the decomposition induced by part (iii) of Theorem 9.1.9 gives the maximal
subspace Z∗ = R (B)⊥. Note that any reducing subspace of A in N (C) ∩
R (B)⊥ can be moved freely between Z and Z∗. See also Lemma 11.4.2 and
Theorem 11.8.8.

9.2 Pseudo-similarity of minimal realizations

The purpose of this section is to show that any two minimal realizations of a
given input/output map are similar to each other in the following weak sense.

Definition 9.2.1 Two L p|Reg-well-posed linear systems �1 =
[

A1 B1

C1 D

]
and

�2 =
[

A2 B2

C2 D

]
on (Y, X1,U ), respectively (Y, X2,U ) (with the same in-

put/output map D) are pseudo-similar if there exists a closed and densely de-
fined injective linear operator E : X1 ⊃ D (E)→ R (E) ⊂ X2 with the follow-
ing properties: B1 maps L p|Regc(R−; U ) intoD (E), B2 maps L p|Regc(R−; U )
into R (E), D (E) is invariant under A1, R (E) is invariant under A2, and

At
2 Ex1 = EAt

1x1, x1 ∈ D (E) ,

B2u = EB1u, u ∈ L p|Regc(R−; U ),

C2 Ex1 = C1x1, x1 ∈ D (E) .

(9.2.1)

1 By this we mean a subspace which contains the corresponding subspace Z of any other splitting.
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Without any further assumptions the operator E in Definition 9.2.1 will not
be unique (see Theorem 9.2.4 and the comments in Section 9.11). Note that
this definition is symmetric with respect to �1 and �2: it stays the same if we
interchange �1 and �2 and at the same time replace E by E−1.

As we shall see in a moment, any two minimal realizations of the same
input/output map D are pseudo-similar to each other. The proof of this fact is
based on the following lemma.

Lemma 9.2.2 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA. Let ω > ωA. Then

(i) If � is observable, then N (B) = N (π+Dπ−) (where the common
domain of B and D is either L p|Regc(R−; U ) or L p|Regω(R−; U )).

(ii) If � is controllable, then R (C) and R (π+Dπ−) have the same closure
(both in L p|Regloc(R

+
; Y ) and L p|Regω(R

+
; Y )).

(iii) If � is minimal, then both (i) and (ii) apply.

Proof (i) By assumption, π+Dπ− = CB. The controllability assumption says
that C is injective, hence N (B) = N (π+Dπ−).

(ii) Let T > 0. By assumption, π[0,T )CB = π[0,T )Dπ−. As R (B) is dense
in X ,

R (π[0,T )C
) = R (π[0,T )CB

) = R (π[0,T )Dπ−
)
.

The same argument applies if we replace L p|Reg([0, T ), Y ) by
L p|Regω(R

+
, Y ). �

Corollary 9.2.3 Let�1 =
[

A1 B1

C1 D

]
and�2 =

[
A2 B2

C2 D

]
be two systems which

are well-posed in the same sense on (Y, X1,U ) and (Y, X2,U ), respectively,
with the same input/output map D (thus, they both realize the same input/output
map).

(i) If both �1 and �2 are observable, then N (B1) = N (B2) (where the
common domain of B1 and B2 is either L p|Regc(R−; U ) or
L p|Regω(R−; U )).

(ii) If both �1 and �2 are controllable, then R (C1) and R (C2) have the
same closure (both in L p|Regloc(R

+
; Y ) and L p|Regω(R

+
; Y )).

(iii) If �1 and �2 are minimal, then both (i) and (ii) apply.

This follows from Lemma 9.2.2.

Theorem 9.2.4 Let �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
be two minimal real-

izations of the same input/output map D (i.e., they are minimal L p|Reg-well-
posed linear systems with the same input/output map D). Then these systems
are pseudo-similar. Moreover, all pseudo-similarities E in Definition 9.2.1 are
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restrictions of a maximally defined pseudo-similarity E, which is characterized
by the fact that

D (E ) = {x1 ∈ X1 | C1x1 ∈ R (C2)},
R (E ) = {x2 ∈ X2 | C2x2 ∈ R (C1)}, (9.2.2)

and they are all extensions of a unique minimally defined pseudo-similarity
E which we get by taking the closure of the restriction of E to the image of
L p|Regc(R−; U ) under B1.

Proof The output map C2 is injective since �2 is observable, so we may define
E on its domain given in (9.2.2) by

Ex1 = C−1
2 C1x1, x1 ∈ D (E ) , (9.2.3)

where C−1
2 is the inverse of C2 defined on R (C2). If E is an arbitrary pseudo-

similarity of the type described in Definition 9.2.1, then by the last equation
in (9.2.1), C1x ∈ R (C2) for all x ∈ D (E), i.e., D (E) ⊂ D (E ). Moreover, it
follows from the same equation that Ex1 is given by (9.2.3) with E replaced
by E for all x ∈ D (E). Thus, E is a restriction of E . In particular, E is unique.

We next prove that E is closed. Fix ω > max{ωA1 , ωA2}. By Theorem

2.5.4(ii),(iv), Ci ∈ B(Xi ; L p|Regω(R
+

; Y )) for i = 1, 2. Let xn
1 ∈ D (E ), xn

1 →
x1 ∈ X1, and Exn

1 → x2 in X2. We denote Exn
1 by xn

2 and C1xn
1 by yn . Then

xn
2 ∈ R (E ), yn = C1xn

1 = C2xn
2 , and by the continuity of C1 and C2,

C1x1 = lim
n→∞C1xn

1 = lim
n→∞ yn = lim

n→∞C2xn
2 = C2x2.

This implies that x1 ∈ D (E ) and that Ex1 = x2. Thus E is closed.
That B2 = EB1 follows from the injectivity of C1 and the fact that, for all

u ∈ L p|Regc(R−; U ),

C1B1u = π+Dπ−u = C2B2u,

hence B1u ∈ D (E ), B2u ∈ R (E ), and B2 = EB1. In particular, D (E ) is
dense in X1 andR (E ) is dense in X2 (the images of L p|Regc(R−; U ) under B1

and B2 are dense in X1, respectively X2). The invariance of D (E ) under A1,
the invariance ofR (E ) under A2, and the identity EAt

1 = At
2 E follow from the

intertwining properties of C1 and C2: if x1 ∈ D (E ) and x2 = Ex1 ∈ R (E ),
then for all t ≥ 0,

C1A
t
1x1 = τ t

+C1x1 = τ t
+C2x2 = C2A

t
2x2,

hence At
1x1 ∈ D (E ), At

2x2 ∈ R (E ), and At
2 Ex1 = At

2x2 = EAt
1x1. By defi-

nition, C1x1 = EC2x2 for all x1 ∈ D (E ). Thus, E satisfies the conditions listed
in Definition 9.2.1, and so the two systems are pseudo-similar.
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Let us define E to be the closure of E |X1
, where X1 is the restriction of E

to the image of L p|Regc(R−; U ) under B1 (this operator is closable since E
is closed). One of the properties required from the operator E in Definition
9.2.1 is that X1 ⊂ D (E). As E furthermore is closed, it must be an exten-
sion of E . This proves the existence of a (unique) minimally defined pseudo-
similarity E . �

Unfortunately, the similarity in Theorem 9.2.4 is so weak that it is of limited
value unless we have some additional information, such as the compactness
of the resolvents of the semigroup generators, or exact controllability, or exact
observability (these two notions are defined in Section 9.4); see Theorems
9.4.10 and 9.10.7. However, if X1 or X2 is finite-dimensional, then we recover
the well-known fact that any two minimal realizations of a given rational transfer
function are similar to each other (in particular, the dimensions of their state
spaces are the same).

There are two other sets of results which resemble Theorem 9.2.4. They
do not require the systems to be minimal, just controllable or observable, but
instead they require either the pseudo-similarity E itself or its inverse to be
bounded. Observe that if E or E−1 is bounded in Definition 9.2.1, then all
the different similarities in Theorem 9.2.4 coincide, with D (E) = X1 (if E is
bounded) or R (E) = X2 (if E−1 is bounded).

We begin with the observable case.

Theorem 9.2.5 Let �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
on (Y, X1,U ) be

two observable L p|Reg-well-posed linear systems on (Y, X1,U ), respectively
(Y, X2,U ) (with the same input/output map D). Then �1 and �2 are pseudo-
similar with a unique pseudo-similarity operator E if any one of the following
conditions hold:

(i) R (C1) ⊂ R (C2) and the range of C−1
2 C1 is dense in X2. In this case (and

only in this case) E is bounded.
(ii) R (C2) ⊂ R (C1) and the range of C−1

1 C2 is dense in X1. In this case (and
only in this case) E−1 is bounded.

(iii) R (C1) = R (C2). In this case (and only in this case) both E and E−1 are
bounded.

(iv) R (C1) = R (C2), and |x1|X1 = |x2|X2 whenever x1 ∈ X1, x2 ∈ X2, and
C1x1 = C2x2. In this case (and only in this case) E is an isometric
isomorphism of X1 onto X2.

In particular, if X1, X2, and Y are Hilbert spaces, and if �1 is state/output
bounded in the L2-sense (i.e., C1 ∈ B(X1; L2(R+; Y ))), then (iv) holds if and
only if �2 is state/output bounded in the L2-sense and C1C

∗
1 = C2C

∗
2.
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Proof (i) If (i) holds, then we can define E on X1 by E = C−1
2 C1 (since C2 is

injective and R (C1) ⊂ R (C2)). This operator is injective since C1 is injective.
Arguing as in the proof of Theorem 9.2.4 we find that E is closed. By the closed
graph theorem, E is bounded, and by assumption, R (E) is dense in X2. That
(9.2.1) holds is shown as in the proof of Theorem 9.2.4. Conversely, if E is
a bounded pseudo-similarity, then D (E) = X1, and it follows from Definition
9.2.1 that R (C1) ⊂ R (C2) and that E = C−1

2 C1. In particular, R (C−1
2 C1

) =
R (E) is dense in X2.

(ii) This follows from (i) if we interchange �1 and �2.
(iii) Define E = C−1

2 C1. Arguing as in the proof of part (i) we find that E is
a bounded injection of X1 into X2. By interchanging the roles of �1 and �2 we
find that R (E) = X2 and that E−1 is bounded. The rest follows from (i) and
(iii).

(iv) This follows from (iii) (note that C2x2 = C1x1 if and only if x2 = Ex1).
For the final claim, let us first observe that C1 ∈ B(X1; L2(R+; Y )) if and only

if C2 ∈ B(X1; L2(R+; Y )) whenever E and E−1 are bounded, and that both C1C
∗
1

and C2C
∗
2 belong to B(L2(R+; Y )) in this (and only in this) case. If E is unitary

and C1C
∗
1 and C2C

∗
2 are bounded, then C1C

∗
1 = C2 E E∗C∗2 = C2C

∗
2. Conversely,

suppose that these two operators are bounded, and that C1C
∗
1 = C2C

∗
2. Then,

by Lemma A.2.5 (iv), R (C1) = R (√C1C
∗
1

) = R (√C2C
∗
2

) = R (C2), so (iii)
applies. Define E = C−1

2 C1. Then C2C
∗
2 = C1C

∗
1 = C2 E E∗C∗2. Since C2 is in-

jective and C∗2 has dense range, this implies that E E∗ = 1. As E is invertible,
this implies that E is unitary. �

The controllable case is similar.

Theorem 9.2.6 Let �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
on (Y, X1,U ) be two

controllable L p|Reg-well-posed linear systems on (Y, X1,U ), respectively
(Y, X2,U ) (with the same input/output map D). Then �1 and �2 are pseudo-
similar with a unique pseudo-similarity operator E if any one of the following
conditions hold:

(i) There is a finite constant M such that |B2u|X2 ≤ M |B1u|X1 for all
u ∈ L p|Regc(R−; U ). In this case (and only in this case) E is bounded
and ‖E‖ ≤ M.

(ii) There is a constant m > 0 such that |B2u|X2 ≥ m|B1u|X1 for all
u ∈ L p|Regc(R−; U ). In this case (and only in this case) E−1 is bounded
and ‖E−1‖ ≤ 1/m.

(iii) There exist constants 0 < m ≤ M <∞ such that
m|B1u|X1 ≤ |B2u|X2 ≤ M |B1u|X1 for all u ∈ L p|Regc(R−; U ). In this
case (and only in this case) both E and E−1 are bounded, ‖E‖ ≤ M, and
‖E−1‖ ≤ 1/m.
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(iv) |B2u|X2 = |B1u|X1 for all u ∈ L p|Regc(R−; U ). In this case (and only in
this case) E is an isometric isomorphism of X1 onto X2.

In particular, if X1, X2, and Y are Hilbert spaces, and if �1 is input/state
bounded in the L2-sense (i.e., B1 ∈ B(L2(R−; X1))), then (iv) holds if and only
if �2 is input/state bounded in the L2-sense and B∗1B1 = B∗2B2.

Proof Choose ω > max{ωA1 , ωA2}, where ωA1 and ωA2 are the growth bounds
of �1, respectively �2. Then Bi ∈ B(L p|Regω(R−; U ); Xi ) for i = 1, 2, and
the conditions listed in (i)–(iv) are equivalent to the same conditions with
L p|Regc(R−; U ) replaced by L p|Regω(R−; U ). Therefore, we may through-
out replace L p|Regc(R−; U ) by the Banach space L p|Regω(R−; U ) in the proof
below (see also Lemma 9.1.3(i)).

(i) The necessity of the given inequality for the boundedness of E is obvious.
Conversely, suppose that the inequality in (i) holds. Then N (B1) ⊂ N (B2).
For each x1 of the form x1 = B1u for some u ∈ L p|Regω(R−; U ), define
Ex1 = B2B

−1
1 x1, where B1 and B2 stand for the inductive operators in-

duced by B1 and B2 on L p|Regω(R−; U )/N (B2) (see Definition 9.1.5). Then
B2u = EB1u for all u ∈ L p|Regω(R−; U ), and by the controllability of �1

and �2, D (E) = R (B1) is dense in X1 and R (E) = R (B1) is dense in X1.
The inequality in (i) implies that E is bounded with ‖E‖ ≤ M on D (E), so
E extends to a unique (closed) operator in B(X1; X2) (with the same norm),
which we still denote by E . (After this D (E) = X1, and R (E) is still dense in
X2.)

It follows from our definition of E that B2u = EB1u for all u ∈
L p|Regω(R−; U ). Therefore

C1B1u = π+Dπ−u = C2B2u = C2 EB1u.

As the range of B1 is dense, this gives C1 = C2 E . By the intertwining conditions
for B1 and B2, for all u ∈ L p|Regω(R−; U ) and for all t ≥ 0,

EAt
1B1u = EB1τ

t
−u = B2τ

t
−u = At

2B2u = At
2 EB1u.

As the range of B1 is dense, this gives EAt
1 = At

2 E . Thus, the two systems are
pseudo-similar with the bounded similarity operator E .

(ii) This follows from (i) if we interchange �1 and �2.
(iii) This follows from (i) and (ii).
(iv) This is a special case of (iii).
For the final claim, it is obvious that �1 is input/state bounded in the L2-

sense if and only if �2 is so whenever the two systems are pseudo-similar
bounded E and E−1, and that this is equivalent to the boundedness of B∗1B1

and B∗2B2 in L2(R−; U ). In this case the condition that |B2u|X2 = |B1u|X1 can
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be written as

〈B∗1B1u, u〉L2(R−;U ) = 〈B1u,B1u〉X1 = 〈B2u,B2u〉X2

= 〈B∗2B2u, u〉L2(R−;U ),

which is equivalent to B∗1B1 = B∗2B2. �

9.3 Realizations based on factorizations
of the Hankel operator

The algebraic condition π+Dπ− = CB in the definition of an L p|Reg-well-
posed linear system says that the Hankel operator π+Dπ− of the input/output
map D of the system � = [A B

C D

]
factors into the product of the input map B

and the output map C. The purpose of this section is to prove the converse: if
D is time-invariant and causal (as all input/output maps are), then every factor-
ization of the Hankel operator of D which satisfies some additional necessary
admissibility conditions induces an L p|Reg-well-posed linear system. Actually,
there are two such sets of implicit admissibility conditions (which are related to
each other), one associated with the input map B, and another associated with
the output map C. We begin by discussing the implicit admissibility conditions
satisfied by every input map B.

Let B be an L p|Reg-admissible input map for the C0 semigroup A. Then
B and A satisfy the intertwining condition AtB = Bτ t

−. Since A is locally
bounded, this implies that for every t > 0 there exists a finite constant K (t) > 0
such that

sup
0<s<t
|Bτ s

−u|X ≤ K (t)|Bu|X , u ∈ L p|Regc(R−; U ), t > 0, (9.3.1)

and the strong continuity of A implies that

lim
t↓0
|Bτ t

−u −Bu|X = 0, u ∈ L p|Regc(R−; U ). (9.3.2)

In particular, it follows from (9.3.1) that

N (Bτ t
−
) ⊃ N (B) , t ≥ 0. (9.3.3)

Out of these conditions the most important one is (9.3.1), since (9.3.2) is re-
dundant in the L p-well-posed case with p <∞ (the left shift on R− is strongly
continuous in L p with p <∞; see Example 2.3.2(iii)), and since (9.3.3) is
implied by (9.3.1).

An analogous calculation can be carried out for an L p|Reg-admissible output
map C of a C0 semigroup A. The intertwining condition CAt = τ t

+C implies
that
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R (τ t
+C
) ⊂ R (C) , t ≥ 0. (9.3.4)

The operator C induces an injective operator on X/N (C) (see Definition 9.1.5).
We denote the (closed but possibly unbounded) inverse of this operator, defined
onR (C), by C−1 (see Definition 9.1.5). Because of (9.3.4), the operator C−1τ t

+C
is well-defined (single-valued) as an operator from X/N (C) into itself. This
operator is closed (both C and τ t

+C are bounded), hence bounded, and it follows
from the intertwining condition that the operator which C−1τ t

+C induces on
X/N (C) (see Definition 9.1.5) is nothing but the quotient semigroup πAt

induced by At in X/N (C) (see Definition 9.1.7); here π is the quotient map
X → X/N (C). Thus, by the strong continuity of the quotient semigroup,

lim
t↓0
|C−1τ t

+Cx − πx |X/N (C) = 0, x ∈ X. (9.3.5)

Furthermore, the local boundedness of the quotient semigroup implies that

sup
0<s<t
‖C−1τ s

+C‖ <∞, t > 0, (9.3.6)

but this property is less interesting than (9.3.4) and (9.3.5).

Theorem 9.3.1 Let D ∈ TICloc(U ; Y ) (i.e, D is time-invariant and causal;
see Definition 2.6.2), and suppose that the Hankel operator π+Dπ− of D

factors into π+Dπ− = CB, where B : L p|Regc(R−; U )→ X and C : X →
L p|Regloc(R

+
; Y ) are bounded linear operators.

(i) If B has dense range then (9.3.1) and (9.3.2) imply (9.3.4)–(9.3.6)
(condition (9.3.2) is redundant in the L p-case with p <∞).

(ii) If C is injective, then (9.3.4) and (9.3.5) imply (9.3.1)–(9.3.3).
(iii) Let XB = R (B). Then the following conditions are equivalent:

(a) conditions (9.3.1) and (9.3.2) hold (condition (9.3.2) is redundant in
the L p-case with p <∞);

(b) there is a (unique) semigroup AB on XB such that
[

AB B

CB D

]
is a

controllable L p|Reg-well-posed linear system on (Y, XB,U ), where
CB is the restriction of C to XB.

(iv) Let XC = X/N (C) and let π be the quotient map X → X/N (C). Then
the following conditions are equivalent:
(a) conditions (9.3.4) and (9.3.5) hold;
(b) there is a (unique) semigroup AC on XC such that

[AC BC

C̃ D

]
is an

observable well-posed linear system on (Y, XC,U ), where BC = πB

and C̃ is the (injective) operator induced on X/N (C) by C.
(v) Suppose that the factorization is minimal, i.e., B has dense range and C

is injective. Then the following conditions are equivalent:
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(a) conditions (9.3.1) and (9.3.2) hold (condition (9.3.2) is redundant in
the L p-case with p <∞);

(b) conditions (9.3.4) and (9.3.5) hold;
(c) there is a (unique) semigroup A on X such that

[A B

C D

]
is a minimal

L p|Reg-well-posed linear system.

The proof of Theorem 9.3.1 is based on the following identity:

Lemma 9.3.2 The Hankel operator π+Dπ− of D satisfies

τ t
+π+Dπ− = π+Dπ−τ t

−, t ≥ 0.

In particular, if π+Dπ− factors into π+Dπ− = CB, then

τ t
+CB = CBτ t

−, t ≥ 0.

Proof Use the time-invariance of D to get

τ t
+π+Dπ− = π+τ tDπ− = π+Dτ tπ− = π+Dπ−τ t

−.

�

Proof of Theorem 9.3.1 (i) This follows from (iii) and the necessity of the
conditions (9.3.4)–(9.3.6); cf. the derivation of these conditions given above.

(ii) This follows from (iv) and the necessity of the conditions (9.3.1); cf. the
derivation of these conditions given above.

(iii) The argument that we used above to derive (9.3.1) shows that (b)⇒ (a).
(The condition XB = R (B) is not needed for this part.)

Conversely, suppose that (a) holds. Without loss of generality, we may as-
sume that XB = X (replace X by XB). The idea is to use the intertwining
condition AtB = Bτ t

− as a definition of At . Clearly, for this to be possible, the
range of B must be dense in X .

We let B−1 represent the (closed but possibly unbounded) inverse of the
injective operator that B induces on L p|Regc(R−; U )/N (B) (see Definition
9.1.5). By (9.3.3) (which is implied by (9.3.1)), the operator Bτ t

− induces an
operator on L p|Regc(R−; U )/N (B). For simplicity, we use the same notation
Bτ t
− for this induced operator. Then it follows from (9.3.1) that the operator

Bτ tπ−B−1 is (well-defined and) bounded on R (B). Thus, for each x = Bu ∈
R (B) and t ∈ R

+
, we can define At : R (B)→ R (B) ⊂ X by

At x = Bτ t
−B

−1x .

Obviously A0x = x for each x ∈ R (B), and A inherits the semigroup property
As+t = AsAt from τ t

−. Condition (9.3.2) implies that t �→ At x is continuous in
X for every x ∈ R (B) (this condition is redundant in the L p-case with p <∞
since τ− is strongly continuous on L p

c (R−; U ); see Example 2.3.2(iii)). Thus,
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A is a strongly continuous semigroup on R (B) (where the continuity is in the
norm of X ). Because of (9.3.1), this semigroup is also locally bounded (in the
norm of X ).

Next we extend A to a strongly continuous semigroup on X . For each t , At

is bounded and densely defined, so it can be extended to an operator in B(X )
(which we still denote by At ). Because of (9.3.1), we have a bound on ‖As‖
which is uniform in s on any bounded interval. If we let R (B) ⊃ xn → x ∈ X ,
then the sequence As xn is uniformly continuous in s and uniformly convergent
on any bounded interval, so the limit As x is (locally bounded and) continuous
in s. The extended operator At inherits not only the strong continuity, but also
the semigroup property and the intertwining property AtB = Bτ t

− from the
original densely defined A.

It remains to show that A also satisfies the second intertwining condition
CAt = τ t

+C for all t ≥ 0. By the density of R (B) in X , it suffices to show
that CAtB = τ t

+CB, and this is an immediate consequence of Lemma 9.3.2:
CAtB = CBτ t

− = τ t
+CB.

(iv) We may assume, without loss of generality, that C is injective, because
otherwise we may replace X by X/N (C), B by πB, and C by the operator
induced on X/N (C) by C.

For each x ∈ X and t ≥ 0, we define At X → X by

At x = C−1τ t
+Cx .

As we observed in the discussion leading up to (9.3.5), At ∈ B(X ). Clearly A0 =
1, and A inherits the semigroup property As+t = AsAt from τ+. By (9.3.5),
A is strongly continuous. Thus, A is a C0 semigroup on X . Moreover, by
construction, the intertwining condition CAt = τ t

+C holds for all t ≥ 0.
It remains to show that A also satisfies the second intertwining condi-

tion AtB = Bτ t
− for all t ≥ 0. Since C is injective, it suffices to show that

CAtB = CBτ t
−, and this is an immediate consequence of Lemma 9.3.2:

CAtB = τ t
+CB = CBτ t

−.
(v) This follows from (i)–(iv). �

Corollary 9.3.3 Let D ∈ TICloc(U ; Y ), and suppose that the Hankel operator
π+Dπ− of D factors into π+Dπ− = CB, where B : L p|Regc(R−; U )→ X

and C : X → L p|Regloc(R
+

; Y ) are bounded linear operators. If (9.3.1) or
(9.3.4)–(9.3.5) hold, then D ∈ TICω(U ; Y ) for some ω ∈ R (i.e., D has a finite
growth bound).

Proof This follows from Theorem 9.3.1 and its proof. In particular, we observe
that the strong continuity of At in part (iii) is not needed for the finite growth
bound of A; see Remark 2.5.5. �
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We remark that two of the shift realizations in Theorems 2.6.6 and 2.6.7 are
special cases of Theorem 9.3.1. To get the exactly controllable shift realization
we take X = L p

ω(R−; U ), B = 1, and C = π+Dπ−, and to get the exactly
observable shift realization we take X = L p

ω(R+; Y ) or X = BC0,ω(R
+

; Y ),
B = π+Dπ−, and C = 1.

9.4 Exact controllability and observability

As we mentioned at the end of Section 9.2, we need stronger notions of con-
trollability and/or observability if we want to get a stronger version of Theorem
9.2.4. The following is a list of commonly used controllability notions (the cor-
responding list of possible observability notions is given in Definition 9.4.2).
For completeness we repeat the definition of controllability given in Definition
9.1.2(iii).

Definition 9.4.1 A L p|Reg-well-posed linear system� = [A B

C D

]
on (Y, X,U )

is

(i) exactly controllable in time t > 0 if R (Bπ[−t,0)
) = X ;

(ii) exactly controllable in finite time if it is exactly controllable in time t for
some t > 0;

(iii) (approximately) controllable in time t > 0 if R (Bπ[−t,0)
)

is dense in X ;
(iv) (approximately) controllable in finite time if it is controllable in time t

for some t > 0;
(v) (exactly) null controllable in time t > 0 if R (Bπ[−t,0)

) ⊃ R (At
)
;

(vi) (exactly) null controllable in finite time if it is null controllable in time t
for some t > 0;

(vii) (approximately) controllable (in infinite time) if B maps
L p|Regc(R−; U ) onto a dense subset of X ;

(viii) exactly controllable in infinite time if B is stable (i.e.,
B ∈ B(L p|Reg(R−; U ); X )) and B maps L p|Reg(R−; U ) onto X ;

(ix) exactly controllable in infinite time with bound ω ∈ R if B is
ω-bounded (i.e., B ∈ B(L p|Regω(R−; U ); X )) and B maps
L p|Regω(R−; U ) onto X .

The first seven of these notions have simple interpretations: according to
Definition 2.2.7, the system � is

(i) exactly controllable in time t iff it is possible to find, for each x0 ∈ X
and x1 ∈ X , an input u ∈ L p|Reg([0, t); U ) such that x(t) = x1, where x
is the state of � with initial time zero, initial state x0, and input u,
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(ii) exactly controllable in finite time iff there exists a t > 0 for which the
conclusion of (i) is valid,

(iii) controllable in time t iff it is possible to find, for each x0 ∈ X , x1 ∈ X ,
and ε > 0, an input u ∈ L p|Reg([0, t); U ) such that |x(t)− x1| ≤ ε,
where x is the state of � with initial time zero, initial state x0, and
input u,

(iv) controllable in finite time iff there exists a t > 0 for which the
conclusion of (iii) is valid,

(v) null controllable in time t iff it is possible to find, for each x0 ∈ X , an
input u ∈ L p|Reg([0, t); U ) such that x(t) = 0, where x is the state of �
with initial time zero, initial state x0, and input u,

(vi) null controllable in finite time iff there exists a t > 0 for which the
conclusion of (v) is valid.

(vii) controllable iff it is possible to find, for each x1 ∈ X and ε > 0, a time
t > 0 and an input u ∈ L p|Reg([0, t); U ) such that |x(t)− x1| ≤ ε,
where x is the state of � with initial time zero, initial state zero, and
input u.

The last two conditions (viii) and (ix) are those which are important in the
strengthening of Theorem 9.2.4 (see Theorem 9.4.10). Condition (i) in strongest
since it implies all the others. We shall not say much about (v) and (vi), but
they can be used to insure that the ‘finite cost condition’ in optimal control is
satisfied. If we exclude these two conditions, then (vii) is the weakest remaining
one, i.e., it is implied by all the others.

The corresponding observability notions are defined as follows:

Definition 9.4.2 A L p|Reg-well-posed linear system� = [A B

C D

]
on (Y, X,U )

is

(i) exactly observable in time t > 0 if π[0,t)C has a bounded left inverse,
defined on R (π[0,t)C

)
(where we regard π[0,t)C as a mapping

X → L p|Reg((0, t); Y ));
(ii) exactly observable in finite time if it is exactly observable in time t for

some t > 0;
(iii) (approximately) observable in time t > 0 if π[0,t)C is injective on X ;
(iv) (approximately) observable in finite time if it is observable in time t for

some t > 0;
(v) (exactly) final state observable in time t > 0 if N (At

) ⊃ N (π[0,t)C
)
,

and the operator2 At (π[0,t)C)−1 is bounded X → X ;

2 Here (π[0,t)C)−1 stands for the inverse of the injective operator that π[0,t)C induces on
X/N (π[0,t)C

)
and At stands for the operator induced by At on X/N (π[0,t)C

)
. See Definition

9.1.5.
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(vi) (exactly) final state observable in infinite time if it is final state
observable in time t for some t > 0;

(vii) (approximately) observable (in infinite time) if C is injective as a
mapping X → L p|Regloc(R

+
; U );

(viii) exactly observable in infinite time if C is stable (i.e.,
C ∈ B(X ; L p|Reg(R

+
; Y )) and C has a bounded left inverse defined on

R (C) ⊂ L p|Reg(R
+

; Y );
(ix) exactly observable in infinite time with bound ω ∈ R if C is ω-bounded

(i.e., C ∈ B(X ; L p|Regω(R
+

; Y )) and C has a bounded left inverse

defined on R (C) ⊂ L p|Regω(R
+

; Y ).

As in the case of Definition 9.4.1, the last two conditions are of a technical
nature, but the first seven have simple explanations: According to Definition
2.2.7, � is

(i) exactly observable in time t iff it is possible to reconstruct the initial
state x0 from the restriction of the observation Cx0 to the interval [0, t),
and the reconstruction operator (i.e., the left inverse of π[0,t)C defined on
the range of π[0,t)C) is bounded;

(ii) exactly observable in finite time iff there exists a t > 0 for which the
conclusion of (i) is valid;

(iii) observable in time t iff it is possible to reconstruct the initial state x0

from the restriction of the observation Cx0 to the interval [0, t), but the
reconstruction operator need not be bounded;

(iv) observable in finite time iff there exists a t > 0 for which the conclusion
of (iii) is valid;

(v) final state observable in time t iff it is possible to reconstruct the final
state x(t) = At x0 from the restriction of the observation Cx0 to the
interval [0, t), and the reconstruction operator is bounded;

(vi) final state observable in finite time iff there exists a t > 0 for which the
conclusion of (v) is valid;

(vii) observable iff it is possible to reconstruct the initial state x0 from the
observation Cx0 ∈ L p|Reg(R

+
; Y ), but the reconstruction operator (i.e.,

the left inverse of C defined on the range of C) need not be bounded.

We leave the easy verifications of the following claims to the reader.

Example 9.4.3 The delay line in Example 2.3.4 is exactly controllable and
observable in time T , and it is not controllable or observable in time t for any
t < T .

Example 9.4.4 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ). Then the following systems obtained from � have the same



524 Realizations

controllability/observability properties as � (i.e., any one of the conditions
(i)–(ix) in Definition 9.4.1 or Definition 9.4.2 holds for the modified system iff
the same condition holds for the original system):

(i) the exponentially shifted system �α in Example 2.3.5 (provided the
bound ω in parts (ix) is replaced by ω + α);

(ii) the time compressed system �λ in Example 2.3.6 (provided the bound ω
in parts (ix) is replaced by λω);

(iii) the similarity transformed system �E in Example 2.3.7.

Example 9.4.5 Let �1 and �2 be two systems which are L p|Reg-well-posed
in the same sense.

(i) The following systems obtained from �1 and �2 are controllable in the
sense of any one of the conditions (i)–(ix) in Definition 9.4.1 if and only if
both �1 and �2 are controllable in the same sense:
(a) the cross-product of �1 and �2 in Example 2.3.10;
(b) the sum junction of �1 and �2 in Example 2.3.11.

(ii) The following systems obtained from �1 and �2 are observable in the
sense of any one of the conditions (i)–(ix) in Definition 9.4.2 if and only if
both �1 and �2 are observable in the same sense:
(a) the cross-product of �1 and �2 in Example 2.3.10;
(b) the T -junction of �1 and �2 in Example 2.3.12.

Using Definitions 9.4.1 and 9.4.2 we can add the following conclusions to
Theorem 9.1.9.

Corollary 9.4.6 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ).

(i) If � is controllable in any of the senses described in Definition 9.4.1, then
the system

[AC BC

C̃ D

]
in Theorem 9.1.9(ii) is controllable in the same sense.

(ii) If � is observable in any of the senses described in Definition 9.4.2, then

the system
[

AB B

CB D

]
in Theorem 9.1.9(i) is observable in the same sense.

This follows immediately from Theorem 9.1.9 and Definitions 9.4.1 and
9.4.2.

The following two theorems are the main reason for the introduction of the
notions of exact controllability and observability in infinite time with some
bound ω ∈ R.

Theorem 9.4.7 Let 1 ≤ p <∞, and let � = [A B

C D

]
be an L p-well-posed

linear system on (Y, X,U ).
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(i) If � is controllable, then, for each ω ∈ R for which B is ω-bounded, it is
possible to construct a Banach space X ⊂ X (which may depend on ω)
with the following properties. The embedding X ⊂ X is continuous and
dense, X is invariant under A, R (B) ⊂ X, and if we define

A = A|X , C = C|X ,

then � =
[

A B

C D

]
is an L p-well-posed linear system on (Y, X ,U ) which

is exactly controllable in infinite time with bound ω. It is observable
whenever � is observable.

(ii) If � is observable, then, for each ω ∈ R for which C is ω-bounded, it is
possible to construct a Banach space X ⊃ X (which may depend on ω)
with the following properties. The embedding X ⊂ X is continuous and
dense, A can be extended to a C0 semigroup A on X, C can be extended

to an operator C ∈ B(X ; L p
ω(R+; Y )), and � =

[
A B

C D

]
is an

L p-well-posed linear system on (Y, X ,U ) which is exactly observable in
infinite time with bound ω. It is controllable whenever � is controllable.

(iii) If � is minimal, then both (i) and (ii) apply. Thus, it is possible to make
� exactly controllable in infinite time with some bound ω ∈ R by
replacing the state space X by a smaller state space X (and
strengthening the norm), and it is possible to make � exactly observable
in infinite time with some bound ω ∈ R by replacing the state space X by
a larger state space X (and weakening the norm).

Proof (i) Let X be the image in X of L p
ω(R−; U ) under B. Then, because of

the intertwining condition AtB = Bπ−τ t , X is invariant under A. We equip
this space with the norm induced by B. In other words, if we denote U =
L p
ω(R−; U )/N (B), then B induces an injective operator in B(U ; X ), and we

define the new (stronger) norm |x |X = ‖B−1x‖U in X (cf. Lemma 4.3.13). This
makes X a Banach space (even a Hilbert space if all the involved spaces are
Hilbert spaces), and B becomes an isometric isomorphism between U and X .
The left shift semigroup τ t

− = π−τ t on R− induces a C0 semigroup on this
quotient, and it follows from the intertwining condition AtB = Bπ−τ t that the
restriction of A to X is the image under B of this quotient semigroup. Thus, A

is strongly continuous in the norm of X . Obviously the restriction of C to X is
continuous (since the norm of X is stronger than the norm of X ). This means

that
[

A B

C D

]
is an L p-well-posed linear system on (Y, X ,U ). By construction,

it is exactly controllable in infinite time with bound ω.
(ii) By assumption, the operator C is injective and bounded X → L p

ω(R+; Y ).
We can define a new norm on X , which is weaker than the original norm, by
setting |x |X = ‖Cx‖L p

ω(R+;Y ). The space X is not complete in this norm (unless
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R (C) is closed in L p
ω(R+; Y )), so we let X be the completion of X under

this weaker norm. Then C becomes an isometric isomorphism between X and
Y = R (C). Since R (C) is invariant under the left shift τ t

+ = τ t
+ on R+ (this

follows from the intertwining condition CAt = τ t
+C), also Y is invariant under

τ t
+. Moreover, if we use the norm of X in X , then A is (isometrically) similar

to the restriction of τ t
+ to R (C) with the similarity transform At = C−1τ t

+C.
By continuity, A can be extended to a C0 semigroup on X . The operator B is
obviously continuous with values in X (since the norm of X is weaker than the

norm of X ). Thus,
[

A B

C D

]
is an L p-well-posed linear system on (Y, X ,U ). By

construction, it is exactly observable in infinite time with bound ω.
(iii) This is obvious. �

Remark 9.4.8 Part (ii) of Theorem 9.4.7 is valid also for L∞-well-posed and
Reg-well-posed systems, for all ω ∈ R such that R (C) ⊂ BC0,ω(R

+
; Y ). The

proof remains the same (replace L p
ω by BC0,ω).

Proposition 9.4.9 Let � = [A B

C D

]
be a minimal L2-well-posed linear sys-

tem on the Hilbert spaces (Y, X,U ) which is both input/state bounded and
state/output bounded. Let

√
BB∗ ∈ B(X ) be the positive square root of the

controllability gramian of �, and let
√

C∗C ∈ B(X ) be the positive square root
of the observability gramian of � (cf. Definition 10.4.1 and Lemma A.2.2).

(i) The spaces X and X constructed in the proof of Theorem 9.4.7 are
Hilbert spaces: X is the range of

√
BB∗ equipped with the norm

|x |X = |
√

BB∗x |X , and X is the completion of X with respect to the
norm |x |X = |

√
C∗Cx |X . Thus,

√
BB∗ is a unitary map of X onto X, the

extension
√

C∗C ∈ B(X ) of the operator
√

C∗C is a unitary map of X
onto X, and

〈x, y〉X = 〈
√

BB∗x,
√

BB∗y〉X , x, y ∈ X,

〈x, y〉X = 〈
√

C∗Cx,
√

C∗Cx〉X , x, y ∈ X .

(ii) If we denote the adjoints of B and C with respect to the inner product in
X by B′, respectively C′, then BB′ = 1 and C′C = BB∗C∗C|X (these
are the controllability and observability gramians of the system �).

(iii) If we denote the adjoints of B and C with respect to the inner product in
X by B′′, respectively C

′′
, then BB′′ = BB∗C∗C and C

′′
C = 1; in

particular, X is invariant under BB′′ and BB′′ = C′C (BB′′ and C
′′
C

are the controllability and observability gramians of the system �).

(iv) The operator
√

BB′′ =
√

BB∗C∗C is a unitary map of X onto X, and

〈x, y〉X = 〈
√

BB′′x,
√

BB′′y〉X , x, y ∈ X .
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Proof (i) Let x ∈ X . Then BB∗x ∈ R (B) = X , and by the construction in the
proof of Theorem 9.4.7(i),

|BB∗x |2X = |B∗x |2L2(R−;U ) = 〈B∗x,B∗x〉X = 〈x,BB∗x〉X
= |
√

BB∗x |2X .
The operator

√
BB∗ is injective and it has the same range as B (see Lemma

A.2.5(iii)), so
√

BB∗ maps X one-to-one onto X . This space is dense in X ,
and therefore, it follows from the computation above that |√BB∗x |X = |x |X
for all x ∈ X . This proves that

√
BB∗ is an isometric map of X onto X , hence

unitary.
Let x ∈ X . Then, by the construction in the proof of Theorem 9.4.7(ii),

|x |2
X
= |Cx |2L2(R+;Y ) = 〈Cx,Cx〉L2(R+;Y ) = 〈x,C∗Cx〉L2(R+;Y )

= |
√

C∗Cx |2X .
Thus, X is the completion of X with respect to the norm |x |X = |

√
C∗Cx |X , and√

C∗C can be extended to a unitary map of X onto X . The operator E = C∗C
has an obvious extension to an operator in B(X ), namely C∗C, which is self-

adjoint in X (see the discussion leading up to Proposition 3.6.2). Let
√

C∗C be

the positive square root of this operator. Then the restriction of
√

C∗C to X is√
C∗C, so the (unique) extension of

√
C∗C to an operator in B(X ) is given by√

C∗C. Thus,
√

C∗C is an isometric, hence unitary map of X onto X .
(ii) We constructed the norm in X in such a way that B|N (B)⊥ is an isometric

map of N (B)⊥ onto X . Therefore B : L2(R−; U )→ X is co-isometric, and
BB′ = 1. By Proposition 3.6.2(v), C′ = BB∗C∗, so C′C = BB∗C∗C|X .

(iii) We constructed the norm in X in such a way that C : X → L2(R+ : Y )
is an isometry, so C

′′
C = 1. By Proposition 3.6.2(ii), B′′ = B∗C∗C, so BB′′ =

BB∗C∗C = C′C.
(iv) This follows from (i) with X replaced by X (the alternative formula for√

BB′′ is taken from (iii)). �

Another variation on the theme of Theorem 9.4.7 is the following modifica-
tion of Theorem 9.2.4.

Theorem 9.4.10 Let �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
be two minimal re-

alizations of the same input/output map D (i.e., they are minimal L p|Reg-well-
posed linear systems with the same input/output map D).

(i) If �1 is exactly controllable in infinite time with bound ω and B2 is
ω-bounded, then the pseudo-similarity transform E in Theorem 9.2.4 has
D (E) = X1 and E ∈ B(X1; X2). In this case it is possible to define a

norm on X2 = R (E) ⊂ X2 which makes
[

A2 B2

C2 D

]
an L p|Reg-well-posed
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linear system on (Y, X2,U ), where A2 and C2 are the restrictions of A2

and C2 to X2. This system is exactly controllable in infinite time with
bound ω, and it is similar to �1 (i.e., E ∈ B(X1; X2) and
E−1 ∈ B(X2; X1)). It coincides with �2 (in the sense that X2 = X2, but
the norms in X2 and X2 may be different though equivalent) if and only if
�2 is exactly controllable in infinite time with bound ω. In particular, any
two minimal realizations of the same input/output map D which are
exactly controllable in infinite time with the same bound ω are similar to
each other.

(ii) If �2 is exactly observable in infinite time with bound ω and C1 is
ω-bounded, then the pseudo-similarity transform in Theorem 9.2.4 has
D (E) = X1 and E ∈ B(X1; X2). In this case it is possible to extend the
state space X1 of �1 to a larger Banach space X1 with the following
properties. The embedding X1 ⊂ X1 is continuous and dense, E can be

extended to an operator E ∈ B(X1; X2) with E
−1 ∈ B(X2; X1), A1 can be

extended to a C0 semigroup A1 on X1, C can be extended to an operator

C ∈ B(X ; L p|Regω(R
+

; Y ), and
[

A B

C D

]
is an L p-well-posed linear

system on (Y, XB,U ) which is exactly observable in infinite time with
bound ω. It is similar to �2 with similarity operator E, and it coincides
with �1 (in the sense that X1 = X1, but the norms in X1 and X1may be
different though equivalent) if and only if �1 is exactly observable in
infinite time with bound ω. In particular, any two minimal realizations of
the same input/output map D which are exactly observable in infinite time
with the same bound ω are similar to each other.

Proof (i) Sinceπ+Dπ− = C1B1 = C2B2, and both B1 and B2 areω-bounded,
it is possible to extend π+Dπ− to an operator � mapping L p|Regω(R−; U ) into
L p|Regloc(R+; Y ), still satisfying� = C1B1 = C2B2. The exact controllability
assumption on �1 says that B1 maps L p|Regω(R−; U ) onto X1, and hence

R (C1) = R (C1B1) = R (�) = R (C2B2) ⊂ R (C2) .

By Theorem 9.2.5(i), D (E) = X1 and E ∈ B(X1; X2).
We define X2 = R (E), and let X2 inherit the norm of X1, i.e., let |Ex1|X2

=
|x1|X1 for all x ∈ X1. Then E is an isometric isomorphism of X1 onto X2. Using
E as the similarity operator in the standard similarity transform described in
Example 2.3.7 we get another realization of D with state space X2 which is
exactly controllable in infinite time with bound ω. Comparing Example 2.3.7
with (9.2.1), we find that this system is the restriction of �2 to X2.

We have X2 = X2 if and only if E maps X1 onto X2. Since B2 = EB1

and B1 maps L p|Regω(R−; U ) onto X1, this is true if and only if B2 maps
L p|Regω(R−; U ) onto X2, i.e., �2 is exactly controllable in infinite time with
bound ω.
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(ii) Recall from Lemma 9.2.2 thatR (C1) andR (C2) have the same closure in
L p|Regω(R+; Y ) (equal to the closure of R (π+Dπ−)). The exact observability
assumption on �2 implies that R (C2) is closed (see Lemma 9.10.2(iii)). Thus,
R (C1) ⊂ R (C2), and by Theorem 9.2.5(i), D (E) = X1 and E ∈ B(X1; X2).

We define X1 to be the completion of X1 with respect to the norm induced by
E , i.e., |x1|X1

= |Ex1|X2 . Then E can be extended to an isometric isomorphism
E of X1 onto X2. Using E as the similarity operator in the standard similarity
transform described in Example 2.3.7 we get another realization of D with state
space X1 which is exactly observable in infinite time with bound ω. Comparing
Example 2.3.7 with (9.2.1), we find that the restriction of this system to X1

is �1.
We have X1 = X1 if and only if E has a bounded inverse. By Theorem

9.2.5(iii), this is true if and only if R (C1) = R (C2). Since R (C2) is closed
and R (C1) and R (C2) have the same closure in L p|Regω(R+; Y ), this is
true if and only if R (C1) is closed in L p|Regω(R+; Y ), or equivalently (see
Lemma 9.10.2(iii)), if and only if �1 is exactly observable in infinite time with
bound ω. �

Corollary 9.4.11 Let � = [A B

C D

]
be a minimal L p-well-posed linear system

with 1 ≤ p <∞.

(i) If � is state/output bounded and exactly observable in infinite time with
bound ω = 0, then A is strongly stable.

(ii) If � is input/state bounded and exactly controllable in infinite time with
bound ω = 0, then A is bounded.

Proof (i) The exactly observable shift realization of D described in Example
2.6.5 is strongly stable, but not necessarily minimal. We can make it minimal
by restricting it to the reachable subspace, as described in Theorem 9.1.9(i).
The restricted (shift) semigroup is still strongly stable. By Theorem 9.4.10(i),
the system that we get in this way is similar to the given system �, so A must
be strongly stable.

(ii) The proof of part (i) is analogous to the proof of (i). �

The spaces X and X that we constructed in Theorem 9.4.7 (and also in
Theorem 9.4.10) have the drawback that they depend on ω. It would be much
better if they did not depend onω, but this is not always possible, as the following
counter-example shows.

Example 9.4.12

(i) The exactly controllable shift realization in Example 2.6.5(i) is exactly
controllable in infinite time with bound ω, but is not exactly controllable
in infinite time for any other ω′ �= ω. Theorem 9.4.7(i) applies with ω
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replaced by ω′ > ω, and the space X that we get from this theorem is
X = L p

ω′ (R
−; U ). This realization is not (even approximately)

controllable in finite time.
(ii) The exactly observable shift realization in Example 2.6.5(ii) is exactly

observable in infinite time with bound ω, but is not exactly observable in
infinite time for any other ω′ �= ω. Theorem 9.4.7(ii) applies with ω
replaced by ω′ > ω, and the space X that we get from this theorem is
X = L p

ω′ (R
+; Y ). This realization is not (even approximately) observable

in finite time.

Fortunately, there is a simple characterization of systems which are exactly
controllable in infinite time with two different bounds ω; see Theorem 9.10.6.

9.5 Normalized and balanced realizations

The special realizations defined on X and X that we constructed in the proof
of Theorem 9.4.7 are special examples of realizations that are either input
normalized or output normalized.

Definition 9.5.1 Let � be an L p-well-posed linear system on (Y, X,U ) with
1 ≤ p <∞.

(i) � is input normalized if � is minimal and input/state bounded and the
operator induced by B on L p(R−; U )/N (B) is an isometry, i.e., if we
denote the quotient map of L p(R−; U ) onto L p(R−; U )/N (B) by π , then
‖Bu‖X = ‖πu‖L p(R−;U )/N (B) for all u ∈ L p(R−; U ).

(ii) � is output normalized if � is minimal and state/output bounded and C is
an isometry, i.e., ‖Cx‖L p(R+;Y ) = ‖x‖X for all x ∈ X .

It is also possible to consider input or output normalized system nodes rather
than input or output normalized L p-well-posed linear systems, but we shall not
do so here (cf. Definition 10.1.1).

We have already encountered some input and output normalized systems:

Proposition 9.5.2 Let 1 ≤ p <∞, and let � = [A B

C D

]
be a stable minimal

L p-well-posed linear system on (Y, X,U ).

(i) The system � constructed in the proof of Theorem 9.4.7(i) with ω = 0 is
input normalized, and it is unique in the sense that it is the only input
normalized system � which has all the properties listed in Theorem
9.4.7(i). We call this the input normalized system induced by �.

(ii) The system � constructed in the proof of Theorem 9.4.7(ii) with ω = 0 is
output normalized if ω = 0, and it is unique in the sense that it is the only
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output normalized system � which has all the properties listed in
Theorem 9.4.7(ii) (if we identify any two completions of X with respect to
the same norm). We call this the output normalized system induced
by �.

(iii) The minimal realization of D that we get by factoring out the
unobservable subspace (cf. Theorem 9.1.9(ii)) from the exactly
controllable shift realization of D given in Example 2.6.5(i) with ω = 0
is input normalized. We call this the restricted exactly controllable shift
realization of D.

(iv) The minimal realization of D that we get by restricting the exactly
observable shift realization of D given in Example 2.6.5(ii) with ω = 0 to
the reachable subspace (cf. Theorem 9.1.9(i)) is output normalized. We
call this the restricted exactly observable shift realization of D.

Proof (i)–(ii) That the systems constructed in the proof of Theorem 9.4.7(i),(ii)
are input, respectively, output normalized follows immediately from Definition
9.5.1. The added normalization constraint determine the norms in X and X
uniquely. This makes X and X unique, hence it makes the normalized versions
of � and � unique.

(iii) In this case X = L p(R−; U )/N (π+Dπ−) and B = π is the quotient
map of L p(R−; U ) onto X = L p(R−; U )/N (B).

(iv) Here X is the closure ofR (π+Dπ−) in L p(R+; Y ) and C is the restriction
to X of the identity map in L p(R+; Y ). �

Theorem 9.5.3 Let 1 ≤ p <∞, and let D ∈ TICp(U ; Y ), and let � =
π+Dπ− ∈ B(L p(R−; U ); L p(R+; Y )) be the Hankel operator induced
by D.

(i) Any two input normalized realizations �1 =
[

A1 B1

C1 D

]
and

�2 =
[

A2 B2

C2 D

]
of D on (Y, X1,U ), respectively (Y, X2,U ), are

isometrically isomorphic, i.e, the similarity operator E in Theorem 9.2.4
is a norm-preserving mapping of X1 onto X2. In particular, they are
isometrically isometric to the restricted exactly controllable shift
realization in Proposition 9.5.2(iii). Moreover, R (C1) = R (C2) = R (�),
and |x1|X1 = |x2|X2 whenever x1 ∈ X1, x2 ∈ X2, and C1x1 = C2x2. If U
and Y are Hilbert spaces and p = 2, then X1 and X2 are Hilbert spaces,
B1B

∗
1 = B2B

∗
2 = 1, B∗1B1 = B∗2B2 is the orthogonal projection in

L2(R−; U ) onto N (�)⊥, C1C
∗
1 = C2C

∗
2 = ��∗, and both C∗1C1 and C∗2C2

are unitarily similar to �∗�|N (�)⊥ and to ��∗|N (�∗)⊥ .
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(ii) Any two output normalized realizations �1 =
[

A1 B1

C1 D

]
and

�2 =
[

A2 B2

C2 D

]
of D on (Y, X1,U ), respectively (Y, X2,U ), are

isometrically isomorphic. In particular, they are isometrically isometric
to the restricted exactly observable shift realization in Proposition
9.5.2(iv). Moreover, C1 and C2 are isometric isomorphisms of X1,
respectively X2, onto the closure of R (�) in L p(R+; Y ). If U and Y are
Hilbert spaces and p = 2, then X1 and X2 are Hilbert spaces,
C∗1C1 = C∗2C2 = 1, C1C

∗
1 = C2C

∗
2 is the orthogonal projection in

L2(R+; Y ) onto R (�), B∗1B1 = B∗2B2 = �∗�, and both B1B
∗
1 and

B2B
∗
2 are unitarily similar to �∗�|N (�)⊥ and to ��∗|N (�∗)⊥ .

(iii) Let �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
be two input normalized

realizations of D on (Y, X1,U ), respectively (Y, X2,U ), and let E be the
unitary similarity operator in (i) mapping X1 onto X2. Let

�1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
be the corresponding output

normalized realizations of D on (Y, X1,U ), respectively (Y, X2,U ),
induced by �1 and �2 (cf. Proposition 9.5.2(ii), and let E be the
isometric similarity operator in (ii) mapping X1 onto X2. Then E = E |X .
In particular, E maps X1 isometrically onto X2.

(iv) Every input normalized system is observable and exactly controllable in
infinite time with bound ω = 0, and its semigroup is a strongly co-stable
contraction semigroup.

(v) Every output normalized system is controllable and exactly observable in
infinite time with bound ω = 0, and its semigroup is a strongly stable
contraction semigroup.

Proof (i) To prove this claim it suffices to show that every input normal-
ized realization � = [A B

C D

]
on (Y, X,U ) of D is isometrically isomor-

phic to the restricted exactly controllable shift realization in Proposition

9.5.2(iii). Let us denote this realization by �′ =
[

A′ B′

C′ D

]
. Its state space is

X ′ = L p(R−; U )/N (π+Dπ−) and B′ = π is the quotient map of L p(R−; U )
onto X . By Lemma 9.2.2(i), N (π+Dπ−) = N (B). Therefore, by the condi-
tion imposed on B in Definition 9.5.1, |Bu|X = |B′u|X ′ for all u ∈ L p(R−; U ).
By Theorem 9.2.6(iv), � and �′ are similar to each other, with an isometric
similarity operator E . That C has the same range as C′ = π+Dπ− and that
|x1|X1 = |x2|X2 whenever C1x1 = C2x2 follows from Theorem 9.2.5(iv).

All the claims about the Hilbert space case in (i) are either obvious conse-
quences of what has been said earlier, or else easy to prove (that �∗�|N (�)⊥ and
��∗|N (�∗)⊥ are unitarily similar follows from Lemma A.2.5). We leave this to
the reader.
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(ii) To prove this claim it suffices to show that every output normalized
realization � = [A B

C D

]
on (Y, X,U ) of D is isometrically isomorphic to the

restricted exactly observable shift realization in Proposition 9.5.2(iv). Let us

denote this realization by �′′ =
[

A′′ B′′

C′′ D

]
. Its state space is X ′′ = R (π+Dπ−),

and C′′ is the identity (hence isometric). By Lemma 9.2.2(ii), R (π+Dπ−) =
R (C). ButR (C) is closed sinceC is isometric, and soR (C) = R (C)′′ = X ′′. By
Theorem 9.2.5,� and�′′ are similar to each other, with an isometric similarity
operator E .

We again leave the proof of the additional claims valid in the Hilbert space
case to the reader.

(iii) Recall from (i) thatR (C1) = R (C2). We haveC1 = (C1)|X ,C2 = (C2)|X .

Thus (C
−1
2 )|R(C1) = C−1

2 , and by (9.2.3),

E |X = C
−1
2 (C1)|X = C

−1
2 C1 = C−1

2 C1 = E .

(iv)–(v) This is true because the restricted exactly observable and exactly
controllable shift realizations have these properties, and every input or output
normalized realization is isometrically similar to one of these. �

Corollary 9.5.4 Let U and Y be Hilbert spaces, and let D ∈ TIC2(U ; Y ). Then
the observability gramian of any input normalized realization of D is unitarily
similar to the controllability gramian of any output normalized realization of
D. In particular, if we denote the Hankel operator π+Dπ− by �, then they are
unitarily similar to �∗�|N (�)⊥ and also to ��∗|N (�∗)⊥ .

This follows from Theorem 9.5.3(i)–(ii).
In the Hilbert space L2-well-posed case it is possible to go one step fur-

ther and to construct a balanced realization by interpolating between an input
normalized and an output normalized realization.

Definition 9.5.5 Let � = [A B

C D

]
be an L2-well-posed linear system on the

Hilbert spaces (Y, X,U ). This system is (Hankel) balanced if it is minimal,
input/state bounded and state/output bounded, and the two gramians BB∗ and
C∗C are equal.3

Theorem 9.5.6 Let D ∈ TIC2(U ; Y ), where U and Y are Hilbert spaces.
Then D has a (Hankel) balanced realization � = [A B

C D

]
, and this realiza-

tion is unique up to a unitary similarity transformation in the state space.

3 Sometimes the word parbalanced is used in this case, and the word “balanced” is reserved for
the case when these gramians are diagonal with respect to some orthonormal basis. This is true
if and only if the gramians have a full set of eigenvectors which span the state space. The
standard way to guarantee this is to assume that the Hankel operator of the input/output map is
compact.
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Both A and A∗ are strongly stable contraction semigroups. If we denote the
Hankel operator induced by D by � := π+Dπ− ∈ B(L2(R−; U ); L2(R+; Y )),
then CC∗ = √��∗, B∗B = √�∗�, and C∗C = BB∗ are unitarily similar to√
�∗�|N (�)⊥ and also to

√
��∗|N (�∗)⊥ . If � is the input normalized system on

(Y, X ,U ) and � is the output normalized system on (Y, X ,U ) induced by �
(see Proposition 9.5.2(i)–(ii)), then

√
BB∗ is a unitary map of X onto X, and

X is the completion of X with respect to the norm |x |X = |
√

BB∗x |X .

In Theorem 11.8.14 we shall encounter another type of balancing, where we
interpolate between the minimal and maximal passive realizations of a given
input/output map D. The main part of the argument is the same in both cases,
and we have distilled it into the following lemma.

Lemma 9.5.7 Let� =
[

A B

C D

]
and� =

[
A B

C D

]
be two L2-well-posed linear

systems on the Hilbert spaces (Y, X ,U ), respectively (Y, X ,U ), where X is
continuously and densely embedded in X (in particular, the two systems have
the same input map B, the same input/output map D, A = A|X , and C = C|X ).
Suppose that A is a contraction semigroup on X , and that A is a contraction
semigroup on X. Let F ∈ B(X ) be the Gram operator of the embedding X ⊂ X
(i.e., F > 0, and 〈x, y〉X = 〈x, Fy〉X for all x, y ∈ X ).

(i) There is a unique Hilbert space X such that X ⊂ X ⊂ X with continuous
and dense embeddings, and such that the Gram operator of the
embedding X ⊂ X is the restriction to X of the Gram operator of the
embedding X ⊂ X. That is, there is a unique positive operator E ∈ B(X )
(namely E = √F) such that 〈x, y〉X = 〈x, Ey〉X for all x, y ∈ X and
〈x, y〉X = 〈x, Fy〉X for all x, y ∈ X. If we identify the dual of X with X
itself, then X and X are duals of each other.

(ii) The space X is invariant under A, and if we define A = A|X , C = C|X ,
and B = B, then A is a C0 contraction semigroup on X and
� = [A B

C D

]
is an L2-well-posed linear system on (Y, X,U ).

Furthermore, A is strongly stable (in X) whenever A is strongly stable
(in X), and A is strongly co-stable (i.e., A∗ is strongly stable in X)
whenever A is strongly co-stable (in X).

(iii) If we use the superscripts ′′, ∗, and ′ for adjoints computed with respect to
the norms in X, X, and X, respectively, then

A
′′ = E−1A∗E, B′′ = B∗E, C∗ = EC

′′
,

A∗ = E−1A′E, B∗ = B′E, C′ = EC∗,

A
′′ = F−1A′F, B′′ = B′F, C′ = FC

′′
.
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Note that the growth bounds of the three systems is at most zero (since
the semigroups are contraction semigroups), so that B′, B∗, and B′′ map into
L2
ω(R−; U ) and C′, C∗, and C

′′
are defined on L2

ω(R+; Y ) for every ω > 0.

Proof (i) Define E = √F , and let X be the range of
√

E , with the induced
norm: |√Ex |X = |x |X . This space has all the properties listed in (i) (see the
discussion preceding Proposition 3.6.2 for an explanation of the duality). It is
unique since a Hilbert subspace of X is determined uniquely by its norm, and
the requirements listed in (i) imply that we must have E = √F .

(ii) By Lemma 9.5.8, X is invariant under A
t
, and At := A

t
|X is a contraction

on X . It is clearly a semigroup on X . For all x ∈ X , At x = At x is continuous
in X , hence in X . If A is strongly stable and x ∈ X , then At x tends to zero at
infinity:

‖At x‖2
X = 〈At x,At x〉X = 〈At

x,At x〉(X ,X ) ≤ ‖A
t
x‖X‖At x‖X

≤ ‖At
x‖X‖x‖X → 0 as t →∞.

Thus, Ax ∈ BC(R
+

; X ) for all x ∈ X , and if A is strongly stable, then Ax ∈
BC0(R

+
; X ). Given x ∈ X , we can choose a sequence xn ∈ X converging to x

in X . Then At xn → At x in X , uniformly in t ∈ R
+

(since A is a contraction
semigroup), and therefore the limit Ax is continuous, and it tends to zero at
infinity if A is strongly stable. Thus, A is strongly continuous (in X ), and it is
strongly stable whenever A is strongly stable.

That A is strongly co-stable whenever A is strongly co-stable follows from
the same argument, applied to the dual system (since X is the dual of X with
X as pivot space).

Define C = C|X . Then � = [A B

C D

]
satisfies all the algebraic conditions in

Definition 2.2.1, and A is a C0 contraction semigroup on X . The input map B

is continuous with values in X since it is continuous with values in X , and the
output map C is continuous on X since it is continuous on X . Thus, � is an
L2-well-posed linear system on X .

(iii) This follows from Proposition 3.6.2. �

Proof of Theorem 9.5.6 Let� =
[

A B

C D

]
be an arbitrary input normalized real-

ization of D on (Y, X ,U ) (for example, the restricted exactly controllable shift

realization in Proposition 9.5.2(iii)), and let � =
[

A B

C D

]
be the corresponding

output normalized realization on (Y, X ,U ) (cf. Proposition 9.5.3(iii)). Then
A is a strongly co-stable contraction semigroup, and A is a strongly stable
contraction semigroup (see Theorem 9.5.3(iv)–(v)). Let � be the system in
Lemma 9.5.7 with state space X . Then A is a contraction semigroup which is
both strongly stable and strongly co-stable.
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With the notation introduced in part (iii) of Lemma 9.5.7, we have (since �
is input normalized and� is output normalized; hence C

′′
C = 1 and BB′ = 1)

BB∗ = C∗C = E|X , BB′′ = F, C′C = F|X .

Thus, � is (Hankel) balanced. By Theorem 9.5.3(i),

��∗ = CC′ = CEC∗ = CC∗CC∗,

hence CC∗ = √��∗. A similar computation shows that B∗B = √�∗�.
That a balanced realization is unique up to a unitary similarity transformation

in its state space follows from the final claim in Theorem 9.2.5 and the fact
that CC∗ = √��∗ is independent of the realization (as long as it is balanced).
That CC∗|N (C∗)⊥

= √��∗|N (�∗)⊥ , B∗B|N (B)⊥ =
√
�∗�|N (�)⊥ and C∗C = BB∗

are unitarily similar to each other follows from Lemma A.2.5. �

In the proof of Lemma 9.5.7 we use the following fundamental lemma.

Lemma 9.5.8 Let U, Y , and W ⊂ X ⊂ V be Hilbert spaces, where the embed-
dings are continuous and dense, let E ∈ B(V ) be injective, self-adjoint (with
respect to the inner product in V ), and suppose that

√
E maps V isometrically

onto X and that
√

E |X maps X isometrically onto W . Let A be a contraction
on V , and suppose that W is invariant under A, and that A := A|W is a con-
traction on W . Then A := A|X is a contraction on X (in particular, A maps X
into X).

Proof Let A∗ ∈ B(V ) and A
∗ ∈ B(W ) be the adjoints of A, respectively A,

when we identify the dual of W with V (with X as pivot space), let A′ ∈ B(W )
be the adjoint of A with respect to the inner product in W , and let A

′′ ∈ B(V )
be the adjoint of A with respect to the inner product in V . All of these operators
are contractions in the indicated spaces, A

∗ = A∗|W , and by Proposition 3.6.2,

A∗ = E−1 A′E, A
∗ = E A

′′
E−1, A

′′ = E−2 A′E2.

Define B := A∗A = A
∗

A. Then B ∈ B(W ), and B is positive with respect to
the inner product in X on W since, for all w ∈ W ,

〈w, Bw〉X = 〈w, E Bw〉W = 〈w, A′E Aw〉W = 〈Aw, E Aw〉W
= 〈Aw, Aw〉X ≥ 0.

This implies that B can be extended to a (possibly unbounded) positive self-
adjoint operator (with respect to the inner product in X ) mapping D (B) ⊂ X
into X (see, e.g., Kato 1980, Theorem 3.4, p. 268, Corollary 1.28, p. 318, and
Theorem 2.6, p. 323). We still denote the extended operator by the same letter
B. Note that W ⊂ D (Bn) for all n = 1, 2, 3, . . . since B was originally defined
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on W and B maps W into itself. The operator B has a spectral resolution F( dλ),
and for all n = 1, 2, 3, . . . and x ∈ D (Bn) (in particular, for all x ∈ W )

Bn x =
∫

R
+
λn F( dλ)x .

Letπ be the orthogonal projectionπx = F((1,∞)) = ∫(1,∞) F( dλ)x , let X1 =
N (π ) and X2 = R (π ), and let B1 = B(1− π ), B2 = Bπ . Then π commutes
with B, B1 is a contraction mapping X into X1, D (Bn

2

) = D (Bn) ⊃ W for all
n = 1, 2, 3, . . ., and for all x ∈ W and n = 1, 2, 3, . . . ,

〈x, Bn x〉X = 〈x, Bn
1 x〉X + 〈x, Bn

2 x〉X .
If we here let n→∞, then one of two things will happen. If πx = 0, then
Bn

2 x = 0 and 〈x, Bn
1 x〉X ≤ |x |2X , so in this case lim supn→∞〈x, Bn x〉X ≤ |x |2X .

If πx �= 0, then we still have 〈x, Bn
1 x〉X ≤ |x |2X but, by the Lebesgue monotone

convergence theorem

〈x, Bn
2 x〉X =

∫
(1,∞)

λn〈x, F( dλ)x〉 → ∞.

Thus, we can test whether x ∈ W satisfies πx = 0 by testing if lim supn→∞
〈x, Bn x〉X is finite or not.

We claim that lim supn→∞〈x, Bn x〉X is actually finite for all x ∈ W . This
can be seen as follows. Let x ∈ W . We write Bx in the form

Bx = E A
′′
E−1 A = E1/2 E1/2 A

′′
E−1/2 E−1/2 AE1/2 E−1/2

= E1/2CC E−1/2,

where both C := E1/2 A
′′
E−1/2 and C = E−1/2 AE1/2 are contractions on X (C

is unitarily similar to the contraction A
′′

on V , and C is unitarily similar to the
contraction A on W ). Thus,

〈x, Bn x〉X = 〈x, E1/2[CC]n E−1/2x〉X = 〈E1/2x, [CC]n E−1/2x〉X
≤ 〈E1/2x, E−1/2x〉X = |x |V |x |W .

This proves our earlier claim that lim supn→∞〈x, Bn x〉X <∞ for all x ∈ W .
As we observed earlier, this implies that πx = 0 for all x ∈ W , and since
W is dense in X , we get B2 = 0. We conclude that B = B1 is a contraction
on X .

Since B is a contraction on X , we get for all x ∈ W ,

|Ax |2X = 〈Ax, Ax〉X = 〈x, Bx〉X ≤ |x |2X .
This implies that A has a unique extension to a contraction operator on X . Since
A = A|W , this extension must coincide with A|X . Thus, A|X is a contraction
on X . �
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9.6 Resolvent tests for controllability and observability

Our original definition of controllability and observability was given in the time
domain in terms of the input map B and output map C. It is useful to have some
alternative characterizations in terms of the semigroup generator A, the control
operator B, and the observation operator C . Some conditions of this type will
be given below. See Section 9.10 for additional conditions.

We begin by establishing a number of different equivalent characterizations
of the unobservable subspace.

Lemma 9.6.1 Let� be an L p|Reg-well-posed linear system on (Y, X,U ) with
semigroup generator A and observation operator C. Denote the component of
ρ(A) which contains some right half-plane by ρ∞(A). Then the unobservable
subspace U of � can be characterized in the following equivalent ways:

(i) U = N (C),
(ii) U =⋂λ∈ρ∞(A) N

(
C(λ− A)−1

)
,

(iii) U =⋂∞n=1 N
(
C(λn − A)−1

)
, where {λn}∞n=1 is an arbitrary sequence

contained in ρ∞(A) which has a cluster point in ρ∞(A),
(iv) U =⋂∞n=1 N

(
C(λ− A)−n

)
, where λ is an arbitrary point in ρ∞(A),

(v) U is the largest A-invariant subspace which is contained in
N (C(λ− A)−1

)
, where λ is an arbitrary point in ρ∞(A).

If A ∈ B(X ), then

(vi) U =⋂∞n=0 N (C An),

and if C has an extension to an operator C|X ∈ B(X ; Y ), then

(vii) U is the largest A-invariant subspace which is contained in N (C|X ).
Proof We begin by observing that (i) is the original definition of the unobserv-
able subspace.

Let x0 ∈ X . Then x0 ∈ U if and only if C(x0) = 0, or equivalently, if and
only if the Laplace transform of C(x0) vanishes. By Theorem 4.4.2(iv), this
Laplace transform is given by

Ĉ(x0)(λ) = C(λ− A)−1x0, λ ∈ C+ωA
,

where ωA is the growth bound of A. The right-hand side of this equation
has a (unique) analytic extension to ρ∞(A), so C(x0) = 0 if and only if
(λ− A)−1Cx0 = 0 for all λ ∈ ρ∞(A). This proves (ii). But (ii) is equivalent
to (iii) since the analytic function (λ− A)−1Cx0 vanishes identically if and
only if its zero set has a cluster point in the domain of analyticity. It is also
equivalent to (iv), because the same analytic function vanishes identically if
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and only if all its derivatives vanish at one point, and according to (3.2.6),

dn

dλn
C(λ− A)−1x0 = (−1)nn!C(λ− A)−(n+1)x0.

If A ∈ B(X ), then C(λ− A)−1x0 is analytic at infinity, and ρ∞(A) contains a
neighborhood of ∞. The function C(λ− A)−1x0 vanishes identically in this
neighborhood if and only if its Taylor series at infinity vanishes. By Lemma
4.10.6, this series is given by

C(λ− A)−1x0 =
∞∑

n=0

C An x0λ
−n−1.

Thus C(λ− A)−1x0 = 0 in a neighborhood of infinity if and only if C An x0 = 0
for all n = 0, 1, 2, . . .

It remains to prove (v) and (vii). We begin with (v). By (iv), U ⊂
N (C(λ− A)−1

)
, and U is invariant under (λ− A)−1 (since (λ− A)−1x0 sat-

isfies (iv) whenever x0 does). By Theorem 3.14.4, U is an invariant sub-
space of A. Let V ⊂ N (C(λ− A)−1

)
be an arbitrary subspace which is in-

variant under A, hence under (λ− A)−1, and let x0 ∈ V . Then, for all n =
0, 1, 2, . . ., (λ− A)−n x0 ∈ V ⊂ N (C(λ− A)−1

)
, so C(λ− A)−n−1x0 = 0. By

(iv), x0 ∈ U . Thus V ⊂ U , so U is the largest A-invariant subspace contained
in N (C(λ− A)−1

)
.

Suppose, finally, that C has an extension C|X ∈ B(X ; Y ). By (ii), if x0 ∈ U
then C(λ− A)−1x0 = 0 for all λ ∈ ρ∞(A). Therefore, by Theorem 3.7.1(iii),

C|X x0 = C|X lim
λ→+∞

λ(λ− A)−1x0 = lim
λ→+∞

λC(λ− A)−1x0 = 0.

Thus U ⊂ N (C|X ). The proof of the claim that U is the largest A-invariant
subspace contained in N (C|X ) is analogous to the one above. �

This lemma immediately gives us the following characterization of observ-
ability:

Corollary 9.6.2 Let � be an L p|Reg-well-posed linear system on (Y, X ; U )
with semigroup generator A and observation operator C. Denote the component
of ρ(A) which contains some right half-plane by ρ∞(A). Then the following
conditions are equivalent:

(i) � is observable,
(ii)
⋂∞

n=1 N
(
C(λn − A)−1

) = 0 for some sequence (hence, for all
sequences) {λn}∞n=1 ⊂ ρ∞(A) which has a cluster point in ρ∞(A),

(iii)
⋂∞

n=0 N
(
C(λ− A)−n

) = 0 for some (hence, for all) λ ∈ ρ∞(A),
(iv) for some (hence, for all) λ ∈ ρ∞(A), N (C(λ− A)−1

)
does not contain

any nontrivial A-invariant subspace.
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If A ∈ B(X ), then these conditions are equivalent to

(v)
⋂∞

n=0 N (C An) = 0,

and if C has an extension to an operator C|X ∈ B(X ; Y ), then they are further
equivalent to

(vi) N (C|X ) does not contain any nontrivial A-invariant subspace.

Proof See Lemma 9.6.1. �

A result similar result to Lemma 9.6.1 is true for the input map B.

Lemma 9.6.3 Let � be an L p|Reg-well-posed linear system on (Y, X ; U ) with
semigroup generator A and control operator B. Denote the component of ρ(A)
which contains some right half-plane by ρ∞(A). Then the reachable subspace
R of � can be characterized in the following equivalent ways:

(i) R = R (B),
(ii) R is the closed linear span of

⋃
λ∈ρ∞(A) R

(
(λ− A|X )−1 B

)
,

(iii) R is the closed linear span of
⋃∞

n=1 R
(
(λn − A|X )−1 B

)
, where {λn}∞n=1

is an arbitrary sequence contained in ρ∞(A) which has a cluster point in
ρ∞(A),

(iv) R is the closed linear span of
⋃∞

n=1 R
(
(λ− A|X )−n B

)
, where λ is an

arbitrary point in ρ∞(A),
(v) R is the smallest closed A-invariant subspace which contains

R ((λ− A|X )−1 B
)
, where λ is an arbitrary point in ρ∞(A).

If A ∈ B(X ), then

(vi) R is the closed linear span of
⋃∞

n=0 R (An B),

and if R (B) ⊂ X, then

(vii) R is the smallest closed A-invariant subspace which contains R (B).

The proof of this lemma uses the following well-known result:

Lemma 9.6.4 Let X be a Banach space. For each E ⊂ X we define

E⊥ = {x∗ ∈ X∗ | 〈x, x∗〉 = 0 for all x ∈ E},
and for each F ⊂ X∗ we define

⊥F = {x ∈ X | 〈x, x∗〉 = 0 for all x∗ ∈ F}.
Then, for each E ⊂ X, ⊥(E⊥) is the closed linear span of E.

See, for example, Kato (1980, p. 136) for a proof. The set E⊥ is usually
called the annihilator of E , and ⊥F could be called the pre-annihilator (or
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simply annihilator) of F . Note that ⊥F = F⊥ ∩ X in the nonreflexive case, and
that ⊥F = F⊥ if X is reflexive.

Proof of Lemma 9.6.3 Clearly, (i) is just a repetition of the definition of
R. For the duration of this proof, let us denote R = R (B), and let us
denote the closed linear subspaces given in the different parts (ii)–(vii)
by R(i i), R(i i i), etc. Thus, for example, R(i i) is the closed linear span of
∪λ∈ρ∞(A)R

(
(λ− A|X )−1 B

)
, and R(v) is the smallest closed A-invariant sub-

space which containsR ((λ− A|X )−1 B
)
, whereλ is an arbitrary point inρ∞(A).

By Lemma 9.6.4, to prove that these subspaces are identical it suffices to show
that they have the same annihilator, and to prove that one is included in the
other it suffices to prove the opposite inclusion of their annihilators.

We first show that R(i i) ⊂ R. Let x∗0 ∈ R⊥. Let λ ∈ C+ωA
where ωA is the

growth bound of A, and define the functions en,λ as in Theorem 4.2.1(iii). Then
B(eλ,nu) ∈ R, hence 〈B(eλ,nu), x∗0 〉) = 0 for all n = 0, 1, 2, . . . and all u ∈ U .
By Theorem 4.2.1(iii), this is equivalent to saying that 〈(λ− A)−n Bu, x∗0 〉) = 0
for all n = 0, 1, 2, . . . and all u ∈ U . The function 〈(λ− A)−1 Bu, x∗0 〉) is an
analytic function on ρ∞(A), and the above condition says that all its derivatives
vanish at the point λ (see (3.2.6)). Therefore it must vanish identically on
ρ∞(A). We conclude that x∗0 belongs to the annihilator of R ((λ− A)−1 B

)
for

all λ ∈ ρ∞(A), so x∗0 ∈ R⊥(i i). This proves that R(i i) ⊂ R.

A simplified version of the above argument also shows that R(i i) = R(i i i) =
R(iv) (an analytic function vanishes identically if all its derivatives vanish at
some point, or if its zero set has a cluster point).

We next show that R(v) ⊂ R(iv). It is clear that R(iv) contains
R ((λ− A)−1 B

)
, and that R(iv) is invariant under (λ− A)−1 (since

∪∞n=2R
(
(λ− A|X )−n B

) ⊂ ∪∞n=1R
(
(λ− A|X )−n B

)
). By Theorem 3.14.4, it is

A-invariant. It is also closed. Thus R(iv) must contain R(v).
To complete the proof of (ii)–(v) we must still show that R ⊂ R(v). As

we saw above, R ((λ− A)−1 B
) ⊂ R for all λ ∈ ρ∞(A). It follows from the

intertwining condition AtB = Bτ t
− that R (B) is invariant under A, hence

so is its closure R. Thus, R is a closed A-invariant subspace which con-
tains R ((λ− A)−1 B

)
. It remains to show that it is minimal. Let V be a

closed A-invariant subspace containing R ((λ− A|X )−1 B
)
. Then, for each

u ∈ C∞c (R−; U ), the integral∫ 0

−∞
A−s(λ− A|X )−1 Bu(s) ds

belongs to V . But this is equal to (λ− A|X )−1Bu = (λ− A)−1Bu since
A−s(λ− A|X )−1 = (λ− A|X )−1A−s

|X−1
. Thus, (λ− A)−1Bu ∈ V . Applying

λ− A to this identity and using the fact that V is invariant under A (see
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Theorem 3.14.4(iv)) we get Bu ∈ V . Thus, V must contain R (B) (where
we regard B as an operator mapping C∞c (R−; U ) into X ; cf. Lemma 9.1.4),
and since V is closed, V must contain the reachable subspace. This shows that
R ⊂ R(v), and it completes the proofs of (ii)–(v).

If A ∈ B(X ), then, for each x∗0 ∈ X∗ and each u ∈ U , the function 〈(λ−
A)−1 Bu, x∗0 〉) is analytic at infinity. As we saw in the above proof, X∗0 ∈ R⊥ if
and only if this function vanishes identically on ρ∞(A) for all u ∈ U . But this
is true if and only if each coefficient in its Taylor expansion at infinity vanishes,
i.e, 〈An Bu, x∗0 〉 = 0 for all u ∈ U (see Lemma 4.10.6). This is equivalent to

x∗0 ∈ R⊥(vi). Thus R = R(vi).
If R (B) ⊂ X , then (by the closed graph theorem) B ∈ B(U ; X ). As we ob-

served above, for every λ ∈ ρ∞(A) and u ∈ U we have (λ− A)−1 Bu ∈ R (B),
hence λ(λ− A)−1 Bu ∈ R (B). Let λ→+∞. Then λ(λ− A)−1 Bu → Bu, so
Bu ∈ R (B). Thus R (B) is a closed A-invariant subspace which contains
R (B). That it is the smallest such subspace follows from the fact that the condi-
tion R (B) ⊂ R (B) is stronger than the original condition R ((λ− A)−1 B

) ⊂
R (B) since R (B) is A-invariant, hence (λ− A)−1-invariant. �

Lemma 9.6.3 immediately gives us the following characterization of
controllability:

Corollary 9.6.5 Let � be an L p|Reg-well-posed linear system on (Y, X ; U )
with semigroup generator A and control operator B. Denote the component
of ρ(A) which contains some right half-plane by ρ∞(A). Then the following
conditions are equivalent:

(i) � is controllable,
(ii) the linear span of

⋃∞
n=1 R

(
(λn − A|X )−1 B

)
is dense in X for some

sequence (hence, for all sequences) {λn}∞n=1 ⊂ ρ∞(A) which has a
cluster point in ρ∞(A),

(iii) the linear span of
⋃∞

n=0 R
(
(λ− A|X )−n B

)
is dense in X for some

(hence, for all) λ ∈ ρ∞(A),
(iv) for some (hence, for all) λ ∈ ρ∞(A), R ((λ− A)−1 B

)
is not contained in

any proper closed A-invariant subspace.

If A ∈ B(X ), then these conditions are equivalent to

(v) the linear span of ∪∞n=0R (An B) is dense in X,

and if R (B) ⊂ X, then they are further equivalent to

(vi) R (B) is not contained in any proper closed A-invariant subspace.

Proof See Lemma 9.6.3. �
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In the case of a bounded semigroup generator we get the following necessary
conditions for controllability and observability, often referred to as the Hautus
rank conditions.

Lemma 9.6.6 Let � = [A B

C D

]
be a linear system on (Y, X ; U ) with bounded

semigroup generator A ∈ B(X ), bounded control observation B ∈ B(U ; X ),
and bounded observation operator C ∈ B(X ; Y ). Then the following claims
are true.

(i) If � is observable, then N ([ A−λ
C

]) = 0 for all λ ∈ C.
(ii) If � is controllable, then R ([A − λ B

])
is dense in X for all λ ∈ C.

Of course, this condition is interesting only in the case where λ ∈ σ (A),
because the conditions in (i) and (ii) are trivially satisfied when λ ∈ ρ(A). It
says roughly that C detects every eigenvalue of A, and that B fills in the missing
part of the range of A − λ when λ belongs to the residual spectrum of A. See
also Lemma 9.6.9.

Proof If � is controllable or observable, then the exponentially shifted system
�α described in Example 2.3.5 is controllable, respectively, observable for all
α ∈ C (see Example 9.4.4), so we may without loss of generality assume that
λ = 0 both in (i) and in (ii).

(i) Assume that � is controllable. Let x0 ∈ X . Suppose that both Cx0 = 0
and Ax0 = 0. Then C An x0 = 0 for all n = 0, 1, 2, . . .By Lemma 9.6.1, x0 = 0.
Thus N ([ A

C

]) = 0.
(ii) This proof is similar to the proof of (i), but we replace Lemma 9.6.1 by

9.6.3. �

Remark 9.6.7 The converse of Lemma 9.6.6 is not true. This can be seen as
follows. Let A ∈ B(X ) have a spectrum consisting of the single point {0} (i.e.,
A is quasi-nilpotent), and suppose that A has no eigenvalues. One such operator
is the weighted right-shift which maps x = {xn}∞n=0 ∈ l2(Z+; C) into

(Ax)0 = 0, (Ax)n = an xn−1, n = 1, 2, 3, . . . ,

and an is an arbitrary sequence tending to zero as n→∞. Then condition
(i) in Lemma 9.6.6 holds for all λ ∈ C since N (A − λ) = 0 for all λ ∈ C,
independently of how we choose C . Taking, e.g., C = 0 we get a system which
is not observable, and which still satisfies the Hautus condition.

However, although the converse to Lemma 9.6.6 is not true in general, it
is true in many cases of interest. One such case is the one where A has a
meromorphic resolvent, and we are interested in the modal controllability of
each eigenmode (this notion will be introduced shortly in Definition 9.7.1).
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Definition 9.6.8 Let % be an open subset of C, let U and Y be Banach spaces,
and let f : %→ B(U ; Y ).

(i) f has a pole (of finite order) at λ0 ∈ % if f is analytic in a neighborhood
of λ0, apart from at the point λ0 itself, and for some m = 1, 2, 3, . . ., the
function (λ− λ0)m f (λ) has a removable singularity at λ0 (i.e., this
function has an extension which is analytic in a full neighborhood of λ0).
The smallest such number m ≥ 0 is the order of λ0. (Thus, f has a pole of
order zero if f is analytic or f has a removable singularity at λ0.)

(ii) f is meromorphic in % if, at each point λ ∈ %, f is (analytic at λ or) has a
pole of finite order at λ.

An equivalent way of formulating (i) is to say that f has a Laurent expansion

f (λ) =
∞∑

k=−m

fk(λ− λ0)k, (9.6.1)

valid in a neighborhood of λ0 (not including the point λ0 itself). The (local)
McMillan degree of this pole is the rank of the operator S ∈ B(U m ; Y m) given
by

S =


f−1 f−2 · · · f−m+1 f−m

f−2 f−3 · · · f−m 0
...

...
. . .

...
...

f−m+1 f−m · · · 0 0
f−m 0 · · · 0 0

 . (9.6.2)

Because of the presence of m copies of the operator f−m (whose rank is at least
one) in the above block matrix, the McMillan degree of a pole is at least as large
as the order of the pole. It can even be infinite. For example, if A is an invertible
operator on X , then zero is a first order pole of the B(X )-valued function λ−1 A,
and its MacMillan degree is the same as the dimension of X (which may be
infinite).

Note that the counter-example in Remark 9.6.7 has a resolvent which is not
meromorphic at zero (this follows from Lemma 4.10.6).

The following partial converse to Lemma 9.6.6 is true (see also Theorems
9.7.4 and 9.7.5).

Lemma 9.6.9 (Modal Hautus conditions) Let � = [A B

C D

]
be a linear sys-

tem on (Y, X ; U ) with bounded semigroup generator A ∈ B(X ), bounded
control observation B ∈ B(U ; X ), and bounded observation operator C ∈
B(X ; Y ). Suppose further that A has a one point spectrum {λ0}, and that λ0 is
a pole (of finite order) of (λ− A)−1. Then the following claims are true.
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(i) � is observable if and only if N ([ A−λ0
C

]) = 0.
(ii) � is controllable if and only if R ([A − λ0 B

])
is dense in X.

The assumption that λ0 is a pole of (λ− A)−1 is equivalent to the assumption
that A − λ0 is nilpotent: if we denote by m the order ofλ0 as a pole of (λ− A)−1,
then by Lemma 4.10.6, (A − λ0)m−1 �= 0 but (A − λ0)m = 0.

Proof Without loss of generality we may take λ0 = 0 (see the comment at the
beginning of the proof of Lemma 9.6.6). The necessity of the conditions given
in (i) and (ii) for observability, respectively, controllability follow from Lemma
9.6.6, so it suffices to prove the converse part.

(i) Suppose that C Ak x0 = 0 for all k = 0, 1, 2, . . .. According to Corollary
9.6.2(v), to show that � is observable it suffices to show that this condition
implies that x0 = 0. If x0 �= 0, then there is a number n ≥ 0 such that An−1x0 �=
0 but An x0 = 0 (since A is nilpotent; see the comment preceding this proof).
But then

[
A
C

]
An−1x0 = 0, and so, by the Hautus condition in (i), An−1x0 = 0.

This contradiction shows that we cannot have x0 �= 0, and it proves that � is
observable.

(ii) This proof is analogous to the one above, and we leave it to the
reader. �

Theorem 9.6.10 Let� = [A B

C D

]
be a linear system on (Y, X ; U ) with bounded

semigroup generator A ∈ B(X ), bounded control observation B ∈ B(U ; X ),
and bounded observation operator C ∈ B(X ; Y ). Suppose further that A has a
one point spectrum {λ0}. Then the following claims are true.

(i) If λ0 is a pole of (finite) order m of (λ− A)−1, then λ0 is a pole of order at
most m of D̂, and the McMillan degree of this pole is at most equal to
dim(X ) (finite or infinite). If � is controllable and observable, then the
order of λ0 as a pole of D̂ is exactly m, and its McMillan degree is equal
to dim(X ).

(ii) If λ0 is a pole of D̂ with finite McMillan degree, then � is controllable
and observable if and only if dim(X ) is equal to the McMillan degree of
this pole (hence dim(X ) is finite, λ0 is a pole of (λ− A)−1, and (i)
applies).

Proof Again we shall, without loss of generality, take λ0 = 0 (cf. the proof of
Lemma 9.6.6).

(i) Since zero is a pole of order m of (λ− A)−1 we have Am−1 �= 0 but
Am = 0 (see Lemma 4.10.6). By (4.10.14), D̂ has a pole of order at most
m at zero. That the McMillan degree of this pole cannot exceed dim(X )
follows from the fact that the operator S in (9.6.2) can be factored as
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(see (4.10.14))

S =


C

C A
...

C Am

[B AB · · · Am B
]
, (9.6.3)

and the rank of both the operators on the right-hand side are bounded by dim(X ).
Suppose that � is controllable and observable, and suppose that zero is

a pole of order n of D̂. (For the argument in this paragraph it is irrelevant
that zero is a pole of (λ− A)−1 of finite order.) By (4.10.14), C An−1 B �= 0 but
C Ak B = 0 for all k ≥ n. Since C A(n+k) B = 0 for all k = 0, 1, 2, . . ., it follows
from Corollaries 9.6.2(v) and 9.6.5(v) that C An = 0 and An B = 0. By the same
corollaries, the first operator on the right-hand side of (9.6.3) is injective on X ,
and the second has dense range in X . Therefore dim(X ) = rank(S) equals the
McMillan degree of zero as a pole of D̂.

To complete the proof of (i) we must still show that zero is a pole of order n
of (λ− A)−1, or equivalently, that An = 0. We know that C An = 0 and An B =
0. We also know that Am = 0 but Am−1 �= 0 (where m ≥ n is the order of
zero as a pole of (λ− A)−1). If m > n, then both Am = 0 and C Am−1 = 0,
hence

[
A
C

]
Am−1 = 0. By Lemma 9.6.6, this would imply Am−1 = 0, and we

specifically chose m so that Am−1 �= 0. This shows that we must have m = n,
so the order of zero as a pole of (λ− A)−1 is the same as the order as a pole
of D̂.

(ii) Suppose that � is controllable and observable. By the argument that we
gave above, the McMillan degree of the pole at zero of D̂ is equal to dim(X )
(in that part of the proof we did not use the assumption that zero is a pole of
(λ− A)−1). In particular, dim(X ) is finite, and (i) applies. If, on the other hand,
dim(X ) is equal to the McMillan degree of the pole at zero of D̂, then in this
case, too, dim(X ) is finite and (i) applies. �

9.7 Modal controllability and observability

In this section we shall look at the controllability and observability properties
of an isolated point of the spectrum of the main operator A.

Definition 9.7.1 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with generator A, and let λ0 be an isolated point of σ (A). Let π
be the Riesz projection constructed in Theorem 3.14.10 with σ+(A) = {λ0}
and σ−(A) = σ (A) \ {λ0}, and let �+ be the corresponding system constructed
in Theorem 4.10.4. We call λ0 controllable in any of the senses listed in
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Definition 9.4.1 if �+ is controllable in the same sense, and we call λ0 ob-
servable in any of the senses listed in Definition 9.4.2 if �+ is observable in
the same sense. The system � is modally controllable if every isolated point of
σ (A) is controllable in the above sense, it is modally observable if every isolated
point of σ (A) is observable in the above sense, and it is modally minimal if it
is both modally controllable and modally observable.

Observe that the restriction of A to each eigenspace is bounded, so we may
use parts (v)–(vi) of Corollaries 9.6.2 and 9.6.5 to test modal controllability or
observability. If (λ− A)−1 is meromorphic (see Definition 9.6.8), then we can
alternatively use the modal Hautus conditions in Lemma 9.6.9. If the eigenspace
related to the spectral point λ0 (i.e, the range of π ) is finite-dimensional, then all
the different controllability versions are equivalent, and so are all the different
observability versions (and in this case Theorem 9.6.10(ii) applies).

If a system is controllable or observable, then all the isolated points in its
spectrum are controllable and observable in the same sense. This is a conse-
quence of the following lemma.

Lemma 9.7.2 Let � be the parallel connection of two subsystems �1 and
�2 (see Example 2.3.13). If � is controllable in any of the senses listed in
Definition 9.4.1 then both �1 and �2 are controllable in the same sense, and if
� is observable in any of the senses listed in Definition 9.4.2 then both �1 and
�2 are observable in the same sense.

Proof See Definitions 9.4.1, 9.4.2, 9.7.1, and Theorem 4.10.4. �

A more interesting question is to what extent the converse claim is true. Sup-
pose that σ (A) has no cluster points, and that each point in σ (A) is controllable
or observable. What additional assumptions do we need in order to conclude
that � is controllable or observable? It is clear that some additional conditions
are needed, because σ (A) may, for example, be empty, in which case the modal
controllability or observability assumption tells us absolutely nothing about the
full system.

As a first step in our answer to this question, let us prove the following partial
converse to Lemma 9.7.2.

Theorem 9.7.3 Let� be an L p|Reg-well-posed linear system on (Y, X ; U ) with
semigroup generator A. Suppose that σ (A) can be split into two disjoint parts
σ+(A) and σ−(A) by a piecewise continuously differentiable Jordan curve �
contained inρ(A) encirclingσ+(A). Letπ be the Riesz projection constructed in
Theorem 3.14.10, and let�+ and�− be the corresponding systems constructed
in Theorem 4.10.4 (so that� is the parallel connection of�− and�−). Then�
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is observable if and only if both�+ and�− are observable and� is controllable
if and only if both �+ and �− are controllable.

Proof One direction is contained in Lemma 9.7.2, so it suffices to prove that
� is observable or controllable whenever both �+ and �− are observable or
controllable.

Let x0 ∈ X , and suppose that Cx0 = 0. Then, by Lemma 9.6.1,
C(λ− A)−1x0 = 0 for all λ ∈ ρ∞(A), and hence (see also Corollary 3.14.9)

C(λ− A+)−1πx0 = −C(λ− A−)−1(1− π )x0, λ ∈ ρ∞(A),

where A+ = A|X+ and A− = A|X− . The left-hand side has an analytic extension
to C \ σ+(A), and the right-hand side has an analytic extension to C \ σ−(A).
The union of these two sets is all of C, so both sides can be extended to
entire functions. The left-hand side tends to zero at infinity (recall that A+ is
bounded), so by Liouville’s theorem, it must vanish identically. Therefore also
the right-hand side vanishes identically. By Lemma 9.6.1, this implies that πx0

is an unobservable element of �+ and (1− π )x0 is an unobservable element of
�−. If both �+ and �− is observable, then πx0 = 0 and (1− π )x0 = 0, hence
x0 = 0. Thus � is observable whenever both �+ and �− are observable.

To prove the controllability claim we let x∗0 ∈ R⊥, where R is the reachable
subspace of �. Then by Lemma 9.6.3 (and its proof), 〈(λ− A)−1 Bu, x∗0 〉) = 0
for all λ ∈ ρ∞(A) and all u ∈ U . Arguing in the same way as above we find
that both 〈(λ− A+)−1 Bu, x∗0 〉) = 0 and 〈(λ− A−)−1 Bu, x∗0 〉) = 0. Therefore,
by Lemma 9.6.3, if we denote the reachable subspaces of �+ and �− by R+
and R−, then x∗0 ∈ R⊥+ ∩R⊥− = (R+ ∪R−)⊥. This means that R contains the
closed linear span of R+ and R−, which is all of X if both �− and �− are
controllable. �

From Theorem 9.7.3 we easily get the following spectral characterization of
observability.

Theorem 9.7.4 Let � be an L p|Reg-well-posed linear system on (Y, X ; U )
with semigroup generator A. Suppose that σ (A) contains a countable sequence
of isolated points {λn}∞n=1 such that the corresponding eigenspaces Xn span
X in the sense that x0 ∈ X is the zero vector if and only if πn x0 = 0 for all
n = 1, 2, 3, . . ., where πn is the Riesz projection onto the eigenspace Xn (see
Theorem 3.14.10). Then � is observable if and only it is modally observable,
or equivalently, if and only if N ([ A−λn

C

]) = 0 for all n.

Proof If � is observable, then by Lemma 9.7.2 every isolated point of σ (A) is
observable, i.e,� is modally observable. Conversely, suppose that� is modally
observable, and let Cx0 = 0. Arguing as in the proof of Theorem 9.7.3 with
σ+(A) = {λn} we find that πn x0 = 0 for all n. Thus, x0 = 0, and this proves
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that � is observable. The last equivalence follows from Lemmas 9.6.6(i) and
9.6.9(i). �

The corresponding controllability result is also true.

Theorem 9.7.5 Let � be an L p|Reg-well-posed linear system on (Y, X ; U )
with semigroup generator A. Suppose that σ (A) contains a countable se-
quence of isolated points {λn}∞n=1 such that the linear span of the correspond-
ing eigenspaces Xn is dense in X (see Theorem 3.14.10). Then � is con-
trollable if and only it is modally controllable, or equivalently, if and only
if R ([A − λn B

])
is dense in X for all n.

Proof If � is controllable, then by Lemma 9.7.2 every isolated point of σ (A)
is controllable, i.e, � is modally controllable. Conversely, suppose that � is
modally controllable. Arguing as in the proof of Theorem 9.7.3 (first with
σ+(A) = {λ1}, then with σ+(A) = {λ1, λ2}, etc.) we find that the reachable sub-
space must contain the closed linear span of any finite union of the subspaces
Xn . By the extra density assumption, the smallest closed subspace which con-
tains all these subspaces is X itself. The last equivalence follows from Lemmas
9.6.6(ii) and 9.6.9(ii). �

9.8 Spectral minimality

In this section we say a few words about the spectral minimality of a particular
realization of a given input/output map D.

Definition 9.8.1 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with main operator A and transfer function D. Denote the component
of ρ(A) which contains some right-half plane by ρ∞(A). We call � spectrally
minimal if the restriction of D̂ to ρ∞(A) does not have an analytic continuation
to any (boundary) point in σ (A) ∩ ρ∞(A).

In general the spectrum of the main operator of a spectrally minimal real-
ization of a given transfer function D̂ is not unique (this will typically be true
of transfer functions which have branch points). A transfer function can also
have different spectrally minimal realizations with very different spectra. If, for
example, σ (A) = C

−
, then � is spectrally minimal if and only if D̂ does not

have an analytic continuation to any point on the imaginary axis. In this case it
may sometimes be possible to find another realization with a smaller spectrum;
see, for example, Fuhrmann (1981, p. 267).

Most systems occurring in practice are of the following type.
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Theorem 9.8.2 Let � be a minimal L p|Reg-well-posed linear system with
main operator A. If ρ(A) is connected and σ (A) is the closure of a totally
disconnected set, then � is spectrally minimal.

That a set is totally disconnected means that every point of this set is isolated.

Proof The assumption that ρ(A) is connected means that ρ∞(A) = ρ(A). De-
note the totally disconnected subset of σ (A) by $. Then every λ0 ∈ $ is an
isolated point of σ (A). Let X0 be the corresponding eigenspace of A (i.e., the
range of the Riesz projection π ; cf. Theorem 3.14.10), let A0 = A|X0 , and let
D̂0 be the transfer function of the corresponding subsystem (denoted by �+
in Theorem 4.10.5). Then D̂ has an analytic continuation to λ0 if and only if
D̂0 has an analytic continuation. However, by Theorem 9.6.10(ii), this is true
if and only if dim(X0) = 0, in which case λ0 /∈ σ (A). Thus, D̂ cannot have an
analytic extension to any point in $. Since $ is dense in σ (A), D̂ cannot be
analytically continued to any point in σ (A) (a function which is analytic at a
point is analytic in a full neighborhood of that point). �

Another quite common class of spectrally minimal systems is the following.

Theorem 9.8.3 Let � be a minimal L p|Reg-well-posed linear system whose
state space X is a Hilbert space. If the main operator A is normal and ρ(A) is
connected, then � is spectrally minimal.

Here the assumption that ρ(A) is connected is important. For example, the
two bilateral shift realizations in Example 2.6.5(iii),(iv) are normal if U and Y
are Hilbert spaces, p = 2, andω = 0, but they will not, in general, be spectrally
minimal in the sense of Definition 9.8.1. In both cases σ (A) = jR.

Proof of Theorem 9.8.3 The assumption that ρ(A) is connected means that
ρ∞(A) = ρ(A). Suppose, to get a contradiction, that D̂ can be analytically
continued to some open disk D with center λ0 ∈ σ (A) ∩ ρ(A) and radius
ε > 0. Split A into two parts A = A+ + A−, where σ (A+) = σ (A) ∩ D, and
σ (A−) = σ (A) \ D as in Theorem 3.14.11 (note that σ (A) \ D is closed). Note,
furthermore, that (cf. Theorem 4.9.2(ii))

(z − A+)−1x =
∫
σ (A)∩D

(z − λ)−1 E( dλ)x, x ∈ ρ(A+), x ∈ X

(i.e., the boundary of D is excluded from the integral; this part goes into (z −
A−)−1x). Write � as the parallel connection of two minimal systems �+ and
�− as in Theorem 4.10.4 (the minimality follows from Lemma 9.7.2). This
leads to a decomposition of D̂ into D̂+ + D̂−. Here D̂− is analytic in D since
D ⊂ ρ(A−), and D̂+ is analytic in C \ D and has an analytic extension to
D (since D̂ and D̂− are analytic there). We may further assume that at least
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one point on the boundary of D belongs to ρ(A), hence to ρ(A+) (adjust ε, if
necessary). Fix any x , y ∈ X . For all z ∈ ρ(A+),

〈C+(z − A+)−1 B+x, y〉 =
∫
σ (A)∩D

(z − λ)−1〈C+E( dλ)B+x, y〉. (9.8.1)

This is the Cauchy transform of the finite complex measure µ( dλ) =
〈C+E( dλ)B+x, y〉|σ (A)∩D , and by, e.g., Gamelin (1984, Theorem 8.2, p. 46),
µ vanishes on D (since D̂+ = C+(z − A+)−1 B+ is analytic there). By (9.8.1),
〈D̂+x, y〉 = 0. This being true for all x , y ∈ X , we must have D̂+ = 0. The
zero transfer function has a trivial realization whose state space has dimen-
sion zero, and it follows from Theorem 9.2.4 that dim X+ = 0, too. Thus
A = A−, and therefore D ⊂ ρ(A), contrary to our assumption that λ0 ∈ σ (A).
This contradiction shows that D̂ cannot be analytically continued to any point
λ0 ∈ σ (A) ∩ ρ(A), so � is spectrally minimal. �

9.9 Controllability and observability
of transformed systems

In Chapters 6 and 7 we have studied a number of transformations of a given
system. Here we investigate to what extent the different inversions and the
feedback transformations preserve controllability and observability. (The dual-
ity transform will be discussed in Section 9.10.)

Lemma 9.9.1 Let � = [A B

C D

]
be a flow-invertible well-posed linear system

on (Y, X,U ), with flow-inverse �×. Then the following claims are true.

(i) � and �× have the same reachable subspace and the same unobservable
subspace.

(ii) �× is controllable in any of the senses listed in Definition 9.4.1(i)–(vii) if
and only if � has the same property (i.e., we only exclude exact
controllability in infinite time).

(iii) �× is observable in any of the senses listed in Definition 9.4.2(i)–(vii) if
and only if � has the same property (i.e., we only exclude exact
observability in infinite time).

Proof The flow-inverted input map is given by B× = BD−1, and therefore�×
and � have the same reachable subspace. Because of the causality of D and
D−1, we have for all s < t ,

(B×)t
s = B×τ tπ[s,t) = BD−1τ tπ[s,t) = Bτ tπ[s,t)D

−1π[s,t) = Bt
s(Dt

s)−1,

where (Dt
s)−1 maps L p|Reg([s, t); Y ) one-to-one onto L p|Reg([s, t); U ). This

implies that all the different versions of controllability of � listed in (ii) are
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inherited by �×, except for null controllability. To get the null controllability
we need, in addition, the fact that for all s < t ,

(A×)t
s = At

s −Bt
s(Dt

s)−1Ct
s,

hence R ((B×)t
s

) ⊃ R ((A×)t
s

)
if and only if R (Bt

s

) ⊃ R (At
s

)
.

The proof of the fact that � and �× have the same unobservable subspace,
and that all the different versions of observability of � listed in (ii) are in-
herited by �× is similar (since C× = −D−1C and (C×)t

s = −(Dt
s)−1Ct

s for all
s < t). �

Above we only mentioned flow-inversion. The same proof works in many
other cases, too.

Lemma 9.9.2 Let � = [A B

C D

]
be a flow-invertible well-posed linear system

on (Y, X,U ).

(i) The conclusions of Lemma 9.9.1 remain true if we replace flow-inversion
by partial flow-inversion (as in Theorem 6.6.1), or by static output
feedback (as in Theorem 7.1.2).

(ii) Those conclusions of Lemma 9.9.1 which are related to controllability
remain true if we replace flow-inversion by state feedback (as in
Definition 7.3.1).

(iii) Those conclusions of Lemma 9.9.1 which are related to observability
remain true if we replace flow-inversion by output injection (as in
Definition 7.3.2).

We leave the proof to the reader (it is the same as the proof of Lemma 9.9.1).
Let us next look at time-inversion, which has a more complicated behavior.

Lemma 9.9.3 Let � = [A B

C D

]
be a time-invertible L p|Reg-well-posed linear

system on (Y, X,U ) with main operator A. Denote the time-inverse by� R. Then
the following claims are true.

(i) � Ris approximately or exactly controllable or observable in time t > 0 if
and only if � has the same property.

(ii) Suppose that ρ∞(A) = ρ−∞(A), where ρ∞(A) is the component of ρ(A)
which contains some right half-plane, and ρ−∞(A) is the component of
ρ(A) which contains some left half-plane. Then � and � Rhave the same
reachable subspace and the same unobservable subspace. In particular,
� Ris controllable or observable if and only if � has the same property.

Proof (i) Let �a be the backward system in Theorem 6.4.1. Then, for
all t > 0, (Ba)t

0 = −A−tBt
0 and (Ca)t

s = Ct
0A
−t . Here A−t is boundedly

invertible, so R ((Ba)t
0

) = X if and only if R (Bt
0

) = X and R ((Ba)t
0

) = X

if and only if R (Bt
0

) = X . From this the controllability part of (i) follows
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since (BR)0
−t = (Ba)t

0 Rand B0
−t = Bt

0τ
−t where Rand τ−t map L p|Reg

([−t, 0); U ) one-to-one onto L p|Reg([0, t); U ). The proof of the observability
part of (i) is similar.

(ii) This follows from Lemmas 9.6.1(iv) and 9.6.3(iv) and the fact that A R=
−A, B R= −B, and C R= C . �

As the following example shows, part(ii) of this lemma does not hold without
the assumption that ρ∞(A) = ρ−∞(A).

Example 9.9.4 Let X = L2(R; C), U = L2(R+; C), and let � be the system
whose semigroup is A = τ and whose (bounded) control operator is B = π+.
Then � is time-invertible and controllable, but the time-inverse � Ris not (the
reachable subspace of � Ris L2(R+; C)).

Note that here σ (A) = jR separates ρ∞(A) from ρ−∞(A).

Proof We have R (B) = L2(R+; C), and it follows from Lemma 9.6.3 that �
is controllable. On the other hand, (A R)t = τ−t and B R= −B = −π+, so by
the same lemma, the reachable subspace of � Ris L2(R+; C). �

Out of the three inversions which we studied in Chapter 6, time-flow-
inversion is the one which seems to be least well-behaved with respect to
controllability and observability. It is easy to see that controllability and ob-
servability need not be preserved (see, e.g., Example 6.5.10). Of course, if the
system is time-invertible, and the time-inverted system is flow-invertible (or
the other way around), then we can say something about the controllability and
observability of the time-flow-inverted system by applying Lemmas 9.9.1 and
9.9.3 in cascade. For example, we find that in this case exact or approximate
controllability or invertibility in time t is preserved. However, we can even say
something about controllability and observability in the general case.

Lemma 9.9.5 Let � = [A B

C D

]
be a time-flow-invertible L p|Reg-well-posed

linear system on (Y, X,U ) with main operator A. Denote its time-flow-inverse
by � R, and the time-flow-inverted main operator by A R

×. Furthermore, suppose
that −σ∞(A) ∩ σ∞(A R

×) �= ∅. Then � and � R
× have the same reachable sub-

space and the same unobservable subspace. In particular, � R
× is controllable

or observable if and only if � has the same property.

Proof Let us for a change prove the observability claim, and leave the analo-
gous proof of the controllability claim to the reader. Take some α ∈ −σ∞(A) ∩
σ∞(A R

×). By Lemma 9.6.1(iv), the unobservable subspace U of � is given by
U =⋂∞n=1 N

(
C(α + A)−n

)
, whereas the unobservable subspace U R

× of � R
× is

given by U R
× =

⋂∞
n=1 N

(
C R
×(α − A R

×)−n
)
. By Lemma 6.5.7(iii),

C R
×(α − A R

×)−1 = −[D̂(−α)]−1C(α + A)−1,
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so N (C R
×(α − A R

×)−1
) = N (C(α + A)−1

)
(since D̂(−α) is boundedly invert-

ible). To get higher powers of the resolvents we observe that

(α − A R
×)−1 = (α + A)−1 + EC(α + A)−1,

where E = (α + A|X )−1 B[D̂(−α)]−1, and hence, by the binomial formula, for
all n ≥ 1,

(α − A R
×)−n = (α + A)−n +

n−1∑
k=0

(
n

k

)
(α + A)−k[EC(α + A)−1]n−k .

This implies that for all n ≥ 1,

(α − A R
×)−n
|N (C(α+A)−1) = (α + A)−n

|N (C(α+A)−1),

and hence, for all m ≥ 1,
m⋂

n=1

N (C R
×(α − A R

×)−n
) = m⋂

n=1

N (C(α + A)−n
)
.

Letting m →∞ we find that U = U R
×. �

9.10 Time domain tests and duality

In this section we shall present several time domain characterizations which
complement those given in Section 9.6 of the different controllability and ob-
servability notions that we introduced in Section 9.4. We shall also study the
duality between observability and controllability.

The class of operators K which have a bounded left inverse, defined on
R (K ), will play an important role in the sequel. These operators can be char-
acterized in several different ways:

Definition 9.10.1 Let X and Y be Banach spaces. The closed linear operator
K : X ⊃ D (K )→ Y is coercive if there exists a constant ε > 0 such that

|K x |Y ≥ ε|x |X , x ∈ D (K ) .

Lemma 9.10.2 Let X and Y be Banach spaces, and let K : X ⊃ D (K )→ Y
be a densely defined closed linear operator.

(i) The following conditions are equivalent:
(a) K is injective;
(b) The range of K ∗ is weak∗-dense in X∗.
If X and Y are Hilbert spaces and K ∈ B(X ; Y ), then these conditions
are equivalent to
(c) K ∗K > 0.
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(ii) The following conditions are equivalent:
(a) the range of K is dense in Y ;
(b) K ∗ is injective.
If Y and Y are Hilbert spaces and K ∈ B(X ; Y ), then these conditions
are equivalent to
(c) K K ∗ > 0.

(iii) The following conditions are equivalent:
(a) K is coercive, i.e., there exists an ε > 0 such that |K x |Y ≥ ε|x |X for

all x ∈ D (K );
(b) K is injective and R (K ) is closed;
(c) K has a bounded left inverse K−1 ∈ B(R (K ); X );
(d) R (K ∗) = X∗;
(e) the injective operator induced by K ∗ on Y ∗/N (K ∗) (see Definition

9.1.5) has a bounded right inverse K−∗ ∈ B(X∗; Y ∗/N (K ∗)).
If X and Y are Hilbert spaces and K ∈ B(X ; Y ), then these conditions
are equivalent to
(f) K ∗K � 0.

(iv) The following conditions are equivalent:
(a) R (K ) = Y ;
(b) the injective operator induced by K on X/N (K ) (see Definition

9.1.5) has a bounded right inverse K−1 ∈ B(Y ; X/N (K ));
(c) K ∗ is coercive, i.e., there exists an ε > 0 such that
|K ∗y∗|X∗ ≥ ε|y∗|Y ∗ for all y∗ ∈ D (K ∗);

(d) K ∗ is injective and R (K ∗) is closed;
(e) K ∗ has a bounded left inverse K−∗ ∈ B(R (K ∗); X∗).
If X and Y are Hilbert spaces and K ∈ B(X ; Y ), then these conditions
are equivalent to
(f) K K ∗ � 0.

The proof of Lemma 9.10.2 is based on the following well-known facts.

Lemma 9.10.3 Let X and Y be Banach spaces, and let K : X ⊃ D (K )→ Y
be a densely defined closed linear operator.

(i) The null spaces of K and K ∗ are given by

N (K ) = D (K ) ∩ ⊥R (K ∗)
= {x ∈ D (K ) | 〈x, x∗〉 = 0 for all x∗ ∈ R (K ∗)},

N (K ∗) = R (K )⊥

= {y∗ ∈ Y ∗ | 〈y, y∗〉 = 0 for all y ∈ R (K )}.
(ii) N (K ) is closed in X and N (K ∗) is weak∗-closed in Y ∗ (hence closed).
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(iii) N (K )⊥ is the weak∗-closure of R (K ∗) in X∗ and ⊥N (K ∗) is the
norm-closure of R (K ) in Y .

(iv) The following conditions are equivalent:
(a) R (K ) is closed in Y ;
(b) R (K ) = ⊥N (K ∗);
(c) R (K ∗) is weak∗-closed in X∗;
(d) R (K ∗) is norm-closed in X∗;
(e) R (K ∗) = N (K )⊥;

Proof (i) By Lemma 3.5.1(iii), D (K ∗) is weak∗-dense in Y ∗. This means that
each of the following statements are equivalent to the one that immediately
precedes or follows it:

x ∈ N (K ) ,

x ∈ D (K ) and K x = 0,

x ∈ D (K ) and 〈K x, y∗〉 = 0 for all y∗ ∈ D (K ∗) ,
x ∈ D (K ) and 〈x, K ∗y∗〉 = 0 for all y∗ ∈ D (K ∗) ,
x ∈ D (K ) and 〈x, x∗〉 = 0 for all x∗ ∈ R (K ∗) ,
x ∈ D (K ) ∩ ⊥R (K ∗) .

Likewise, since D (K ) is dense in X and (obviously) R (K )⊥ ⊂ D (K ∗), each
of the following statements are equivalent to the one that immediately precedes
or follows it:

y∗ ∈ N (K ∗) ,
y∗ ∈ D (K ∗) and K ∗y∗ = 0,

y∗ ∈ D (K ∗) and 〈x, K ∗y∗〉 = 0 for all x ∈ D (K ) ,

y∗ ∈ Y ∗ and 〈x, K ∗y∗〉 = 0 for all x ∈ D (K ) ,

y∗ ∈ Y ∗ and 〈K x, y∗〉 = 0 for all x ∈ D (K ) ,

y∗ ∈ Y ∗ and 〈y, x∗〉 = 0 for all y ∈ R (K ) ,

y∗ ∈ R (K )⊥ .

(ii) That N (K ) is closed in X is an immediate consequence of the definition
of a closed operator. That N (K ∗) is weak∗-closed in Y ∗ follows from (i) (the
orthogonal complement of any subset of Y is always weak∗-closed in Y ∗ (see,
e.g., Rudin 1973, pp. 90–91).

(iii) This is true because (recall that D (K ) is dense in X and see, e.g., Rudin
1973, p. 91)

N (K )⊥ = (D (K ) ∩ ⊥R (K ∗))⊥ = (⊥R (K ∗))⊥
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and

⊥N (K ∗) = ⊥(R (K )⊥).

(iv) This version of the closed range theorem can be found in, for example,
Kato (1980, Theorem 5.13, p. 234) or Yosida (1974, p. 205). �

Proof of Lemma 9.10.2 (i) The equivalence of (a) and (b) follows from Lemma
9.10.3(i). Under the extra Hilbert space assumption

〈x, K ∗K x〉X = 〈K x, K x〉Y = |K x |2Y ,
and this is strictly positive for all nonzero x ∈ X iff K is injective.

(ii) This proof is almost identical to the proof of (i).
(iii) (a) ⇒ (b): Clearly (a) implies that K is injective. Let xn ∈ X and

K xn → y. Then the coercivity of K implies that xn is a Cauchy sequence
in X , hence convergent to a limit x ∈ X . Since K is closed, this implies that
K x = y. Thus, R (K ) is closed in Y .

(b)⇒ (c): This follows from the open mapping theorem since R (K ) is a
closed subspace of a Banach space, hence a Banach space in its own right.

(c)⇒ (a): This follows from the fact that for all x ∈ D (K ), x = L K x , hence
|x |X ≤ ‖L‖|K x |Y . Take ε = 1/‖L‖.

(b)⇔ (d): This follows from part (i) and Lemma 9.10.3(iv).
(d)⇔ (e): That (d)⇒ (e) follows from the open mapping theorem, and the

opposite implication is trivial.
(a)⇔ (f): We leave this to the reader (see the proof of (i)).
(iv) The proof of the equivalence of (a) and (b) is the same as the proof of

the equivalence of (d) and (e) in (iii). The equivalence of (a) and (d) follows
from part (ii) and Lemma 9.10.3(iv). The equivalence of (c), (d), (e), and (f)
follows from part (i), applied to K ∗. �

Lemma 9.10.2 applied to Definitions 9.4.1 and 9.4.2 gives the following
result:

Theorem 9.10.4 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ), and let t > 0.

(i) The following conditions are equivalent:
(a) � is controllable in time t, i.e., R (Bπ[−t,0)

)
is dense in X;

(b) π[0,t)B
∗ is injective on X∗.

If X and U are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(c) Bπ[0,t)B

∗ > 0.
(ii) The following conditions are equivalent:

(a) � is observable in time t, i.e., π[0,t)C is one-to-one on X;



558 Realizations

(b) R ((π[0,t)C)∗
)

is weak∗-dense in X∗.
If X and Y are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(c) C∗π[0,t)C > 0.

(iii) The following conditions are equivalent:
(a) � is exactly controllable in time t, i.e., R (Bπ[−t,0)

) = X;
(b) the injective operator that we get by factoring out the null space of

Bπ[−t,0) (see Definition 9.1.5) has a bounded right inverse
(Bπ[−t,0))−1 ∈ B(X ;U), where
U = L p|Reg([−t, 0); U )/N (Bπ[−t,0)

)
;

(c) (Bπ[−t,0))∗ is coercive on X∗;
(d) (Bπ[−t,0))∗ is injective on X∗ and has closed range;
(e) (Bπ[−t,0))∗ has a bounded left inverse, defined on R ((Bπ[−t,0))∗

)
.

If X and U are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(f) Bπ[−t,0)B

∗ � 0.
(iv) The following conditions are equivalent:

(a) � is exactly observable in time t, i.e., π[0,t)C has a bounded left
inverse, defined on R (π[0,t)C

)
;

(b) π[0,t)C is coercive, i.e., there exists a constant ε > 0 such that
‖Cx‖L p |Reg([0,t);Y ) ≥ ε|x |X for all x ∈ X;

(c) π[0,t)C is injective on X and has closed range in L p|Reg([0, t); Y );
(d) (π[0,t)C)∗ maps (L p|Reg([0, t); Y ))∗ onto X∗;
(e) the injective operator that we get by factoring out the null space of

(π[0,t)C)∗ has a bounded right inverse (π[0,t)C)−∗ ∈ B(X∗;Y∗), where
Y∗ = (L p|Reg([0, t); U ))∗/N ((π[0,t)C)∗

)
.

If X and Y are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(f) C∗π[0,t)C� 0.

Proof See Definitions 9.4.1 and 9.4.2, and Lemma 9.10.2. �

Theorem 9.10.5 Let � = [A B

C D

]
be a L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA, and let ω > ωA.

(i) The following conditions are equivalent:
(a) � is controllable, i.e., B : L p|Regc(R−; U )→ X has dense range;
(b) B : L p|Regω(R−; U )→ X has dense range;
(c) B∗ : X∗ → (L p|Regω(R−; U ))∗ is injective.
If X and U are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(d) BB∗ > 0.
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(ii) The following conditions are equivalent:
(a) � is observable, i.e., C : X → L p|Regloc(R

+
; Y ) is injective;

(b) C : X → L p|Regω(R
+

; Y ) is injective;

(c) C∗ : (L p|Regω(R
+

; Y ))∗ → X∗ has weak∗-dense range.
If X and Y are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(d) C∗C > 0.

(iii) The following conditions are equivalent:
(a) � is exactly controllable in infinite time with bound ω, i.e., B maps

L p|Regω(R−; U ) onto X;
(b) the injective operator that we get by factoring out the null space of B

(see Definition 9.1.5) has a bounded right inverse B−1 ∈ B(X ;U),
where U = L p|Regω(R−; U )/N (B);

(c) B∗ : X∗ → (L p|Regω(R−; U ))∗ is coercive on X∗;
(d) B∗ : X∗ → (L p|Regω(R−; U ))∗ is injective on X∗ and has closed

range.
(e) B∗ : X∗ → (L p|Regω(R−; U ))∗ has a bounded left inverse, defined

on R (B∗).
If X and U are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(f) BB∗ � 0.

(iv) The following conditions are equivalent:
(a) � is exactly observable in infinite time with bound ω, i.e., C has a

bounded left inverse, defined on R (C) ⊂ L p|Regω(R
+

; Y );
(b) the injective operator that we get by factoring out the null space of

C∗ has a bounded right inverse C−∗ ∈ B(X∗;Y∗), where
Y∗ = (L p|Regω(R−; U ))∗/N (C∗);

(c) C : X → L p|Regω(R
+

; Y ) is coercive, i.e., there exists a constant
ε > 0 such that ‖Cx‖L p |Regω(R

+
;Y ) ≥ ε|x |X for all x ∈ X;

(d) C is injective on X and has closed range in L p|Regω(R
+

; Y );

(e) C∗ maps (L p|Regω(R
+

; Y ))∗ onto X∗.
If X and Y are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(f) C∗C� 0.

Proof See Definitions 9.4.1 and 9.4.2, and Lemmas 9.1.3 and 9.10.2. �

As a first application of Theorems 9.10.4 and 9.10.5, let us present the
following characterization of a system which is exactly controllable in infinite
time with two (sufficiently large) different bounds ω:
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Theorem 9.10.6 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with growth bound ωA.

(i) The following conditions are equivalent:
(a) � is exactly controllable in finite time;
(b) � is exactly controllable in infinite time with bound ω for all those ω

for which B is ω-bounded;
(c) � is exactly controllable in infinite time with bound ω for some

ω > ωA.
(ii) Also the following conditions are equivalent:

(a) � is exactly observable in finite time;
(b) � is exactly observable in infinite time with bound ω for all those ω

for which C is ω-bounded;
(c) � is exactly observable in infinite time with bound ω for some

ω > ωA;

Proof (i) Obviously (a)⇒ (b)⇒ (c), so it suffices to show that (c)⇒ (a). For
each t > 0 we can write B in the form

B = Bπ(−∞,−t) +Bπ[−t,0) = Bτ t
−τ
−t +Bπ[−t,0),

which by the intertwining condition AtB = Bτ t
− can be written in the form

Bπ[−t,0) = B− AtBτ−t .

If (c) holds, then, by Theorem 2.5.4(i), ‖AtBτ−t‖ → 0 as t →∞. By Theorem
9.10.5(iii), there is a constant ε > 0 such that ‖B∗x∗‖ ≥ ε|x∗| for all x∗ ∈ X∗.
Thus, for x∗ ∈ X∗,

‖B∗x∗‖ ≥ ε|x∗| − ‖AtBτ−t‖|x∗| ≥ ε/2|x∗|

for t large enough. By Theorem 9.10.4(iii), this implies that R (Bπ[−t,0)
) = X ;

hence � is controllable in time t .
(ii) Obviously (a) ⇒ (b) ⇒ (c), so it suffices to show that (c) ⇒ (a). For

each t > 0 we can write C in the form

C = π[0,t)C+ π(t,∞)C = π[0,t)C+ τ−tτ t
+C,

which by the intertwining condition CAt = τ t
+Bπ− can be written in the form

π[0,t)C = C− τ−tCAt .

By Theorem 2.5.4(i), ‖AtBτ−t‖ → 0 as t →∞. The proof is completed in
the same way as the proof of (i) (do not pass to adjoints this time). �
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As a second application of Theorem 9.10.5 we obtain the following simple
description of systems that are both exactly controllable and exactly observable
in infinite time with the same bound ω:

Theorem 9.10.7 Let� = [A B

C D

]
be a minimalω-bounded L p|Reg-well-posed

linear system on (Y, X,U ), where ω ∈ R. Then the following conditions are
equivalent:

(i) � is both exactly controllable and exactly observable in infinite time with
(the same) bound ω.

(ii) the range of the Hankel operator
π+Dπ− : L p|Regω(R−; U )→ L p|Regω(R

+
; Y ) is closed.

In particular, (ii) is true (for all those ω ∈ R for which � is ω-bounded) if
� is both exactly controllable and exactly observable in finite time.

Proof (i)⇒ (ii): The Hankel operator π+Dπ− factors into π+Dπ− = CB. If
B is onto, then R (π+Dπ−) = R (C), and the latter is closed (see Theorem
9.10.5(iv)).

(ii)⇒ (i): It is always true that R (π+Dπ−) ⊂ R (C) (since π+Dπ− = CB).
By Lemma 9.2.2, controllability implies that R (C) ⊂ R (π+Dπ−). Thus, if the
range of the Hankel operator is closed, then it must coincide with the range of
C. By Theorem 9.10.5(iv), � is exactly observable in infinite time with bound
ω. If we let C−1 be the inverse of C, defined on R (C) = R (π+Dπ−), then C−1

maps R (π+Dπ−) onto X . We can write B in the form

B = C−1π+Dπ−.

The range of the operator on the right hand side is X , hence so is the range of
the operator on the left hand side. �

The condition in Theorem 9.10.7 that the Hankel operator has a closed
range is a quite strong one. A class of ‘restricted shift systems’ is studied in
depth (in the discrete time Hilbert space case with ω = 0) in Fuhrmann (1981,
Chapter III), where it is shown that D is strictly noncyclic whenever the range
of the Hankel operator π+Dπ− is closed. See, in particular, Fuhrmann (1981,
Theorem 3–10, pp. 258–259).

The major part of the proof of the following theorem on the duality between
all the different versions of observability and controllability is still another
application of Theorems 9.10.4 and 9.10.5.

Theorem 9.10.8 Let 1 ≤ p <∞, and let� be an L p-well-posed linear system
on the reflexive Banach spaces (Y, X,U ). Then � is controllable [observable]
in the sense of any one of conditions (i)–(ix) in Definition 9.4.1 [Definition
9.4.2] iff the adjoint system �d is observable [controllable] in the sense of the
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corresponding condition (with the same number) in Definition 9.4.2 [Definition
9.4.1], with one possible exception: it is not clear if null controllability of an
L1-well-posed system is a necessary condition for the final state observability
of the adjoint L∞-well-posed system.

Proof With the exception of the duality of null controllability and final observ-
ability this follows from Definition 6.2.4 and Theorems 9.10.4 and 9.10.5. To
get the duality of null controllability and final observability we use Theorem
9.10.9 below. �

Theorem 9.10.9 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ), and let t > 0.

(i) If � is null controllable in time t, i.e., if R (Bπ[−t,0)
) ⊃ R (At

)
, then the

following equivalent conditions hold:
(a) (Bπ[−t,0))∗ is coercive with respect to A∗t , i.e., there exists a constant

ε > 0 such that |(Bπ[−t,0))∗x∗| ≥ ε|A∗t x∗| for all x∗ ∈ X∗;
(b) N (A∗t) ⊂ N ((Bπ[−t,0))∗

)
and the operator4 A∗t (Bπ[−t,0))−∗ is

bounded X∗ → X∗;
(c) there is an operator M∗ ∈ B(R ((Bπ[−t,0))∗

)
; X∗) such that

A∗t = M∗(Bπ[−t,0))∗.
If X and U are Hilbert spaces and � is L2-well-posed, then these
conditions are also sufficient for the null controllability of �, and they are
equivalent to
(d) Bπ[−t,0)B

∗ ≥ εAtA∗t for some ε > 0.
(ii) The following conditions are equivalent:

(a) � is finally observable in time t, i.e., N (At
) ⊃ N (π[0,t)C

)
, and the

operator5 At (π[0,t)C)−1 is bounded X → X;
(b) π[0,t)C is coercive with respect to At , i.e., there exists a constant ε > 0

such that ‖Cx‖L p |Reg([0,t);Y ) ≥ ε|At x |X for all x ∈ X;
(c) there is an operator M ∈ B(R (π[0,t)C

)
; X ) such that At = Mπ[0,t)C;

(d) R ((π[0,t)C)∗
) ⊃ R (A∗t).

If X and Y are Hilbert spaces and � is L2-well-posed, then these
conditions are equivalent to
(e) Cπ[0,t)C

∗ ≥ εA∗tAt for some ε > 0.

This theorem follows from directly from the following lemma:

Lemma 9.10.10 Let X, Y , and Z be Banach spaces.

4 Here (Bπ[−t,0))−∗ stands for the inverse of the injective operator that (Bπ[−t,0))∗ induces on
X∗/N ((Bπ[−t,0))∗

)
and A∗t stands for the operator induced by A∗t on X∗/N ((Bπ[−t,0))∗

)
.

See Definition 9.1.5.
5 See the footnote to Definition 9.4.2(v).
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(i) Let K ∈ B(X ; Y ) and L ∈ B(X ; Z ). Then the following conditions are
equivalent
(a) K is coercive with respect to L, i.e., there exists an ε > 0 such that
|K x |Y ≥ ε|Lx |Z for all x ∈ X;

(b) N (K ) ⊂ N (L), and the operator6 L K−1 is bounded R (K )→ Z;
(c) there exists an operator M ∈ B(R (K ); Z ) such that L factors into

L = M K ;
(d) R (L∗) ⊂ R (K ∗);
(e) R (L∗) ⊂ R (K ∗), and if we denote the inverse of the injective

operator that K ∗ induces on Y ∗/N (K ∗) by K−∗, then
K−∗L∗ ∈ B(Z∗; Y ∗/N (K ∗));

(f) there exists an operator M∗ ∈ B(Z∗; Y ∗/N (K ∗)) such that L∗

factors into L∗ = K ∗M∗; here K ∗ represents the operator induced by
K ∗ on Y ∗/N (K ∗).

If X, Y , and Z are Hilbert spaces, then these conditions are equivalent to
(g) K ∗K ≥ εL∗L for some ε > 0.

(ii) Let K ∈ B(Y ; X ) and L ∈ B(Z ; X ). Then the following conditions are
equivalent:
(a) R (L) ⊂ R (K );
(b) R (L) ⊂ R (K ), and if we denote the inverse of the injective operator

that K induces on Y/N (K ) by K−1, then K−1L ∈ B(Z ; Y/N (K ));
(c) there exists an operator M ∈ B(Z ; Y/N (K )) such that L factors into

L = K M; here K represents the operator induced by K on Y/N (K ).
These conditions imply the following set of equivalent conditions:
(d) K ∗ is coercive with respect to L∗, i.e., there exists an ε > 0 such that
|K ∗x |Y ∗ ≥ ε|L∗x∗|Z∗ for all x∗ ∈ X∗;

(e) N (K ∗) ⊂ N (L∗), and the operator7 L∗K−∗ is bounded
R (K ∗)→ Z∗;

(f) there exists an operator M∗ ∈ B(R (K ∗); Z∗) such that L∗ factors
into L∗ = M∗K ∗,

If Y and Z are reflexive, then all the conditions (a)–(f) are equivalent, and
if X, Y , and Z are Hilbert spaces, then they are equivalent to
(g) K K ∗ ≥ εL L∗ for some ε > 0.

Proof (i) (a)⇒ (b): Clearly (a) implies that N (K ) ⊂ N (L). By the remarks
leading up to Definition 9.1.5, we may without loss of generality assume that
K is injective, because we may otherwise replace K by the operator induced

6 Here K−1 stands for the inverse of the injective operator that K induces on X/N (K ) and L
stands for the operator induced by L on X/N (K ). See Definition 9.1.5.

7 Here K−∗ stands for the inverse of the injective operator that K ∗ induces on X∗/N (K ∗) and
L∗ stands for the operator induced by L∗ on X∗/N (K ∗). See Definition 9.1.5.
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by K on X/N (K ) and L by the operator induced by L on X/N (K ). Then (a)
implies that L K−1 is bounded R (K )→ Z .

(b)⇒ (c): By (b), L K−1 can be extended to an operator M ∈ B(R (K ); Z ).
We claim that L = M K . To see that this is true we observe that K−1 K is the
quotient map π : X → X/N (K ), and that L K−1 K x is the operator induced
by L on X/N (K ) applied to πx . But, by definition, this is equal to Lx .

(c)⇒ (d): By continuity, we can extend M to an operator in B(R (K ); Z ),
whereR (K ) is a Banach space with the norm induced by Y . Then L∗ = K ∗M∗,
hence R (L∗) ⊂ R (M∗).

(d)⇒ (e): The operator K−∗L∗ is closed, so by the closed graph theorem,
it is bounded.

(e)⇒ (f): Take M∗ = K−∗.
(f)⇒ (a): In this part of the proof we may, without loss of generality, assume

that R (K ) is dense in Y . If not, then we replace Y by R (K ). By, e.g., Rudin
(1973, pp. 91) and Lemma 9.10.3(i), the dual of this space is

Y ∗/R (K )
⊥ = Y ∗/R (K )⊥ = Y ∗/N (K ∗) ,

and the adjoint of the operator K : X → R (K ) is the inductive operator induced
by K ∗ on Y ∗/N (K ∗), i.e., exactly the operator which appears in (f).

Let (f) hold, and let x ∈ X and z∗ ∈ Z∗. Then

〈Lx, z∗〉(Z ,Z∗) = 〈x, L∗z∗〉(X,X∗) = 〈x, K ∗M∗z∗〉(X,X∗)

= 〈K x, M∗z∗〉(Y,Y ∗),
hence

|〈Lx, z∗〉(Z ,Z∗)| =
∣∣〈K x, M∗z∗〉(Y,Y ∗)

∣∣
≤ |K x |Y |M∗z∗|Y ∗
≤ |K x |Y‖M∗‖|z∗|Z∗ .

Taking the supremum over all z∗ ∈ Z∗ with |z∗| = 1 we find that |Lx | ≤
‖M∗‖|K x |Y . We thus get (a) with ε = 1/‖M∗‖.

(a)⇔ (g): In the Hilbert space case condition (a) is equivalent to

0 ≤ |K x |2Y − ε2|Lx |2Z
= 〈K x, K x〉Y − ε2〈Lx, Lx〉Z
= 〈x, K ∗K x〉Y − ε2〈x, L∗Lx〉Z
= 〈x, (K ∗K − ε2L∗L)x〉X ,

and this is equivalent to (g) (with ε replaced by ε2).
(ii) The same proof that we used in (i) to show that (d) ⇒ (e) ⇒ (g)

remains valid if we replace K ∗ by K and L∗ by L , and this shows that
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(a) ⇒ (b) ⇒ (c). Trivially, (c) ⇒ (a). The equivalence of (d), (e), (f), and
in the Hilbert space case also (g), follows from (i) applied to K ∗ and L∗. Thus,
to complete the proof it suffices to show that, for example (c)⇒ (f), and that
(d)⇒ (a) in the reflexive case.

(c) ⇒ (f): By, e.g., Rudin (1973, pp. 92) and Lemma 9.10.3(iii), the dual
of Y/N (K ) can be identified with N (K )⊥ = (⊥R (K ∗))⊥, which is equal to
the weak∗-closure of R (K ∗) in Y ∗. The adjoint of the operator induced by K
on Y/N (K ) is the operator K ∗ : X∗ → R (K ∗) (where the bar represents the
weak∗-closure). This means that we can choose M∗ in (c) to be the restriction
of the adjoint of the operator M in (f) to R (K ∗).

(d) ⇒ (a): By (i), applied to K ∗ and L∗, (d) is equivalent to R (L∗∗) ⊂
R (K ∗∗). By a general rule for the second adjoint of an operator, K = K ∗∗|Y and
L = L∗∗|Z . But Y ∗∗ = Y and Z∗∗ = Z if these spaces are reflexive, so K ∗∗ = K
and L∗∗ = L in this case, hence R (L) ⊂ R (K ). �

9.11 Comments

Section 9.1 Theorem 9.1.9 appears in many different (usually somewhat less
general) forms in the literature. See, for example, Arov and Nudelman (1996,
Theorem 7.1) and Helton (1976, Theorem 4.3) (in continuous time) and Arov
(1979b, Proposition 4) and Helton (1974, Theorem 3a.1) (in discrete time). A
discrete time analogue of Corollary 9.1.10 is found in Helton (1974, Theorem
3a.1) (and most books on system theory contain a finite-dimensional version of
this result).

Section 9.2 Early versions of Theorem 9.2.4 are found in Helton (1976, Theo-
rem 4.4) and Arov and Nudelman (1996, Proposition 7.10) (in continuous time)
and Arov (1979b, Proposition 6) and Helton (1974, Theorem 3b.1) (in discrete
time). The pseudo-similarity given in these references is the minimal one, de-
noted by E in Theorem 9.2.4. We discovered the maximal pseudo-similarity
E in Theorem 9.2.4 (without realizing that it was maximal) while writing the
first draft of this section in 1998. The present formulation of Theorem 9.2.4
was obtained in discussions with Arov and Kaashoek in the spring of 2003. See
Arov et al. (2004, Proposition 3.3) for the corresponding discrete time version.
Theorems 9.2.5 and 9.2.6 may (formally) be new.

Section9.3Theorem 9.3.1 is the main result of Staffans (1999a). It is in the spirit
Kalman et al. (1969, Part 4) (although the setting is different). The importance
of the Hankel operator of the input/output map in realization theory has long
been recognized. There is some formal resemblance between Theorem 9.3.1
and the factorizations results presented in Kalman (1963, Theorem 1), Kalman
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et al. (1969, Theorem (13.19)), and Brockett (1970, Theorem 1, p. 93), but there
is a very significant non-technical difference: the realization presented there is
intrinsically time-dependent (and time-reversible), and its state space dynamics
is trivial. A much more closely related result is found in Kalman et al. (1969,
Section 10.6) and Fuhrmann (1981, pp. 31–32): there we find the same algebraic
construction (in discrete time), but without any continuity considerations of the
type (9.3.1)–(9.3.6). Even closer to Theorem 9.3.1 is Baras and Brockett (1975,
Theorem 6), Baras and Dewilde (1976, Theorem II.2.2) and Fuhrmann (1981,
Theorem 6-3, p. 293), which give sufficient conditions for the existence of a
realization with bounded control and observation operators in the case of finite-
dimensional U and Y . As a special case of a stable factorization we can take
either B or C to be the identity operator; this leads to the exactly controllable
shift and exactly observable shift realizations in Proposition 2.6.5(i)–(ii). See
also the comments to Section 9.5.

Jacob and Zwart (2002) have studied minimal realizations of a scalar inner
transfer function with an invertible or exponentially stable semigroup.

Section 9.4Theorem 9.4.7 is outlined in Salamon (1989, pp. 158–159), where it
is called ‘well known’, and Theorem 9.4.10 is in the same spirit. A discrete time
Hilbert space version with p = 2 of Theorem 9.4.10(i) is found in Fuhrmann
(1981, Theorem 1–9(b), p. 247).

Section 9.5 Different versions of the restricted exactly controllable shift re-
alization in Proposition 9.5.2(iii) (often referred to as ‘the ∗-restricted shift’)
and the restricted exactly observable shift realization in Proposition 9.5.2(iv)
(often referred to as ‘the restricted shift’) have appeared in, e.g., Baras and
Dewilde (1976), Fuhrmann (1974, Theorem 2.6), Fuhrmann (1981, Section
3.2), Helton (1974, p. 31), Jacob and Zwart (2002, Theorem A.1), Ober and
Wu (1996, Sections 5.2–5.3), and Salamon (1989, Theorem 4.3).

The existence and uniqueness of a (par)balanced realization in the infinite-
dimensional (irrational) discrete time case was first proved by Young (1986,
Theorems 1 and 2). That result was converted into a continuous time setting by
Ober and Montgomery-Smith (1990, Theorem 8.5), using the Cayley transform
(see Section 12.3). The setting used there is slightly different from ours: the
systems need not be well-posed, but instead they are required to have a uniformly
regular transfer function in the sense of Definition 5.6.1. That the semigroup
and its adjoint are always strongly stable was first proved in Ober and Wu
(1993, Theorem 4.9) (in discrete time) and in Ober and Wu (1996, Theorem
6.6) (in continuous time).

Balanced realizations have also been studied (in the infinite-dimensional
case) in Curtain and Glover (1986a) and Glover et al. (1988). They are used
extensively, e.g., in model reduction.
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Lemma 9.5.8 is apparently due to Kreı̆n and Petunin (1966). See Agler and
McCarthy (2002, Appendix C) for further results in this direction and some
historical comments. Our proof of Lemma 9.5.8 is based on some ideas found
in the proof of Young (1986, Theorem 1).

Section 9.6 Corollaries 9.6.2 and 9.6.5 are, of course, straightforward and more
or less known. We have not seen them in this exact form in the literature. Our
definition of the (local) McMillan degree of a pole is based on one of the known
finite-dimensional characterizations of McMillan degree; see, e.g., Bart et al.
(1979, p. 77) or Rosenbrock (1970, Algorithm 5.3, p. 120). Lemmas 9.6.6 and
9.6.9 are taken from Uetake (2003, Section 4.1), and Theorem 9.6.10 is an
extended version of Uetake (2003, Theorems 4.6 and 4.7).

Section 9.7 We do not know to what extent Theorem 9.7.3 has been known.
Theorems 9.7.4 and 9.7.5 are extensions of Curtain and Zwart (1995, Theorems
4.2.1 and 4.2.3).

Section 9.8 Spectral minimality has been studied for a long time, but much
still remains to be done. Sufficient conditions for spectral minimality have been
given in, for example, Baras and Brockett (1975) (an example with two branch
points), Baras et al. (1974) and Brockett and Fuhrmann (1976) (completely
monotonic impulse response, or more generally, the main operator is normal
and has a connected resolvent set, and B = C∗ is bounded), Feintuch (1976)
(where the main operator is compact or spectral), and Ober (1996) (completely
monotonic impulse response). It is also known that the input normalized, out-
put normalized, and balanced realizations of a strictly noncyclic transfer func-
tion is spectrally minimal, see, e.g., Lax and Phillips (1967, Section 3.3),
Helton (1976, Theorem 4.8), Sz.-Nagy and Foiaş (1970, Theorem 4.1, p. 259),
Fuhrmann (1981, Section 3.4), Ober and Wu (1993, Corollary 4.12) and Ober
and Wu (1996, Theorem 7.5). Theorem 9.8.2 is a reformulated and sharpened
version of Helton (1976, Theorem 4.7) (which is based on Lax and Phillips
(1973, Theorem 5.5)). Our proof of Theorem 9.8.3 has been modeled after the
proofs of Brockett and Fuhrmann (1976, Theorem 2.2) and Feintuch (1976,
Theorem 17). (Theorem 9.8.3 is actually true under the weaker assumption that
A is a spectral operator; this can be shown by combining the argument given in
the proof of Feintuch (1976, Theorem 17) with our proof of Theorem 9.8.3.)

Section 9.9 The feedback version of Lemma 9.9.1 has been known for a long
time in the classical case where A, B, C , and D are bounded. An explicit infinite-
dimensional well-posed version is found in G. Weiss (1994b, Remark 6.5). That
exact controllability or observability is preserved under time-inversion has also
been know for quite some time; see, e.g., Flandoli et al. (1988, Section 2.4).
Lemmas 9.9.3(ii) and 9.9.5 may be new.
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Section 9.10 Lemma 9.10.2–Theorem 9.10.5 and Theorems 9.10.8–9.10.9 are
of a technical nature, and related (usually less general) results are found in
many different places in the literature. See, in particular, Dolecki and Russell
(1977). Theorem 9.10.6(ii) is a slight extension of Russell and Weiss (1994,
Proposition 2.8). Early versions of Theorem 9.10.7 are found in Fuhrmann
(1981, p. 249) and Helton (1974, Theorem 3c.1(2)) (in discrete time) and
Helton (1976, Theorem 4.5(i)) (in continuous time).
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Admissibility

In this chapter we give conditions under which the operators B and C can
be interpreted as the control operator, respectively, observation operator of
a L p|Reg-well-posed linear system with a given semigroup generator A. In
this case we call B and C admissible for A. If B and C can be interpreted
as the control and observation operators of the same system, then they are
jointly admissible. We are also interested in whether or not the system is stable
(this is often refered to as infinite time admissibility). We furthermore dis-
cuss admissibility questions specifically related to the L2-well-posed Hilbert
space case (i.e, Y , X , and U are Hilbert spaces). This leads us to a study of
H 2-spaces.

10.1 Introduction to admissibility

As we have shown in Chapter 4, every well-posed linear system� = [A B

C D

]
has

a set of generators (which determine the system node). In the general case these
consist of the semigroup generator A, the control operator B, and the combined
observation/feedthrough operator C&D. In the compatible and regular cases
the operator C&D can be replaced by the extended observation operator C|W
and the corresponding feedthrough operator D. We have given some sufficient
conditions on A, B, C&D, C , C|W , and D for these operators to be the generators
of a (possibly compatible) L p|Reg-well-posed linear system. In particular, the
Hille–Yosida Theorem 3.4.1 gives necessary and sufficient conditions on an
operator A to generate a C0 semigroup, Corollary 3.4.2 gives necessary and
sufficient conditions on A to be the generator of a contraction semigroup, and
the case of a diagonal semigroup in a Hilbert space is analyzed in Examples
3.3.3 and 3.3.5. We shall not add anything significant to these two semigroup
generation theorems here, but refer the reader to, e.g., Pazy (1983) for additional
results in this direction.

569
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We have also obtained some necessary and some sufficient conditions for B
to be a control operator, for C to be an observation operator, for C&D to be an
observation/feedthrough operator, etc., of a well-posed linear system (necessary
conditions are given in Theorems 4.2.1, 4.2.7, 4.4.2, 4.7.14, 5.4.3, 5.5.5, 5.6.5,
and sufficient conditions are given in Corollary 4.2.8 and Theorem 4.4.7 and
Theorems 4.3.4, 4.4.8, 4.7.14, and 5.7.3). However, most of the sufficient results
are either rather restrictive (requiring B or C to be bounded), or very implicit,
making them difficult to use. The main exception is Theorem 5.7.3, which is
both simple to use and fairly general (as long as we restrict ourselves to the
case where the semigroup is analytic).

The purpose of this chapter is to present a number of additional admissibility
results. Some of these are valid only in the case where the state space, the input
space, or the output space is a Hilbert space. Most of the results discussed
here concern L p-well-posedness with 1 ≤ p <∞, and some of them require
p = 2.

In the sequel it will be convenient to call an operator admissible if it is one
of the generators of a L p|Reg-well-posed linear system.

Definition 10.1.1 Let A be the generator of a C0 semigroup on X .

(i) The operator B ∈ B(U ; X−1) is an L p|Reg-admissible control operator
for A (or for A) if the operator

Bu =
∫ 0

−∞
A−s
|X Bu(s) ds

maps L p|Regc(R−; U ) into X (i.e., B is an L p|Reg-well-posed input map
for A). We call B stable or ω-bounded if B is stable or ω-bounded.

(ii) The operator C ∈ B(X1; Y ) is an L p|Reg-admissible observation
operator for A (or for A) if the map

(Cx)(t) = CAt x, x ∈ X1, t ≥ 0,

can be extended to a bounded operator X → L p|Regloc(R
+

; Y ) (i.e., C is
an L p|Reg-well-posed output map for A). We call C stable or ω-bounded
if C is stable or ω-bounded.

(iii) Let B be an admissible control operator for A, and let A&B be the
restriction of

[
A|X B

]
to

D (A&B) = {[ x
u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}
.

The operator C&D ∈ B(D (A&B) ; Y ) is an L p|Reg-admissible
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observation/feedthrough operator for the pair (A, B) if the operator

Cx = C&D

[
x
0

]
, x ∈ X1,

is an admissible observation operator for A and the operator
D : C2

c,loc(R; U )→ Cc(R; Y ) defined by

(Du)(t) = C&D

[
Bτ t u
u(t)

]
, t ∈ R,

can be extended to a continuous operator
L p|Regc,loc(R; U )→ L p|Regc,loc(R; Y ) (cf. Theorem 4.7.14). We call
C&D stable or ω-bounded if both C in (ii) and D are stable or
ω-bounded.

(iv) The operators B ∈ B(U ; X−1) and C ∈ B(X1; Y ) are jointly
L p|Reg-admissible for A if B is an L p|Reg-admissible control operator
for A, C is an L p|Reg-admissible observation operator for A, and there is
an L p|Reg-admissible observation/feedthrough operator
C&D ∈ B(D (A&B) ; Y ) for the pair (A, B) such that

Cx = C&D

[
x
0

]
, x ∈ X1.

We call B and C jointly stable or ω-bounded if the resulting
L p|Reg-well-posed linear system is stable or ω-bounded.

In this definition we say nothing about the admissibility of a feedthrough
operator D. This is not an interesting issue, since every D ∈ B(U ; Y ) can be
the feedthrough operator of an L p|Reg-linear system (take, for example, A = 0,
B = 0, and C = 0), and conversely, every feedthrough operator D belongs to
B(U ; Y ). See Section 4.6 for a more detailed description of the relationship
between parts (iii) and (iv) of Definition 10.1.1.

The conditions in Definition 10.1.1 on B, C , and C&D are not the weakest
possible, and sometimes it is more convenient to use the following characteri-
zation of admissibility.

Lemma 10.1.2 Let A be the generator of a C0 semigroup on X.

(i) The operator B ∈ B(U ; X−1) is an L p|Reg-admissible control operator
for A if and only if the operator

B0
−T u =

∫ 0

−T
A−s
|X Bu(s) ds

maps L p|Reg([−T, 0); U ) into X for some (hence all) T > 0.
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(ii) The operator C ∈ B(X1; Y ) is an L p|Reg-admissible observation
operator for A if the map

(CT
0 x)(t) = CAt x, x ∈ X1, t ∈ [0, T ),

can be extended to an bounded operator X → L p|Regloc([0, T ); Y ) for
some (hence all) T > 0.

(iii) Let B be an admissible control operator for A. Define

D (A&B) = {[ x
u

] ∈ [ X
U

] ∣∣ A|X x + Bu ∈ X
}
.

The operator C&D ∈ B(D (A&B) ; Y ) is an L p|Reg-admissible
observation/feedthrough operator for the pair (A, B) if the operator

Cx = C&D

[
x
0

]
, x ∈ X1.

is an admissible observation operator for A and the operator
DT

0 : C2([0, T ]; U )→ C([0, T ]; Y ) defined by

(DT
0 u)(t) = C&D

[
Bτ t u
u(t)

]
, t ∈ [0, T ],

can be extended to a continuous operator
L p|Reg([0, T ); U )→ L p|Reg([0, T ); Y ) for some (hence all) T > 0.

Proof In all cases, the conditions listed in Lemma 10.1.2 are weaker than those
listed in Definition 10.1.1, so they are necessary. That they also are sufficient
follows from the fact that we can recreate B, C and D from B0

−T , CT
0 , and DT

0

by using the formulas in Lemma 2.4.3. �

10.2 Admissibility and duality

In the reflexive case there is a simple connection between the admissibility of
a semigroup generator A and the admissibility of its adjoint A∗, and there is
also a simple connection between the admissibility of a control operator B for
A and the admissibility of B∗ as an observation operator of A∗. We begin with
the L p-well-posed case with 1 < p <∞.

Theorem 10.2.1 Let U, X, and Y be reflexive, and let 1 < p <∞ and 1/p +
1/q = 1.

(i) A : X ⊃ D (A)→ X is the generator of a C0 semigroup on X iff A∗ is
the generator of a C0 semigroup on X∗.

(ii) Let A be the generator of a C0 semigroup on X. Then B ∈ B(U ; X−1) is
an L p-admissible control operator for A if and only if B∗ ∈ B(X∗1 ; U ∗) is
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an Lq-admissible observation operator for A∗ and C ∈ B(X1; Y ) is an
L p-admissible observation operator for A iff C∗ ∈ B(Y ∗; X∗−1) is an
Lq-admissible control operator for A∗.

(iii) Let A be the generator of a C0 semigroup on X. Then B ∈ B(U ; X−1) is
an L p-admissible control operator for A and C&D : D (A&B)→ Y ,
with D (A&B) = {(x, u) ∈ [ X

U

] | A|X x + Bu ∈ X}, is an L p-well-posed
observation/feedthrough operator for (A, B) if and only if Bd is an
Lq-admissible control operator for Ad = A∗ and [C&D]d is an
Lq-admissible observation/feedthrough operator for (Ad , Bd ), where Bd

and [C&D]d are defined as follows: if we denote
C = C&D

[
1
0

] ∈ B(X1; Y ), then Bd = C∗ ∈ B(Y ∗; X∗−1), and
[C&D]d = PU ∗

[
A&B
C&D

]∗
, where PU ∗ is the projection of

[
X∗
U ∗
]

onto U ∗

(with D ([C&D]d
) = D ([ A&B

C&D

]∗)
).

Proof Part (i) is contained in Theorem 3.5.6(v), part (ii) in Theorem 6.2.13,
and part (iii) is contained in Lemma 6.2.12. �

A very similar result is true in the two remaining cases p = 1 and p = ∞.
To prove that result we need the following characterization of a Reg-admissible
control operator.

Theorem 10.2.2 Let A be the generator of a C0 semigroup A on the Banach
space X. Let U be another Banach space, and let B ∈ B(U ; X−1). Then the
following conditions are equivalent:

(i) B is a Reg-admissible control operator for A.
(ii) For some (hence for all) α ∈ ρ(A), there is a constant K such that, for

each x∗ ∈ X∗ with |x∗| ≤ 1, the total variation on the interval [0, 1] of
the function t �→ B∗(α − A∗)−1A∗t x∗ is bounded by K .

If X is reflexive, then (i) and (ii) are further equivalent to

(iii) B∗ ∈ B(X∗1 ; U ∗) is an L1-admissible observation operator for the C0

semigroup generated by A∗.

See Section 3.6 and Remark 3.6.1 for the definitions of X−1 and X∗1 .

Proof Suppose that (i) holds, i.e., suppose that B ∈ B(U ; X−1) is a Reg-
admissible control operator for A. Denote the corresponding input map by
B. Take x∗ ∈ X∗ with |x∗| ≤ 1, and let 0 = t0 < t1 < · · · < tn = 1. Choose a
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corresponding sequence of vectors uk ∈ U with |uk | ≤ 1 so that

〈B∗(α − A∗)−1(A∗tk+1 − A∗tk )x∗, uk〉(U ∗,U )

≥ 1
2 |B∗(α − A∗)−1(A∗tk+1 − A∗tk )x∗|U ∗

(in particular, we require the left-hand side to be real). Define u(s) = uk for
−tk+1 < s ≤ −tk . Then sup−1≤s<0|u(s)| ≤ 1 and

(α(α − A)−1 − 1)Bπ[−1,0)u = A(α − A)−1Bπ[−1,0)u

=
∫ 0

−1
AA−s(α − A|X )−1 Bu(s) ds

=
n−1∑
k=0

∫ −tk

−tk+1

AA−s(α − A|X )−1 Buk ds

=
n−1∑
k=0

(Atk+1 − Atk )(α − A|X )−1 Buk .

Therefore
n−1∑
k=0

|B∗(α − A∗)−1(A∗tk+1 − A∗tk )x∗|U ∗

≤ 2
n−1∑
k=0

〈B∗(α − A∗)−1(A∗tk+1 − A∗tk )x∗, uk〉(U ∗,U )

= 2
〈
x∗,

n−1∑
k=0

(Atk+1 − Atk )(α − A|X )−1 Buk

〉
(U ∗,U )

= 2〈x∗, (α(α − A)−1 − 1)Bπ[−1,0)u〉(U ∗,U )

≤ 2‖(α(α − A)−1 − 1)Bπ[−1,0)‖.
Taking the supremum over all subdivisions of the interval [0, 1] we find that
(ii) holds, with K = 2‖(α(α − A)−1 − 1)Bπ[−1,0)‖ (and this is true for all α ∈
ρ(A)).

Conversely, suppose that (ii) holds for some α ∈ ρ(A). Define Bu =∫ 0
−∞ A−s

|X Bu(s) ds for all u ∈ Regc(R−; U ). Then Bπ[−1,0) is a bounded lin-
ear operator from Regc(R−; U ) into X−1 (since B ∈ B(U ; X−1)), hence (α −
A)−1Bπ[−1,0) is a bounded linear operator from Regc(R−; U ) into X . Let u be
a function which is piecewise constant on [−1, 0), i.e., suppose that there exist
0 = t0 < t1 < · · · < tn = 1 and uk ∈ U so that u(s) = uk for−tk+1 < s ≤ −tk .
The same computation which we made above shows that Bπ[−1,0)u ∈ X , and
that

Bπ[−1,0)u = α(α − A)−1Bπ[−1,0)u −
n−1∑
k=0

(Atk+1 − Atk )(α − A|X )−1 Buk .
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Therefore, for each x∗ ∈ X∗ with |x∗| ≤ 1,∣∣〈Bπ[−1,0)u, x∗〉(X,X∗)
∣∣

≤ ∣∣〈α(α − A)−1Bπ[−1,0)u, x∗〉(X,X∗)
∣∣

+
∣∣∣∣∣〈n−1∑

k=0

(Atk+1 − Atk )(α − A|X )−1 Buk, x∗
〉
(X,X∗)

∣∣∣∣∣
≤ ∥∥α(α − A)−1Bπ[−1,0)

∥∥ ‖u‖Reg([0,1]

+
n−1∑
k=0

∣∣〈uk, B∗(α − A∗)−1(A∗tk+1 − A∗tk )x∗〉(X,X∗)
∣∣

≤ ∥∥α(α − A)−1Bπ[−1,0)

∥∥ ‖u‖Reg([0,1]

+
(

sup
0≤k≤n−1

|uk |
) n−1∑

k=0

|B∗(α − A∗)−1(A∗tk+1 − A∗tk )x∗|

≤ M‖u‖Reg([0,1],

where M = (K + ∥∥α(α − A)−1Bπ[−1,0)

∥∥). Taking the supremum over all x∗

we find that Bπ[−1,0) is a bounded linear operator (with norm at most M) from a
dense subset of Reg([−1, 0]; U ) into X , hence it must map all of Reg([−1, 0]; U )
into X (instead of just X−1). By Lemma 10.1.2, B is a Reg-well-posed control
operator for A.

Suppose that X∗ is reflexive. Then A∗ is the generator of the C0 semigroup
t �→ A∗t . If B∗ is an L1-well-posed observation operator for A∗, then by Theo-
rem 6.2.13 (with Y = 0), B is L∞-admissible for A, hence Reg-admissible for A
and (i) holds. Conversely, suppose that (ii) holds (which is equivalent to (i)). Take
any x∗ ∈ X∗1 . Then t �→ B∗A∗t x∗ is continuous. Define h(t) = ∫ t

0 |B∗A∗s x∗| ds.
Then

h(t) =
∫ t

0
|B∗A∗s x∗| ds

=
∫ t

0
|B∗A∗s(α − A∗)−1(α − A)∗x∗| ds

≤ |α|‖B∗(α − A∗)−1‖
(∫ t

0
‖A∗s‖ ds

)
|x∗|X∗

+
∫ t

0
|B∗A∗A∗s(α − A∗)−1x∗| ds.

The function s �→ B∗A∗A∗s(α − A∗)−1x∗ is the continuous derivative of the
function s �→ B∗A∗s(α − A∗)−1x∗, so the last integral above is the total vari-
ation of s �→ B∗A∗s(α − A∗)−1x∗ on [0, t]. By (ii), for t ≤ 1 this term is
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dominated by K |x∗|X∗ . Thus, there is a constant M such that
∫ 1

0 |B∗A∗s x∗| ds ≤
M |x∗|X∗ for all x∗ ∈ X∗1 . By Lemma 10.1.2, B∗ is an L1-admissible observation
operator for A∗. �

Theorem 10.2.3 Let U, X, and Y be reflexive, and let A be the generator of a
C0 semigroup on X.

(i) B ∈ B(U ; X−1) is a Reg-admissible control operator for A if and
only if B∗ ∈ B(X∗1 ; U ∗) is an L1-admissible observation operator
for A∗.

(ii) C ∈ B(X1; Y ) is a Reg-admissible observation operator for A iff
C∗ ∈ B(Y ∗; X∗−1) is an L1-admissible control operator for A∗, and this is
true if and only if C is bounded, i.e., C has an extension to an operator in
B(X ; Y ).

(iii) The operators
[

A B
C D

]
, with B ∈ B(U ; X−1), C ∈ B(X1; Y ) and

D ∈ B(U ; Y ), generate a (regular) Reg-well-posed linear system on
(Y, X,U ) if and only if

[ A∗ C∗

B∗ D∗
]

generate a (regular) L1-well-posed
linear system on (U ∗, X∗, Y ∗).

Proof Part (i) is contained in Theorem 10.2.2, part (ii) is contained in Theorems
4.2.7 and 4.4.2(ii), and part (iii) follows from (i)–(ii) and Theorems 4.3.4 and
4.4.8. �

Remark 10.2.4 Theorem 10.2.3 enables us to define the dual�d of a Reg-well-
posed theorem � with generators

[
A B
C D

]
on three reflexive spaces (Y, X,U ) to

be the L1-well-posed system generated by
[ A∗ C∗

B∗ D∗
]
. At the same time it enables

us to extend the original Reg-well-posed system to an L∞-well-posed system
with the same generators: by Theorem 6.2.3, the dual of �d is L∞-well-posed,
and by Theorem 6.2.13, the generators of this second dual are the same as the
generators of the original system.

10.3 The Paley–Wiener theorem and H∞

So far we have paid very little attention to the Hilbert space case where we
have an L2-well-posed linear system on three Hilbert spaces (Y, X,U ). This
case has some special properties. Most of these seem to be related in one way or
another to some old results that go back to Paley and Wiener (1934). To present
these results we have to first define the Hardy spaces H p.

Definition 10.3.1 Let U and Y be Banach spaces, and let 1 ≤ p ≤ ∞ and
ω ∈ R.
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(i) The space H p
ω (U ) consists of all analytic functions ϕ on 
z > ω

satisfying ‖ϕ‖H p
ω (U ) <∞, where

‖ϕ‖H p
ω (U ) =

{
supα>ω

(∫∞
−∞|ϕ(α + jβ)|pU dβ

)1/p
, 1 ≤ p <∞,

sup
z>ω|ϕ(z)|U , p = ∞.

In the case ω = 0 we abbreviate H p
ω (U ) to H p(U ).

(ii) The space H p
ω (U ; Y ) consists of all analytic B(U ; Y )-valued functions ψ

on 
z > ω satisfying ‖ψ‖H p
ω (U ;Y ) <∞, where

‖ψ‖H p
ω (U ;Y ) =

{
sup|u|U≤1,α>ω

(∫∞
−∞|ψ(α + jβ)u|pY dβ

)1/p
, 1 ≤ p <∞,

sup
z>ω‖ψ(z)‖B(U ;Y ), p = ∞.

In the case ω = 0 we abbreviate H p
ω (U ; Y ) to H p(U ; Y ).

We remark that the norm in H∞ω (U ; Y ) could have been written in a form that
is analogous to the definition of the norm in H p

ω (U ; Y ) with p <∞, namely

‖ψ‖H∞ω (U ;Y ) = sup
|u|U≤1,α>ω,β∈R

|ψ(α + jβ)u|Y .

Also note that we have defined H p
ω (U ; Y ) so that it can be identified with the set

of all bounded linear operators from U into H p
ω (Y ); thus it is a ‘strong’ version

of H p
ω (U ; Y ) rather than a ‘uniform’ version. (These coincide when p = ∞.)

The H p-spaces are typical frequency domain spaces, and we have earlier
encountered H∞ω -spaces more or less explicitly in various connections. The
following two lemmas summarize some of the results that we have obtained so
far in this direction:

Lemma 10.3.2 The Laplace transform of a function u ∈
L p|Regω(R

+
; U ) 1 ≤ p ≤ ∞, belongs to H∞α (U ) for every α > ω.

Proof By Definition 3.12.1,

û(z) =
∫ ∞

0
e−zt u(t) dt =

∫ ∞
0

e−(z−ω)t e−ωt u(t) dt 
z > ω.

Without loss of generality we take ω = 0 (denote e−ωt u(t) by u(t)).
The boundedness of |û(z)|U on
z > α > 0 follows from Hölder’s inequal-

ity and the estimate (let 1/p + 1/q = 1 and define e−α(t) = e−αt , t ≥ 0)

|û(z)|U ≤
∫ ∞

0
e−αt |u(t)|U dt ≤ ‖e−α‖Lq (R+)‖u‖L p(R+;U ), 
z ≥ α.

To prove the analyticity of û it suffices to differentiate with respect to z under
the integral sign; this is permitted because of Lemma 3.2.10 (and an estimate
similar to the preceding one). �
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Lemma 10.3.3 Let � = [A B

C D

]
be an L p|Reg-well-posed linear system on

(Y, X,U ) with semigroup generator A, control operator B, observation oper-
ator C, and transfer function D̂. Let ω > ωA where ωA is the growth bound of
�. Then

(i) λ �→ (λ− A)−1 ∈ H∞ω (X ; X1);
(ii) λ �→ (λ− A|X )−1 B ∈ H∞ω (U ; X );

(iii) λ �→ C(λ− A)−1 ∈ H∞ω (X ; Y );
(iv) D̂ ∈ H∞ω (U ; Y ), and ‖D̂‖H∞ω (U ;Y ) ≤ ‖D‖T I Cω(U ;Y ).

The claim (iv) is also true for the transfer function of an arbitrary causal time-
invariant operator D which either maps L p

ω(R; U ) continuously into L p
ω(R; Y )

for some ω ∈ R and p, 1 ≤ p <∞, or satisfies the assumptions of Theorem
2.6.7.

Proof (i) See Theorem 3.2.9(ii) and (3.2.6).
(ii) See Proposition 4.2.9 for the boundedness. The analyticity follows from

the analyticity of the resolvent.
(iii) See Proposition 4.4.9 for the boundedness. The analyticity follows from

the analyticity of the resolvent.
(iv) By Lemma 4.6.2 and Corollary 4.6.10, D̂ ∈ H∞ω (U ; Y ). The proof of

this inclusion is ultimately based on Lemma 4.5.3 and Definition 4.6.1, and by
inspecting the proof of Lemma 4.5.3 we get an explicit bound on ‖D̂‖H∞ω (U ;Y ) as
follows. For each α with 
α > ω, let eα(t) = eαt , t ∈ R. Then, for each u ∈ U
(cf. the proof of Lemma 4.5.3),

‖eα‖L p |Regω(R−)|D̂(α)u|Y = ‖eαD̂(α)u‖L p |Regω(R−;Y )

= ‖D(eαu)‖L p |Regω(R−;Y )

≤ ‖D‖T I C2
ω(U ;Y )‖eαu‖L p |Regω(R−;U )

= ‖D‖T I C2
ω(U ;Y )|u|U‖eα‖L p |Regω(R−).

Divide by ‖eα‖L p |Regω(R−) and take the supremum over all u ∈ U with |u|U = 1
and all α with 
α > ω to get

‖D̂‖H∞ω (U ;Y ) ≤ ‖D‖T I Cω(U ;Y ).

�

In the Hilbert space case with p = 2 the two preceding lemmas can be
made more precise. The key fact is the following representation theorem for
the Laplace transform of a function in L2

ω(R+; U ):

Theorem 10.3.4 (Paley–Wiener) Let U be a Hilbert space, and let ω ∈ R.
Then the Laplace transform û of a function u ∈ L2

ω(R+; U ) belongs to H 2
ω(U ),
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and conversely, every functionϕ in H 2
ω(U ) is the Laplace transform of a function

u ∈ L2
ω(R+; U ). Moreover,

‖û‖H 2
ω(U ) =

√
2π‖u‖L2

ω(R+;U ).

Proof Without loss of generality we take ω = 0 (i.e., we denote e−ωt u(t) by
u(t) and û(z − ω) by û(z)).

For each α > 0, the function β �→ û(α + jβ) is the Fourier transform of the
function uα = (t �→ e−αt u(t)) ∈ L1 ∩ L2(R+; U ), and by Parseval’s identity,

1

2π

∫ ∞
−∞
|û(α + jβ|2U dβ = ‖uα‖2

L2(R+;U ) ≤ ‖u‖2
L2(R+;U ).

Thus, û ∈ H 2(U ), and ‖û‖H 2(U ) ≤
√

2π‖u‖L2(R+;U ).
Conversely, let ϕ ∈ H 2

ω(U ). The case ω �= 0 can be reduced to the case
ω = 0: we simply apply the case ω = 0 to the function z �→ ϕ(z − ω). Thus,
we may assume below that ω = 0.

By the continuity of ϕ and the fact that the set of rational numbers is dense
in 
z > 0, the range of ϕ is separable-valued. Therefore we may assume that
U is separable (i.e., we replace U by the closure of the range of ϕ). Choose an
arbitrary orthonormal basis {ei }∞i=1 for U , and expand ϕ into

ϕ(z) =
∞∑

i=1

〈ϕ(z), ei 〉ei =
∞∑

i=1

ϕi (z)ei .

Each function ϕi then belongs to the scalar H 2, and

∞∑
i=1

‖ϕi‖2
H 2 =

∞∑
i=1

sup
α>0

1

2π

∫ ∞
−∞
|ϕi (α + jβ)|2 dβ

= sup
α>0

1

2π

∫ ∞
−∞

∞∑
i=1

|ϕi (α + jβ)|2 dβ

= sup
α>0

1

2π

∫ ∞
−∞
|ϕ(α + jβ)|2U dβ

= (1/2π )‖ϕ‖2
H 2(U ).

By the standard scalar H 2-theorem (see, e.g., (Duren, 1970, Theorem 11.9) or
(Hoffman, 1988, p. 131)), ϕi is the Laplace transform of a function ui ∈ L2(R+)
with ‖ϕi‖2

H 2 =
√

2π‖ui‖L2(R+). Define

u =
n∑

i=m

ui ei .
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This sum converges in L2(R+; U ) since, for all n ≥ m,∥∥∥ n∑
i=m

ui ei

∥∥∥2

L2(R+;U )
=

n∑
i=m

‖ui‖2
L2(R+) ≤

∞∑
i=m

‖ui‖2
L2(R+),

which tends to zero as m →∞. Moreover, since the terms in this sum are
orthogonal,

‖u‖2
L2(R+;U ) =

∥∥∥ ∞∑
i=1

ui ei

∥∥∥2

L2(R+;U )
=
∞∑

i=1

‖ui‖2
L2(R+) = (1/2π )

∞∑
i=1

‖ϕi‖2
H 2

= (1/2π )‖ϕ‖2
H 2(U ).

By construction, for each i ≥ 1, ϕi = ûi , and

〈û(z), ei 〉 =
〈∫ ∞

0
e−zt u(t) dt, ei

〉
=
∫ ∞

0
e−zt 〈u(t), ei 〉 dt

= ûi (z) = ϕi (z) = 〈ϕ(z), ei 〉.
Thus, ϕ = û. �

As a first application of Theorem 10.3.4 we get a simple characterization of
TIC2

ω(U ; Y ) whenever both U and Y are Hilbert spaces.

Theorem 10.3.5 Let U and Y be Hilbert spaces, and let ω ∈ R. Then
the transfer function D̂ of every operator D ∈ TIC2

ω(U ; Y ) belongs to
H∞ω (U ; Y ) and conversely, every ϕ ∈ H∞ω (U ; Y ) is the transfer function of
some D ∈ TIC2

ω(U ; Y ). Moreover, ‖D̂‖H∞ω (U ;Y ) = ‖D‖T I C2
ω(U ;Y ). In particular,

TIC2
ω(U ; Y ) and H∞ω (U ; Y ) are isometrically isomorphic.

Proof That D̂ ∈ H∞ω (U ; Y ) whenever D ∈ TIC2
ω(U ; Y ) and that ‖D̂‖H∞ω (U ;Y ) ≤

‖D‖T I C2
ω(U ;Y ) is part of Lemma 10.3.3.

Conversely, suppose that ϕ ∈ H∞ω (U ; Y ). We can then define an operator
D : L2

ω(R+; U )→ L2
ω(R+; U ) as follows: we let Du be the function whose

Laplace transform is ϕû (see Theorem 10.3.4). Then, for all u ∈ L2
ω(R+; U ),

‖Dπ+u‖L2
ω(R+;Y ) =

√
1/2π‖ ̂(Dπ+u)‖H 2

ω(Y ) =
√

1/2π‖ϕû‖H 2
ω(Y )

≤
√

1/2π‖ϕ‖H∞ω (U ;Y )‖û‖H 2
ω(U ) = ‖ϕ‖H∞ω (U ;Y )‖u‖L2

ω(R+;U ).

This shows that ‖D‖B(L2
ω(R+;U );L2

ω(R+;Y )) ≤ ‖ϕ‖H∞ω (U ;Y ). For every t ≥ 0 and z >
ω (define u(s) = 0 for s < 0)

τ̂−t u(z) =
∫ ∞

0
e−zsu(s − t) ds =

∫ ∞
0

e−z(s+t)u(s) ds = e−t z û(z),

and analogously,

τ̂−tDu(z) = e−t zϕ(z)û(z) = ϕ(z)τ̂−t u(z).
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This implies that Dτ−t u = τ−tDu for all t ≥ 0. We can then extend D to a
continuous operator mapping L2

c,ω(R; U )→ L2
c,ω(R; U ) by defining

Du = τ tDuτ−t ;

the result does not depend on t as long as t is large enough so that τ−t u vanishes
on R−. The extended operator satisfies

‖D‖B(L2
ω(R;U );L2

ω(R;Y )) ≤ ‖ϕ‖H∞ω (U ;Y ),

and it is time-invariant and causal. By continuity, it can be extended to an
operator in TIC2

ω(U ; Y ) satisfying ‖D‖T I C2
ω(U ;Y ) ≤ ‖ϕ‖H∞ω (U ;Y ). That D̂ = ϕ

follows from Corollary 4.6.10. �

Our next theorem is an easy consequence of Theorems 10.3.4 and 10.3.5.

Theorem 10.3.6 Let ω ∈ R, and let A be the generator of an ω-bounded C0

semigroup on X.

(i) If U is a Hilbert space and X is reflexive, then B ∈ B(U ; X−1) is an
L2-admissible ω-bounded control operator for A if and only(

λ �→ B∗(λ− A∗)−1
) ∈ H 2

ω(X ; U ).

(ii) If Y is a Hilbert space, then C ∈ B(X1; Y ) is an L2-admissible
ω-bounded observation operator for A if and only if(

λ �→ C(λ− A)−1
) ∈ H 2

ω(X ; Y ).

(iii) Suppose that both U and Y are Hilbert spaces. Let B ∈ B(U ; X−1) be an
L2-admissible ω-bounded control operator for A (cf. (i)), and define
D (A&B) as in Definition 10.1.1(iii). Then C&D ∈ B(D (A&B) ; Y ) is
an L2-admissible ω-bounded observation/feedthrough operator for A if
and only if the operator

Cx = C&D

[
x
0

]
, x ∈ X1.

is an L2-admissible ω-bounded observation operator for A (cf. (ii)) and

D̂ ∈ H∞ω (U ; Y ),

where

D̂(z) = C&D

[
(z − A|X )−1 B

1

]
, 
z > ω.

(iv) Suppose that both U and Y are Hilbert spaces. The operators
B ∈ B(U ; X−1) and C ∈ B(X1; U ) are jointly L2 admissible and
ω-bounded iff B is an L2-admissible ω-bounded control operator for A
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(cf. (i)), C is an L2-admissible ω-bounded observation operator for A
(cf. (ii)) and

D̂ ∈ H∞ω (U ; Y );

where

D̂(λ) = (α − λ)C(λ− A)−1(α − A|X )−1 B + Dα;

in the definition of D̂ the constant α with 
α > ω and the operator
Dα ∈ B(U ; Y ) can be chosen in an arbitrary manner.

Proof (i) This follows from (ii) and Theorems 6.2.3 and 6.2.13.
(ii) See Definition 10.3.1 and Theorems 4.4.2(iv), 4.7.14(iii), and 10.3.4.
(iii) The necessity of the given conditions follows from Definition 10.1.1

and Lemma 10.3.3(iv), and the sufficiency from Theorems 4.7.14, and 10.3.5.
(iv) See Definition 10.1.1, Theorem 4.6.7, and (iii). �

The following theorem is a restatement of Theorem 3.11.6.

Theorem 10.3.7 Let A be the generator of a C0 semigroup A on a Hilbert
space X. Then

ωA = inf
{
ω ∈ R

∣∣∣ λ �→ (λ− A)−1 ∈ H∞ω (X ; X )
}
.

Proof By Lemma 10.3.3(i), to prove this theorem it suffices to show that ωA <

ω whenever λ �→ (λ− A)−1 ∈ H∞ω (X ; X ). Assume this, and consider the well-
posed linear system with generators

[
A 1
1 0

]
on (X, X, X ). The input/output map

of this system is

(Du)(t) =
∫ t

−∞
At−su(s) ds,

the transfer function is

D̂(z) = (z − A)−1,

and, by Theorem 10.3.5, Dπ+ maps L2
ω(R+; U ) into L2

ω(R+; Y ). By Theorem
3.11.8, ωA < ω. �

Remark 10.3.8 Motivated by Theorem 10.3.4 we shall extend the domain of
definition of the bilateral Laplace transform as follows. Let U be a Hilbert space,
and let u ∈ L2

loc(R; U ). We recall from the discussion after Definition 3.12.1 that
the usual domain of definition (if nonempty) of the bilateral Laplace transform û
of u is a vertical strip {z ∈ C | 
z ∈ J }, where J is an interval in R. For eachα in
the interior of J , the function uα = (t �→ e−αt u(t)) belongs to L1 ∩ L2(R; U ).
Its Fourier transform is the function β �→ 1/

√
2π û(α + jβ), and it belongs

to BC0 ∩ L2(R; U ). If α is one of the end-points of J and uα /∈ L1
α(R; U ),
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then our original bilateral Laplace transform is not defined on the vertical line

z = α. However, it may still be possible that uα ∈ L2

α(R; U ), and in this case
we define the bilateral Laplace transform of u on the vertical line 
z = α to
be
√

2π times the (almost everywhere defined) Fourier transform of uα (in the
L2 sense). We still denote this transform by û(α + jβ), β ∈ R, even if α /∈ J .
In this case it is true for almost all β ∈ R that û(α + jβ) is the nontangential
limit of û(z) with 
z ∈ J (this follows from well-known facts about Hardy
spaces).

In particular, in the situation described in Theorem 10.3.4 we shall regard
û ∈ H 2

ω(U ) as a function which is defined and analytic on C+, and, in addition,
it is defined almost everywhere on the imaginary axis (and the restriction to the
imaginary axis belongs to L2( jR; U )).

10.4 Controllability and observability gramians

In addition to the tests given in Theorem 10.3.6, there are some other admissibil-
ity and stability tests for control and observation operators in the Hilbert space
case with p = 2. These tests are based on the existence of the controllability
and observability gramians.

Definition 10.4.1 Let A be a C0 semigroup on the Hilbert space X , and let U
and Y be Hilbert spaces.

(i) If B ∈ B(L2(R−; U ); X ) is an L2-well-posed stable input map for A, then
BB∗ ∈ B(X ) is the controllability gramian of B.

(ii) If C ∈ B(X ; L2(R+; Y )) is an L2-well-posed stable output map for A, then
C∗C ∈ B(X ) is the observability gramian of C.

As our next two theorems show, the controllability and observability grami-
ans have several different characterizations. We begin with the observability
gramian.

Theorem 10.4.2 Let A be a C0 semigroup with generator A on the Hilbert
space X, let Y be a Hilbert space, let X1 = D (A) and X∗1 = D (A∗) (cf. Remark
3.6.1), and let C ∈ B(X1; Y ). Then the following conditions are equivalent:

(i) C is an L2-admissible stable observation operator for A.
(ii) There exists an operator P ∈ B(X ) such that for all x ∈ X1 and all

T ≥ 0, ∫ T

0
〈x,A∗t C∗CAt x〉(X1,X∗−1) dt ≤ 〈x, Px〉X . (10.4.1)
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(iii) There exists an operator �C ∈ B(X ) such that for all x, y ∈ X1,

〈y, �Cx〉X = lim
T→∞

∫ T

0
〈y,A∗t C∗CAt x〉(X1,X∗−1) dt. (10.4.2)

(iv) The observability Lyapunov equation (with terms in B(X1; X∗−1))

A∗(+(A = −C∗C (10.4.3)

has at least one nonnegative solution ( ∈ B(X ).

When these conditions hold, then the following additional claims are true for
the operator �C defined in (10.4.2):

(v) �C = C∗C is the observability gramian of the output map C generated
by A and C.

(vi) �C is the smallest operator for which (10.4.1) holds, i.e., (10.4.1) holds
with P replaced by �C, and every other P for which (10.4.1) holds
satisfies P ≥ �C.

(vii) �C is the smallest nonnegative solution of (10.4.3), i.e., �C is a solution
of (10.4.3), and every other nonnegative solution ( of (10.4.3) satisfies
( ≥ �C.

(viii) The set of all nonnegative solutions ( ∈ B(X ) of (10.4.3) can be
parametrized as ( = �C +(∞, where (∞ varies over all nonnegative
solutions B(X ) of the homogeneous Lyapunov equation (with terms in
B(X1; X∗1))

A∗(∞ +(∞A = 0. (10.4.4)

Here the residual cost operator (∞ satisfies A∗t(∞At = (∞ for all
t ≥ 0, and it is determined by the fact that, for all x ∈ X,

lim
t→∞A∗t(At x = (∞x, (10.4.5)

where the convergence is monotone decreasing in the sense that
A∗t(At ≤ A∗s(As for all t ≥ s ≥ 0.

(ix) �C is the unique nonnegative solution of (10.4.3) satisfying

lim
t→∞〈A

t x,(At x〉 = 0, x ∈ X. (10.4.6)

In particular, if A is strongly stable, then �C is the unique nonnegative
solution of (10.4.3).

(x) If �C� 0 then A is strongly stable, and if �C > 0 and A is bounded
then A is weakly stable.

Before proving Theorem 10.4.2, let us formulate the analogous result for the
controllability gramian:
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Theorem 10.4.3 Let A be a C0 semigroup with generator A on the Hilbert
space X, let U be a Hilbert spaces, let X∗1 = D (A∗) and X−1 = D (A∗)∗ (cf.
Remark 3.6.1), and let B ∈ B(U ; X−1). Then the following conditions are equiv-
alent:

(i) B is an L2-admissible stable control operator for A.
(ii) There exists an operator P ∈ B(X ) such that for all x ∈ X∗1 and all

T ≥ 0, ∫ T

0
〈x,At B B∗At∗x〉(X∗1 ,X−1) dt ≤ 〈x, Px〉X . (10.4.7)

(iii) There exists an operator �B ∈ B(X ) such that for all x, y ∈ X∗1 ,

〈y, �Bx〉X = lim
T→∞

∫ T

0
〈y,At B B∗At∗x〉(X∗1 ,X−1) dt. (10.4.8)

(iv) The controllability Lyapunov equation (with terms in B(X∗1 ; X−1))

A(+(A∗ = −B B∗ (10.4.9)

has at least one nonnegative solution ( ∈ B(X ).

When these conditions hold, then the following additional claims are true for
the operator �B defined in (10.4.8):

(v) �B = BB∗ is the controllability gramian of the input map B generated
by A and B.

(vi) �B is the smallest operator for which (10.4.7) holds, i.e., (10.4.7) holds
with P replaced by �B, and every other P for which (10.4.7) holds
satisfies P ≥ �B.

(vii) �B is the smallest nonnegative solution of (10.4.9), i.e., �B is a
solution of (10.4.9), and every other nonnegative solution ( of (10.4.9)
satisfies ( ≥ �B.

(viii) The set of all nonnegative solutions ( ∈ B(X ) of (10.4.9) can be
parametrized as ( = �B+(∞, where (∞ varies over all nonnegative
solutions B(X ) of the homogeneous Lyapunov equation (with terms in
B(X∗1 ; X−1))

A(∞ +(∞A∗ = 0. (10.4.10)

Here the residual cost operator (∞ satisfies At(∞A∗t = (∞ for all
t ≥ 0, and it is determined by the fact that, for all x ∈ X,

lim
t→∞At(A∗t x = (∞x, (10.4.11)

where the convergence is monotone decreasing in the sense that
At(A∗t ≤ As(A∗s for all t ≥ s ≥ 0.



586 Admissibility

(ix) �B is the unique nonnegative solution of (10.4.9) satisfying

lim
t→∞〈A

∗t x, �BA∗t x〉 = 0, x ∈ X.

In particular, if A is strongly stable, then �B is the unique nonnegative
solution of (10.4.9);

(x) If �B� 0 then A∗ is strongly stable, and if �B > 0 and A is bounded
then A is weakly stable.

Clearly Theorem 10.4.3 follows from Theorem 10.4.2 by duality: B is an
L2-well-posed stable input map for A iff RB∗ is an L2-well-posed stable output
map for A∗; cf. Theorem 6.2.3. Thus, it suffices to prove Theorem 10.4.2.

Proof of Theorem 10.4.2. (ii)⇒ (i): Suppose that (ii) holds. For all x ∈ X1 we
define (Cx)(t) = CAt x , t ≥ 0. Then (10.4.1) implies that, for x ∈ X1,∫ T

0
〈(Cx)(t), (Cx)(t)〉Y dt =

∫ T

0
〈x,A∗t C∗CAt x〉(X1,X∗1 ) dt

≤ 〈x, Px〉X ≤ ‖P‖B(X )|x |2X .

This means that C can be extended to an operator in B(X ; L2(R+; Y )). By
Theorem 4.4.7(i), C is an L2-admissible stable observation operator for A.

(i)⇒ (iii): Assume (i), and let �C = C∗C be the controllability gramian. We
claim that (iii) then holds for this �C, i.e., we claim that both (iii) and (v) hold.
We prove this as follows. For each x ∈ X , π[0,T )Cx → Cx in L2 as T →∞,
hence �Cx = limT→∞ C∗π[0,T )Cx (a strong limit in X ). In particular, for all x ,
y ∈ X , 〈y, �Cx〉X = limT→∞〈y,C∗π[0,T )Cx〉X . Thus, in order to prove (iii) it
suffices to show that, for all x , y ∈ X1, this is the same limit which appears in
(10.4.2). Let x , y ∈ X1. Then, by Theorem 4.4.2(i),

〈y,C∗π[0,T )Cx〉X =
∫ T

0
〈(Cy)(t), (Cx)(t)〉Y dt

=
∫ T

0
〈CAt y,CAt x〉Y dt

=
∫ T

0
〈y,A∗t C∗CAt x〉(X1,X∗1 ) dt.

Thus, (iii) holds with �B = C∗C.
(iii) ⇒ (iv): Let �C ∈ B(X ) satisfy (10.4.2). Clearly �C ≥ 0, because

〈x, �Cx〉 ≥ 0 for all x ∈ X1, hence (by continuity) for all x ∈ X . We claim
that (10.4.3) holds with ( = �C. Take x , y ∈ X2, and define

f (t) = 〈CAt y,CAt x〉X = 〈y,A∗t C∗CAt x〉(X1,X∗1 ).
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Then f is continuously differentiable and

ḟ (t) = 〈CAt Ay,CAt x〉X + 〈CAt y,CAt Ax〉X .
Integrating this equation over [0, T ] we get

f (T )− f (0) =
∫ T

0
〈Ay,A∗t C∗CAt x〉(X1,X∗1 ) dt

+
∫ T

0
〈y,A∗t C∗CAt Ax〉(X1,X∗1 ) dt.

Letting T →∞ and using (10.4.3) and the fact that f (0) = 〈Cy,Cx〉X we find
that f (∞) = lim f (T )T→∞ exists and satisfies

f (∞)− 〈Cy,Cx〉X = 〈Ay, �Cx〉(X1,X∗1 ) + 〈y, �C Ax〉(X1,X∗1 )

= 〈Ay, �Cx〉X + 〈y, �C Ax〉X ,
where the re-interpretation of the right-hand side is possible since �Cx ∈ X
and �C Ax ∈ X . By (10.4.2), the limit limT→∞

∫ T
0 f (t) dt (= 〈y, �Cx〉) exists,

hence f (∞) = 0. We conclude that, for all x , y ∈ X2,

〈Ay, �Cx〉X + 〈y, �C Ax〉X = −〈Cy,Cx〉X .
By the density of X2 in X1 and the continuity of the involved operators, the
same equation must then be true for all x , y ∈ X1. This implies that (10.4.3) is
valid as an operator equation in B(X1; X∗1) with ( replaced by �C.

(iv)⇒ (ii): Let ( ∈ B(X ) be a nonnegative solution of (10.4.3). For every
t ≥ 0 we define P(t) = A∗t(At . Then P(0) = ( and P(t) ≥ 0. Let x ∈ X1,
and define g(t) = 〈x, P(t)x〉X = 〈At x,(At x〉X . Then g is continuously dif-
ferentiable, and by (10.4.3),

ġ(t) = 〈AAt x,(At x〉X + 〈At x,(AAt x〉X
= 〈At x, (A∗(+(A)At x〉(X1,X∗1 )

= −〈At x,C∗CAt x〉(X1,X∗1 )

= −〈x,A∗t C∗CAt x〉(X1,X∗1 ).

Integrate over [0, T ] to get∫ T

0
〈x,A∗t C∗CAt x〉(X1,X∗1 ) dt = g(0)− g(T )

= 〈x,(x〉X − 〈x, P(T )x〉X
≤ 〈x,(x〉X .

Thus, (ii) holds with P = (.
We have now proved the equivalence of (i)–(iv). We proceed to establish

(v)–(x).
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(v) The proof of the implication (i)⇒ (iii) given above shows (10.4.2) is true
with�C equal to the controllability gramian C∗C, and the limit on the right-hand
side of (10.4.2) determines �C uniquely.

(vi) The proof of the implications (iii)⇒ (iv)⇒ (ii) given above shows that
(10.4.1) is true with P = �C. That all other solutions P of (10.4.1) must satisfy
P ≥ �C follows from (10.4.2).

(vii) By the proof of the implication (iii)⇒ (iv),�C is a nonnegative solution
of (10.4.3), and we saw in the proof of the implication (iv)⇒ (ii) that every
nonnegative solution( of (10.4.3) satisfies (10.4.1) with P = (. By (vi), every
nonnegative solution ( of (10.4.3) must therefore satisfy ( ≥ �C.

(viii) By (vii), if ( is a nonnegative solution of (10.4.3), then (∞ = (−
�C ≥ 0. Subtracting (10.4.3) with ( replaced by �C from (10.4.3) we find that
(∞ = (− �C satisfies (10.4.4). Conversely, if (∞ is a nonnegative solution
of (10.4.4), then ( = �C +(∞ is a nonnegative solution of (10.4.3). To show
that A∗t(∞At = (∞ for all t ≥ 0 we repeat the argument in the proof of the
implication (iv)⇒ (ii) with( replaced by(∞ and (10.4.3) replaced by (10.4.4).
Once we know this we find that

A∗t(At −(∞ = A∗t ((−(∞)At = A∗t�CAt .

Thus, in order to prove (10.4.5) it suffices to show that, for all x ∈ X ,

lim
t→∞A∗t�CAt x = lim

t→∞A∗tC∗CAt x = 0.

By the intertwining condition CA = π+τC, the limit above can be written in
the form

lim
t→∞A∗tC∗CAt x = lim

t→∞C∗τ−tπ+τ tCx = lim
t→∞C∗π[t,∞)Cx,

and we know this limit to be zero since π[t,∞)Cx → 0 in L2(R+; Y ) as t →
∞. Thus (10.4.5) holds. The same argument proves that the convergence is
monotone since

〈x,A∗t(At −(∞x〉X = 〈x,A∗tC∗CAt x〉X = 〈x,C∗π[t,∞)Cx〉X
=
∫ ∞

t
〈(Cx)(s), (Cx)(s)〉Y ds

is decreasing in t .
(ix) If ( satisfies (10.4.6), then by (viii), the corresponding operator (∞

satisfies 〈x,(∞〉X = 0 for all x ∈ X , i.e., (∞ = 0 and ( = �C. The second
claim is obvious since (10.4.6) is redundant whenever A is strongly stable.

(x) The condition�C� 0 in connection with (10.4.6) implies that |At x | → 0
as t →∞, i.e., A is strongly stable.
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Suppose next that A is stable and that �B > 0. Let V be the positive square
root of �B. Then R (V ) is dense in X since V is injective and 0 = N (V ) =
R (V ∗)⊥ = R (V )⊥. By (10.4.6), V At x → 0 in X as t →∞. This implies that,
for all y ∈ X ,

lim
t→∞〈y, V At x〉 = lim

t→∞〈V y,At x〉 = 0,

or equivalently, that for all z ∈ R (V ),

lim
t→∞〈z,A

t x〉 = 0.

Fix x , y ∈ X , and let ε > 0. By the stability of A and the density of R (V ) in
X , we can find some z ∈ R (V ) such that |z − y||At x | ≤ ε/2 for all t ≥ 0. If
we take t large enough so that

∣∣〈z,At x〉∣∣ ≤ ε/2, then∣∣〈y,At x〉∣∣ ≤ ∣∣〈z,At x〉∣∣+ |z − y||At x | ≤ ε.

Thus 〈y,At x〉 → 0 as t →∞ for all x , y ∈ X , i.e., A is weakly stable. �

In the case of a diagonal system it is possible to develop Theorems 10.4.2
and 10.4.3 a little further.

Definition 10.4.4 Let U and Y be separable Hilbert spaces spanned by the or-
thonormal bases {φn}NU

n=1 and {ψn}NY
n=1 (where NU and NY are the finite or infinite

dimensions of U and Y ), respectively, and let D ∈ B(U ; Y ). By the matrix of
D induced by the bases {φn}NU

n=1 and {ψn}NY
n=1 we mean the (possibly infinite)

array {di j }, 1 ≤ i ≤ NU , 1 ≤ j ≤ NY , where di j = ψ∗i Dφ j = 〈Dφ j , ψi 〉.
Lemma 10.4.5 Let U and Y be separable Hilbert spaces spanned by the or-
thonormal bases {φn}NU

n=1 and {ψn}NY
n=1, respectively, let D ∈ B(U ; Y ), and let

{di j } be the matrix induced by D. Then for every u =∑NU
j=1 u jφ j ∈ U, we have

Du =∑NY
i=1 yiψi , where

yi =
NU∑
j=1

di j u j , (10.4.12)

and (10.4.12) defines a bounded linear operator from l2(1, . . . , NU ) to
l2(1, . . . , NY ) with the same norm as D. Conversely, if (10.4.12) defines a
bounded linear operator from l2(1, . . . , NU ) to l2(1, . . . , NY ), then we get a
bounded linear operator from U to Y by defining

Du =
NY∑
i=1

ψi

NU∑
j=1

di jφ
∗
j u, (10.4.13)

and the matrix of this operator is {di j }.
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We leave the easy proof of this lemma to the reader. (Observe that the
mappings from u ∈ U to its Fourier coefficients u j = 〈u, φ j 〉 ∈ l2(1, . . . , NU )
and from y ∈ Y to its Fourier coefficients yi = 〈y, ψi 〉 ∈ l2(1, . . . , NY ) are
unitary.)

Theorem 10.4.6 Let

Ax =
NX∑

n=1

λnφnφ
∗
n x

be the generator of a diagonal semigroup A with eigenvalues λn and eigenvec-
tors φn on the separable NX -dimensional Hilbert space X (see Examples 3.3.3
and 3.3.5 and Section 4.9), let X1 = D (A), and let C ∈ B(X1; Y ) where Y is a
Hilbert space. Then the following conditions are equivalent:

(i) C is an L2-admissible stable observation operator for A;
(ii) Cφi = 0 whenever 
λi ≥ 0, and the matrix

γi j = −〈Cφ j ,Cφi 〉
λi + λ j

defines a bounded linear operator on l2(1, . . . , NX ) (we interpret 0/0 as
zero).

When these conditions hold, then {γi j } is the matrix induced by the observability
gramian with respect to the basis {φn}NX

n=1.

The requirement that Cφi = 0 whenever 
λi ≥ 0 means that all the eigen-
vectors which correspond to eigenvalues with nonnegative real part are unob-
servable.

Proof (i)⇒ (ii): Suppose that C is an L2-admissible stable observation operator
for A, and let �C = C∗C be the controllability gramian. For each basis vector
φi , we have (Cφi )(t) = eλi t Cφi . This function does not belong to L2(R+; Y )
if 
λi ≥ 0 unless Cφi = 0, so we must have Cφi = 0 whenever 
λi ≥ 0.
Moreover, for 
λi < 0 and 
λ j < 0

〈�Cφ j , φi 〉 = 〈Cφ j ,Cφi 〉 =
∫ ∞

0
〈Cφ j ,Cφi 〉e(λi+λi )t dt

= −〈Cφ j ,Cφi 〉
λi + λ j

.

Thus, the matrix of �C is {γi j }, and this matrix defines a (positive) bounded
linear operator on l2(1, . . . , NX ) (see Lemma 10.4.5).

(ii)⇒ (i): Suppose that (ii) holds. Let x ∈ X1 be a finite sum of the form
x =∑n

j=1 x jφ j . Define (Cx)(t) = CAt x for t ≥ 0. Then Cx ∈ L2(R+; Y ) and
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a computation similar to the one above shows that∫ ∞
0
‖(CAt x)(t)‖2 =

n∑
i, j=1

γi j x j xi .

Thus, if we denote the norm of the operator induced by the matrix {γi j } on
L2(1, . . . , NX ) by M , then we get∫ ∞

0
‖(Cx)(t)‖2 ≤ M‖x‖2

X .

This being true for all x in a dense subset of X , we can extend the operator C

to a bounded linear operator from X to L2(R+; Y ). �

There is an obvious dual counterpart to Theorem 10.4.6:

Theorem 10.4.7 Let

Ax =
NX∑

n=1

λnφnφ
∗
n x

be the generator of a diagonal semigroup A with eigenvalues λn and eigen-
vectors φn on the separable NX -dimensional Hilbert space X, and let B ∈
B(U ; X−1) where U is a Hilbert space. Then the following conditions are equiv-
alent:

(i) B is an L2-admissible stable observation operator for A;
(ii) B∗φi = 0 whenever 
λi ≥ 0, and the matrix

γi j = −〈B
∗φ j , B∗φi 〉
λi + λ j

defines a bounded linear operator on l2(1, . . . , NX ) (we interpret 0/0 as
zero).

When these conditions hold, then {γi j } is the matrix induced by the controlla-
bility gramian with respect to the basis {φn}NX

n=1.

10.5 Carleson measures

The conditions for the L2-admissibility of a control operator B with a Hilbert
input space U or an observation operator C with a Hilbert output space in
Theorem 10.3.6 can be developed further in the case where also the state space
is a Hilbert space, and the semigroup is normal. The key result that we need for
this is the Carleson measure theorem in the right half-plane. Several different
formulations of this theorem are available, out of which we have chosen the
one which has the sharpest constants known to us.
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Theorem 10.5.1 Let ν be a positive Borel measure on the closed right half-
plane C

+
, and let H be the harmonic extension operator

(Hϕ)(z) =
{
ϕ(z), 
z = 0,
1
π

∫∞
−∞ 
(z − jω)−1ϕ( jω) dω, 
z > 0.

Then the following conditions are equivalent:

(i) H maps L2( jR) continuously into L2(ν);
(ii) H 2 ⊂ L2(ν);

(iii) a := sup
λ>0 π
−1
∫

z≥0
λ|z + λ|−2ν( dz) <∞;

(iv) c := sup
λ>0 π
−1
∫

0≤
z≤
λ
λ|z + λ|−2ν( dz) <∞;

(v) M := supω∈R;r>0 π
−1ν(D( jω, r ) ∩ C

+
)/r <∞, where

D( jω, r ) = {z ∈ C | |z − jω| ≤ r}.

Moreover,

c ≤ a ≤ ‖H‖2
B(H 2;L2(ν)) ≤ ‖H‖2

B(L2( jR);L2(ν)) ≤ 32c

and

a ≤ 2M ≤ 8c.

Let us comment on how the statement should be interpreted. The space L2(ν)
consists of all ν-measurable functions ϕ on C

+
with a finite norm

‖ϕ‖L2(ν) =
(∫

C
+
|ϕ(z)|2ν( dz)

)1/2

(where we identify functions with a zero norm with the zero function). We
define L2( jR) to be the set of all L2-functions on the imaginary axis, with the
standard norm

‖ϕ‖L2( jR) =
(∫ ∞
−∞
|ϕ( jω)|2 dω

)1/2
.

In particular, if ω �→ ϕ( jω) is the boundary function of a function ψ ∈ H 2,
then Hϕ = ψ (cf. the proof of Theorem 10.3.4). Statement (ii) means that
every function ϕ ∈ H 2 has a finite norm in L2(ν), but we do not claim that H 2

is embedded in L2(ν), i.e., we do not claim that every nonzero ϕ ∈ H 2 has a
nonzero L2(ν)-norm. Clearly the integral in (iii) is the norm in L2(ν) of the
H 2-function

ϕλ(z) =
√
λ√
π (z + λ)

, 
z ≥ 0, 
λ > 0.



10.5 Carleson measures 593

Observe that these functions have been normalized so that

‖ϕλ‖H 2 = ‖ϕλ‖L2( jR) =
( 1

π

∫ ∞
−∞


λ
|λ− jω|2 dω

)1/2
= 1.

The norm ‖H‖B(H 2;L2(ν)) in the last statement refers to the norm of the operator
in (ii) mapping H 2 into L2(ν), and the norm ‖H‖B(L2( jR);L2(ν)) refers to the norm
of the operator H in (i).

In the proof of Theorem 10.5.1 we need the following two lemmas:

Lemma 10.5.2 Let y, z ∈ C with 
y > 0, 
z �= 0. Then

1

π2

∫ ∞
−∞

(y − jω)−1
(z − jω)−1 dω =

{
π−1
(y + z)−1, 
z > 0,

−π−1
(y − z)−1, 
z < 0.

Observe that we always, without loss of generality, take 
y > 0 (otherwise
we can replace the integration variable ω by −ω).

Proof The case where 
z < 0 can be reduced to the case where 
z > 0 since


(y − jω)−1
(z − jω)−1 = 
y
z

|y − jω|2|z − jω|2
and

|z − jω|2 = |z + jω|2 = |−z − jω|2,

z = −
(−z).

Thus, we may suppose that 
z > 0. Then

1

π2

∫ ∞
−∞

(y − jω)−1
(z − jω)−1 dω

= 1

π2

∫ ∞
−∞


y
z

|y − jω|2|z − jω|2 dω

= 1

π2

∫ ∞
−∞


y
z

|ω + j y|2|ω + j z|2 dω

= 1

π2

∫ ∞
−∞


y
z

(ω + j y)(ω − j y)(ω + j z)(ω − j z)
dω.

The last integral can be evaluated (e.g., by residue calculus) to

π−1
(y + z)−1 = π−1
(z + y)−1.

�

Lemma 10.5.3 Let ν be a nonnegative measure on a measure space (, and
let k be nonnegative and measurable on (×(. If it is true for almost all
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(y, z) ∈ (×( and some finite constant c that∫
(

k(s, y)k(s, z)ν( ds) ≤ c(k(y, z)+ k(z, y)),

then

Q :=
∫∫

(×(
k(y, z)ψ(y)ψ(z)ν( d y)ν( dz) ≤ 2c

for all nonnegative ψ ∈ L2(ν) with ‖ψ‖L2(ν) ≤ 1 for which Q <∞.

Proof By Hölder’s inequality,

Q2 =
(∫

(

ψ(s)

(∫
(

k(s, y)ψ(y)ν( d y)

)
ν( ds)

)2

≤ ‖ψ‖2
L2(ν)

∫
(

(∫
(

k(s, y)ψ(y)ν( d y)

)2

ν( ds)

≤
∫∫∫

(×(×(
k(s, y)k(s, z)ψ(y)ψ(z)ν( d y)ν( dz)ν( ds)

=
∫∫

(×(

(∫
(

k(s, y)k(s, z)ν( ds)

)
ψ(y)ψ(z)ν( d y)ν( dz)

≤ c
∫∫

(×(

(
k(y, z)+ k(z, y)

)
ψ(y)ψ(z)ν( d y)ν( dz)

= 2c
∫∫

(×(
ψ(y)ψ(z)k(y, z)ν( d y)ν( dz)

= 2cQ.

Divide by Q to get the conclusion of Lemma 10.5.3. �

Proof of Theorem 10.5.1. It is clear from the remarks made above that (i)⇒
(ii)⇒ (iii)⇒ (iv) and that c ≤ a ≤ ‖H‖2

B(H 2;L2(ν)) ≤ ‖H‖2
B(L2( jR);L2(ν)).

(iv) ⇒ (v): Let λ = r + jω with r > 0. Then |z + λ| = |z + r − jω|. If
z ∈ D( jω, r ), then |z − jω| ≤ r , and

|z + λ| ≤ |z − jω| + r ≤ 2r.

Squaring this inequality we get

r−1 ≤ 4r |z + λ|−2, z ∈ D( jω, r ).
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Thus,

r−1ν(D( jω, r ) ∩ C
+

) = r−1
∫

z≥0;|z−r |≤r

ν( dz)

≤ 4
∫

z≥0;|z− jω|≤r

r |z + λ|−2ν( dz)

≤ 4
∫

0≤
z≤
λ

λ|z + λ|−2ν( dz) ≤ 4c.

This proves that (iv)⇒ (v) and that M ≤ 4c.
(v)⇒ (iii): Let λ = r + jωwith r > 0, and suppose that ν(D( jω, s)) ≤ Ms

for all s > 0. For each t > 0 and z with 
z ≥ 0, define

g(t, z) =
{

1, if t < |z + λ|−2,

0, if t ≥ |z + λ|−2.

Then ∫ ∞
0

g(t, z) dt = |z + λ|−2,

and we can estimate the integral in (iii) as follows (note that 
z ≥ 0 and |z +
λ|2 = |z + r − jω|2 < t−1 imply that |z − jω|2 < t−1)∫


z≥0


λ
|z + λ|2 ν( dz) = r

∫

z≥0

∫ ∞
0

g(t, z) dt ν( dz)

= r
∫ ∞

0

∫

z≥0

g(t, z)ν( dz) dt

= r
∫ ∞

0
ν
({z | |z + λ|−2 > t}) dt

= r
∫ 1/r2

0
ν
({z | |z + λ|2 < t−1}) dt

≤ r
∫ 1/r2

0
ν
({z | |z − jω|2 < t−1}) dt

= r
∫ 1/r2

0
ν
(
D( jω, t−1/2)

)
dt

≤ r
∫ 1/r2

0
Mt−1/2 dt

= 2M.

Thus (v)⇒ (iii) and a ≤ 2M .
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(iv)⇒ (i): We begin with the case where ν( jR) = 0, and study the (formal)
adjoint H∗ of H, given by

(H∗ψ)( jω) = r

π

∫

z>0

(z − jω)−1ψ(z)ν( dz). (10.5.1)

We claim that the integral in (10.5.1) converges (absolutely) for almost all ω ∈
R, thatH∗ ∈ B(L2(ν); L2( jR)) and that ‖H∗‖2

B(L2(ν);L2( jR) ≤ 32c. By passing to

adjoints we then get H ∈ B(L2( jR; L2(ν))) and ‖H‖2
B(L2( jR);L2(ν)) ≤ 32c (once

we know that H∗ is bounded it follows from Fubini’s theorem that the adjoint
of H∗ is H).

Suppose first that ψ is continuous and supported on a compact subset of
the open right half-plane (, with ‖ψ‖L2(ν) ≤ 1. The ν-measure of the sup-
port of ψ is finite (this follows from (v)), hence we know that the integral in
(10.5.1) converges (absolutely) in this case, and the resulting function (is con-
tinuous and) belongs to L2( jR). The L2-norm of this function is given by (cf.
Lemma 10.5.2)

‖H∗ψ‖2
L2( jR) =

1

π2

∫ ∞
−∞

∫∫
(×(

(y − jω)−1
(z − jω)−1

× ψ(y)ψ(z)ν( d y)ν( dz) dω

=
∫∫

(×(

1

π2

∫ ∞
−∞

(y − jω)−1
(z − jω)−1 dω

× ψ(y)ψ(z)ν( d y)ν( dz)

= 1

π

∫∫
(×(

(y + z)−1ψ(y)ψ(z)ν( d y)ν( dz)

≤ 1

π

∫∫
(×(

(y + z)−1|ψ(y)||ψ(z)|ν( d y)ν( dz)

≤ 1

π

(∫∫

y≤
z

+
∫∫

y>
z

)
×
(y + z)−1|ψ(y)||ψ(z)|ν( d y)ν( dz)

≤ 2Q

where

Q =
∫∫

(×(
k(y, z)|ψ(y)||ψ(z)|ν( d y)ν( dz)

k(y, z) =
{

1
π

(y + z)−1, 
y ≤ 
z,

0, 
y > 
z.

(10.5.2)

We have for all s, y, z ∈ (,

|y + z| ≤ |y + s − s + z| ≤ |s + y| + |s − z| ≤ |s + y| + |s + z|,
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hence

1

|y + z| ≥
1

|s + y| + |s + z| =
|s + y|−1|s + z|−1

|s + y|−1 + |s + z|−1

and
1

|s + y|2|s + z|2 ≤
2

|y + z|2
(
|s + y|−2 + |s + z|−2

)
.

This implies that the kernel k defined in (10.5.2) satisfies, for 
y ≤ 
z,∫
(

k(s, y)k(s, z)ν( ds) ≤ 1

π2

∫

s≤
y


(s + y)
(s + z)

|s + y|2|s + z|2 ν( ds)

≤ 4

π2


y
(y + z)

|y + z|2
∫

s≤
y

( 1

|s + y|2 +
1

|s + z|2
)
ν( ds)

≤ 4

π2


(y + z)

|y + z|2
∫

s≤
y

( 
y

|s + y|2 +

z

|s + z|2
)
ν( ds)

≤ 8ck(y, z) ≤ 8c(k(y, z)+ k(z, y)),

where c is the constant in (iv). By Lemma 10.5.3,

Q ≤ 16c,

hence

‖H∗ψ‖2
L2( jR) ≤ 32c. (10.5.3)

Now let us still suppose that ν( jR) = 0, but that ψ is an arbitrary
function in L2(ν) with ‖ψ‖L2(ν) ≤ 1. Then by (10.5.3) and the density of
functions with compact support in L2(ν), we find that (10.5.3) still holds.
This proves that H∗ ∈ B(L2(ν); L2( jR)) and that ‖H∗‖2

B(L2(ν);L2( jR) ≤ 32c,

hence H ∈ B(L2( jR; L2(ν)))� and ‖H‖2
B(L2( jR);L2(ν)) ≤ 32c.

We still have to remove the assumption that ν( jR) = 0. Fix ε > 0, and study
the shifted operator

(Hεφ)(z) = (Hφ)(z + ε), 
z ≥ 0.

Clearly

‖Hεφ‖2
L2(ν) =

∫
C
+
|(Hεφ)(z)|2ν( dz)

=
∫

C
+
|(Hφ)(z + ε)|2ν( dz)

=
∫

z≥ε
|(Hφ)(z)|2νε( dz),

where νε is the shifted measure νε(E) = ν((E − ε) ∩ C
+

) for each Borel sub-
set E of C

+
. Observe that νε is supported on 
z ≥ ε, hence the version of
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Theorem 10.5.1 that we have proved above can be applied to this measure.
For each λ with 
λ > 0, the function 
(z + λ)−1 is decreasing in 
z, hence it
follows from (iv) that (iv) holds with the original constant c if we replace ν by
νε , for all ε > 0. Thus, Hε ∈ B(L2( jR); L2(ν)) and

‖Hεφ‖L2(ν) ≤ 32c‖φ‖L2( jR).

Let ε ↓ 0. Then (Hεφ)(z)→ (Hφ)(z) for all z with 
z > 0 and almost all z
with 
z = 0; hence, by Fatou’s lemma, H ∈ B(L2( jR); L2(ν)) and

‖Hφ‖L2(ν) ≤ 32c‖φ‖L2( jR).

�

Definition 10.5.4 A positive Borel measure ν on C is a Carleson measure if
ν is supported on the closed right half-plane C

+ = 
z ≥ 0 and the equivalent
conditions in Theorem 10.5.1 are satisfied.

10.6 Admissible control and observation operators
for diagonal and normal semigroups

We now continue our study of diagonal and normal systems begun in Section
4.9. This time we take all the spaces (Y, X,U ) to be Hilbert spaces, and require
the system to be L2-well-posed. In this case it is possible to employ Theorem
10.5.1 to derive necessary and sufficient conditions for the admissibility of a
control operator B with a scalar input space, and for the admissibility of an
observation operator C with a scalar output space. Some necessary conditions
for the admissibility of B and C in the multi-input multi-output cases will also
be given. We begin with the (notationally) simpler case where the semigroup
is diagonal.

Theorem 10.6.1 Let A be a diagonal semigroup on the separable Hilbert space
X generated by the operator A with eigenvalues λn and eigenvectors φn, n =
1, 2, 3, . . . . Define X−1 and X∗−1 as in Section 4.9.

(i) A vector b =∑∞n=1 bnφn ∈ X−1 defines an L2-admissible and stable
control operator B : u �→ bu for A (with the scalar input space U = C)
if and only if bn = 0 whenever 
λn ≥ 0 and the measure µ which
consists of point masses of size |bn|2 at the points −λn is a Carleson
measure on (. In this case the norm of B as an operator in B(L2(R−); X )
is equal to the norm of the embedding operator H 2 → L2(µ) in Theorem
10.5.1(ii).
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(ii) A vector c∗ =∑∞n=1 cnφn ∈ X∗−1 defines an L2-admissible and stable
observation operator C : x �→ cx = 〈x, c∗〉(X1,X∗−1) (with the scalar output
space Y = C) if and only if cn = 0 whenever 
λn ≥ 0 and the measure ν
which consists of point masses of size |cn|2 at the points −λn is a
Carleson measure on (. In this case the norm of C as an operator in
B(X ; L2(R+)) is equal to the norm of the embedding operator
H 2 → L2(µ) in Theorem 10.5.1(ii).

Before proving this theorem, let take at closer look at the coefficients bn

and cn . Recall from Section 4.9 that the conditions b ∈ X−1 and c∗ ∈ X∗−1 are
equivalent to

‖b‖2
X−1
=
∞∑

n=1

(1+ |λn|2)−1|bn|2 <∞, bn = φ∗n b,

‖c∗‖2
X−1
=
∞∑

n=1

(1+ |λn|2)−1|cn|2 <∞, cn = φ∗n c∗,

where the notation is the same as in Section 4.9. We recall from Theorems
4.2.1 and 4.4.2 that the conditions b ∈ X−1 and c∗ ∈ X∗−1 are necessary for the
admissibility of the control operator B : u �→ bu and the observation operator
C : x �→ 〈x, c∗〉.
Proof of Theorem 10.6.1. It suffices to prove, e.g., (i), because (ii) then follows
by duality (see Theorems 6.2.3 and 6.2.13).

By Theorem 4.2.1(i) (and Definition 2.5.6(ii)) the operator B in (i) is an
L2-admissible and stable observation operator for A if and only if it is true that∫ 0
−∞ A−sbu(s) ds ∈ X for all u ∈ L2

c(R−), and, in addition, there is a constant
M <∞ such that∣∣∣∣∫ 0

−∞
A−sbu(s) ds

∣∣∣∣
X

≤ M‖u‖L2(R−), u ∈ L2
c(R−)

(it suffices to test this condition for functions u with bounded support since
L2

c(R+) is dense in L2(R+)). The assumption b ∈ X−1 enables us to repeat the
proof of Theorem 4.9.1(viii) to show that∫ 0

−∞
A−sbu(s) ds =

∞∑
n=1

φnbn

∫ 0

−∞
e−λnsu(s) ds,

where the sum converges in X−1 and the terms are orthogonal to each other.
The result belongs to X if and only if it has a finite X -norm( ∞∑

n=1

∣∣∣∣bn

∫ 0

−∞
e−λnsu(s) ds

∣∣∣∣2)1/2

=
( ∞∑

n=1

∣∣∣∣bn

∫ ∞
0

eλnsu(−s) ds

∣∣∣∣2)1/2

.
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We replace u by the reflected ( Ru)(s) = u(−s) to conclude that B is an L2-
admissible and stable control operator for A if and only if there exists a finite
constant M such that( ∞∑

n=1

|bnû(−λn)|2
)1/2

≤ M‖u‖L2(R+), u ∈ L2
c(R+),

where û(−λn) = ∫∞0 eλnsu(s) ds is the Laplace transform of u, evaluated at−λn

(û of u is entire since u has bounded support). Moreover, the infimum over all
such M gives us ‖B‖B(L2(R−);X ). Observe that, by the Paley–Wiener Theorem
10.3.4, this can alternatively be written as( ∞∑

n=1

|bnû(−λn)|2
)1/2

≤ M‖û‖H 2 , u ∈ L2
c(R+). (10.6.1)

Suppose that bn = 0 whenever 
λn > 0, and that the measure µ defined in
(i) is a Carleson measure. The left hand side of (10.6.1) is simply ‖û‖2

L2(µ),
hence by Theorem 10.5.1 and Definition 10.5.4, condition (10.6.1) holds with
M = ‖H‖2

B(H 2;L2(µ)). In particular, we observe that the norm of B as an operator

in B(L2(R−); X ) is equal to the norm of the embedding operator H 2 → L2(µ).
Conversely, suppose that B is L2-admissible and stable, i.e., suppose that

(10.6.1) holds for some finite M . Then, for each fixed n,

|bnû(−λn)| ≤ M‖û‖H 2 , u ∈ L2
c(R+),

or equivalently (by the Paley–Wiener theorem)∣∣∣∣bn

∫ ∞
0

eλnsu(s) ds

∣∣∣∣ ≤ M‖u‖L2(R+), u ∈ L2
c(R+).

By the density of L2
c(R+) in L2(R+), this inequality is true for some fixed finite

M for all u ∈ L2
c(R+) iff it is true for all u ∈ L2(R+). It is easy to see that this

inequality cannot hold if bn �= 0 and
λn ≥ 0 (take u(t) = e−λn t if
λn > 0, and
u(t) = (1+ t)−3/4e−λn t if 
λn = 0). Thus, we conclude that bn = 0 whenever

λn ≥ 0. This means that the terms in the sum on the left-hand side of (10.6.1)
where 
λn > 0 drop out. Since L2

c(R+) is dense in L2(R+), the set of Laplace
transforms of functions in L2

c(R+) is dense in H 2, and (10.6.1) then implies
that H 2 ⊂ L2(µ), where µ is the measure defined in (ii). Thus, by Theorem
10.5.1(ii) and Definition 10.5.4, µ is a Carleson measure. �

It is possible to reformulate Theorem 10.6.1 in a way which makes no ref-
erence to Carleson measures:

Theorem 10.6.2 Let A be a diagonal semigroup on the separable Hilbert space
X generated by the operator A. Define X−1 and X∗−1 as in Section 4.9.
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(i) A vector b ∈ X−1 defines an L2-admissible stable control operator
B : u �→ bu for A (with the scalar input space U = C) if and only if

ab := sup
λ∈ρ(A)

λ>0

π−1
λ|(λ− A|X )−1b|2X <∞. (10.6.2)

Moreover, ab ≤ ‖B‖2
B(L2(R−);X ) ≤ 32ab.

(ii) A vector c∗ ∈ X∗−1 defines an L2-admissible and stable observation
operator C : x �→ cx = 〈x, c∗〉(X1,X∗−1) (with the scalar output space
Y = C) if and only if

ac := sup
λ∈ρ(A∗)

λ>0

π−1
λ|(λ− A∗|X )−1c∗|2X <∞. (10.6.3)

Moreover, ac ≤ ‖C‖2
B(X ;L2(R+)) ≤ 32ac.

Proof Again it suffices to prove (i), since (ii) then follows by duality. For this
we introduce the same notation as in Theorem 10.6.1.

Let λ ∈ ρ(A). The assumption b ∈ X−1 enables us to repeat the proof of
Theorem 4.9.1(ii)–(iii) (with X replaced by X−1) to show that

(λ− A|X )−1b =
∞∑

n=1

(λ− λn)−1bnφn.

The X -norm of this vector is given by

|(λ− A|X )−1b|2X =
∞∑

n=1

|λ− λn|−2|bn|2, λ ∈ ρ(A). (10.6.4)

Suppose that B is L2-admissible and stable. Then, by Theorem 10.6.1(i),
bn = 0 whenever 
λn ≥ 0, and the measure µ defined there is a Carleson
measure. Condition (10.6.2) then follows from (10.6.4) and the fact that µ
satisfies condition (iii) in Theorem 10.5.1.

Conversely, suppose that (10.6.2) holds. Then it follows from Lemma
3.2.8(iii) that bn = 0 whenever
λn ≥ 0. Moreover, if we define the measureµ
as in Theorem 10.6.1(i), then, because of (10.6.4), (10.6.2) is equivalent to con-
dition (iii) in Theorem 10.5.1. Thus, µ is a Carleson measure, and by Theorem
10.6.1(i), B is L2-admissible and stable.

The given bound on ‖B‖ follows from Theorems 10.5.1 and 10.6.1 (since
ab is equal to the constant a in Theorem 10.5.1(iii)). �

Theorem 10.6.3 Let A be a normal semigroup on the Hilbert space X with
generator A and spectral resolution E (cf. Example 3.3.6). Define X−1 and
X∗−1 as in Section 4.9.
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(i) A vector b ∈ X−1 defines an L2-admissible and stable control operator
B : u �→ bu for A (with the scalar input space U = C) if and only if the
measure 〈Eb, b〉 is a Carleson measure (supported on C

+
).

(ii) A vector c∗ ∈ X∗−1 defines an L2-admissible and stable observation
operator C : x �→ cx = 〈x, c∗〉(X1,X∗−1) (with the scalar output space
Y = C) if and only if the measure 〈Ẽc∗, c∗〉 is a Carleson measure
(supported on C

+
), where Ẽ is the spectral resolution of A∗.

The proof of this theorem is the same as the proof of Theorem 10.6.1 except
for the fact that all sums are replaced by integrals. We leave the necessary
modifications to the reader.

Theorem 10.6.4 Let A be a normal semigroup on the Hilbert space X with
generator A and spectral resolution E (cf. Example 3.3.6). Define X−1 and
X∗−1 as in Section 4.9.

(i) A vector b ∈ X−1 defines an L2-admissible stable control operator
B : u �→ bu for A (with the scalar input space U = C) if and only if

ab := sup
λ∈ρ(A)

λ>0

π−1
λ|(λ− A|X )−1b|2X <∞. (10.6.5)

Moreover, ab ≤ ‖B‖2
B(L2(R−);X ) ≤ 32ab.

(ii) A vector c∗ ∈ X∗−1 defines an L2-admissible and stable observation
operator C : x �→ cx = 〈x, c∗〉(X1,X∗−1) (with the scalar output space
Y = C) if and only if

ac := sup
λ∈ρ(A∗)

λ>0

π−1
λ|(λ− A∗|X )−1c∗|2X <∞. (10.6.6)

Moreover, ac ≤ ‖C‖2
B(X ;L2(R+)) ≤ 32ac.

We leave this proof, too, to the reader. (It is again a question of replacing
sums by integrals.)

10.7 Admissible control and observation operators
for contraction semigroups

Theorem 10.6.4 can be extended to the case where the semigroup is a contraction
semigroup.

Theorem 10.7.1 Let A be a contraction semigroup on the Hilbert space X with
generator A. Define X−1 and X∗−1 as in Section 4.9.
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(i) A vector b ∈ X−1 defines an L2-admissible stable control operator
B : u �→ bu for A (with the scalar input space U = C) if and only if

sup

λ>0

λ|(λ− A|X )−1b|2X <∞. (10.7.1)

(ii) A vector c∗ ∈ X∗−1 defines an L2-admissible and stable observation
operator C : x �→ cx = 〈x, c∗〉(X1,X∗−1) (with the scalar output space
Y = C) if and only if

sup

λ>0

λ|(λ− A∗|X )−1c∗|2X <∞. (10.7.2)

The proof of part (i) of this theorem can be reduced to the proof of part (ii)
by duality, and part (ii) can, in turn, be reduced to two special cases: the normal
case which we already encountered in Theorem 10.6.4, and the case where A

is the (outgoing) left-shift τ− on L2(R−; U ).

Lemma 10.7.2 Let U be a Hilbert space, let τ− be the left-shift semigroup on
U = L2(R−; U ) with generator d

ds− (cf. Example 3.2.3), and denote

U1 = D
(

d

ds −

)
= W 1,2

0 (R
−

; U ) = {x ∈ W 1,2(R
−

; U ) | x(0) = 0}.

Then c ∈ (U1)∗ is an L2-admissible stable observation operator (with the scalar
output space Y = C) if and only if (10.7.2) holds with A replaced by d

ds−.

Before proving this lemma, let us formulate and prove some auxiliary results.
In these auxiliary lemmas it will be convenient to distinguish between the Hilbert
space U and its dual U ∗ = B(U ; C). (Recall that there is a conjugate-linear
correspondence between these two spaces.)

Lemma 10.7.3 Every bounded linear functional c : W 1,2
0 (R

−
; U )→ C (where

U is a Hilbert space) has a unique representation of the form

cu =
∫ 0

−∞
c1(−s)(u(s)− u̇(s)) ds, u ∈ W 1,2

0 (R
−

; U ), (10.7.3)

for some c1 ∈ L2(R+; U ∗) (where U ∗ = B(U ; C)). Conversely, every c1 ∈
L2(R+; U ∗) defines via (10.7.3) a (unique) bounded linear functional on
W 1,2

0 (R
−

; U ).

Proof Denote U = L2(R−; U ) and U1 = W 1,2
0 (R

−
; U ), and let d

ds− be the gen-

erator of the left-shift semigroup τ− on L2(R−; U ). Then 1− d
ds− maps U one-

to-one onto U1 with a bounded inverse (cf. Example 3.3.1). Thus, c
(
1− d

ds−
)−1

defines a bounded linear functional on U , which can be written in the form
c(1− d

ds−)−1u = 〈u, c0〉 for a unique c0 ∈ U and all u ∈ U . Thus, for every
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u ∈ U1, we have

cu = c
(

1− d

ds −

)−1(
1− d

ds −

)
u =

〈(
1− d

ds −

)
u, c0

〉
= 〈u − u̇, c0〉.

From here we get (10.7.3) by defining c1(s)u = 〈u, c0(−s)〉 for u ∈ U and
s ≥ 0.

The proof of the converse claim is trivial. �

Lemma 10.7.4 Let c be a bounded linear functional on W 1,2
0 (R

−
; U ), and

define c1 as in Lemma 10.7.3. For each u ∈ W 1,2
0,loc(R; U ), define Du ∈

BC0,loc(R; U ) by

(Du)(t) =
∫ t

−∞
c1(t − s)(u(s)− u̇(s)) ds, t ∈ R.

Then D is time-invariant and causal, and for all u ∈ W 1,2
0 (R

−
; U ),

(Du)(t) = cτ t
−u, t ≥ 0.

Moreover, c is an L2-admissible stable output operator for τ− if and only if
there is a finite constant K such that∫ ∞

0
|(Du)(t)|2 dt ≤ K 2‖u‖2

L2(R−), u ∈ W 1,2
0 (R

−
; U ).

In this case, if we denote the output operator induced by c by C, then
Cu = π+Dπ−u for all u ∈ W 1,2

0 (R
−

; U ), and

‖C‖ = sup
u∈W 1,2

0 (R
−

;U )
‖u‖L2(R− )≤1

‖Du‖L2(R+).

Proof The causality of D is obvious. To show that D is time-invariant, and
that (Du)(t) = cτ t

−u for all u ∈ W 1,2
0 (R

−
; U ) and all t ≥ 0 it suffices to make

a change of variable in the integral defining Dτ t u. The remaining claims are
obvious (see Definition 10.1.1(ii)). �

To proceed further we have to move over to the frequency domain, and to
introduce the transfer function of the operator D in Lemma 10.7.4.

Lemma 10.7.5 Let c be a bounded linear functional on W 1,2
0 (R

−
; U ), and

define c1 and D as in Lemmas 10.7.3 and 10.7.4. Then, for each u ∈ W 1,2(R; U )
whose support is bounded to the left, the bilateral Laplace transform of Du is
given by

D̂u(z) = D̂(z)û(z), 
z > 0,

where û is the bilateral Laplace transform of u, D̂(z) = (1− z)ĉ1(z) for
z > 0,
and ĉ1 =

∫∞
0 e−zsc1(s) ds is the Laplace transform of c1 (cf. Definition 3.12.1).
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Proof To prove this it suffices to use Fubini’s theorem, change the integration
variable, and do an integration by parts: for all 
z > 0,

D̂u(z) =
∫ ∞
−∞

e−zt
∫ t

−∞
c1(t − s)(u(s)− u̇(s)) ds dt

=
∫ ∞
−∞

∫ −∞
s

e−zt c1(t − s) dt (u(s)− u̇(s)) ds

=
∫ −∞

0
e−zvc1(v) dv

∫ ∞
−∞

e−zs(u(s)− u̇(s)) ds

= ĉ1(z)(1− z)û(z).

�

Definition 10.7.6 The function D̂ in Lemma 10.7.5 is called the transfer func-
tion of the operator D.

Lemma 10.7.7 For all 
λ > 0 and u ∈ L2(R−; U ), we have

c
(
λ− d

ds −

)−1
u =

∫ 0

−∞
dλ(−s)u(s) ds,

where dλ ∈ L2(R+; U ∗) has the Laplace transform

d̂λ(z) = (λ− z)−1(D̂(z)− D̂(λ)), 
z > 0.

In particular, the norm of c
(
λ− d

ds−
)−1

is given by∥∥∥c(λ− d

ds −

)−1∥∥∥ = ‖dλ‖L2(R+;U ∗).

Proof By Example 3.3.2 and Lemma 10.7.3,

c
(
λ− d

ds −

)−1
u =

∫ 0

−∞
c1(−t)(u(t)+ u̇(t)) dt

=
∫ 0

−∞
c1(−t)

(
u(t)+ (1− λ)

∫ 0

t
eλ(t−s)u(s) ds

)
dt

=
∫ 0

−∞
c1(−t)u(t) dt

+ (1− λ)
∫ 0

−∞

∫ s

−∞
c1(−t)eλ(t−s)u(s) dt ds

=
∫ 0

−∞
dλ(−s)u(s) ds,

where

dλ(s) = c1(s)+ (1− λ)
∫ ∞

s
eλ(s−t)c1(t) dt.
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The Laplace transform of dλ is, for 
z > 0,

d̂λ(z) = ĉ1(z)+ (1− λ)
∫ ∞

0
e−zs
∫ ∞

s
eλ(s−t)c1(t) dt ds

= ĉ1(z)+ (1− λ)
∫ ∞

0
e−λt
∫ t

0
e(λ−z)s ds c1(t) dt

= ĉ1(z)+ 1− λ

λ− z

∫ ∞
0

(e−zt − e−λt )c1(t) dt

= ĉ1(z)+ 1− λ

λ− z
(ĉ1(z)− ĉ1(λ))

= (1− z)ĉ1(z)+ (1− λ)ĉ1(λ)

λ− z

= (λ− z)−1(D̂(z)− D̂(λ)).

�

In our proof of Lemma 10.7.2 we shall also need the spaces BMO and BMOA
which are defined as follows.

Definition 10.7.8 Let X be a Hilbert space.

(i) The space BMO( jR; X ) consists of all f ∈ L2
loc( jR; X ) satisfying

‖ f ‖BMO = sup
I

1

|I |
∫

I
| f ( jω)− f I | dω <∞,

where the supremum is taken over all intervals I of finite length |I | > 0,
and

f I = 1

|I |
∫

I
f ( jω) dω

is the mean value of f over I .
(ii) The space BMOA( jR; X ) consists of all functions f such that the function

z �→ f (z)/(1+ z) belongs to H 2(C+; X ) and the corresponding boundary
function belongs to BMO( jR; X ).

As is well-known, the space BMO( jR; X ) is a Banach space (after we identify
any two functions which differ by a constant), with the norm given above. To
prove that a function belongs to BMO( jR; X ) the following simple argument
is often useful. Assume that, for each interval I with 0 < |I | <∞ there is a
constant cI such that

sup
I

1

|I |
∫

I
| f ( jω)− cI | dω = M <∞.
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Then trivially | f I − cI | ≤ M , so that, by the triangle inequality,

‖ f ‖BMO ≤ 2 sup
I

1

|I |
∫

I
| f ( jω)− cI | dω. (10.7.4)

Proof of Lemma 10.7.2 It is easy to show that condition (10.7.2) is always
necessary for the L2-admissibility and stability of c.1 If c is L2-admissible and
stable, and if we denote the corresponding output map by C, then, according to
Theorem 4.4.2(iv), we have for all u ∈ U ,

c(λ− A)−1u =
∫ ∞

0
e−λs(Cu)(s) ds, 
λ > 0.

Thus, by Hölder’s inequality,∣∣c(λ− A)−1u
∣∣2 ≤ ∫ ∞

0
e−
λs ds

∫ ∞
0
|(Cu)(s)|2 ds

≤ (
λ)−1‖C‖U∗‖u‖U .
Taking the supremum over all u ∈ U with |u| ≤ 1 we get∣∣c(λ− A)−1

∣∣2 ≤ (
λ)−1‖C‖U∗ , 
λ > 0.

Conversely, suppose that (10.7.2) holds. Let c1 be the function in Lemma
10.7.3, let D̂(z) = (1− z)ĉ1(z) (as in Lemma 10.7.5), and define d̂λ as in Lemma
10.7.7. Then both z �→ (1+ z)−1D̂(z) and d̂λ belong to H 2(C+; U ∗), so they
have boundary functions in L2( jR; U ∗). We denote these boundary functions
simply by jω �→ (1+ jω)−1D̂( jω), respectively jω �→ d̂λ( jω). With this no-
tation, it follows from Lemma 10.7.7 that

M := sup

λ>0

λ‖d̂λ‖2

L2( jR;U ∗) <∞. (10.7.5)

We claim that D̂ ∈ BMOA(C+; B∗). To prove this we use (10.7.4) with f =
D̂ and with a specific choice of cI . For each α > 0 and β ∈ R we define

Eα,β = 1

2α

∫ β+α

β−α
|D̂( jω)− D̂(α + jβ)| dω,

and observe from (10.7.4) that

‖D̂‖BMO ≤ 2 sup
α>0, β∈R

Eα,β .

We estimate Eα,β as follows (using the Cauchy–Schwarz inequality

1 The following computation is identical to the one that we used to prove Proposition 4.4.9.
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and (10.7.5)):

Eα,β = 1

2α

∫ β+α

β−α

|D̂( jω)− D̂(α + jβ)|
| jω − (α + jβ)| | jω − (α + jβ)| dω

= 1

2α

∫ β+α

β−α
|d̂α+ jβ( jω)|| jω − (α + jβ)| dω

≤ 1

2α
‖d̂α+ jβ‖L2( jR;U ∗)

(∫ β+α

β−α
| jω − (α + jβ)|2 dω

)1/2

=
√

2α/3‖d̂α+ jβ‖L2( jR;U ∗) ≤
√

2M/3.

This proves our claim that D̂ ∈ BMOA(C+; B∗) (and that ‖D̂‖BMO ≤
2
√

2M/3).
We now invoke Fefferman’s theorem, which says that the Hankel operator

induced by D (i.e., the operator C in Lemma 10.7.4) is bounded if (and only if)
its transfer function D̂ belongs to B M O A(C+; U ∗).2 By Lemma 10.7.4, this is
equivalent to the L2-admissibility and stability of c. �

Remark 10.7.9 It follows from the above proof that the BMO-norm of D̂ is
equivalent to the supremum on the left-hand side of (10.7.2) with A replaced
by d

ds−. This is the same thing as

sup

λ>0

λ‖d̂λ‖H 2(C+;U ∗),

and it is also equal to
√

M with M as in (10.7.5). In the case where U = C a
slightly more general result (which does not require analyticity in C+) is found
in Garnett (1981, Corollary 2.4, p. 234), and the proof given there applies also
when U is a general Hilbert space.

We have now arrived at a point where we are able to prove the following
limited version of Theorem 10.7.1.

Lemma 10.7.10 Let A be an isometric semigroup on the Hilbert space X with
generator A. Define X1 as in Section 4.9. Then c ∈ X∗1 is an L2-admissible
stable observation operator (with the scalar output space Y = C) if and only
if (10.7.2) holds.

Proof The necessity of (10.7.2) was proved above (see the beginning of the
proof of Lemma 10.7.2).

The proof of the sufficiency of (10.7.2) is based on Lemma 10.7.2 and the
universal model for isometric semigroups presented in Corollary 11.6.9. This

2 It is shown in Jacob and Partington (2001, p. 240) how to derive this version of Fefferman’s
theorem from the version which says that B M O A(C+; U∗) can be interpreted as the dual of
H1(C−; U ). The latter version is found in, e.g., Blasco (1997).
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model employs a unitary similarity transformation in the state space of the
type discussed in Example 2.3.7. The statement of Lemma 10.7.10 is invariant
under such transformations in the following sense. If E is a unitary map of
X onto X̃ , then for all x ∈ X , ‖Ex‖X̃ = ‖x‖X , and Ãt = E−1At E is a C0-
semigroup (still isometric) on X̃ with generator Ã = E−1 AE and resolvent
(λ− Ã)−1 = E−1(λ− A)−1 E . Thus, if we define c̃ = cE , then the conclusion
of Lemma 10.7.10 is true for a particular choice of X , A, and c if and only if it
is true for X̃ , Ã, and c̃.

The Wold decomposition of A (see Corollary 11.6.9) tells us that there is a
subspace Z ⊂ X , a Hilbert space U , and unitary map E of L2(R−; U ) onto Z⊥

such that, if we decompose X into X = [ Z
Z⊥
]
, then

A =
[
At

1 0
0 Eτ−E−1

]
,

where A1 is a unitary semigroup on Z . Let c1 be the restriction of c to Z , and
let c2 be the restriction of c

[
1 0
0 E

]
to L2(R−; U ). Then c is an L2-admissible

stable observation operator for A if and only if c1 and c2 are L2-admissible and
stable observation operators for A1 and τ−, respectively, and (10.7.2) holds if
and only if it holds both when c and A are replaced by c1 and A1, and when c
and A are replaced by c2 and τ−.

Suppose that (10.7.2) holds. Then, by Theorem 10.6.4(ii), c1 is an L2-
admissible stable observation operator for A1, and by Lemma 10.7.2, c2 is an
L2-admissible stable observation operator for τ−. Thus, c is an L2-admissible
stable observation operator for A. �

Proof of Theorem 10.7.1 It suffices to prove part (ii), since (i) then follows by
duality.

The necessity of (10.7.2) was proved above (see the beginning of the proof
of Lemma 10.7.2).

The proof of the sufficiency is based on a reduction to the isometric case
treated in Lemma 10.7.10. By Theorem 11.4.5(iii), the contraction semigroup
A on X can be dilated to an isometric semigroup Ã = [A11 A12

0 A

]
on
[

Z
X

]
, where

Z is some other Hilbert space.Wedenote the generatorof Ã by Ã. Trivially, if[
z
x

] ∈ D ( Ã), then x ∈ D (A), so we can define an operator c̃ on D ( Ã) by

c̃ = [0 c
]
.

We claim that c̃ is an L2-well-posed stable observation operator for Ã whenever
(10.7.2) holds, and prove this as follows.

By Theorem 3.2.9(i), for all 
λ > 0,

(λ− Ã)−1 =
∫ ∞

0
e−λsÃs ds =

[
R11(λ) R12(λ)

0 R22(λ)

]
,
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where R22(λ) = (λ− A)−1 is the resolvent of A. Therefore, for all
[

z
x

] ∈ [ Z
X

]
,

c̃(λ− Ã)−1
[

z
x

] = c(λ− A)−1x . Thus, if (10.7.2) holds, then it also holds with
c and A replaced by c̃ and Ã. By Lemma 10.7.10, this implies that c̃ is an
L2-admissible and stable observation operator for Ã, as claimed above.

LetC = [C1 C2
]

be the output map induced by c̃. Then, by Theorem 4.4.2(iv),
for all

[
z
x

] ∈ [ Z
X

]
and all 
λ > 0,∫ ∞

0
e−λs
(
(C1z)(s)+ (C1x)(s)

)
ds = [0 c

] [R11(λ) R12(λ)
0 R22(λ)

] [
z
x

]
= cR22(λ)x .

Thus, the Laplace transform of C1z is identically zero for all z ∈ Z , and this
means that C1 = 0, i.e., C = [0 C2

]
.

We claim that C2 is an L2-well-posed stable output map for A. Clearly C2

maps X into L2(R+), so it suffices to show that C2A
t = τ t

+C2 for all t ≥ 0.
However, this is true since, for all

[
z
x

] ∈ [ Z
X

]
and all t ≥ 0,

C2A
t x = [0 C2

] [At
11 At

12

0 At

] [
z
x

]
= τ t

+
[
0 C2
] [z

x

]
= τ t

+C2.

This confirms that C2 is an L2-well-posed stable output map for A.
There is only one more thing left to prove, namely that the observation

operator of C2 is c. Equivalently, we must show that for all x ∈ X1, (C2x)(t) =
cAt x for all t ≥ 0. We know that

(
C
[

z
x

] )
(t) = cAt x for all

[
z
x

] ∈ D ( Ã), so it
suffices show that for every x ∈ X1, it is possible to find some z ∈ Z so that[

z
x

] ∈ D ( Ã). Take x ∈ X1, 
λ > 0, and x1 = (λ− A)x , and define[
z
x2

]
= (λ− Ã)−1

[
0
x1

]
=
[

R11(λ) R12(λ)
0 R22(λ)

] [
0
x1

]
.

Then
[

z
x

] ∈ D ( Ã), x2 = R22(λ)x1 = (λ− A)−1x1 = x , and
(
C2x
)
(t) =(

C
[

z
x

])
(t) = cAt x for all t ≥ 0. �

10.8 Admissibility results based on the Lax–Phillips model

According to Corollary 2.7.7, there is a one-to-one correspondence between
the class of all L p-well-posed linear systems and all Lax–Phillips scattering
models of type L p. This means that we can reduce the study of the gen-
erators of a well-posed linear system to the study of the generators of the
Lax–Phillips semigroup. This way we can obtain, e.g., necessary and suffi-
cient conditions for the admissibility of a control operator B or an observation
operator C . For simplicity we here only study the L p-admissible case with
1 ≤ p <∞.
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Theorem 10.8.1 Let ω ∈ R, 1 ≤ p <∞, and let A be the generator of an
ω-bounded C0 semigroup on X.

(i) B ∈ B(U ; X−1) is an L p-admissible ω-bounded control operator for A if
and only if there is a constant M > 0 such that, for all u ∈ L p

ω(R+; U ),
λ > ω, and n = 0, 1, 2, . . . ,∣∣∣ ∂n

∂λn
(λ− A|X )−1 Bû(λ)

∣∣∣
X
≤ Mn!

(λ− ω)n+1
‖u‖L p

ω(R+;U ). (10.8.1)

(ii) C ∈ B(X1; Y ) is an L p-admissible ω-bounded observation operator for
A if and only if there is a constant M > 0 such that, for all x0 ∈ X,
λ > ω, and n = 0, 1, 2, . . . ,(∫ ∞

0

∣∣∣∣ ∂n

∂λn
e−(λ−ω)t C(λ− A)−1x0

∣∣∣∣p
Y

dt

)1/p

≤ Mn!

(λ− ω)n+1
|x0|X .

(10.8.2)
(iii) Let B ∈ B(U ; X−1) be an L p-admissible ω-bounded control operator for

A (cf. (i)), and define D (A&B) as in Definition 10.1.1(iii). Then
C&D ∈ B(D (A&B) ; Y ) is an L p-admissible ω-bounded
observation/feedthrough operator for A if and only if the operator

Cx = C&D

[
x
0

]
, x ∈ X1.

is an admissible ω-bounded observation operator for A (cf. (ii)) and
there is a constant M > 0 such that, for all u ∈ L p

ω(R+; U ), λ > ω, and
n = 0, 1, 2, . . . ,(∫ ∞

0

∣∣∣∣ ∂n

∂λn
e−(λ−ω)tD̂(λ)û(λ)

∣∣∣∣p
Y

dt

)1/p

≤ Mn!

(λ− ω)n+1
‖u‖L p

ω(R+;U ),

(10.8.3)
where

D̂(λ) = C&D

[
(λ− A|X )−1 B

1

]
, 
λ > ω.

(iv) The operators B ∈ B(U ; X−1) and C ∈ B(X1; Y ) are jointly L p

admissible and ω-bounded iff B is an L p-admissible ω-bounded control
operator for A (cf. (i)), C is an L p-admissible ω-bounded observation
operator for A (cf. (ii)) and there is a constant M > 0 such that (10.8.3)
holds for all u ∈ L p

ω(R+; U ), λ > ω, and n = 0, 1, 2, . . . ; this time the
function D̂ in (10.8.3) is given by

D̂(λ) = (α − λ)C(λ− A)−1(α − A|X )−1 B + Dα,

where α with 
α > ω and Dα ∈ B(U ; Y ) can be chosen in an arbitrary
manner.
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Proof Let us first prove the necessity of (10.8.1), (10.8.2), and (10.8.3) for
admissibility. If B is an L p-admissible ω-bounded control operator for A, then[

A B
0 0

]
is an ω-bounded L p-well-posed linear system on (Y, X,U ) (where the

output space Y is irrelevant). If C is an L p-admissible ω-bounded observa-
tion operator for A, then

[
A 0
C 0

]
is an ω-bounded L p-well-posed linear sys-

tem on (Y, X,U ) (where the input space U is irrelevant). Finally, if C&D is
an L p-admissible ω-bounded observation operator for A, then

[A B

C D

]
is an

ω-bounded L p-well-posed linear system on (Y, X,U ). Thus, in all cases we
get an ω-bounded L p-well-posed linear system on (Y, X,U ). The correspond-
ing Lax–Phillips model T of type L p

ω is an ω-bounded C0 semigroup. We
can therefore apply the Hille–Yosida Theorem 3.4.1 to this semigroup. We de-
note the generator of the Lax–Phillips model T by T , and split the resolvent
(λ− T )−1 into its components (corresponding to the splitting of the state space

into
[ Y

X
U

]
=
[

L p
ω(R−;Y )

X
L p(R+;U )

]
)

(λ− T )−1 =
R11(λ) R12(λ) R13(λ)

0 R22(λ) R23(λ)
0 0 R33(λ)

 .
The derivatives ∂n

∂λn of this operator satisfy the Hille–Yosida condition in
Theorem 3.4.1(ii′) if and only if each of the components Ri j (λ) satisfies the
same condition (as an operator between the appropriate spaces); this follows
from the fact that the norm of a 3× 3 matrix is equivalent to the maximum of
the norms of its elements. The diagonal elements Rii (λ), i = 1, 2, 3, do satisfy
this Hille–Yosida condition, since they are the resolvents of the generators τ−,
A, and τ+ of ω-bounded C0 semigroups on Y , X , and U . Conditions (10.8.1)
(10.8.2), and (10.8.3) are simply the corresponding Hille–Yosida conditions for
the elements R23(λ), R12(λ), and R13(λ), respectively. This proves the necessity
of (10.8.1), (10.8.2), and (10.8.3) for the admissibility of B, C , and/or C&D.

The proof of the sufficiency of (10.8.1), (10.8.2), and (10.8.3) for the admis-
sibility of B, C , and C&D is essentially the same. We define the operator T

as in Theorem 4.8.3(i), i.e., the domain of T consists of all the vectors
[ y0

x0
u0

]
∈[

W 1,p
ω (R

−
;Y )

X
W 1,p
ω (R

+
;U )

]
which satisfy Ax0 + Bu0(0) ∈ X and y0(0) = C&D

[ x0
u0(0)

]
, and

on its domain T is given by

T

y0

x0

u0

 =
 ẏ0

A|X x0 + Bu0(0)
u̇0

 .
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The domain of T is dense in
[ Y

X
U

]
, and arguing as in the proof of Theorem

4.8.3(iii) we find that the resolvent of S is given by the formulas in Theorem
4.8.3(iii)(b). It follows from the Hille–Yosida Theorem 3.4.1 that T generates
an ω-bounded C0 semigroup T. By Theorem 2.7.6, from this semigroup we
get an ω-bounded well-posed linear system if we can show that the T satisfies

the causality conditions (2.7.2). Let us denote the state at time t ≥ 0 by
[ yt

xt
ut

]
=

T
[ y0

x0
u0

]
. For

[ y0
x0
u0

]
∈ D (T ) we have

[ yt
xt
ut

]
∈ D (T ) for all t ≥ 0, and d

dt yt (s)
ẋt

d
dt ut (s)

 =
 d

ds yt (s)
A|X xt + But (0)

d
ds ut (s)

 .
The equation for ut does not depend on x0 and y0, and ut (s) = (τ t

+u)(s) =
u0(s + t) for all s, t ≥ 0. In particular for data in D (T ) we have u0 ∈
W 1,p

ω (R
+

; U ), and ut (0) = u0(t). The equation for ẋt and the condition
[ yt

xt
ut

]
∈

D (T ) give

ẋt = Axt + Bu0(t),

yt (0) = C&D
[ xt

u0(t)

]
, t ≥ 0.

The latter condition combined with the equation for ẏt gives

yt (s) =
{

y0(s + t), s ≤ −t,

C&D
[ xs+t

u0(s+t)

]
, − t < s ≤ 0.

In particular, this shows that yt and xt do not depend on u0(s) for s > t , and that
π(−∞,−t] does not depend on x0 and u0. This implies the causality conditions

(2.7.2) for data inD (T ). SinceD (T ) is dense in
[ Y

X
U

]
, we get (2.7.2) for arbitrary

initial data.
(iv) See Definition 10.1.1, Theorem 4.6.7, and (iii). �

10.9 Comments

Some of the results in this chapter are rather old, whereas others are very recent.

Section 10.2 The part of Theorem 10.2.1 which describes the duality between
B as an L p-admissible control operator and B∗ as an admissible observation
operator has been known for a long time; see, e.g., G. Weiss (1989b, Theorem
6.9). Part (iii) of Theorem 10.2.1 appears to be new in this form. The proof of
Theorem 10.2.3 has been adapted from the proof of Desch et al. (1985, Theorem
2.2), and it is essentially contained in Desch et al. (1985, Corollary 2). (There
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it is required, in addition, that the total variation over [0, t] tends to zero as
t ↓ 0. That condition is used in Desch et al. (1985, Theorem 2.1) in the same
way as in Corollary 7.1.9 to prove the Reg-well-posedness of a state feedback
connection.)

Section 10.3As we already mentioned, the basic results presented in this section
essentially date back to Paley and Wiener (1934) (where the scalar version of
Theorem 10.3.4 is proved). The version of Theorem 10.3.5 which we give is due
to Fourès and Segal (1955). See G. Weiss (1991a, pp. 195–196) for additional
comments on the history of this theorem. Theorem 10.3.7 (which is a restatement
of Theorem 3.11.6) was proved independently by Herbst (1983), Huang (1985),
and Prüss (1984). Our proof follows the one in G. Weiss (1988b, Theorem 4.2).

Section 10.4 The equivalence of (i) and (iv) in Theorem 10.4.2 was proved by
Grabowski (1991, Theorem 3), and the uniqueness of the nonnegative solution
of (10.4.3) in the strongly continuous case is proved in Theorem 4 of the same
article. Theorem 10.4.3 is a slight extension of Hansen and Weiss (1997,
Theorem 3.1 and Proposition 3.2). Theorems 10.4.6 and 10.4.7 are contained
in Grabowski and Callier (1999, Theorem 2.1) and Hansen and Weiss (1997,
Proposition 5.1).

Section 10.5 Theorem 10.5.1 is due to Carleson (1958, 1962). Our proof of this
theorem is essentially the same as the one given in Nikol’skiı̆ (1986, pp. 151,
258, 259) (and contributed there to Vinogradov), but it has been translated to
the right half-plane from the unit disk. See Nikol’skiı̆ (1986, pp. 170–171) for
further comments on this proof.

Section 10.6 The sufficiency part of Theorem 10.6.1 (i.e., the fact that b and c
are L2-admissible and stable whenever the corresponding measure is a Carleson
measure) was discovered by Ho and Russell (1983), and the (easier) necessity
part was added by G. Weiss (1988a).

Multi-dimensional analogues of Theorems 10.6.3 and 10.6.4 (where U and
Y are allowed to be infinite-dimensional Hilbert spaces) have been studied
by, e.g., Hansen and Weiss. In Hansen and Weiss (1991) an operator-valued
version of the Carleson measure condition is introduced (in the diagonal case),
and it is conjectured that this condition is equivalent to the L2-admissibility
and stability of an observation or control operator. There it was also proved that
the conjecture holds in the case where the semigroup A generated by the main
operator A is (normal and) exponentially stable and, in addition, analytic or a
group. In Hansen and Weiss (1997) the same conjecture was proved to be true
under some additional condition on the spectrum of A. It is not known if it is
true in its full generality for normal semigroups (see the comments below for
the case when A is not normal).
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Section 10.7 Lemma 10.7.2 was proved by Partington and Weiss (2000) in the
case where U = C, and our proof is a slight modification of their proof (they
use the right-shift on L2(R+) instead of the left-shift on L2(R−), and their proof
applies equally well to the case of a general Hilbert space U ). The discrete time
version of this lemma is found in Peller (2003, Theorem 6.1). Theorem 10.7.1
was discovered by Jacob and Partington (2001). They give a more complicated
proof based on the universal model of a general contraction semigroup (instead
of the simpler model of an isometric semigroup combined with a isometric
dilation that we use).

George Weiss conjectured in G. Weiss (1991b) and G. Weiss (1999) that
the growth estimates (10.7.1) and (10.7.2) (with b replaced by B, c replaced
by C , and the norms in X replaced by operator-norms) would be equivalent to
the L2-stability and boundedness of the control operator B and the observation
operator C (even in the case where U and Y are infinite-dimensional Hilbert
spaces). This conjecture is now known to be partially true, but false in general.
See the comments that we made above on Section 10.6 for the case when the
semigroup A is normal. Theorem 10.7.1 shows that the conjecture holds in the
case where Y = U = C and A is a contraction semigroup. The first counter-
example with Y = C was produced by Jacob and Zwart (2000) (by Theorem
10.7.1, their semigroup cannot be similar to a contraction semigroup). Another
counter-example with infinite-dimensional Y is given in Jacob et al. (2002),
and in that example A is even a contraction semigroup (it is an outgoing shift
of infinite multiplicity). Thus, Theorem 10.7.1 is not valid if we allow U or
Y to be infinite-dimensional. Two more counter-examples are given in Zwart
et al. (2003). Additional conditions on the system under which the conjecture
is valid are investigated in Jacob et al. (2003).

Section 10.8 Part (ii) of Theorem 10.8.1 (in the Hilbert space case with p = 2)
was proved by Grabowski and Callier (1996, Theorem 2.3), and part (i) can
be obtained from part (ii) by duality (see also Engel (1998)). Part (iii) of this
theorem first appeared in Staffans (2001b).
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Passive and conservative scattering systems

In this chapter we study passive and conservative systems in a scattering setting.
These systems are L2-well-posed, and the input, state, and output spaces are
Hilbert spaces. Passivity means that the system has no internal energy sources.
Conservativity means that the system is passive, and neither the system itself
nor the dual system has any energy sinks. Our study of conservative systems
leads us to universal models of energy preserving, co-energy preserving, and
conservative systems whose semigroup is a compression of the bilateral shift.

11.1 Passive systems

Passive systems (in a scattering setting) are characterized by the fact that at any
time, the sum of the ‘final energy’ and the ‘output energy’ can be no larger than
the sum of the ‘initial energy’ and the ‘input energy.’

Definition 11.1.1 By a (scattering) passive system � on three Hilbert spaces
(Y, X,U ) we mean an L2-well-posed linear system with the following property:
for all initial states x0 ∈ X and all input functions u ∈ L2

loc(R+; U ), the state
trajectory x and the output function y of � with initial time zero satisfy

|x(t)|2X +
∫ t

0
|y(s)|2Y ds ≤ |x0|2X +

∫ t

0
|u(s)|2U ds, t ≥ 0. (11.1.1)

Instead of starting with a system � we may as well start with a system node
S, in which case the corresponding definition reads as follows.

Definition 11.1.2 A system node S on three Hilbert spaces (Y, X,U ) is (scat-
tering) passive if for all x0 ∈ X and u ∈ W 2,1

loc (R+; U ) with
[ x0

u(0)

] ∈ D (S) the
state trajectory x and the output function y in Lemma 4.7.8 with s = 0 satisfy
(11.1.1).

As the following lemma shows, these two definitions are equivalent:

616
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Lemma 11.1.3 There is a one-to-one correspondence between passive system
nodes and passive systems on the Hilbert spaces (Y, X,U ): the system node of
a passive system on (Y, X,U ) is passive, and conversely, every passive system
node S is L2-well-posed, and the system generated by S is passive.

Proof That the system node of a passive system is passive follows from Theo-
rem 4.6.11(i). Conversely, suppose that S is a passive system node. By Theorem
4.7.13, S is L2-well-posed and, since the set of data in Lemma 4.7.8 is dense

in
[

X
L2([0,t);U )

]
, formula (11.1.1) extends by continuity to arbitrary initial data

x0 ∈ X and u ∈ L2
loc(R+; U ). �

Passivity can be characterized in different ways. One way is to work on the
‘system level’ (as opposed to the system node level).

Lemma 11.1.4 Let � be an L2-well-posed system on three Hilbert spaces
(Y, X,U ). Then the following conditions are equivalent:

(i) � is (scattering) passive.
(ii) The causal dual system �d is (scattering) passive.

(iii) In the notation of Definition 2.2.6, for all t > 0, the operator

�t
0 =
[

At Bt
0

Ct
0 Dt

0

]
is a contraction from

[
X

L2([0,t);U )

]
to
[

X
L2([0,t);Y )

]
. (Here we

use the norm
∣∣[ x

u

]∣∣ = (|x |2X + ‖u‖2
L2([0,t);U )

)1/2
in
[

X
L2([0,t);U )

]
and the

analogous norm in
[

X
L2([0,t);Y )

]
.)

(iv) In the notation of Definition 2.2.6, for all −∞ < s < t <∞, the

operator �t
s =
[

At
s Bt

s

Ct
s Dt

s

]
is a contraction from

[
X

L2([s,t);U )

]
to
[

X
L2([s,t);Y )

]
.

(v) Let s ∈ R, xs ∈ X and u ∈ L2
loc([s,∞); U ), and let x be the state and let

y be the output of � with initial time s, initial state xs , and input function
u. Then, for all t ≥ r ≥ s,

|x(t)|2X +
∫ t

r
|y(v)|2Y dv ≤ |x(r )|2X +

∫ t

r
|u(v)|2U dv. (11.1.2)

(vi) The corresponding Lax–Phillips model with parameter ω = 0 is a
contraction semigroup.

Moreover, every passive system is stable, its semigroup is a contraction
semigroup, and the input map B ∈ B(L2(R−; U ); X ), the output map C ∈
B(X ; L2(R+; Y )) and the input/output map D ∈ B(L2(R; U ); L2(R; Y )) are
contractions.

Proof (i)⇔ (iii): See Definitions 2.2.6, 2.2.7 and 11.1.1. (Observe that it suf-
fices to take t > 0 in (iii) since �0

0 is the identity operator on
[

X
0

]
.)
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(i)⇔ (ii): This follows from the equivalence of (i) and (iii) and the fact that

(�d )t
0 =
[

1 0
0 Rt/2

]
(�t

0)∗
[

1 0
0 Rt/2

]
,

where the two operators denoted by
[ 1 0

0 Rt/2

]
are unitary

(
one on

[
X

L2([0,t);U )

]
and the other on

[
X

L2([0,t);Y )

])
and (�t

0)∗ is a contraction iff �t
0 is a contraction.

(iii)⇔ (iv): See Lemma 2.2.8(iii).
(iv)⇔ (v): See Definitions 2.2.6 and 2.2.7.
(i)⇔ (vi): We use the same notation as in Section 2.7. Let y0 ∈ L2(R−; Y ),

x0 ∈ X , u0 ∈ L2(R+; U ), and let x be the state and y the output of� with initial
time zero, initial state x0, and input function u0. Then, for all t ≥ 0,∥∥∥Tt

[ y0
x0
u0

]∥∥∥2
−
∥∥∥[ y0

x0
u0

]∥∥∥2
=
∫ −t

−∞
|y0(s + t)|2Y ds +

∫ 0

−t
|y(s + t)|2Y ds

+ |x(t)|2X +
∫ ∞

0
|u0(s + t)|2U ds

− |x0|2X −
∫ 0

−∞
|y0(s)|2Y ds −

∫ ∞
0
|u0(s)|2U ds

=
∫ t

0
|y(s)|2Y ds + |x(t)|2X − |x0|2X −

∫ t

0
|u0(s)|2U ds.

The left-hand side is nonpositive for all y0, x0, and u0 iff T is a contraction
semigroup, and the right-hand side is nonpositive for all x0, and u0 iff � is
passive.

The final claim about the stability of a passive system and the contractivity
of its different parts follows from Definitions 8.1.1 and 11.1.1. �

Alternatively, we may study the passivity of a system node S without any
reference to the system that it generates.

Theorem 11.1.5 Let S = [ A&B
C&D

]
be an operator node on the three Hilbert

spaces (Y, X,U ) with main operator A, control operator B, observation oper-
ator C, and transfer function D̂. Then the following conditions are equivalent.

(i) S is (scattering) passive (in particular, A generates a C0 contraction
semigroup and S is L2-well-posed).

(ii) A generates a C0 semigroup, and for all x0 ∈ X and u ∈ W 2,1
loc (R+; U )

with
[ x0

u(0)

] ∈ D (S) the state trajectory x and the output function y in
Lemma 4.7.8 with s = 0 satisfy

d

dt
|x(t)|2X + |y(t)|2Y ≤ |u(t)|2U , t ≥ 0. (11.1.3)
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(iii) ρ(A) ∩ C+ �= ∅, and for all
[ x0

u0

] ∈ D (S),

2
〈A&B
[ x0

u0

]
, x0
〉
X
+ ∣∣C&D

[ x0
u0

]∣∣2
Y
≤ |u0|2U . (11.1.4)

(iv) ρ(A) ∩ C+ �= ∅, and for all α ∈ ρ(A) we have, with

Eα =
[

1 (α−A|X )−1 B
0 1

]
,

E∗α
[

1 0
0 0

]
SEα + (SEα)∗

[
1 0
0 0

]
Eα + (SEα)∗

[
0 0
0 1

]
SEα ≤

[
0 0
0 1

]
,

(11.1.5)
which should be interpreted as an operator inequality in

B
([

X1
U

]
;
[

X∗−1
U

])
, and we identify the dual of

[
X1
U

]
with

[
X∗−1
U

]
.

Explicitly, this means that for all x ∈ X1 and all u ∈ U,

〈
Eα

[
x
u

][
1 0
0 0

]
SEα

[
x
u

]〉[
X
Y

] + 〈[ 1 0
0 0

]
SEα

[
x
u

]
Eα

[
x
u

]〉[
X
Y

]
+ 〈SEα

[
x
u

][
0 0
0 1

]
SEα

[
x
u

]〉[
X
Y

] ≤ 〈[ x
u

][
0 0
0 1

] [
x
u

]〉[
X
U

] . (11.1.6)

(v) ρ(A) ∩ C+ �= ∅, and the inequality (11.1.5) holds for some α ∈ ρ(A).
(vi) ρ(A) ∩ C+ �= ∅, and for all α ∈ ρ(A), we have

[
A + A∗|X (α + A∗|X )(α − A|X )−1 B

B∗(α − A∗)−1(α + A) B∗(α − A∗)−1(2
α)(α − A|X )−1 B

]

+
[

C∗C C∗D̂(α)
D̂(α)∗C D̂(α)∗D̂(α)

]
≤
[

0 0
0 1

]
,

(11.1.7)

which is an operator inequality in B
([

X1
U

]
;
[

Xd
−1

U

])
.

(vii) ρ(A) ∩ C+ �= ∅, and the inequality (11.1.5) holds for some α ∈ ρ(A).
(viii) C+ ⊂ ρ(A), and for all α ∈ C+, the operator

[
A(α) B(α)
C(α) D(α)

]
=
[

(α + A)(α − A)−1
√

2
α(α − A|X )−1 B√
2
αC(α − A)−1 D̂(α)

]

is a contraction.
(ix) For some α ∈ ρ(A) ∩ C+, the operator

[
A(α) B(α)
C(α) D(α)

]
defined in (viii) is a

contraction.
If both ρ(A) ∩ C+ �= ∅ and ρ(A) ∩ C− �= ∅, then these conditions are
further equivalent to the following two conditions:
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(x) For all α ∈ ρ(A) ∩ C−, the operator
[
A(α) B(α)
C(α) D(α)

]
defined in (viii) (with√

2
α = j
√

2|
α|) satisfies[
A(α) B(α)
C(α) D(α)

]∗ [−1 0
0 1

] [
A(α) B(α)
C(α) D(α)

]
≤
[−1 0

0 1

]
. (11.1.8)

(xi) The inequality (11.1.8) holds for some α ∈ ρ(A) ∩ C−.
If ρ(A) ∩ jR �= ∅, then (i)–(xi) are further equivalent to the following
two conditions:

(xii) For all α ∈ ρ(A) ∩ jR,[
A + A∗ (α + A∗)(α − A|X )−1 B

B∗(α + A∗)−1(α − A) 0

]
+
[

C∗C C∗D̂(α)
D̂(α)∗C D̂(α)∗D̂(α)

]
≤
[

0 0
0 1

]
.

(11.1.9)

(xiii) The inequality (11.1.9) holds for some α ∈ ρ(A) ∩ jR.

Proof (i) ⇒ (ii): Assume (i). By Lemmas 11.1.3 and 11.1.4, the data in (ii)
satisfy the identity (11.1.2). In this inequality we move the term |x(r )|2X over to
the left-hand side, divide by t − r , and let t ↓ r to get (11.1.3) with t replaced
by r .

(ii)⇒ (i): We get (11.1.1) by integrating (11.1.3)).
(ii)⇒ (iii): By Theorem 4.6.11, it follows from (ii) that (11.1.4) holds with[ x0

u0

]
replaced by

[
x(t)
u(t)

]
for all t ≥ 0 (note that d

dt |x(t)|2 = 2
〈ẋ(t), x(t)〉). In

particular, taking t = 0 we get (11.1.4) for all
[ x0

u(0)

] ∈ D (S).
(iii)⇒ (ii): If (iii) holds, then it follows from Theorem 3.4.8 that A generates

a C0 semigroup (take u0 = 0 in (11.1.4)). If x0 and u satisfy the conditions in

(ii), then by Theorem 4.6.11,
[

x(t)
u(t)

]
∈ D (S) and

[
ẋ(t)
y(t)

]
= [ A&B

C&D

] [ x(t)
u(t)

]
for all

t ≥ 0, hence (11.1.3) holds.
(iii)⇒ (iv)⇒ (v)⇒ (iii): As

[
A&B
0 0

] = [ 1 0
0 0

]
S and

[
0 0

C&D

] = [ 0 0
0 1

]
S,

we can rewrite (11.1.4) in the following form: for all
[

x
u

] ∈ D (S),〈[
x
u

]
,
[

1 0
0 0

]
S
[

x
u

]〉+ 〈S [ x
u

]
,
[

1 0
0 0

] [
x
u

]〉
+ 〈S [ x

u

]
,
[

0 0
0 1

]
S
[

x
u

]〉 ≤ 〈[ x
u

]
,
[

0 0
0 1

] [
x
u

]〉
.

From here we get (11.1.6) by replacing
[

x
u

]
by Eα

[
z
u

]
where z ∈ X1 and u ∈ U

are arbitrary (recall that, by Lemma 4.7.18(ii), Eα maps
[

X1
U

]
one-to-one onto

D (S), and observe that E∗α
[

0 0
0 1

]
Eα =

[
0 0
0 1

]
).

(iv)⇔ (vi) and (v)⇔ (vii): The inequality in (vi) is just an equivalent way
of writing (11.1.5) (see Lemma 4.7.18), so (iv)⇔ (vi) and (v)⇔ (vii).
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(vi)⇒ (viii)⇒ (ix)⇒ (vii): For any particular α ∈ ρ(A) ∩ C+, the operator[
A(α) B(α)
C(α) D(α)

]
is a contraction if and only if[
A(α) B(α)
C(α) D(α)

]∗ [
A(α) B(α)
C(α) D(α)

]
≤
[

1 0
0 1

]
. (11.1.10)

By substituting the definition of
[
A(α) B(α)
C(α) D(α)

]
given in (viii) into this identity and

simplifying the resulting expression, we observe that (11.1.10) is equivalent

to the inequality that we get by multiplying (11.1.7) by
[√

2
s (s−A)−1 0
0 1

]
to

the right and by the adjoint of this operator to the left. Thus
[
A(α) B(α)
C(α) D(α)

]
is a

contraction if and only if (11.1.7) holds. If (vi) holds, then � is passive, and
by Lemma 11.1.4, C+ ∈ ρ(A). We conclude that (vi)⇒ (viii) and that (ix)⇒
(vii). The implication (viii)⇒ (ix) is obvious.

(vi)⇒ (x)⇒ (xi)⇒ (vii): This is proved in almost exactly the same way
as the chain of implications (vi)⇒ (viii)⇒ (ix)⇒ (vii). The only difference
is that

√
2
α = j

√
2|
α| is pure imaginary, so that the complex conjugate of√

2
α is −√2
α instead of
√

2
α.
(xii) and (xiii): These are specialized version of (iv)–(vii) where we take


α = 0. �

Every passive system has certain characteristic operators which describe the
amount of energy which is ‘trapped into the state space forever.’

Theorem 11.1.6 Let� = [A B

C D

]
be passive on (Y, X,U ). With the notation of

Definition 2.2.6, the following strong self-adjoint limits exist in B
([

X
L2(R+;U )

])
and B

([
X

L2(R−;Y )

])
, respectively:[

QA∗,A QA∗,B

QB∗,A QB∗,B

]
= lim

t→∞

[
A∗t

(Bt
0)∗

] [
At Bt

0

] ≥ 0,[
QC,C∗ QC,A∗

QA,C∗ QA,A∗

]
= lim

t→∞

[
C0
−t

At

] [
(C0
−t )
∗ A∗t

] ≥ 0.

(11.1.11)

Moreover, the following inequalities hold:[
QA∗,A QA∗,B

QB∗,A QB∗,B

]
+
[

C∗

π+D∗

] [
C Dπ+

] ≤ [1 0
0 π+

]
,

D∗π−D+B∗B ≤ π−,[
QC,C∗ QC,A∗

QA,C∗ QA,A∗

]
+
[
π−D
B

] [
D∗π− B∗

] ≤ [π− 0
0 1

]
,

CC∗ +Dπ+D∗ ≤ π+.

(11.1.12)
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In particular, if � is observable then QA∗,A < 1, if � is exactly observable in
infinite time then QA∗,A* 1, if � is controllable then QA,A∗ < 1, and if � is
exactly controllable in infinite time then QA,A∗ * 1.

The above inequalities imply that both the backward wave operator W− and
the forward wave operator W+ are contractions (these operators are defined in
Section 2.7).

The proof of Theorem 11.1.6 is based on the following lemma.

Lemma 11.1.7 Let At , t ≥ 0, be a nondecreasing [nonincreasing] family of
self-adjoint operators on a Hilbert space X which is bounded from above [from
below]. Then the strong limit A = limt→∞ At exists, and A0 ≤ At ≤ A [A0 ≥
At ≥ A] for all t ≥ 0.

The monotonicity and boundedness assumptions of this lemma mean the
following: there exists a self-adjoint operator B ∈ B(X ) such that At1 ≤ At2 ≤
B [At1 ≥ At2 ≥ B] for all t2 ≥ t1 ≥ 0.

Proof of Lemma 11.1.7 It suffices to prove the second case where the family
is nonincreasing. Then, for all x ∈ X , the function t �→ 〈x, At x〉 is real, nonin-
creasing, and bounded from below, so it has a limit. By using polarization we
can strengthen this result as follows: for all x ∈ X and y ∈ Y ,

〈x, At y〉 = 1

4
[〈x + y, At (x + y)〉 − 〈x − y, At (x − y)〉
+ j〈x + j y, At (x + j y)〉 − j〈x − j y, At (x − j y)〉] = 0,

(11.1.13)

hence limt→∞〈y, At x〉 exists, i.e., At tends weakly to a self-adjoint limit A ∈
B(X ) as t →∞. Clearly A0 ≥ At ≥ A for all t ≥ 0.

We claim that the convergence of At to A is, in fact, strong. Let x ∈ X , and
let Bt = (At − A)1/2 be the positive square root of At − A inB(X ) (see Lemma
A.2.2). Then Bt is uniformly bounded for t ≥ 0, and

|Bt x |2 = 〈Bt x, Bt x〉 = 〈x, (Bt )
2x〉 = 〈x, (At − A)x〉 → 0 as t →∞;

hence also

|(At − A)x |2 = |(Bt )
2x |2 ≤ sup

t≥0
‖Bt‖2|Bt x |2 → 0 as t →∞.

�

Proof of Theorem 11.1.6 Let x0 ∈ X and u ∈ L2(R+; U ), and let x be the state
and y the output of � with initial time zero, initial state x0, and input function
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u. It follows from (11.1.2) that the following function is nonincreasing:

t �→ |x(t)|2X +
∫ t

0
|y(v)|2Y dv −

∫ t

0
|u(v)|2U dv

=
〈[

x
u

]
,

[
At

(Bt
0)∗

] [
At Bt

0

] [x
u

]〉
+
〈[

x
u

]
,

[
(Ct

0)∗

(Dt
0)∗

] [
Ct

0 Dt
0

] [x
u

]〉
−
〈[

x
u

]
,

[
0 0
0 π[0,t)

] [
x
u

]〉
.

(11.1.14)

This function is bounded from above by |x0|2X and from below by −‖u‖L2(R+).
By Lemma 11.1.7 (the nonincreasing case), the sum of the operator families
on the right-hand side of this identity has a strong limit as t →∞. The mid-
dle family of operators on the right-hand side is nondecreasing, and it tends
strongly to

[
C∗
D∗
] [

C D
]

as t →∞ (once more, see Lemma 11.1.7). Clearly,[ 0 0
0 π[0,t)

]→ [ 0 0
0 π+

]
as t →∞. Thus, the first of the limits in (11.1.11) ex-

ist in the strong sense, and the first inequality in (11.1.12) is true. To get the
second inequality in (11.1.12) we let u ∈ L2(R−; U ), replace the initial time
zero in (11.1.14) by s, replace x0 by zero, replace the final time t by zero, and
let s →−∞. The existence of the second limit in (11.1.11) and the last two
inequalities in (11.1.12) are proved in the same way, with the original system
� replaced by the causal dual �d .

The final claims follow from (11.1.12) and Theorem 9.10.5. �

Let us end this section by establishing a decomposition of a passive system
into a ‘trivial’ unitary part and a purely passive part. Here we use the following
definition.

Definition 11.1.8 Let X , U , and Y be Hilbert spaces.

(i) A C0-semigroup A on X is isometric, or co-isometric, or unitary if At is
isometric, or co-isometric, or unitary, respectively, for all t ≥ 0 (see
Definition A.2.3). It is completely nonunitary if there is no subspace
Y ⊂ X , Y �= 0, such that Y is invariant under A (i.e., At Y ⊂ Y for all
t ≥ 0) and A|Y is unitary.

(ii) A function D̂ ∈ H∞0 (U ; Y ) is purely contractive if |D̂(z)u|Y < |u|U for
all z ∈ C+ and all nonzero u ∈ U .

(iii) An operator D ∈ TIC2(U ; Y ) is (scattering) purely passive if its transfer
function is purely contractive.
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We warn the reader that a purely passive input/output map may very well be
unitary, i.e., it may satisfy D∗D = 1 and DD∗ = 1. (The transfer functions of
these input/output maps are usually called bi-inner.)

Theorem 11.1.9 Let � = [A B

C D

]
be a passive system on the Hilbert spaces

(Y, X,U ). Then there exist unique orthogonal splittings of Y , X, and U into Y =[ Y1
Y0

]
, X = [ X0

X1

]
, U = [ U1

U0

]
with the following properties: if we split

[A B

C D

]
according to the splittings of Y , X, and U, then

[
A B

C D

]
=


A0 0 0 0
0 A1 B1 0

0 C1 D1 0
0 0 0 D0

 , (11.1.15)

where A0 = A|X0 is a unitary C0-semigroup on X0, A1 = A|X1 is a com-
pletely nonunitary C0-semigroup on X1, C1 = C|X1 ∈ B(X1; L2(R+; Y1)), B1 =
B|L2(R−;U1) ∈ B(L2(R−; U1); X1), D1 = D|L2(R;U1) ∈ TIC(U ; Y ) is purely pas-
sive, and D0 is a static unitary operator from L2(R; U0) to L2(R; Y0) (i.e., it
acts as multiplication with a unitary operator D ∈ B(U0; Y0)). In particular,
both X0 and X1 are invariant under A, L2(R−; U0) ⊂ N (B), R (B) ⊂ X1,
X0 ⊂ N (C), R (C) ⊂ L2(R+; Y1), and U0 and Y0 have the same dimension.

The proof of this theorem uses the following lemma.

Lemma 11.1.10 If T ∈ B(U ; Y ) (where U and Y are Hilbert spaces) is a con-
traction, then |T u|Y = |u|U if and only if u = T ∗T u.

Proof Clearly, if u = T ∗T u, then

|u|2 = 〈u, u〉 = 〈u, T ∗T u〉 = 〈T u, T u〉 = |T u|2.
Conversely, suppose that |T u| = |u|. Denoting the positive square root of the
positive operator 1− T ∗T by (1− T ∗T )1/2 (see Lemma A.2.2), we get

0 = |u|2 − |T u|2 = 〈u, (1− T ∗T )u〉 = |(1− T ∗T )1/2u|2,
so (1− T ∗T )1/2u = 0. This implies that also

(1− T ∗T )u = (1− T ∗T )1/2(1− T ∗T )1/2u = 0,

i.e., u = T ∗T u. �

Proof of Theorem 11.1.9 Let X0 denote the set of all x ∈ X for which

|At x | = |x | = |A∗t x |, t ≥ 0. (11.1.16)

This condition can alternatively be written as

lim
t→∞|A

t x | = |x | = lim
t→∞|A

∗t x |, (11.1.17)
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since both |A∗t x | and |At x | are nonincreasing (because of the fact that A is
a contraction semigroup). Thus, with the notation of Theorem 11.1.6, X0 =
N (1− QA∗,A

) ∩N (1− QA,A∗
)
, hence X0 is a closed linear subspace of X0.

We claim that X0 is invariant under both A and A∗. Let x ∈ X0, and let s ≥
0. Then, for all t ≥ 0, |AtAs x | = |At+s x | = |x | = |As x |, so the first part of
(11.1.16) holds with x replaced by As x . Moreover, for t ≥ s, we have, by
Lemma 11.1.10,

|A∗tAs x | = |A∗(t−s)A∗sAs x | = |A∗(t−s)x | = |x | = |As x |,

so the second half of (11.1.17) holds. This shows that As x ∈ X0, i.e., X0 is
invariant under A. An analogous argument shows that X0 is invariant also
under A∗. Moreover, the same argument shows that the restrictions of A and
A∗ to X0 are inverses of each other, so A0 is unitary.

Let X1 = X⊥0 . Then X1 is invariant under both A and A∗ (the invariance
of X0 under A implies that X1 is invariant under A∗, and the invariance of X0

under A∗ implies that X1 is invariant under A). Clearly A|X1 must be completely
nonunitary, since no nonzero x ∈ X1 satisfies (11.1.16) (by the definition of X0).
It is also clear that the decomposition of X into

[ X0
X1

]
is unique.

By construction, both QA∗,A and QA,A∗ act like identity operators on X0, so
(11.1.12) implies that for all x ∈ X0

〈x,C∗Cx〉 ≤ 0, 〈x,BB∗x〉 ≤ 0,

i.e., X0 ⊂ N (C) and X0 ⊂ N (B∗), or equivalently, R (B) ⊂ X⊥0 = X1.
Therefore, if we split the system � according to the splitting of the state space
X = [ X0

X1

]
, then we get

[
A B

C D

]
=

A0 0 0
0 A1 B

0 C1 D

 ,
where A0 = A|X0 , A1 = A|X1 , and C1 = C|X1 . We have now completed the first
part of the proof, related to the splitting of the state space X into

[ X0
X1

]
. It remains

to split the system
[

A1 B

C1 D

]
by further splitting Y and U .

Our splitting of Y and U into
[ Y1

Y0

]
and
[ U1

U0

]
is based on properties of the

transfer function D̂. By Lemma 11.1.4 and Theorem 10.3.5, we have D̂ ∈
H∞0 (U ; Y ) and ‖D̂(z)‖ ≤ 1 for all z ∈ C+. Let U0 consist of all those u ∈ U
which satisfy

|D̂(1)u| = |u|, (11.1.18)
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and let Y0 consist of all those y ∈ Y which satisfy

|D̂(1)∗y| = |y|. (11.1.19)

By Lemma 11.1.10, U0 = N (1− D̂(1)∗D̂(1)
)

and Y0 = N (1− D̂(1)D̂(1)∗
)
,

so U0 and Y0 are closed linear subspaces of U . For each u ∈ U0 we have
|D̂(1)∗D̂(1)u| = |u| = |D̂(1)u|, so D̂(1)u ∈ Y0. Conversely, for each y ∈ Y0

we have |D̂(1)D̂(1)∗y| = |y| = |D̂(1)∗y|, so D̂(1)∗y ∈ U0. Thus, D̂(1) is a
unitary operator from U0 to Y0.

We claim that the restriction of D to L2(R; U0) is a static unitary operator
with values in L2(R; Y0). More precisely, we claim that for all u ∈ L2(R; U0),
we have (Du)(t) = Du(t) for almost all t ∈ R, where D = D̂(1)|U0 . To prove
this claim we first show that D̂(z)|U0 is independent of z for all z ∈ C+.

Take some nonzero u ∈ U0. Then D̂(z)u is a bounded analytic function in
the disk |z − 1| ≤ 1/2, so by Cauchy’s theorem,

D̂(1)u = 1

2π

∫ 2π

0
D̂(1+ 1

2 e jϕ)u dϕ.

In particular, by the Schwarz inequality,

|u|2 = |D̂(1)u|2 = 〈D̂(1)u, D̂(1)u〉

= 1

2π

∫ 2π

0
〈D̂(1+ 1

2 e jϕ)u, D̂(1)u〉 dϕ

≤ 1

2π

{∫ 2π

0
|D̂(1+ 1

2 e jϕ)u|2 dϕ
}1/2
|D̂(1)u|

≤
{∫ 2π

0

1

2π
|u|2 dϕ

}1/2
|D̂(1)u| = |u|2.

Thus, the inequalities above are, in fact, equalities. Since the Schwarz inequality
becomes an equality, we must therefore have D̂(1+ 1

2 e jϕ)u = αD̂(1)u for some
α ∈ C and for (almost) all ϕ, and this together with the Cauchy representation
formula implies that D̂(z)u = αD̂(1)u for all z in the disk |z − 1| ≤ 1/2; in
particular, α = 1. By analytic continuation, it must then be true that D̂(z)u =
D̂(1)u for all u ∈ C+.

Define U1 = U⊥0 and Y1 = Y⊥0 , and let B1 = B|L2(R;U1), D1 = D|L2(R;U1),
and D0 = D|L2(R;U0). Then, by the preceding argument, D̂0 = D̂|U0 =
D̂(1)|U0 = D, where D = D̂(1)|U0 is a unitary operator from U0 onto Y0. By
Theorem 10.3.5, for all u ∈ L2(R+; U0) we therefore have Du ∈ L2(R+; Y0).
This combined with the shift-invariance of D and the fact that functions whose
support is bounded to the left implies that R (D0) ⊂ L2(R; Y0). This gives us
one of the two zeros in the decomposition of D given in (11.1.15). To get the
other zero we apply the same argument to the dual system.
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There are still two more zeros in (11.1.15) to be accounted for, namely the one
to the right of B1 and the one below C1. These are obtained as follows. We know
that D0 is a unitary static operator mapping L2(R; U0) onto L2(R; Y0), and this
together with (11.1.12) implies that L2(R−; U0) ⊂ N (B) and that L2(R+; Y0)
⊂ N (C∗1), or equivalently, that R (C) = R (C1) ⊂ L2(R+; Y1). �

Definition 11.1.11 Let A be a contraction semigroup on a Hilbert space X , and
let D be a contraction in TIC2(U ; Y ) where U and Y are Hilbert spaces.

(i) By the unitary part of A we mean the semigroup A0 in Theorem 11.1.9,
and by the completely nonunitary part of A we mean the semigroup A1

in Theorem 11.1.9.
(ii) By the purely passive part of D we mean the operator D1 in Theorem

11.1.9 (the splitting of D into D = D0 +D1 in that theorem only
depends on D̂, and not on A, B, or C).

(iii) A passive system � = [A B

C D

]
is completely nonunitary if A is

completely nonunitary, it is purely passive of D is purely passive, and it
is simple if it is both completely nonunitary and purely passive.

In other words, in the notation of Theorem 11.1.9, in part (iii) we have
X0 = U0 = Y0 = 0. This definition is motivated by the fact that both A0 and D0

represent ‘trivial’ behavior where there is no interaction between the semigroup
and the input/output map. We warn the reader our use of the word ‘simple’ is not
quite the same as in, e.g., Arov and Nudelman (1996), where ‘simple’ stands
for our ‘completely nonunitary’ without any requirement of pure passivity.
(Although we have defined ‘simple’ for an arbitrary passive system, we shall
primarily apply it only to conservative systems.)

We shall occasionally need to refer to the maximal isometric or co-isometric
part of a contraction semigroup.

Lemma 11.1.12 Let A be a C0 contraction semigroup on a Hilbert space X.
Then there is a unique maximal invariant (closed) subspace of X on which A is
isometric, and there is also a unique maximal co-invariant (closed) subspace
on which A∗ is isometric. The intersection of these two subspaces coincides
with the maximal subspace X0 in Theorem 11.1.9 on which A is unitary.

Proof Let Xi be the set of all x ∈ X for which |At x | = |x | for all t ≥ 0. As in
the proof of Theorem 11.1.9 we find that Xi is an invariant subspace of A, and
clearly there is no larger subspace of X on which A can be an isometry. The
claim about the existence of a maximal co-invariant subspace Xci on which A∗

is isometric is proved in a similar manner. Finally, that the intersection of these
two subspaces is equal to the subspace X0 in Theorem 11.1.9 follows from the
proof of that theorem. �
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11.2 Energy preserving and conservative systems

In the conservative case we require (11.1.1) to hold with the inequality re-
placed by equality, both for the original system and for its adjoint. This can be
alternatively characterized as follows.

Definition 11.2.1 By a (scattering) energy preserving system� on three Hilbert
spaces (Y, X,U ) we mean an L2-well-posed linear system with the following
property: for all initial states x0 ∈ X and all input functions u ∈ L2

loc(R+; U ),
the state trajectory x and the output function y of � with initial time zero
satisfy

|x(t)|2X +
∫ t

0 |y(s)|2Y ds = |x0|2X +
∫ t

0 |u(s)|2U ds, t ≥ 0. (11.2.1)

By a (scattering) co-energy preserving system we mean a system whose causal
dual system �d is energy preserving, and by a conservative system we mean
a system which is both energy preserving and co-energy preserving. In these
cases we shall also call the system node S of � (scattering) energy preserving,
or co-energy preserving, or conservative.

The name ‘conservative’ in Definition 11.2.1 is motivated by the fact that
the energy is ‘conserved’ both in the original system and in the adjoint system.

The following two lemmas are the energy preserving and conservative ver-
sions of Lemma 11.1.4.

Lemma 11.2.2 Let � be an L2-well-posed system on three Hilbert spaces
(Y, X,U ). Then the following conditions are equivalent:

(i) � is (scattering) energy preserving.
(ii) In the notation of Definition 2.2.6, for all −∞ < s < t <∞, the

operator �t
s =
[

At
s Bt

s

Ct
s Dt

s

]
is an isometry from

[
X

L2([s,t);U )

]
to
[

X
L2([s,t);Y )

]
.

(iii) Let s ∈ R, xs ∈ X, and u ∈ L2
loc([s,∞); U ), and let x be the state and let

y be the output of � with initial time s, initial state xs , and input function
u. Then, for all t ≥ r ≥ s,

|x(t)|2X +
∫ t

r
|y(s)|2Y ds = |x(r )|2X +

∫ t

r
|u(s)|2U ds. (11.2.2)

(iv) The corresponding Lax–Phillips model with parameter ω = 0 is an
isometric semigroup.

The proof of this lemma is a simplified version of the proof of Lemma 11.1.4,
and we leave it to the reader.

Lemma 11.2.3 Let � be an L2-well-posed system on three Hilbert spaces
(Y, X,U ). Then the following conditions are equivalent:
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(i) � is (scattering) conservative.
(ii) In the notation of Definition 2.2.6, for all −∞ < s < t <∞, the

operator �t
s =
[

At
s Bt

s

Ct
s Dt

s

]
is a unitary operator from

[
X

L2([s,t);U )

]
to[

X
L2([s,t);Y )

]
.

(iii) Let s ∈ R, xs ∈ X, and u ∈ L2
loc([s,∞); U ), and let x be the state and let

y be the output of � with initial time s, initial state xs , and input function
u. Then, for all t ≥ r ≥ s,

|x(t)|2X +
∫ t

r
|y(s)|2Y ds = |x(r )|2X +

∫ t

r
|u(s)|2U ds, (11.2.3)

and the same statement is true for the dual system, too.
(iv) The corresponding Lax–Phillips model with parameter ω = 0 is a

unitary semigroup.

This follows Lemma 11.2.2, applied both to the original system and its causal
dual.

In particular, we observe the following fact:

Lemma 11.2.4 Every conservative system � is time-flow-invertible, and its
time-flow-inverse � R

× coincides with its causal dual �d .

This follows from Lemma 11.2.2, applied both to the original system � and
its causal dual �d , and the definition of a time-flow-invertible system.

A result similar to the one in Theorem 11.1.5 is true also for energy preserv-
ing, co-energy preserving, and conservative systems. For simplicity, let us only
treat the energy preserving case (since the others can be reduced to this one).

Theorem 11.2.5 Let S = [ A&B
C&D

]
be an operator node on the three Hilbert

spaces (Y, X,U ) with main operator A, control operator B, observation oper-
ator C, and transfer function D̂. Then the following conditions are equivalent.

(i) S is (scattering) energy preserving (in particular, A generates a C0

continuous semigroup and S is L2-well-posed).
(ii) A generates a C0 semigroup, and for all x0 ∈ X and u ∈ W 2,1

loc (R+; U )
with

[ x0
u(0)

] ∈ D (S) the state trajectory x and the output function y in
Lemma 4.7.8 with s = 0 satisfy

d

dt
|x(t)|2X + |y(t)|2Y = |u(t)|2U , t ≥ 0. (11.2.4)

(iii) ρ(A) ∩ C+ �= ∅, and for all
[ x0

u0

] ∈ D (S),

2
〈A&B
[ x0

u0

]
, x0
〉
X
+ ∣∣C&D

[ x0
u0

]∣∣2
Y = |u0|2U . (11.2.5)
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(iv) ρ(A) ∩ C+ �= ∅, and for all α, β ∈ ρ(A) we have, with

Eα =
[

1 (α−A|X )−1 B
0 1

]
and Eβ =

[
1 (β−A|X )−1 B
0 1

]
,

E∗α
[

1 0
0 0

]
SEβ + (SEα)∗

[
1 0
0 0

]
Eβ + (SEα)∗

[
0 0
0 1

]
SEβ =

[
0 0
0 1

]
,

(11.2.6)
which should be interpreted as an operator equation in

B
([

X1
U

]
;
[

X∗−1
U

])
, and we identify the dual of

[
X1
U

]
with

[
X∗−1
U

]
.

(v) ρ(A) ∩ C+ �= ∅, and the identity (11.2.6) holds for some α, β ∈ ρ(A).
(vi) ρ(A) ∩ C+ �= ∅, and for all α, β, γ ∈ ρ(A), we have

A + A∗|X + C∗C = 0,

(α + A∗|X )(α − A|X )−1 B + C∗D̂(α) = 0,

B∗(β − A∗)−1(β + γ )(γ − A|X )−1 B + D̂(β)∗D̂(γ ) = 1,

(11.2.7)

which should be interpreted as operator equations in B(X1; X∗−1),
B(U ; X∗−1), and B(U ; Y ), respectively.

(vii) ρ(A) ∩ C+ �= ∅, and the identities (11.2.7) hold for some α, β,
γ ∈ ρ(A).

(viii) C+ ⊂ ρ(A), and for all α ∈ C+, the operator[
A(α) B(α)
C(α) D(α)

]
=
[

(α + A)(α − A)−1
√

2
α (α − A|X )−1 B√
2
α C(α − A)−1 D̂(α)

]
is an isometry.

(ix) For some α ∈ ρ(A) ∩ C+, the operator
[
A(α) B(α)
C(α) D(α)

]
defined in (viii) is

an isometry.
If both ρ(A) ∩ C+ �= ∅ and ρ(A) ∩ C− �= ∅, then these conditions are
further equivalent to the following two conditions:

(x) For all α ∈ ρ(A) ∩ C−, the operator
[
A(α) B(α)
C(α) D(α)

]
defined in (viii) (with√

2
α = j
√

2|
α|) satisfies[
A(α) B(α)
C(α) D(α)

]∗ [−1 0
0 1

] [
A(α) B(α)
C(α) D(α)

]
=
[−1 0

0 1

]
. (11.2.8)

(xi) The identity (11.2.8) holds for some α ∈ ρ(A) ∩ C−.
If ρ(A) ∩ jR �= ∅ then (i)–(xi) are further equivalent to the following
two conditions:

(xii) For all α ∈ ρ(A) and all β ∈ ρ(A) ∩ jR, we have

A + A∗|X + C∗C = 0,

(α + A∗|X )(α − A|X )−1 B + C∗D̂(α) = 0,

D̂(β)∗D̂(β) = 1.

(11.2.9)
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(xiii) The identities in (11.2.9) hold for some α ∈ ρ(A) and some
β ∈ ρ(A) ∩ jR.

Proof Most of the proof is identical to the proof of Theorem 11.1.5, except
that we replace ≤ by =. In particular the equivalence of the conditions (i), (ii),
(iii), (viii), (ix), (x), and (xi) is proved in this way, and so are the equivalence
of these conditions to any one of (iv)–(vii) and (xii)–(xiii) as long as we take
α = β = γ in (iv)–(vii) and (xii)–(xiii). In the case of (vi), (vii), (xii), and (xiii)
this follows from Lemma 11.2.6 below. Thus, it remains to show that we may
allow different α and β in (iv) and (v).

(iii)⇔ (iv): As we observed above, (iii) is equivalent to (11.2.6) with the
extra restriction that β = α. To get rid of this restriction it suffices to observe
that E−1

α Eβ is an isomorphism of
[

X1
U

]
onto itself for all α, β ∈ ρ(A), that[

0 0
0 1

]
E−1
α Eβ =

[
0 0
0 1

]
, and to multiply the restricted version of (11.2.6) (with

β = α) to the right by E−1
α Eβ to get the general version of (11.2.6).

(iii)⇔ (v): This proof is analogous to the proof of the equivalence of (iii)
and (iv) given above. �

Lemma 11.2.6 Make the same assumptions as in Theorem 11.2.5.

(i) If A + A∗|X + C∗C = 0 (as an operator identity in B(X1; X∗−1)), then the
operator Q(α) ∈ B(X1; Y ) defined by

Q(α) := B∗(α − A∗)−1(α + A)+ D̂(α)∗C

does not depend on α ∈ ρ(A).
(ii) If (i) holds and Q(α) = 0 for some (and hence, for all) α ∈ ρ(A), then the

operator R(β, γ ) ∈ B(U ) defined by

R(β, γ ) := B∗(β − A∗)−1(β + γ )(γ − A|X )−1 B + D̂(β)∗D̂(γ )

is self-adjoint and independent of β, γ ∈ ρ(A).

Proof (i) By using the Lyapunov equation A + A∗|X + C∗C = 0 we can rewrite
Q(α) in the form

Q(α) = B∗(α − A∗|X )−1
[
α − A∗|X − C∗C

]+ D̂(α)∗C

= B∗
[
1− (α − A∗|X )−1C∗C

]+ D̂(α)∗C.

If also β ∈ ρ(A), then, by the dual version of (4.7.2)

Q(α)− Q(β) = −B∗
[
(α − A∗|X )−1 − (β − A∗|X )−1

]
C∗C

+ [D̂(α)∗ − D̂(β)∗
]
C = 0.
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(ii) We first show that R(β, γ ) is independent of β. Let α, β, γ ∈ ρ(A). Since
Q(γ ) = 0, also its adjoint is zero, i.e.,

Q(γ )∗ = (γ + A∗|X )(γ − A|X )−1 B + C∗D̂(γ ) = 0.

By using this equation we can rewrite R(β, γ ) in the form

R(β, γ ) = B∗(β − A∗)−1
[
(β − A∗|X )(γ − A|X )−1 B − C∗D̂(γ )

]
+ D̂(β)∗D̂(γ )

= B∗
[
(γ − A|X )−1 B − (β − A∗|X )−1C∗D̂(γ )

]+ D̂(β)∗D̂(γ ).

Therefore, by the dual version of (4.7.2),

R(α, γ )− R(β, γ ) = −B∗
[
(β − A∗|X )−1 − (α − A∗|X )−1

]
C∗D̂(γ )

+ [D̂(β)∗ − D̂(α)∗
]
D̂(γ ) = 0.

This shows that R(β, γ ) is independent of β. It must also be independent of γ
because of the fact that obviously, R(β, γ ) = R(γ, β)∗, and R(γ, β) does not
depend on γ . To see that R(β, γ ) is self-adjoint it suffices to take β = γ . �

From Theorem 11.2.5 we immediately derive the following result:

Corollary 11.2.7 Let A be a Hilbert space, let A : X ⊃ D (A)→ X be a linear
operator with dense domain, and suppose that ρ(A) ∩ C+ �= ∅. Then

(i) A is the generator of a C0 isometric semigroup if and only if
D (A) ⊂ D (A∗) and A∗x = −Ax for all x ∈ D (A);

(ii) A is the generator of a C0 co-isometric semigroup if and only if
D (A∗) ⊂ D (A) and A∗x = −Ax for all x ∈ D (A∗); and

(iii) A is the generator of a C0 unitary semigroup if and only if
D (A∗) = D (A) and A∗ = −A.

Proof It suffices to prove (i), since (ii) follows from (i) by duality, and (iii) is
a combination of (i) and (ii).

Suppose that A is the generator of a C0 contraction semigroup A. Then, for
all x ∈ D (A), we have Ax = limh↓0

1
h (Ah x − x). Since A∗h tends strongly to

zero as h ↓ 0 and A∗hAh = 1 for all h > 0, this implies that also the following
limit exists:

Ax = lim
h↓0

1

h
A∗h(Ah x − x) = lim

h↓0

1

h
(x − A∗h x).

Thus, x ∈ D (A∗) and A∗x = −Ax .
Conversely, suppose that D (A) ⊂ D (A∗) and that A∗x = −Ax for all x ∈

D (A). Then, for all x ∈ D (A),

2
〈x, Ax〉 = 〈x, Ax〉 + 〈Ax, x〉 = 〈x, (A + A∗)x〉 = 0.
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Thus, A is passive, and it generates a C0 contraction semigroup. That this
semigroup is isometric follows from Theorem 11.2.5(iii) with U = Y = 0 (i.e.,
there is neither an input nor an output). �

Whereas the descriptions of an energy preserving system given in Theorem
11.2.5 are more or less directly inherited from Theorem 11.1.5, the following
alternative characterization is of a slightly different nature.

Theorem 11.2.8 A system node S = [ A&B
C&D

]
with main operator A on three

Hilbert spaces (Y, X,U ) is energy preserving if and only if ρ(A) ∩ C+ �= ∅,[
1 0

C&D

]
, maps D (S) into D (S∗) and

S∗
[

1 0
C&D

]
=
[−A&B

0 1

]
(on D (S)). (11.2.10)

Proof The proof is based on the equivalence of (i) and (iii) in Theorem 11.2.5.
Suppose that S is energy preserving. By regrouping the terms in (11.2.5) we

get the equivalent identity〈[
A&B
C&D

] [
x0

u0

]
,

[
1 0
C&D

] [
x0

u0

]〉
[

X
Y

] =
〈[

x0

u0

]
,

[−A&B
0 1

] [
x0

u0

]〉
[

X
Y

],
(11.2.11)

valid for all
[ x0

u0

] ∈ D (S). This together with the polarization identity gives〈[
A&B
C&D

] [
x1

u1

]
,

[
1 0
C&D

] [
x0

u0

]〉
[

X
Y

] =
〈[

x1

u1

]
,

[−A&B
0 1

] [
x0

u0

]〉
[

X
Y

],
(11.2.12)

for all
[ x0

u0

] ∈ D (S) and all
[ x1

u1

] ∈ D (S). Here the right-hand side has an ob-
vious extension to a bounded linear functional on

[
X
Y

]
(with respect to the

argument
[ x1

u1

]
) for all

[ x0
u0

] ∈ D (S), so
[

1 0
C&D

] [ x0
u0

] ∈ D (S∗) and (11.2.10)
holds.

The same computation done backwards proves the converse claim. �

Our following theorem is a specialized and, at the same time, expanded
version of Theorem 11.1.6.

Theorem 11.2.9 Let� = [A B

C D

]
be a passive system on (Y, X,U ) with system

node S = [ A&B
C&D

]
, observation operator C, and transfer function D̂. Introduce

the same notation as in Theorem 11.1.6.
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(i) If � is energy preserving, then[
QA∗,A QA∗,B

QB∗,A QB∗,B

]
+
[

C∗

π+D∗

] [
C Dπ+

] = [1 0
0 π+

]
,

D∗π−D+B∗B = π−,
(11.2.13)

the unobservable subspace N (C) is the largest invariant subspace of A

on which A is an isometry, and the space U0 in the canonical
decomposition presented in Theorem 11.1.9 is given by U0 = N (B). In

particular,
[
π−D
B

]
maps L2(R−; U ) isometrically into

[
L2(R−;Y )

X

]
, and[

π−D
B

] [
D∗π− B∗

]
is a self-adjoint projection in

[
L2(R−;Y )

X

]
.

(ii) If � is co-energy preserving then[
QC,C∗ QC,A∗

QA,C∗ QA,A∗

]
+
[
π−D
B

] [
D∗π− B∗

] = [π− 0
0 1

]
,

CC∗ +Dπ+D∗ = π+,
(11.2.14)

N (B∗) is the largest invariant subspace of A∗ on which A∗ is an
isometry, and the space Y0 in the canonical decomposition presented in
Theorem 11.1.9 is given by Y0 = (R (C))⊥. In particular,

[
C∗

π+D∗
]

maps

L2(R+; Y ) isometrically into
[

X
L2(R+;U )

]
, and

[
C∗

π+D∗
] [

C Dπ+
]

is a

self-adjoint projection in
[

X
L2(R+;U )

]
.

Proof (i) In the case of an energy preserving system the function defined in
(11.1.14) is a constant, hence the first identity in (11.2.13) holds. To get the
second identity in (11.2.13) we take x(r ) = 0 and t = 0 in (11.2.2) and let
r →−∞. We know thatN (C) is invariant under A, and it follows from (11.2.2)
with r = 0 and u = 0 that ‖At x0‖X = ‖x0‖X for all t ≥ 0 if and only if Cx0 = 0.

We defined U0 to be the set of u ∈ U satisfying |D̂(1)u| = |u|. By the last
identity in (11.2.7) with β = γ = 1,

2|(1− A|X )−1 Bu|2 + |D̂(1)u|2 = |u|2,
so |D̂(1)u| = |u| if and only if Bu = 0. This shows that U0 = N (B).

The second identity in (11.2.13) says that
[
π−D
B

]
is an isometry, i.e., if we

denote this operator by R, then R∗R = 1. This implies that R R∗ is a projection,
since (R R∗)2 = R(R∗R)R∗ = R R∗.

(ii) To prove the claims concerning co-energy preserving systems we apply
the energy preserving results to the dual system. �

Remark 11.2.10 The two identities (11.2.13) and (11.2.14) have the following
interesting interpretation in terms of the backward and forward wave operators
W− and W+ of the L2-well-posed Lax–Phillips model induced by the system.
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The identity (11.2.13) says that if the system is energy preserving, then the

backward wave operator W− is an isometry, and
[

QA∗ ,A QA∗ ,B
QB∗ ,A QB∗ ,B

]
measures how

much the forward wave operator W+ differs from an isometry. The identity
(11.2.14) says that if the system is co-energy preserving, then the forward

wave operator W+ is a co-isometry, and
[

QC,C∗ QC,A∗
QA,C∗ QA,A∗

]
measures how much the

backward wave operator W− differs from a co-isometry.

In the conservative case we can say a little bit more.

Theorem 11.2.11 Let� = [A B

C D

]
be a conservative system on (Y, X,U ) with

system operator S = [ A&B
C&D

]
, observation operator C, and transfer function D̂.

Introduce the same notation as in Theorem 11.1.6. Then all the conclusions
listed in parts (i) and (ii) of Theorem 11.2.9 hold, and the following additional
claims hold.

(i) The two operators on the left-hand side of the identity[
QA∗,A QA∗,B

QB∗,A QB∗,B

]
+
[

C∗

π+D∗

] [
C Dπ+

] = [1 0
0 π+

]

are self-adjoint (and complementary) projections on
[

X
L2(R+;U )

]
.

(ii) The two operators on the left-hand side of the identity[
QC,C∗ QC,A∗

QA,C∗ QA,A∗

]
+
[
π−D
B

] [
D∗π− B∗

] = [π− 0
0 1

]

are self-adjoint (and complementary) projections on
[

L2(R−;Y )
X

]
.

(iii) The maximal subspace X0 in Theorem 11.1.9 on which A is unitary is
given by X0 = N (B∗) ∩N (C). In particular, A is completely
nonunitary if and only if the intersection of the unreachable and
unobservable subspaces is trivial.

Proof Clearly, all the conclusions of Theorem 11.1.6 hold, since a unitary
system is both energy preserving and co-energy preserving.

(i) Let us denote R = [C Dπ+
]∗

. Then, by Theorem 11.2.9(i), R is iso-

metric and R R∗ is a projection. Therefore also
[

QA∗ ,A QA∗ ,B
QB∗ ,A QB∗ ,B

]
= 1− R R∗ is

a projection, and these two projections are obviously self-adjoint.
(ii) The proof of (ii) is analogous to the proof of (i).
(iii) This follows from Lemma 11.1.12 and Theorem 11.2.9. �
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11.3 Semi-lossless and lossless systems

In an energy preserving system no energy is lost, but it may be first transferred
from the input to the state, and then ‘trapped’ in the state space forever, so that
it can no longer be retrieved from the outside. Thus, from the point of view
of an external observer, a conservative system may be ‘lossy’. To specifically
exclude this case we need another notion, that we shall refer to as losslessness.

Definition 11.3.1

(i) An operator D ∈ TIC2(U ; Y ) (where U and Y are Hilbert spaces) is
(scattering) semi-lossless if it is isometric, i.e.,∫ ∞

0
|(Dπ+u)(s)|2Y ds =

∫ ∞
0
|u(s)|2U ds

for all u ∈ L2(R+; U ). It is (scattering) co-lossless if the causal dual
operator Dd = RD∗ Ris semi-lossless, and it is (scattering) lossless if it is
both semi-lossless and co-lossless.

(ii) By a semi-lossless, co-lossless, or lossless system we mean an
L2-well-posed linear system on three Hilbert spaces (Y, X,U ) whose
input/output map is semi-lossless or lossless.

Thus, semi-losslessness, co-losslessness, and losslessness can be interpreted
as the input/output versions of energy preservation, co-energy preservation, or
conservativity, respectively.

Semi-losslessness of an operator D ∈ TIC2(U ; Y ) can alternatively be inter-
preted as a property of the transfer function D̂ of D:

Proposition 11.3.2 An operator D ∈ TIC2(U ; Y ) (where U and Y are Hilbert
spaces) is semi-lossless if and only if its transfer function D̂ is left-inner in the
following sense: D̂ is a contractive analytic function on C+, the restriction of
D̂ to every separable subspace of U has a strong limit from the right a.e. at the
imaginary axis, and this limit is isometric a.e.1

Proof By Proposition 10.3.5, D ∈ TIC2(U ; Y ) if and only if D̂ ∈ H∞(U ; Y ),
and D̂ is a contractive analytic function on C+ whenever D is a contraction (in
particular, if it is isometric). Without loss of generality, we may assume that
U and Y are separable, because any function u ∈ L2(R+; U ) to which we may
apply D is almost separable-valued, and so is Dπ+u. The separable case is

1 The limit from the right at the imaginary axis of D̂u exists almost everywhere for all u ∈ U
even if U is nonseparable. By restricting D̂ to a separable subspace of U we can ensure that the
limiting operator is defined almost everywhere. The continuity of D̂ in C+ implies that the
values of D̂ lie in a separable subspace of Y in this case.
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well-known and found in many places (in slightly different settings); see, e.g.,
Duren (1970, pp. 187–192), Hoffman (1988), or Sz.-Nagy and Foiaş (1970,
Section V.2, pp. 186–192). �

Note that, if D is the input/output map of an L2-well-posed system with
main operator A, then the transfer function D̂ has an analytic extension to all
of ρ(A). In particular, if ρ(A) ∩ jR �= ∅, then at every point α ∈ ρ(A) ∩ jR,
D̂(α) will be isometric if D is semi-lossless and unitary if D is lossless (since
D̂ is continuous at every α ∈ ρ(A)).

As the following theorem says, if a system is controllable and passive and
semi-lossless, then it must be energy preserving and output normalized.

Theorem 11.3.3 A controllable semi-lossless passive system � = [A B

C D

]
on

(Y, X,U ) is necessarily energy preserving and strongly stable, and C∗C = 1.
In particular, � is minimal and output normalized, and it is unitarily similar
to the restricted exactly observable shift realization of D given in Proposition
9.5.2(iv).

Proof We begin by showing that the state trajectory x and the output function
y of � with initial time zero, initial state zero, and input function u satisfy

|x(t)|2X +
∫ t

0
|y(s)|2Y ds =

∫ t

0
|u(s)|2U ds, t ≥ 0. (11.3.1)

Because of the passivity, we know that

|x(t)|2X +
∫ t

0 |y(s)|2Y ds ≤ ∫ t
0 |u(s)|2U ds, t ≥ 0. (11.3.2)

Fix v > 0, and assume that u(s) = 0 for s ≥ v. Then

|x(t)|2X +
∫ t

0
|y(s)|2Y ds ≤

∫ v

0
|u(s)|2U ds, t ≥ v.

By the lossless property,
∫∞

0 |y(s)|2Y ds = ∫ v0 |u(s)|2U ds, so by letting t →∞
we conclude that x(t)→ 0 as t →∞. Furthermore, by the passivity and the
fact that (x, y) is the state and output of S on the time interval [v,∞) with initial
state x(v) and input function 0, and by (11.3.2),

0 ≤ |x(v)|2X −
∫ ∞
v

|y(s)|2Y ds

≤
∫ v

0
|u(s)|2U ds −

∫ v

0
|y(s)|2Y ds −

∫ ∞
v

|y(s)|2Y ds = 0.

Thus, both the inequalities in this chain must be equalities, and this implies
(11.3.1).
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Subtracting two copies of (11.3.1) from each other, with t replaced by v in
one of them, we get

|x(t)|2X +
∫ t

v

|y(s)|2Y ds = |x(v)|2X +
∫ t

v

|u(s)|2U ds, t ≥ v.

Denote u1(t) = u(t − v), x1(t) = x(t − v), and y1(t) = y(t − v) for t ≥ 0, and
replace x(v) by x0. Then we get (11.2.1) with u, x , and y replaced by u1, x1,
and y1. By varying v and u we obtain all possible u1 ∈ L2(R+; U ) and all those
x0 that lie in the range of Bv

0 for some v ≥ 0. The latter set is dense in X
(since � is controllable), and by continuity, (11.2.1) must therefore hold for all
u ∈ L2(R+; U ) and x0 ∈ X . This means that � is energy preserving.

In the first part of the proof (where we took x0 = 0) we observed that
x(t)→ 0 as t →∞. Using this fact in the next part of the proof we find that
x(t)→ 0 as t →∞ for all x0 in a dense set of X and all u with bounded sup-
port. Furthermore, by (11.1.1), |x(t)|2 ≤ |x0|2X +

∫∞
0 |u(s)|2U ds. By density and

continuity, the same claim remains true for all x0 ∈ X and all u ∈ L2(R+; Y ).
Thus � is strongly stable (see Definition 8.1.1). That C∗C = 1 (i.e., the con-
trollability gramian is the identity operator) follows from (11.2.13) (QA∗,A = 0
since A is strongly stable).

The final claim about the similarity to the restricted exactly observable shift
realization in Proposition 9.5.2(iv) follows from Theorem 9.5.3. �

In Theorem 11.3.3 we assumed � to be controllable, passive, and lossless,
and we concluded that � must be energy preserving and strongly stable. If we
instead start by assuming that � is energy preserving, then the strong stability
of � can be characterized in several equivalent ways.

Theorem 11.3.4 Let � = [A B

C D

]
be an (scattering) energy preserving linear

system on (Y, X,U ). Then, with the notation of Theorem 11.1.6, the following
conditions are equivalent:

(i) A is strongly stable;
(ii) QA∗,A = 0;

(iii)
[

QA∗ ,A QA∗ ,B
QB∗ ,A QB∗ ,B

]
= 0;

(iv) QA∗,A* 1;
(v) C∗C = 1;

(vi)
[

C∗
π+D∗

] [
C Dπ+

] = 1;
(vii) � is exactly observable in infinite time.

If these conditions hold, then

(viii) � is semi-lossless.

If � is controllable, then (viii) is equivalent to (i)–(vi).
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The equivalent conditions listed above have simple interpretations in terms
of the forward wave operator W+ and the backward wave operator W− of
the corresponding Lax–Phillips model. We know from (11.2.13) that W− is
isometric whenever the system is energy preserving. Condition (iii) holds (hence
so do (i)–(viii)) if and only if also W+ is an isometry.

Proof of Theorem 11.3.4 (i)⇒ (viii): Assume (i). Let x be the state trajectory
and y the output function of� with initial time zero, initial state zero, and input
function u ∈ L2(R+; U ). If u is supported on [0, T ], then x(t)→ 0 as t →∞
(because x(t − T ) = At−T x(T ) for t ≥ T ). Arguing as in the last part of the
proof of Theorem 11.3.3 (or alternatively, as in the proof of Lemma 8.1.2 (iii))
we find that x(t)→ 0 also in the case where u does not have bounded support.
This combined with (11.2.1) (with x0 = 0) implies that � is semi-lossless.

(i)⇔ (ii): This follows from the definition of QA∗,A.
(i) ⇒ (iii): Assume (i). Then the definitions of QA∗,A and QB∗,A imply

that these operators are zero, and also QA∗,B = Q∗B∗,A = 0. As we have shown
above,� is semi-lossless, and this together with (11.2.13) implies that QB∗,B =
0.

(iii)⇒ (ii): This is obvious.
(ii)⇒ (iv): This is obvious, too.
(iv) ⇒ (i): Assume (iv). Then ‖QA∗,A‖ < 1. Pick some η satisfying

‖QA∗,A‖ < η < 1, and let x0 ∈ X . By the definition of QA∗,A, we can find
some t1 > 0 such that x1 = At1 x0 satisfies |x1|X ≤ η|x0|X . Repeating the
same argument with x0 replaced by x1 we can find some t2 > t1 so that
x2 = At2−t1At1 x0 = At2 x0 satisfies |x2|X ≤ η2|x0|X . Continuing in the same
way, for each integer k > 0, we can find some tk such that |Atk x0|X ≤ ηk |x0|X .
In particular, Atk x0 → 0 as k →∞. This combined with the fact that A is a
contraction semigroup implies that limt→∞ At x0 = 0 for all x0 ∈ X .

(ii)⇔ (v) and (iii)⇔ (vi): See (11.2.13).
(iv) ⇔ (vii): This follows from (11.2.13), Definition 9.4.2, and Lemma

9.10.2(iii)).
(vii) ⇒ (i): That (vii) ⇒ (i) in the controllable case is a part of Theorem

11.3.3. �

With the help of Theorem 11.3.4 it is easy to prove the following alternative
characterizations of lossless energy preserving systems.

Theorem 11.3.5 Let � = [A B

C D

]
be an energy preserving linear system on

(Y, X,U ). Then, with the notation of Theorem 11.1.6, the following conditions
are equivalent (and they are implied by the conditions listed in Theorem 11.3.4):

(i) � is (scattering) semi-lossless;
(ii) A is strongly input/state stable;
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(iii) QB∗,B = 0;
(iv) B∗QA∗,AB = 0;
(v) B∗(1− C∗C)B = 0;

(vi)
[ QA∗ ,A 0

0 0

]+ [ C∗
π+D∗

] [
C Dπ+

] = [ 1 0
0 π+

]
;

(vii) D∗D = 1;
(viii) the restriction of A to the reachable subspace is strongly stable;

(ix) the restriction of � to the reachable subspace is exactly observable in
infinite time.

If U and Y are separable, then these conditions are further equivalent to

(x) D̂( jω)∗D̂( jω) = 1 for almost all ω ∈ R.

If � is controllable, then the conditions listed above are equivalent to those
listed in Theorem 11.3.4.

Proof Recall that the conditions (i)–(vii) in Theorem 11.3.4 imply that � is
semi-lossless (which is condition (i) in the present theorem), and that they are
equivalent to semi-losslessness if� is controllable. Also recall from Proposition
11.3.2 that (i)⇔ (x) in the separable case.

(i)⇔ (iii): This follows from (11.2.13) (the bottom right corner of the first
identity; note that � is semi-lossless iff π+D∗Dπ+ = π+).

(ii)⇒ (iii): Compare Definition 8.1.1(ii)(b) to the definition of QB∗,B, and
take u to be supported on R+.

(iii)⇒ (ii): Suppose that QB∗,B = 0, i.e, suppose that for all u ∈ L2(R+; U ),
Bt

0u = Bτ tπ+u → 0 as t →∞. If u ∈ L2(R; U ) is supported on [−T,∞),
then τ−T u is supported on R+, so Bτ t−T u = τ t (τ−T u)→ 0 as t →∞. This
means that Bτ t u → 0 as t →∞ for all u whose support is bounded to the left.
This set of functions is dense in L2(R; U ) and Bτ t is uniformly bounded, so
Bτ t u → 0 for all u ∈ L2(R; U ), and this proves that � is strongly input/state
stable.

(iii) ⇔ (vi): By (11.2.13), (vi) holds iff QB∗,B = 0 and QA∗,B = 0. In
particular, (vi) ⇒ (iii). Conversely, if QB∗,B = 0, then it follows from the
definition of QB∗,B that Bt

0 tends strongly to zero as t →∞, and this combined
with the definition of QA∗,B implies that also QA∗,B = 0. Thus (iii)⇒ (vi).

(i) ⇔ (vii): We get the identity π+D∗Dπ+ = π+ (which is equivalent to
(i)) from (vii) by multiplying by π+ to the left and to the right. To go in the
opposite direction we observe that if (i) holds and u has bounded support, then
for some sufficiently large T , τ−T u is supported on R+, hence 〈u,D∗Du〉 =
〈u, τ T D∗Dτ−T u〉 = 〈τ−T u,D∗Dτ−T u〉 = 〈τ−T u, τ−T u〉 = 〈u, u〉. This set
of functions is dense in L2(R; U ), so we must then have 〈u,D∗Du〉 = 〈u, u〉
for all u ∈ L2(R; U ).

(ii)⇔ (viii): See Lemma 8.1.2(iii).
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(viii) ⇔ (ix): Apply the equivalence of (i) and (vii) in Theorem 11.3.4 to
the system which we get by replacing the state space by the reachable subspace
R (B) (see Theorem 9.1.9(i)).

(viii) ⇔ (iv): We apply the equivalence of (i) and (ii) in Theorem 11.3.4
to the same reduced system as above. If (viii) holds, then QA∗,A vanishes on
R (B), so (iv) holds. Conversely, if (iv) holds, then QA∗,A vanishes on R (B),
hence on R (B).

(iv) ⇔ (v): By (11.2.13), QA∗,A = 1− C∗C, so B∗QA∗,AB = B∗(1−
C∗C)B and (iv) and (v) are equivalent. �

In the case of a conservative system we can strengthen the conclusion of
Theorem 11.3.4 slightly.

Theorem 11.3.6 In the case where � = [A B

C D

]
is (scattering) conservative

the conditions (i)–(vii) in Theorem 11.3.4 are equivalent to the following con-
ditions:

(xi) QA∗,A is the orthogonal projection onto the maximal subspace X0 in
Theorem 11.1.9 on which A in unitary.

(xii) C∗C is the orthogonal projection onto the subspace X1 in Theorem
11.1.9 on which A in completely nonunitary.

(xiii) C∗C is a projection and R (B) ⊂ R (C∗).
(xiv) The restriction of A to the subspace X1 in Theorem 11.1.9 is strongly

stable.

In particular, if� is semi-lossless, conservative and completely nonunitary, then
� is observable, and the conditions (i)–(vii) in Theorem 11.3.4 are equivalent to
the conditions (i)–(ix) in Theorem 11.3.5 and to the conditions (xi)–(xiv) above.

Proof (xi)⇔ (xii): By (11.2.13), QA∗,A+ C∗C = 1, so QA∗,A is a projection
if and only if C∗C is a projection, and the ranges of these two projections are
the orthogonal complements of each other. Thus (xi) and (xii) are equivalent.

(xii)⇔ (xiii): Both (xii) and (xiii) require C∗C to be a projection. The range of
this projection is equal toR (C∗) (which is closed since C∗C is a projection), so to
prove that (xii) and (xiii) are equivalent we must show that R (C∗) = X1 = X⊥0
if and only if R (B) ⊂ R (C∗), or equivalently, that N (C) = X0 if and only if
N (C) ⊂ N (B∗). However, this is true because by Theorem 11.2.11(iii), X0 =
N (C) ∩N (B∗), and this is equal to N (C) if and only if N (C) ⊂ N (B∗).

(xi)⇔ (xiv): It follows from the definition of QA∗,A that QA∗,Ax = 0 if and
only if At x → 0 as t →∞. Thus (xi) implies (xiv). Conversely, if (xiv) holds,
then QA∗,Ax = 0 for every x ∈ X1. From the proof of Theorem 11.1.9 we can
infer that QA∗,Ax = x for all x ∈ X0. Thus QA∗,A is the projection operator
onto X0.
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(i)–(vii)⇒ (xiii): Assume that the equivalent conditions listed in Theorem

11.3.4 hold. By Theorem 11.2.11, the operator
[

QA∗ ,A QA∗ ,B
QB∗ ,A QB∗ ,B

]
is a self-adjoint

projection, so if furthermore QB∗,B = 0 (i.e., (iii) in Theorem 11.3.4 holds),
then QA∗,B = 0 and QA∗,A is a self-adjoint projection (this can be verified
with a short computation). As we saw above, this implies that C∗C is a projec-
tion. By condition (iv) in Theorem 11.3.4, if x ∈ R (B), then 〈x, QA∗,Ax〉 = 0,
or equivalently, QA∗,Ax = 0 and C∗Cx = x . Thus R (B) ⊂ R (C∗) and (xiii)
holds.

(xiii)⇒ (v): Assume (xiii). Then C∗ acts as an identity on R (C∗) ⊃ R (B),
so C∗B = B and B∗B = B∗CC∗B. Thus condition (v) in Theorem 11.3.4
holds in this case.

The final statement of Theorem 11.3.6 follows from the fact that if A is
completely nonunitary, then X0 = 0, hence QA∗,A = 0 and C∗C = 1. �

By applying Theorems 11.3.5 and 11.3.6 both to the original system and
its dual we can derive the following characterizations of lossless conservative
systems.

Corollary 11.3.7 Let � = [A B

C D

]
be a (scattering) conservative completely

non-unitary system on (Y, X,U ). Then the following conditions are equivalent:

(i) � is lossless;
(ii) both A and A∗ are strongly stable;

(iii) B∗B = 1 and CC∗ = 1;
(iv) S is exactly observable and exactly controllable in infinite time.

This follows immediately from Theorems 11.3.5 and 11.3.6. The systems
studied in Lax and Phillips (1967) are of this type.

There is also an exponentially stable version of Theorem 11.3.4.

Theorem 11.3.8 Let � = [A B

C D

]
be an (scattering) energy preserving linear

system on the three Hilbert spaces (Y, X,U ) with main operator A. Then the
following conditions are equivalent:

(i) jR ∈ ρ(A) and supω∈R‖( jω − A)−1‖ is finite;
(ii) � is exponentially stable;

(iii) � is exactly observable in some finite time T .

If these conditions hold, then � is semi-lossless and D̂(α) is isometric for all
α ∈ jR.

Proof (i)⇒ (ii): This is trivial.
(ii)⇒ (i): If (i) holds, then by Lemma 3.2.8(ii), ‖(z − A)−1‖ is uniformly

bounded on some strip {z ∈ C | |
z| ≤ ε} around jR. Since A is a contraction
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semigroup, by Corollary 3.4.5, ‖(z − A)−1‖ is also uniformly bounded on C+ε .
By Theorem 3.11.6, A is exponentially stable.

(ii) ⇔ (iii): By Theorem 2.5.4(i), A is exponentially stable if and only
if ‖AT ‖ < 1 for some T > 0. Equivalently, there is some ε > 0 such that
|AT x0|2X ≤ (1− ε)|x0|2X . Since � is energy preserving, this identity is equiv-
alent to the identity (take u = 0 in (11.2.1))

∫ T
0 |(Cx0)(t)|2Y ≥ ε|x0|2X , i.e., S is

exactly observable in time T .
The final claim follows from Theorem 11.3.4 and (11.2.9). �

Theorem 11.3.9 Let � = [A B

C D

]
be a (scattering) conservative linear system

on the three Hilbert spaces (Y, X,U ) with main operator A. Then the following
conditions are equivalent:

(i) jR ∈ ρ(A) and supω∈R‖( jω − A)−1‖ is finite;
(ii) � is exponentially stable;

(iii) � is exactly observable in some finite time T ;
(iv) � is exactly controllable in some finite time T .

If these conditions hold, then � is lossless and D̂(α) is unitary for all α ∈ jR.

This follows directly from Theorem 11.3.8.

11.4 Isometric and unitary dilations of contraction
semigroups

We begin by defining what we mean by an orthogonal compression or dilation
of a C0 semigroup on a Hilbert space.2

Definition 11.4.1

(i) Let Ã be a C0 semigroup on a Hilbert space X̃ , and let X be a
closed subspace of X̃ . Then the (orthogonal) compression A of Ã to X is
given by At = πX Ãt

|X , t ≥ 0, where πX is the orthogonal projection of X̃
onto X .

(ii) Let A be a C0 semigroup on a Hilbert space X . By an (orthogonal)
dilation of A we mean a C0 semigroup on a Hilbert space X̃ such that X
is a closed subspace of X̃ and A is the compression of Ã to X .

(iii) If the semigroup Ã in (ii) is isometric, co-isometric, or unitary on X̃ , then
we refer to Ã as an isometric, co-isometric, or unitary dilation of A.

2 Nonorthogonal dilations and compressions are defined in a similar way, with the orthogonal
projection replaced by an oblique projection. For the moment we shall only need orthogonal
projections.
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(iv) Let Ã be a dilation of A on the space X̃ ⊃ X .
(a) Ã is a minimal isometric dilation of A if the span of the set
{Ãt x | x ∈ X, t ≥ 0} is dense in X̃ .

(b) Ã is a minimal co-isometric dilation of A if the span of the set
{Ã∗t x | x ∈ X, t ≥ 0} is dense in X̃ .

(c) Ã is a minimal unitary dilation of A if the span of the set
{Ãt x | x ∈ X, t ∈ R} is dense in X̃ (where A−t = A∗t for all
−t < 0).

Note that the compression A in (i) need not be a semigroup, although it is
always strongly continuous (this is discussed in more detail in Lemma 11.4.2
below). Obviously At is a contraction for all t ≥ 0 if Ã is isometric or co-
isometric. Also note that Ã is a co-isometric dilation of A if and only if Ã∗ is an
isometric dilation of A∗. In particular, a necessary condition for the existence
of an isometric, co-isometric, or unitary dilation of A is that A is a contraction
semigroup. As we shall see later, this condition is also sufficient.

Lemma 11.4.2 The operator family At = πX Ãt
|X in part (i) of Definition 11.4.1

is a semigroup if and only if X̃ is a direct sum X = Z ⊕ X ⊕ Z∗ such that the
block matrix decomposition of Ã with respect to this decomposition of X̃ has
the form

Ã =
Ã|Z πZ Ã|X πZ Ã|Z∗

0 πX Ã|X πX Ã|Z∗
0 0 πZ∗Ã|Z∗

 . (11.4.1)

In particular, Z and Z ⊕ X are invariant subspaces of Ã, X ⊕ Z∗ and Z∗ are
invariant subspaces of Ã∗, and Ã|Z , πX Ã|X and πZ∗Ã|Z∗ are C0 semigroups on
Z, X̃ , respectively Z∗.

The subspaces Z and Z∗ are not unique in general (see Remark 9.1.11).

Proof This is a special case of Lemma 11.5.2. �

In the sequel we shall often need to discuss unitary similarity. By this we
mean the following.

Definition 11.4.3 Let X , U , Y , X1, U1, and Y1 be Hilbert spaces.

(i) The spaces X and X1 are unitarily similar if there is a unitary map E
mapping X onto X1.

(ii) Two operators A ∈ B(U ; Y ) and A1 ∈ B(U1; Y1) are unitarily similar if
there exist unitary operators F mapping U onto U1 and G mapping Y
onto Y1 such that A1 = G AF−1 (if U = Y and U1 = Y1 then we require,
in addition, that F = G).
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(iii) Two semigroups A on X and A1 on X1 are unitarily similar if there is a
unitary operator E mapping X onto X1 such that At

1 = EAt E−1 for all
t ≥ 0.

(iv) Two maps D ∈ TIC2(U ; Y ) and D1 ∈ TIC2(U1; Y1) are unitarily similar
if there exist unitary operators F mapping U onto U1 and G mapping Y
onto Y1 such that D1 = GDF−1 (if U = Y and U1 = Y1 then we require,
in addition, that F = G).

(v) Two L2-well-posed linear systems
[A B

C D

]
an (Y, X,U ) and

[
A1 B1

C1 D1

]
on

(Y1, X1,U1) are unitarily similar if there exist unitary operators E , F , and
G, mapping X onto X1, U onto U1, and Y onto Y1, respectively, such that[

A1 B1

C1 D1

]
=
[

E 0
0 G

][
A B

C D

][
E−1 0

0 F−1

]
.

As a first application of unitary similarity, let us prove that isometric, co-
isometric, and unitary dilations are unique, up to a unitary similarity.

Lemma 11.4.4 Let Ã1 and Ã2 be two minimal isometric, co-isometric, or uni-
tary dilations of A on X̃1 =

[
X
X1

]
, respectively X̃2 =

[
X
X2

]
. Then there is unitary

map E of X1 onto X2 such that

Ãt
2 =
[

1 0
0 E

]
Ãt

1

[
1 0
0 E−1

]
;

this is true for all t ≥ 0 in the isometric and co-isometric cases, and for all
t ∈ R in the unitary case.

Proof The co-isometric case is reduced to the isometric case if we replace A

by A,∗, so it suffices to prove the isometric and unitary cases. Let us begin with
the isometric case.

Let x , y ∈ X , and let t ≥ s ≥ 0. If Ã is an isometric dilation of A to X̃ , then
Ã∗sÃs = 1 on X̃ , so

〈Ãs x, Ãt y〉X̃ = 〈x, Ã∗s1 Ãs
1Ã

t−s y〉X̃ = 〈x, Ãt−s y〉X̃ = 〈x,At−s y〉X .
Thus, this expression does not depend on the particular dilation, as long as it
is isometric. In the same way we get 〈Ãt y, Ãs x〉X̃ = 〈At−s y, x〉X , so we can
remove the restriction s ≤ t . Applying this argument with Ã replaced by Ã1

and Ã2 we find that

〈Ãs
1x, Ãt

1 y〉X̃1
= 〈Ãs

2x, Ãt
2 y〉X̃2

for all x , y ∈ X and all s, t ≥ 0. Therefore, if we take arbitrary sequences of
vectors xi ∈ X and numbers ti ≥ 0, 1 ≤ i ≤ n, and define x̃1 ∈ X̃1 and x̃2 ∈ X̃2
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by

x̃1 =
n∑

i=1

Ãti
1 xi , x̃2 =

n∑
i=1

Ãti
2 xi ,

then ‖x̃1‖X̃1
= ‖x̃2‖X̃2

. In particular, x̃1 = 0 iff x̃2 = 0, so we can define
a norm-preserving operator F from the span of {Ãt

1x | x ∈ X, t ≥ 0} to
the span of {Ãt

2x | x ∈ X, t ≥ 0} by setting Fx̃1 = x̃2. For all t ≥ 0, the
preceding construction maps the point Ãt

1 x̃1 =
∑n

i=1 Ãt+ti
1 xi onto the point

FÃt
1 x̃1 =

∑n
i=1 Ãt+ti

2 xi = Ãt
2 x̃2 = At

2 Fx̃1. By density, we can extend this op-
erator to a norm-preserving, hence unitary, operator (which we still denote by
F) from X̃1 onto X̃2, which satisfies FÃt

1 = Ãt
2 F .

Let us decompose F into F = [ F11 F12
F21 F22

]
according to the decompositions

X̃1 =
[

X
X1

]
and X̃2 =

[
X
X2

]
. By construction, Fx = x for every x ∈ X , so F11 =

1. As F is unitary, we have F∗F = 1, i.e.,

1+ F∗21 F21 = 1, F∗12 + F∗22 F12 = 0,

F12 + F∗21 F22 = 0, F∗12 F12 + F∗22 F22 = 1.

The first equation implies that F21 = 0, after which we see from the third
equation that F12 = 0 and from the fourth equation that F22 is an isometry.
From the corresponding adjoint identity we find that F22 is unitary. Taking
E = F22 we get the desired unitary map of X̃1 onto X̃2.

The proof of the unitary case is identical to the one above, except that we
drop the restrictions s ≥ 0 and t ≥ 0. �

Theorem 11.4.5 Let A be a C0 contraction semigroup on a Hilbert space X.

(i) There is a Hilbert space Y and an admissible observation operator
C : X1 → Y with dense range such that, if C is the output map induced
by C and A, then

[A

C

]
is an (scattering) energy preserving system on

(Y, X, 0) (i.e., there is no input, only a state and an output).
(ii) The space Y and the operator C are unique up to unitary similarity: if Y1

is another Hilbert space, if C1 : X1 → Y1 is another admissible
observation operator with dense range, if C1 is the corresponding output

map, and if
[

A

C1

]
is an energy preserving system on (Y, X, 0), then there

is a unitary map G : Y → Y1 so that C1 = GC and C1 = GC.
(iii) The corresponding Lax–Phillips model with parameter ω = 0 (and with

U = 0, i.e., there is no input) is a minimal isometric dilation of A.

Proof (i) By Theorem 3.4.8, the contractivity of A implies that the generator A
of A is dissipative (this can also be seen from Theorem 11.1.5 with U = Y = 0).
Fix an arbitrary α ∈ C+. Then the operator−(α − A∗|X )−1(A + A∗|X )(α − A)−1

is positive, and it has a positive square root (see Lemma A.2.2). For all x ∈
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X1 = D (A), we define

Cx = [−(α − A∗|X )−1(A + A∗|X )(α − A)−1
]1/2

(α − A)x

(we ignore the fact that this operator may depend on α). Let Y be the closure
of R (C) in X . Then C ∈ B(X1; Y ), C∗ ∈ B(Y ; X∗−1), and

C∗C = −(A + A∗|X ).

By Theorem 11.2.5 with U = 0, C is an admissible observation operator for A,
and
[A

C

]
is an energy preserving system on (Y, X, 0). This proves (i).

(ii) Let C1 and Y1 be as in (ii), and let C = E |C | and C1 = E1|C1| be the
polar decompositions of C and C1 (see Lemma A.2.5). Then both E and E1

are onto since both C and C1 have dense ranges, and |C | = E∗C . By Theorem
11.2.5, C∗C = −(A + A∗|X ) = C∗1 C1. Thus,

C1 = E1|C1| = E1|C | = E1 E∗C,

where E1 E∗ is a unitary operator mapping Y onto Y1. Clearly also C1 = E1 E∗C.
(iii) By Lemma 11.2.2, the Lax–Phillips model T with parameter ω = 0 is

isometric, and it is obvious that it is a dilation of A. It remains to show that it
is minimal, i.e., that the span of elements of the type Tt [ 0

x

]
with x ∈ X and

t ≥ 0 is dense in the state space
[ Y

X

]
, where Y = L2(R−; Y ). Obviously

[
0
X

]
is contained in this span, so it suffices to prove that no nonzero element of the
type

[ y
0

]
is orthogonal to this set. Suppose that y ∈ Y , and that 〈y, τ tCt

0x〉Y for
all x ∈ X and t ≥ 0. In particular, this is then true for all x ∈ X1, and we get
from Theorem 4.4.2 for all x ∈ X1 and all t ≥ 0,

0 =
∫ 0

−t
〈CAs−t x, y(s)〉Y ds =

∫ t

0
〈x,A∗(t−s)

|X∗−1
C∗y(−s)〉(X1,X∗−1) ds

=
〈
x,
∫ t

0
A
∗(t−s)
|X∗−1

C∗y(−s) ds

〉
(X1,X∗−1)

.

This being true for all x ∈ X1, we must have
∫ t

0 A
∗(t−s)
|X∗−1

C∗y(−s)X ds = 0 for
all t ≥ 0. We now refer to Theorems 3.5.6(v), 4.3.4, 6.2.3, and 6.2.13, and let
D∗ be the input/output map of the L2-well-posed system on (X, X, Y ) with
growth bound ≤ 0 whose semigroup is A∗, control operator is C∗, observation
operator is 1, and feedthrough operator is zero. If we denote z(s) = y(−s) for
s ≥ 0, then z ∈ L2(R+; Y ), and the condition above says that D∗z vanishes on
R+. Therefore we must also have, for all λ ∈ C+,

0 = D̂∗z(λ) = D̂∗(λ)ẑ(λ) = (λ− A∗)−1C∗ ẑ(λ).

The operator (λ− A∗)−1 is injective, and so is C∗ since we assume that C
has dense range. Therefore ẑ(λ) = 0 for all λ ∈ C+, so z = 0 and y = 0. This
proves the minimality of the extension of A. �
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By applying this result to the dual system we immediately get the following
corollary:

Corollary 11.4.6 Let A be a C0 contraction semigroup on a Hilbert space X.

(i) There is a Hilbert space U and an admissible control operator
B : U → X−1 with N (B) = 0 such that, if B is the input map induced
by B and A, then

[
A B

]
is a (scattering) co-energy preserving system

on (0, X,U ) (i.e., there is no output, only a state and an input).
(ii) The space U and the operator B are unique up to unitary similarity: if U1

is another Hilbert space, if B1 : U1 → X−1 is another admissible control
operator with N (B1) = 0, if B1 is the corresponding output map, and if[
A B1

]
is a co-energy preserving system on (0, X,U1), then there is a

unitary map F : U → U1 so that B1 = B F−1 and B1 = BF−1.
(iii) The corresponding Lax–Phillips model with parameter ω = 0 (and with

Y = 0, i.e., there is no input) is a minimal co-isometric dilation of A.

Theorem 11.4.5 and Corollary 11.4.6 imply the following result:

Theorem 11.4.7 Let A be a contraction semigroup on a Hilbert space X.

(i) Let A− be a minimal isometric dilation of A on
[

X−
X

]
(where X− is the

orthogonal complement of X in the extended state space). Then X− is
unitarily similar to L2(R−; Y ) for some Hilbert space Y , and A−
decomposes into

A− =
[
A−− A−0

0 A

]
,

where A−− is unitarily similar to the left shift τ t
− on L2(R−; Y ). In

particular, X− is invariant under A−, X is invariant under A∗−, and
R (At

−−
) ⊥ R (At

−0

)
for all t ≥ 0. The space Y is unique up to a unitary

similarity transformation.
(ii) Let A+ be a minimal co-isometric dilation of A on

[
X

X+

]
(where X− is the

orthogonal complement of X in the extended state space). Then X+ is
unitarily similar to L2(R+; U ) for some Hilbert space U, and A+
decomposes into

A+ =
[
A A0+
0 A++

]
,

where A++ is unitarily similar to the left shift τ t
+ on L2(R+; U ). In

particular, X is invariant under A+, X+ is invariant under A∗+, and
N (At

++
) ⊥ N (At

+0

)
for all t ≥ 0. The space U is unique up to a unitary

similarity transformation.
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Proof Properties (i) and (ii) obviously hold for the minimal isometric and co-
isometric dilations presented in Theorem 11.4.5, and Corollary 11.4.6. That
all minimal isometric or co-isometric dilations must have the same properties
follows from Lemma 11.4.4. �

We next proceed to construct a unitary dilation of a given contraction semi-
group. This construction is based on the following result:

Theorem 11.4.8 Let A be a contraction semigroup on a Hilbert space X. Then
A is isometric if and only if every minimal co-isometric dilation of A is a minimal
unitary dilation, and A is co-isometric if and only if every minimal isometric
dilation of A is a minimal unitary dilation.

Proof It suffices to prove the case where, e.g., A is isometric, and the dilation
is co-isometric (we get the other case by repeating the same argument with A

replaced by A∗).
We begin with the necessity of A to be isometric. By Theorem 11.4.7, X

is invariant under every minimal co-isometric dilation, so it coincides with the
original semigroup A on X . This implies that A must be isometric in order for
the dilated semigroup to be unitary.

We next turn to the converse. Obviously, if a dilation is minimal in the co-
isometric sense, and if it happens to be unitary, it is also minimal in the unitary
sense. Without loss of generality, we may assume that the dilation is the Lax–
Phillips model described in Corollary 11.4.6 (every dilation is unitarily similar
to this one). According to Lemma 11.2.2, to prove that the dilation is unitary
we must show that the system in Corollary 11.4.6 is conservative whenever A

is isometric. By construction, we know that it is co-energy preserving, so it
suffices to show that it is energy preserving.

Since A is isometric, by Corollary 11.2.7, D (A) ⊂ D (A∗) and A∗x = −Ax
for all x ∈ D (A). Thus, the first condition in (11.2.7) holds with C = 0.
The co-isometric dilation is the dual of the isometric dilation of A∗, and by
the construction in Theorem 11.4.5, the added control operator B satisfies
B B∗x = −(A|X + A∗)x for all x ∈ D (A∗). This implies that B B∗x = 0 for
all x ∈ D (A), hence B∗x = 0 for all x ∈ D (A). Since A∗x = −Ax for all
x ∈ D (A), we have, for all α ∈ C+ and all x ∈ D (A),

B∗(α − A∗)−1(α + A)x = B∗(α − A∗)−1(α − A∗)x = B∗x = 0.

This is the adjoint of the second condition in (11.2.7) with C = 0. Thus, the
first two conditions in (11.2.7) hold.

The verification of the third condition in (11.2.7) requires a closer study of
the operator B∗. Fix α ∈ C+, and defineA = (α + A)(α − A)−1. Then, by The-
orem 11.2.5(viii) with U = Y = 0 (no input and no output), A is an isometry,
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so A∗A = 1. This implies that

(AA∗)2 = AA∗AA∗ = AA∗,

so AA∗ is a self-adjoint projection on X , hence so is 1− AA∗. Let us denote
this projection by π . Then

π = 1− (α − A|X )−1(α + A|X )(α + A∗)(α − A∗)−1

= (α − A|X )−1[(α − A|X )(α − A∗)+ (α + A|X )(α + A∗)](α − A∗)−1

= 2
α (α − A|X )−1(A|X + A∗)(α − A∗)−1.

Comparing this to the definition of C in the proof of Theorem 11.4.5, and
replacing C by B∗ and A by A∗ we realize that, if we define B∗ as in the
proof of that theorem, then B∗ = 1/

√
2
α π1/2(α − A∗). As π (this time) is

a self-adjoint projection, this is equivalent to B∗ = 1/
√

2
α π (α − A∗), or
equivalently,

π =
√

2
α B∗(α − A∗)−1.

In particular, by our earlier definition of U we have U = R (B∗) = R (π ). Thus,

2
α B∗(α − A∗)−1(α − A|X )−1 B = π,

and the restriction of this operator to U = R (π ) is the identity, as required by
the third condition in (11.2.7) with β = α and D̂ = 0. By Theorem 11.2.5, the
dilated system is conservative. �

Theorem 11.4.9 Let A be a C0 contraction semigroup on a Hilbert space X.

(i) There exist two Hilbert space U and Y and a (scattering) conservative
linear system

[A B

C D

]
on (Y, X,U ) (where the semigroup is the given

semigroup A) whose control operator is injective on U and whose
observation operator has dense range in Y . The input/output map of this
system is purely passive.

(ii) The system in (i) is unique in the following sense: if we have two different

conservative systems
[A B

C D

]
on (Y, X,U ) and

[
A B1

C1 D1

]
on (Y1, X,U1)

with purely passive input/output maps, then there exist unitary operators
F : U → U1 and G : Y → Y1 so that[

A B1

C1 D1

]
=
[

1 0
0 G

][
A B

C D

][
1 0
0 F−1

]
.

(iii) The corresponding Lax–Phillips model with parameter ω = 0 is a
minimal unitary dilation of A.

Proof (i) The idea of this proof is very simple: first we use Corollary 11.4.6
to create an input space U and an injective control operator B such that the
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corresponding system (with no output) is co-energy preserving. Then we apply
Theorem 11.4.5 to this system to create an output space Y and a combined
observation/feedthrough operator C&D with dense range so that the resulting
system is energy preserving. The details are as follows.

Let �+ =
[
A B

]
be the co-energy preserving system with input space U

and control operator B that we get from Corollary 11.4.6. The domain D (S) of
the corresponding system node S = A&B is given by D (S) = {[ x

u

] ∈ [ X
U

] ∣∣
A|X x + Bu ∈ X

}
. We denote the corresponding Lax–Phillips model on X+ =[

X
L2(R+;U )

]
by

Tt
+ =

[
At Bt

0 τ t
+

]
.

This semigroup is co-isometric. We now use Theorem 11.4.5 to create an ob-
servation operator C+ for T+ such that the corresponding system is energy pre-

serving. Let T be the corresponding Lax–Phillips semigroup onX =
[

L2(R−;Y )
X+

]
(with zero input space). By Theorems 11.4.5(iii) and 11.4.8, T is a minimal

unitary dilation of T+. By decomposing the state space of T into

[
L2(R−;Y )

X
L2(R+;U )

]
we can write T in block matrix form as

Tt =
τ t
− Ct Dt

0 At Bt

0 0 τ t
+

 .
By construction, T is a Lax–Phillips model on

[
L2(R−;Y )

X+

]
(with zero in-

put space), but we do not yet know if it can also be interpreted as a Lax–
Phillips model with input space U and output space Y . This will be true if
and only if T satisfies the causality conditions (2.7.2). Some of these causality
conditions we get for free. Since T+ is a Lax–Phillips model, the condition
Bt =Btπ[0,t) holds for all t ≥ 0, and since T is a Lax–Phillips model on[

L2(R−;Y )
X+

]
(with zero input space), the condition

[
Ct Dt

] = π[−t,0)
[
Ct Dt

]
holds for all t ≥ 0. Thus, the only part of (2.7.2) which remains to be verified
is that π[−t,0)D

tπ[t,∞) = 0. To do this we investigate the generator of T+.
Denote the generator of T+ by A+. By Theorem 4.8.3,

D (A+) =
{[

x
u

] ∈ [ X
W 1,2(R+;U )

] ∣∣∣ [ x
u(0)
] ∈ D (S)

}
,

and for all
[

x
u

] ∈ D (A+),

A+

[
x
u

]
=
[

A&B
[ x

u(0)
]

u̇

]
.
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In particular, for all
[

x
u

] ∈ D (A+),

2
〈[ x
u

]
,A+

[
x
u

]〉 = 2
〈A&B
[ x

u(0)
]
, x
〉+ 2


∫
R+
〈u(s), u̇(s)〉 ds

= 2
〈A&B
[ x

u(0)
]
, x
〉− |u(0)|2U .

This vanishes (at least) if x = 0 and u(0) = 0, so the operator A+ + A∗+|X+
(which maps D (A+) into the dual of D (A+) with X+ as a pivot space) vanishes

on the subspace
[

0
W 1,2

0 (R+;U )

]
. The observation operator C+ ∈ B(D (A+) ; Y )

constructed in the proof of Theorem 11.4.5 satisfies A+ + A∗+|X+ = −C∗+C+.

By the above argument, C∗+C+ vanishes on
[

0
W 1,2

0 (R+;U )

]
, hence so does

C+. Therefore C+
[

x
u

]
can depend only on

[ x
u(0)
] ∈ D (S), i.e., C+

[
x
u

] =
C&D

[ x
u(0)
]

for some operator C&D ∈ B(D (S) ; Y ).

We now apply Tt to data of the type
[

0
0
u

]
, where u ∈ W 1,2(R+; U ) van-

ishes on [0, t). Then the restriction of the first component of Tt to [−t, 0)
is π[−t,0)D

t u. On the other hand, by the representation of Tt found in The-
orem 2.7.1 (with zero input space) and by Theorem 4.4.2(i) (applied to
T+ and C+), it is given by τ t applied to the function s �→ C+Ts

+
[

0
u

] =
C+
[

x(s)
τ s u

] = C&D
[

x(s)
u(s)

]
, where x is the unique strong solution of the equation

ẋ(s) = A|X x(s)+ u(s), s ≥ 0, with initial state zero. But x(s) = 0 for s ∈ [0, t)

(since we took u to vanish on [0, t)). Thus, C+Ts
+
[

0
u

] = C&D
[

x(s)
u(s)

]
= 0 for

s ∈ [0, t), and this shows that π[−t,0)D
t u = 0 whenever u ∈ W 1,2(R+; U ) van-

ishes on [0, t). By continuity, the same statement is true with W 1,2(R+; U )
replaced by L2(R+; U ). Thus, π[−t,0)D

tπ[t,∞) = 0, and we have proved that T

is a Lax–Phillips model with input space U and output space Y .
Let� be the L2-well-posed system corresponding to the Lax–Phillips model

(given by Theorem 2.7.6). Then, by Lemma 11.2.3, � is conservative. The
control operator B of this system is injective, hence by Theorem 11.2.9(i),
the space U0 in the decomposition presented in Theorem 11.1.9 is zero. Thus
also Y0 = 0 (since Y0 is a unitary similar to U0), and by Theorem 11.2.9(ii),
the observation operator C has dense range. By Theorem 11.1.9, D is purely
passive. This proves (i).

(ii) By Theorem 11.2.9, if D and D1 are purely passive, then C and C1

have dense ranges, and B and B1 are injective. The existence of a unitary
operator F such that U1 = FU , B1 = B F−1, and B1 = BF−1 follows from
Corollary 11.4.6. Recall that the system denoted by T+ in the proof above is a
co-isometric semigroup. We can extend this semigroup to a conservative system
whose output operator has a dense range in two ways, namely by choosing the
output space to be Y and the output map to be

[
C D

]
, or by choosing the
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output space to be Y1 and the output map to be
[
C1 D1 F

]
(the ranges of the

two observation operators contain the ranges of C , respectively C1, which are
dense). By Theorem 11.4.5 with A replaced by T+, there is a unitary operator
G such that Y1 = GY and

[
C1 D1 F

] = G
[
C1 D1

]
.

(iii) It is clear by now that T is a unitary dilation of A. We still need to show
that it is minimal.

On
[ 0

X
L2(R+;U )

]
, T∗ coincides with T∗+, and by the construction of T+, the

span of T∗t+ , t ≥ 0, acting on
[

0
X
0

]
is dense in this space. Thus, the span of T∗t+

acting on
[

0
X
0

]
is dense in

[ 0
X

L2(R+;U )

]
. Let us denote the system

[A

C

]
that we

get from � by dropping the input by �− and the corresponding Lax–Phillips

model by T−. Then T coincides with T− on
[

L2(R+;Y )
X
0

]
, so we have to show

that the span of T− acting on
[

0
X
0

]
is dense in

[
L2(R+;Y )

X
0

]
. To do this it suffices

to show that T− is the minimal isometric dilation of A constructed in Theorem
11.4.5. A direct comparison of the observation operator in the proof of Theorem
11.4.5 and the observation operator of � shows that they are, indeed, the same

(take u = 0 in all the formulas). Thus the span of T acting on
[

0
X
0

]
is dense in[

L2(R+;Y )
X
0

]
. We conclude that T is a minimal unitary dilation of A. �

Corollary 11.4.10 Two (scattering) conservative systems
[A B

C D

]
on

(Y, X,U ) and
[

A1 B1

C1 D1

]
on (Y1, X1,U1) with purely passive input/

output maps D and D1 are unitarily similar if and only if the two semi-
groups A and A1 are unitarily similar. In particular, the semigroup A of a
conservative system

[A B

C D

]
determines the input map B, the output map C,

and the purely passive part of the input/output map D uniquely up to unitary
similarity transformations in the input and output spaces.

Recall that, by the purely passive part of D we mean the operator D1 in
Theorem 11.1.9.

Proof Obviously, if the two systems are unitarily similar, then so are their
semigroups (see Definition 11.4.3). Conversely, if there is a unitary map E
of X onto X1 such that A1 = EAE−1, then we find that the two systems are
unitarily similar by applying Theorem 11.4.9(ii) to the systems

[A B

C D

]
and[

E 0
0 1

] [A1 B1

C1 D1

] [
E−1 0

0 1

]
. �

Corollary 11.4.11 A (scattering) conservative system � = [A B

C D

]
on three

Hilbert spaces (Y, X,U ) is unitarily similar to its causal dual system �d if and
only if the semigroup A is unitarily similar to its adjoint A∗.
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Proof If D is purely passive, then it follows from Corollary 11.4.10 that � is
unitarily similar to�d if and only if A is unitarily similar to A∗. The general case
follows from this special case and the decomposition established in Theorem
11.1.9. �

Definition 11.4.12 By the characteristic function of a C0 contraction semi-
group A on a Hilbert space X we mean the transfer function D̂ of a (scattering)
conservative system

[A B

C D

]
with this semigroup and with a purely passive in-

put/output map D. (By Theorem 11.4.9, such a conservative system always
exists, and D̂ is unique up to unitary similarity transformations in the input and
output spaces.)

Theorem 11.4.13 Two C0 contraction semigroups A and A1 have the same
characteristic functions (unique up to unitary similarity transformations in the
input and output spaces) if and only if the completely nonunitary parts of A and
A1 are unitarily similar. In particular, the characteristic function of A does not
depend on the unitary part of A.

Proof With the notation of Theorem 11.1.9, if D is purely passive, then
[A B

C D

]
is conservative if and only if the system

[
A1 B1

C1 D

]
is conservative (here the latter

system is the compression of the former to the space where A is completely
nonunitary). Thus, the full semigroup A has the same characteristic function
as the completely nonunitary part of A. Hence, if the completely nonunitary
parts of the semigroups are unitarily similar, then by Corollary 11.4.10, their
characteristic functions are the same. The converse statement, i.e., that the
input/output map determines the semigroups uniquely up to a unitary similarity
transformation in the state space follows from Corollary 11.6.4. �

Theorem 11.4.8 also provides us with the following alternative characteri-
zation of a conservative system.

Theorem 11.4.14 Let � = [A B

C D

]
be a (scattering) energy preserving system

on (Y, X,U ) with system node S = [ A&B
C&D

]
, main operator A, and control op-

erator B. Then � is conservative if and only if the range of C&D is dense in
Y and A|X x + A∗x + B B∗x = 0 for all x ∈ D (A∗).

Proof We begin with the necessity. Suppose that� is conservative. Then, by the
dual version of Theorem 11.2.5, A|X x + A∗x + B B∗x = 0 for all x ∈ D (A∗).
Moreover, � is time-flow-invertible with a stable time-flow inverse �d , so
by Corollary 6.5.8(iii), the operator

[
α 0
0 0

]+ S maps D (S) onto
[

X
Y

]
for all

α ∈ C+. Thus, the range of C&D is not just dense in Y ; it is even equal to Y .
Conversely, suppose that A|X x + A∗x + B B∗x = 0 for all x ∈ D (A∗) and

that the range of C&D is dense in Y . We first apply the dual version of
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Theorem 11.2.5 to conclude that the system �+ =
[
A B

]
is co-energy pre-

serving, hence the corresponding Lax–Phillips model T+ is co-isometric. We
assumed� to be energy preserving, and this means that the Lax–Phillips model
T induced by � is an isometric dilation of T+. Moreover, this dilation is min-
imal; this can be seen in the same way as in the last part of the proof of
Theorem 11.4.9. By Theorem 11.4.8, T is unitary, or equivalently, � is con-
servative. �

11.5 Energy preserving and conservative extensions
of passive systems

In the preceding section we studied dilations and compressions of a semi-
group. Here we study dilations and compressions of systems. Since the proofs
are very similar to those in Section 11.4, we leave most of them to the
reader.

Definition 11.5.1 Let � = [A B

C D

]
and �̃ =

[
Ã B̃

C̃ D̃

]
be two L p|Reg-

well-posed linear systems on (Y, X,U ), respectively (Y, X̃ ,U ). We say that
� is an (orthogonal) compression of �̃ and that �̃ is an (orthogonal) dilation
of � if [

A B

C D

]
=
[
πX Ã|X πXB̃

C̃|X D̃

]
, (11.5.1)

where πX is the orthogonal projection of X̃ onto X .

The fact that the right-hand side of (11.5.1) is required to be an L p|Reg-
well-posed linear system puts a rather strong restriction on the system �̃.

Lemma 11.5.2 Let �̃ =
[

Ã B̃

C̃ D̃

]
be an L p|Reg-well-posed linear system on (Y,

X̃ , Y ), let X be a closed subspace of X̃ , and define � = [A B

C D

]
by (11.5.1).

Then � is an L p|Reg-well-posed linear system if and only if X̃ is a direct sum
X = Z ⊕ X ⊕ Z∗ such that the block matrix decomposition of �̃ with respect
to this decomposition of X̃ has the form

�̃ =


Ã|Z πZ Ã|X πZ Ã|Z∗ πZB̃

0 πX Ã|X πX Ã|Z∗ πXB̃

0 0 πZ∗Ã|Z∗ 0

0 C̃|X C̃|Z∗ D̃

 . (11.5.2)

Thus, Z is invariant and unobservable, whereas Z∗ is co-invariant and un-
reachable.
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Proof First suppose that �̃ is of the form (11.5.2). Trivially, A is strongly
continuous, and A0 = 1. For all s, t ≥ 0,

AsAt = πX ÃsπX Ãt
|X = πX ÃsÃt

|X = πX Ãs+t
|X = As+t .

Thus, A is a semigroup. For all t ≥ 0,

AtB = πX ÃtπXB̃ = πX ÃtB̃ = πXB̃τ t
− = Bτ t

−,

i.e., B intertwines At and τ t
−. For all t ≥ 0,

CAt = C̃πX Ãt
|X = C̃Ãt

|X = τ t
+C̃|X = τ t

+C,

i.e., C intertwines At and τ t
+. Finally,

π+Dπ− = π+D̃π− = C̃B̃ = C̃πXB̃ = CB,

i.e., the Hankel operator of D is CB. This shows that A is an L p|Reg-well-posed
linear system.

We now turn to the converse claim, and suppose that A is an L p|Reg-well-
posed linear system. Let us add another output to this system, with output
space X and output operator πX . Thus, the added output map C1 is given by

(C1x)(t) = πX Ãt x , t ≥ 0. Let Z be the unobservable subspace for the pair
[

C1

C̃

]
,

i.e., x ∈ Z if and only ifπX Ãt = 0 for all t ≥ 0 and C̃x = 0. By Lemma 9.6.1, Z
is an invariant subspace of Ã contained in N (πX ) = X⊥. Let Z∗ = (Z ⊕ X )⊥.
Then X̃ = Z ⊕ X ⊕ Z∗, πX Ã|Z = 0 and πZ∗Ã|Z = 0 (since Z is invariant and
both X and Z∗ are orthogonal to Z ), and C̃|Z = 0 (since Z is unobservable).
This gives us the three zeros in the first column of the decomposition of �̃ given
in (11.5.2).

It remains to account for the zeros in the second and fourth columns of the
third row of (11.5.2). To get these zeros we have to use the assumption that �
is a system. The fact that Ã and A are semigroups gives, for all s, t ≥ 0,

πX ÃsÃt
|X = πX Ãs+t

|X = As+t = AsAt = πX ÃsπX Ãt
|X ,

hence

πX Ãs(1− πX )Ãt
|X = πX Ãs(πZ + πZ∗ )Ã

t
|X = 0

for all s, t ≥ 0. The output intertwining conditions for �̃ and � give, for all
t ≥ 0,

C̃Ãt
|X = τ t

+C̃|X = τ t
+C|X = CAt

|X = C̃πX Ãt
|X ,

hence

C̃(1− πX )Ãt
|X = C̃(πZ + πZ∗ )Ã

t
|X = 0.
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This says that, for each t ≥ 0 and each x ∈ X , both C1(πZ + πZ∗ )Ã
t x = 0 and

C̃(πZ + πZ∗ )Ã
t x = 0. By the definition of Z as the unobservable subspace (with

respect to these two output maps), (πZ + πZ∗ )Ã
t x ∈ Z , i.e., πZ∗Ã

t
|X = 0. This

gives us the zero in the second column of the third row of (11.5.2).
The zero in the last column of the third row of (11.5.2) still remains. The

input intertwining conditions for �̃ and � give, for all s ≥ 0,

πX ÃsB̃ = πXB̃τ s
− = πXBτ s

− = πXAsB = πX ÃsπXB̃,

hence

πX Ãs(1− πX )B̃ = πX Ãs(πZ + πZ∗ )B̃ = 0.

The Hankel conditions for the two systems give

C̃B̃ = π+D̃π− = π+Dπ− = CB = C̃πXB̃,

hence

C̃(1− πX )B̃ = C̃(πZ + πZ∗ )B̃ = 0.

This says that both C1(πZ + πZ∗ )B̃ = 0 and C̃(πZ + πZ∗ )B̃ = 0. By the defini-
tion of Z as the unobservable subspace, the range of (πZ + πZ∗ )B̃ is contained
in Z , i.e., πZ∗B̃ = 0. This gives us the final zero in the second column of the
third row of (11.5.2). �

Theorem 11.4.5 has the following analogue for systems which have no input.
(This is a preliminary version of the more general Theorem 11.5.4.)

Lemma 11.5.3 Let
[A

C

]
be a (scattering) passive L2-well-posed linear system

(with no input) on the Hilbert spaces (Y, X, 0).

(i) There is a Hilbert space Y1 and an admissible observation operator
C1 : X1 → Y1 with dense range such that, if C1 is the output map induced

by C1 and A, then
[ A

C1
C

]
is an (scattering) energy preserving system on([

Y1
Y

]
, X, 0

)
(with no input).

(ii) The space Y1 and the operator C1 are unique up to unitary similarity: if
Y2 is another Hilbert space, if C2 : X1 → Y2 is another admissible
observation operator with dense range, if C2 is the corresponding output

map, and if
[ A

C2
C

]
is an energy preserving system on

([
Y2
Y

]
, X, 0

)
, then

there is a unitary map G : Y1 → Y2 so that C2 = GC1 and C2 = GC1.

(iii) The Lax–Phillips model with parameter ω = 0 induced by
[ A

C1
C

]
(with no

input) is a minimal isometric dilation of the corresponding Lax–Phillips
model induced by

[A

C

]
.
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Proof The proof is very similar to the proof of Theorem 11.4.5, and for this
reason we leave most of the details to the reader. In the proof of (i) we define
C1x for all x ∈ X1 = D (A) by

C1x = [−(α − A∗|X )−1(A + A∗|X − C∗C)(α − A)−1
]1/2

(α − A)x,

and let Y1 be the closure of R (C1). The proofs of (ii) and (iii) are essentially
the same as the proofs of (ii) and (iii) in Theorem 11.4.5. �

The restriction that the system � in Lemma 11.5.3 has no input can be
removed as follows.

Theorem 11.5.4 Let � = [A B

C D

]
be a (scattering) passive L2-well-posed lin-

ear system on the Hilbert spaces (Y, X,U ).

(i) There is a Hilbert space Y1 such that � can be extended to a (scattering)

energy preserving system
[ A B

C1 D1
C D

]
on
([

Y1
Y

]
, X,U

)
with the additional

property that the range of the combined observation/feedthrough
operator corresponding to the first output has dense range.

(ii) The extended system is unique up to unitary similarity: if Y2 is another

Hilbert space, if
[ A B

C2 D2
C D

]
is another system on

([
Y2
Y

]
, X,U

)
with the

properties described in (i), then there is a unitary map G : Y1 → Y2 so
that C2 = GC1, and D2 = GD1, and the two system nodes S1 and S2

satisfy S2 =
[

1 0 0
0 G 0
0 0 1

]
S1.

(iii) The Lax–Phillips model with parameter ω = 0 induced by
[ A B

C1 D1
C D

]
is a

minimal isometric dilation of the corresponding Lax–Phillips model
induced by

[A B

C D

]
.

Proof The proof of this theorem is essentially the same as the proof of Theorem
11.4.9, with Theorem 11.4.5 replaced by Lemma 11.5.3. We leave it to the
reader. �

Corollary 11.5.5 Let� = [A B

C D

]
be a (scattering) passive L2-well-posed lin-

ear system on the Hilbert spaces (Y, X,U ).

(i) There is a Hilbert space U1 such that � can be extended to a (scattering)

co-energy preserving system
[

A B B1

C D D1

]
on
(
Y, X,

[
U
U1

])
with the

additional property that

N (S1) ∩
[

0
0

U1

]
= 0,

where S1 is the system node of the extended system.
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(ii) The extended system is unique up to unitary similarity. If U2 is another

Hilbert space, if
[

A B B2

C D D2

]
is another system on

(
Y, X,

[
U
U2

])
with the

properties described in (i), then there is a unitary map F : Y1 → Y2 so
that B1 = B2 F, D1 = D2 F, and the two system nodes S1 and S2 satisfy

S1 = S2

[
1 0 0
0 1 0
0 0 F

]
.

(iii) The Lax–Phillips model with parameter ω = 0 induced by
[

A B B1

C D D1

]
is

a minimal co-isometric dilation of the corresponding Lax–Phillips model
induced by

[A B

C D

]
.

Proof This follows from Theorem 11.5.4 by duality. �

By combining Theorem 11.5.4 and Corollary 11.5.5 we get the following
theorem on the existence of a conservative extension of a given system.

Theorem 11.5.6 Let � = [A B

C D

]
be a (scattering) passive L2-well-posed lin-

ear system on the Hilbert spaces (Y, X,U ).

(i) There exist two Hilbert space U1 and Y1 and a (scattering) conservative

linear system

[
A B B1

C1 D10 D11
C D D01

]
on
([

Y1
Y

]
, X,
[

U
U1

])
with the additional

minimality properties mentioned in part (i) of Theorem 11.5.4 and
Corollary 11.5.5.

(ii) The extended system is unique up to unitary similarity: if U2 and Y2 are

two other Hilbert spaces, and if

[
A B B2

C2 D20 D22
C D D02

]
is another system on([

Y2
Y

]
, X,
[

U
U2

])
with the properties described in (i), then there exist

unitary maps F : U1 → U2 and G : Y1 → Y2 so that[
1 0 0
0 G 0
0 0 1

] [ A B B1

C1 D10 D11
C D D01

]
=
[

A B B2

C2 D20 D22
C D D02

] [
1 0 0
0 1 0
0 0 F

]
,[

1 0 0
0 G 0
0 0 1

]
S1 = S2

[
1 0 0
0 1 0
0 0 F

]
,

where S1 and S1 are the system nodes of the two extended systems.

(iii) The Lax–Phillips model with parameter ω = 0 induced by

[
A B B1

C1 D10 D11
C D D01

]
is a minimal isometric dilation of the corresponding Lax–Phillips model
induced by

[A B

C D

]
.

Proof Once more we leave the details of the proof to the reader. The idea is
the same as in the proof of Theorem 11.4.9: first � is extended to a co-energy
preserving system as in Corollary 11.5.5, and then this system is extended to
an energy preserving system as in Theorem 11.5.4. �
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Remark 11.5.7 Theorem 11.5.6 can be used in a weak form of Darlington
synthesis, i.e., in the construction of a lossless extension

[
D10 D11
D D01

]
of a given

contractive time-invariant causal map D. Let
[A B

C D

]
be a passive realization

of D. The extension
[

D10 D11
D D01

]
of D obtained from Theorem 11.5.6 is lossless

if and only if the resulting conservative system is lossless. A sufficient condi-
tion for this is that both the original system semigroup A and its adjoint are
strongly stable (see Theorem 11.3.4). Conversely, if D has a lossless extension[

D10 D11
D D01

]
, then this extension has a conservative realization with the property

that both the system semigroup A and its adjoint are strongly stable (see Theo-
rem 11.8.1). By dropping the first output and second input we get a realization
of D with the same semigroup. Thus, a contractive time-invariant causal map
D admits weak Darlington synthesis if and only if it has a passive realization
with the property that both the system semigroup A and its adjoint are strongly
stable.3

11.6 The universal model of a contraction semigroup

We shall use the results presented in the preceding section to develop a rep-
resentation of an arbitrary completely nonunitary contraction semigroup on a
Hilbert space as the compression of a bilateral left-shift to a suitable subspace
of an L2-space.

We begin by decomposing the state space of a conservative Lax–Phillips
group into a number of invariant subspaces.

Definition 11.6.1 Let � = [A B

C D

]
be a passive linear system on the Hilbert

spaces (Y, X,U ), and let T be the corresponding passive Lax–Phillips semi-

group on the state space X =
[

L2(R−;Y )
X

L2(R+;U )

]
, with backward wave operator

W− =
[
π−D
B
π+

]
and forward wave operator W+ =

[
π− C Dπ+

]
.

(i) By the reachable part XR of X we mean the closure of the range of W−.
The orthogonal complement X⊥R = N (W ∗−) of XR in X is called the
unreachable part XR of X .

(ii) By the observable part XO of X we mean the closure of the range of W ∗+.
The orthogonal complement X⊥O = N (W+) of XO in X is called the
unobservable part XR of X .

3 In the strong version of Darlington synthesis the extended system is required to have minimal
losses. See Arov (2002) for details.
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Next we develop some shift representation of the various parts of a conser-
vative system.

Theorem 11.6.2 Let � = [A B

C D

]
be a (scattering) passive linear system on

(Y, X,U ), and let T be the corresponding Lax–Phillips semigroup on the state

spaceX =
[

L2(R−;Y )
X

L2(R+;U )

]
. (If� is conservative, then we denote the corresponding

Lax–Phillips group by T.)

(i) If � is energy preserving, then the reachable part XR of X is invariant
under Tt for all t ≥ 0, and T|XR is unitarily similar to the bilateral
left-shift τ on L2(R; U ). In particular, T|XR can be extended to a group.
More precisely, the backward wave operator W− is a unitary map of
L2(R; U ) onto XR, and for all t ≥ 0,

Tt W−u = W−τ t u, u ∈ L2(R; U ).

This identity holds also for t < 0 if � is conservative (so that T is a
group) or if we replace Tt by the (group extension of) Tt

|XR
.

(ii) If � is co-energy preserving, then the observable part XO of X is
co-invariant under Tt for all t ≥ 0, and πXO T|XO is unitarily similar to
the bilateral left-shift τ on L2(R; Y ) (where πXO is the orthogonal
projection onto XO). In particular, πXO T|XO can be extended to a group.
More precisely, the restriction of the forward wave operator W+ to XO is
a unitary map of XO onto L2(R; Y ), and for all t ≥ 0,

W+Tt
[

y
x
u

]
= τ t W+

[
y
x
u

]
,

[
y
x
u

]
∈ X .

This identity holds also for t < 0 if � is conservative (so that T is a
group) or if we replace X by XO and Tt by the (group extension of)
πXO Tt

|XO
.

(iii) If � is conservative, then the unreachable part X⊥R of X is invariant
under Tt for all t ∈ R. If, moreover, A is completely nonunitary, then the
restriction of T to X⊥R is unitarily similar to the bilateral left-shift τ on
the closure of the range of 1−DD∗ in L2(R; Y ) (which is invariant
under τ t for all t ∈ R). More precisely, let (1−DD∗)1/2 be the positive
square root of 1−DD∗, and let (1−DD∗)−1/2 be the inverse of the
restriction of (1−DD∗)1/2 to

N ((1−DD∗)1/2
)⊥ = R ((1−DD∗)1/2

) = R (1−DD∗)

(defined on the range of (1−DD∗)1/2). Then (1−DD∗)1/2 has the same
range as W+(1−W−W ∗−), and the operator

ER = (1−DD∗)−1/2W+(1−W−W ∗−)
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is a partial isometry with initial space X⊥R and final space R (1−DD∗),
the restriction of ER to X⊥R is a unitary operator of X⊥R onto
R (1−DD∗), and for all t ∈ R,

ERTt
[

y
x
u

]
= τ t ER

[
y
x
u

]
,

[
y
x
u

]
∈ X .

(iv) If � is conservative, then the unobservable part X⊥O of X is invariant
under Tt for all t ∈ R. If, moreover, A is completely nonunitary, then the
restriction of T to X⊥O is unitarily similar to the bilateral left-shift τ on
the closure of the range of 1−D∗D in L2(R; U ) (which is invariant
under τ t for all t ∈ R). More precisely, define (1−D∗D)1/2 and
(1−D∗D)−1/2 as in (iii) with D replaced by D∗ and U interchanged
with Y . Then W ∗−(1−W ∗+W+) has the same range as (1−D∗D)1/2, and
the operator

EO = (1−D∗D)−1/2W ∗−(1−W ∗+W+)

is a partial isometry with initial space X⊥O and final space R (1−D∗D),
the restriction of EO to X⊥O is a unitary operator of X⊥O onto
R (1−D∗D), and for all t ∈ R,

EOTt
[

y
x
u

]
= τ t EO

[
y
x
u

]
,

[
y
x
u

]
∈ X .

Proof (i) It follows from Theorem 11.2.9(i) that W ∗−W− = 1 and that W−W ∗−
is a projection operator. This implies that W− is injective and has closed range,
and that it is a unitary map of L2(R; U ) onto R (W−). Since R (W−) = XR , this
means that W− is a unitary map of L2(R; U ) onto R (W−). That XR is invariant
under Tt and that W− intertwines Tt with τ t for all t ≥ 0 follows from Lemma
2.7.8. The intertwining condition Tt W− = W−τ t for t ≥ 0 implies that Tt

|XR

is onto (since W− and τ t are onto), so Tt
|XR

can be extended to a group by
defining Tt

XR
= (T−t

|XR
)−1 for t < 0. If � is conservative, then T is a group,

and (Tt )−1 = T−t = T∗t maps XR onto XR . Thus, XR is invariant under Tt for
all t ∈ R in this case, and (Tt )|XR = (T|XR )t = Tt

XR
for all t ∈ R. Multiplying

the condition Tt
XR

W− = Tt W− = W−τ t (with t ≥ 0) by T−t
|XR

to the left and
by τ−t to the right we get W−τ−t = T−t

|XR
W−, so the intertwining condition

Tt
XR

W− = W−τ t holds also for t < 0. If� is conservative, then Tt W− = W−τ t

for all t ∈ R.
(ii) We leave the proof of (ii) to the reader (either apply (i) to the dual system,

or imitate the proof of (i)).
(iii) We know from (i) that Tt maps XR onto XR for all t ∈ R. As Tt is

isometric, it preserves orthogonality, so Tt must map X⊥R into X⊥R (and even
onto since T is invertible). Thus X⊥R is invariant under Tt for all t ∈ R.
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Next we construct an operator which maps L2(R; Y ) onto a dense subset of
X⊥R . We know from (ii) that W ∗+ maps L2(R; Y ) one-to-one onto XO . As we
saw in the proof of (i), the orthogonal projection onto XR is W−W ∗−, so the
orthogonal projection onto X⊥R is 1−W−W ∗−. Thus, (1−W−W ∗−)W ∗+ maps
L2(R; Y ) into X⊥R . A direct computation shows that (cf. (2.7.8) and Theorem
11.2.11)

[(1−W−W ∗−)W ∗+]∗(1−W−W ∗−)W ∗+ = W+W ∗+ −W+W−W ∗−W ∗+
= 1−DD∗.

Thus, with reference to Lemma A.2.5, W+(1−W−W ∗−) has the same range as
|(1−W−W ∗−)W ∗+| = (1−DD∗)1/2, and the operator ER defined in (iii) is the
partial isometry in the polar decomposition

W+(1−W−W ∗−) = |(1−W−W ∗−)W ∗+|ER = (1−DD∗)1/2 ER

of W+(1−W−W ∗−). By Lemmas A.2.2 and A.2.5, the common fi-

nal space of W+(1−W−W ∗−) and ER is N ((1−DD∗)1/2
)⊥ =

R ((1−DD∗)1/2
) = R (1−DD∗). We know that W+(1−W−W ∗−) van-

ishes on XR , so to show that the common initial space of W+(1−W−W ∗−)

and ER is X⊥R we must show that W+(1−W−W ∗−)
[

y
x
u

]
�= 0 for every nonzero[

y
x
u

]
∈ X⊥R , or equivalently, that W+

[
y
x
u

]
�= 0 for every nonzero

[
y
x
u

]
∈ X⊥R .

Suppose that
[

y
x
u

]
∈ X⊥R and that W+

[
y
x
u

]
= 0. By the definitions of W−,

W+, and XR , the condition
[

y
x
u

]
∈ X⊥R implies that u = 0, and the condition

W+
[

y
x
u

]
= 0 implies that y = 0, and by taking u = 0 and y = 0 in the same

conditions we get B∗x = 0 and Cx = 0. Thus x ∈ N (B∗) ∩N (C) (i.e., x is
both unobservable and unreachable). By Theorem 11.2.11, this implies that
QA∗,Ax = QA,A∗x = x , i.e., x belongs to the subspace X0 in Theorem 11.1.9
on which A reduces to a unitary operator. Thus, since we assume A to be
completely nonunitary, we must have x = 0. We have now proved that the
common initial space of W+(1−W−W ∗−) and ER is X⊥R . Moreover, ER is a
unitary operator of X⊥R onto R (1−DD∗).

It remains to prove that ER intertwines Tt with τ t . The operator 1−W−W ∗−
is the orthogonal projection onto X⊥R , and both XR and X⊥R are invariant under
Tt , so Tt (1−W−W ∗−) = (1−W−W ∗−)Tt for all t ∈ R. By (ii), W+Tt = τ t W+
for all t ∈ R (on the whole space X ). Thus, W−(1−W−W ∗−)Tt = τ t W−(1−
W−W ∗−) for all t ∈ R. By the shift-invariance of D (and D∗), R (1−DD∗) is
invariant under τ t , and τ t (1−DD∗) = (1−DD∗)τ t for all t ∈ R. By Lemma
A.2.6 (with X = X , Y = R (1−DD∗), A = W−(1−W−W ∗−), B = Tt ,
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C = τ t |Y , U = ER , and A∗A = 1−DD∗), we get ERTt = τ t ER , as claimed
in (iii).

(iv) We leave the proof of (iv) to the reader (either apply (iii) to the dual
system, or imitate the proof of (iii)). �

By developing this result further we get the universal model of an arbitrary
completely nonunitary conservative system.

Theorem 11.6.3 Let � = [A B

C D

]
be a (scattering) conservative completely

nonunitary linear system on (Y, X,U ). Then the following claims are true.

(i) The range of C−DB∗ is contained in the range of (1−DD∗)1/2, and the
operator

FR =
[

(1−DD∗)−1/2(C−DB∗)
B∗

]
is an isometry from X to

[
L2(R;Y )

L2(R−;U )

]
with final space

X R = R
([

(1−DD∗)−1/2(C−DB∗)
B∗

])
=
[ R (1−DD∗)

L2(R−; U )

]
∩R

([
(1−DD∗)1/2π−

D∗π−

])⊥
=
[ R (1−DD∗)

L2(R−; U )

]
∩N ([π−(1−DD∗)1/2 π−D

])
.

Let πR be the orthogonal projection in L2(R; Y ) onto R (1−DD∗). Then

the orthogonal projection πX R in
[

L2(R;Y )
L2(R−;U )

]
onto X R is given by

πX R =
[

(1−DD∗)−1/2(C−DB∗)
B∗

] [
(1−DD∗)−1/2(C−DB∗)

B∗

]∗
=
[
πR 0
0 π−

]
−
[

(1−DD∗)1/2

D∗

]
π−
[
(1−DD∗)1/2 D

]
=
[
πR − (1−DD∗)1/2π−(1−DD∗)1/2 − (1−DD∗)1/2π−D

−D∗π−(1−DD∗)1/2 π− −D∗π−D

]
.

Define

AR = πX R

[
τ 0
0 τ−

]
|X R

, BR =
[−(1−DD∗)1/2π−D

π− −D∗π−D

]
,

CR =
[
π+(1−DD∗)1/2 π+Dπ−

]
|X R

.
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Then
[

AR BR
CR D

]
is a conservative realization of D which is unitarily

similar to � (in the sense of Example 2.3.7):

AR = FRAF∗R, BR = FRB, CR = CF∗R .

In particular, A is unitarily similar to AR. Moreover, the space X R is

co-invariant under the semigroup
[
τ t 0
0 τ t

−

]
on
[

L2(R;Y )
L2(R−;U )

]
(i.e., it is

invariant under the adjoint of this semigroup).
(ii) The range of B∗ −D∗C is contained in the range of (1−D∗D)1/2, and

the operator

FO =
[

C

(1−D∗D)−1/2(B∗ −D∗C)

]
is an isometry from X to

[
L2(R+;Y )
L2(R;U )

]
with final space

X O = R
([

C

(1−D∗D)−1/2(B∗ −D∗C)

])
=
[

L2(R+; Y )
R (1−D∗D)

]
∩R

([
Dπ+

(1−D∗D)1/2π+

])⊥
=
[

L2(R+; Y )
R (1−D∗D)

]
∩N ([π+D∗ π+(1−D∗D)1/2

])
.

Let πO be the orthogonal projection in L2(R; U ) onto R (1−D∗D). Then

the orthogonal projection πX O in
[

L2(R;Y )
L2(R;U )

]
onto X O is given by

πxO =
[

C

(1−D∗D)−1/2(B∗ −D∗C)

] [
C

(1−D∗D)−1/2(B∗ −D∗C)

]∗
=
[
π+ 0
0 πO

]
−
[

D

(1−D∗D)1/2

]
π+
[
D∗ (1−D∗D)1/2

]
.

Define

AO =
[
τ+ 0
0 τ

]
|X O

, BO =
[

π+Dπ−
(1−D∗D)1/2π−

]
,

CO =
[
1−Dπ+D∗ −Dπ+(1−D∗D)1/2

]
|X O

.

Then
[

AO BO
CO D

]
is a conservative realization of D which is unitarily

similar to � (in the sense of Example 2.3.7):

AO = FOAF∗O , BO = FOB, CO = CF∗O .

In particular, A is unitarily similar to AO, and the space X O is invariant

under the semigroup
[
τ+ 0
0 τ

]
on
[

L2(R+;Y )
L2(R;U )

]
.
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Proof We shall prove only part (i), and leave the proof of (ii) to the reader (for
example, one can derive (ii) by applying (i) to the dual system).

By Theorem 11.6.2, the operator E =
[

ER
W ∗−

]
(where the matrix form of the

right-hand side represents a splitting of X into
[
X⊥R
XR

]
) is a unitary map of X

onto
[
R(1−DD∗)

L2(R;U )

]
, and, for all t ∈ R, ETt = τ t E

[
ER
W ∗−

]
Tt = τ t

[
ER
W ∗−

]
. The sub-

spaces Y = L2(R−; Y ), X , and U = L2(R+; U ) are orthogonal complementary
subspaces of X , so their images EY , E X , and EU are orthogonal comple-

mentary subspaces of
[
R(1−DD∗)

L2(R;U )

]
. If we denote the projections in X onto Y ,

X , and U by π−, π0, and π+, respectively, then π− + π0 + π+ = 1, and the

corresponding orthogonal projections in
[
R(1−DD∗)

L2(R;U )

]
are Eπ−E∗, Eπ0 E∗, and

Eπ+E∗. For all x ∈ X and t ≥ 0 we have

At x = π0T
t x = π0 E∗τ t Ex,

or equivalently,

EAt x = Eπ0 E∗τ t Ex = πX Rτ
t Ex,

where πX R = Eπ0 E∗ is the orthogonal projection onto X R = R (Eπ0). This is
of the form

FRAt x = πX Rτ
t FR x,

where FR is the restriction of E to X . Thus, if we define

AR = πX Rτ
t , BR = FRB, CR = CF∗R,

then
[

AR BR
CR D

]
is a unitary similarity transformation of the system �; hence it

is a conservative system on (Y, X R,U ).
To complete the proof of (i) we must still derive the specific formulas for FR ,

X R , πX R , AR , BR , and CR listed in (i). Recall that E =
[

ER
W ∗−

]
. The splitting of

the bottom row of E is already built into the definition of W ∗−, which says that
W ∗− =

[
D∗π− B∗ π+

]
. The splitting of the top row can readily be computed

from the formula for ER given in Theorem 11.6.2 as follows. We have

(1−DD∗)1/2 ER =
(
W+ −W+(1−W−W ∗−)

)
= [π− C Dπ+

]−W+W−
[
D∗π− B∗ π+

]
= [π− C Dπ+

]−D
[
D∗π− B∗ π+

]
= [(1−DD∗)π− C−DB∗ 0

]
.

Obviously, the range of (1−DD∗)π− is contained in R (1−DD∗) ⊂
R ((1−DD∗)1/2

)
, so the preceding identity shows that the range of C−DB∗
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is contained in R ((1−DD∗)1/2
)
, and that we therefore may write

ER = (1−DD∗)−1/2
[
(1−DD∗)π− C−DB∗ 0

]
.

Thus,

E =
[

(1−DD∗)1/2π− (1−DD∗)−1/2(C−DB∗) 0
D∗π− B∗ π+

]
.

From here we immediately see that if we remove the U-component of X ,

then this simply replaces the image of E by
[
R(1−DD∗)
L2(R−;U )

]
and also replaces

the bilateral shift τ t in both components by the partially truncated shift[
τ t 0
0 τ t

−

]
. Moreover, the alternative formulas for X R and for the projection

πX R onto X R can be read off directly from this representation. That X R is co-

invariant under the truncated shift follows from the fact that both R
([

πR 0
0 π−

])
and N ([π−(1−DD∗)1/2 π−D

])
are invariant under the (truncated) right-

shift.
The only remaining parts of the proof of (i) are the explicit formulas for BR

and CR . By Theorem 11.2.9,

BR = FRB =
[

(1−DD∗)−1/2(CB−DB∗B)
B∗B

]
=
[

(1−DD∗)−1/2(π+Dπ− −Dπ− +DD∗π−D)
π− −D∗π−D

]
=
[−(1−DD∗)−1/2(1−DD∗)Dπ−

π− −D∗π−D

]
=
[−(1−DD∗)1/2Dπ−

π− −D∗π−D

]
,

which is the formula that we give for BR in (i). A similar computation verifies
the formula for CR . �

Corollary 11.6.4 Two (scattering) conservative completely non-unitary sys-

tems
[A B

C D

]
on (Y, X,U ) and

[
A1 B1

C1 D1

]
on (Y1, X1,U1) are unitarily similar

if and only if D and D1 are unitarily similar (see Definition 11.4.3). In par-
ticular, if two completely non-unitary semigroups A and A1 have the same
characteristic function, then A and A1 are unitarily similar.

Proof Obviously, if the two systems are unitarily similar, then so are their in-
put/output maps. Conversely, suppose first that the two input/output maps are
not just similar but identical. Then both systems are unitarily similar to the sys-
tem described in part (i) of Theorem 11.6.3 (and to the system described in part
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(ii); both of the special systems described in Theorem 11.6.3 are completely
determined by D, and do not depend on the rest of the original system). There-
fore they are also unitarily similar to each other. The general case where D and
D1 are just unitarily similar instead of identical follows from this special case

applied to
[

1 0
0 G

] [A B

C D

] [
1 0
0 F−1

]
and
[

A1 B1

C1 D1

]
, where F and G are chosen so

that D1 = GDF−1. �

Corollary 11.6.5 Let � = [A B

C D

]
and �1 =

[
A1 B1

C1 D1

]
be two simple (i.e.,

completely nonunitary and purely passive) conservative systems on (Y, X,U ),
respectively (Y1, X1,U1). Then the following conditions are equivalent:

(i) � is unitarily similar to �1.
(ii) A is unitarily similar to A1.

(iii) D is unitarily similar to D1.

This follows from Corollaries 11.4.10 and 11.6.4.

Corollary 11.6.6 Let� = [A B

C D

]
be a simple (i.e., completely nonunitary and

purely passive) conservative system, and let�d =
[

Ad Bd

Cd Dd

]
be the causal dual

of �. Then the following conditions are equivalent:

(i) � is unitarily similar to �d .
(ii) A is unitarily similar to A∗.

(iii) D is unitarily similar to Dd .

This follows from Corollary 11.6.5.
As our following corollary shows, if D is semi-lossless or co-lossless, or

equivalently, if A is completely non-unitary and strongly stable or strongly co-
stable (i.e., A∗ is strongly stable), then the model in Theorem 11.6.3 simplifies
considerably.

Corollary 11.6.7 Let� = [A B

C D

]
be a (scattering) conservative linear system

on (Y, X,U ). Then the following claims are true.

(i) If A∗ is strongly stable, or equivalently, if A is completely nonunitary and
� is co-lossless, then B∗ is an isometry from X to L2(R−; U ) with final
space

X R = R (B∗) = R (D∗π−)⊥ = N (π−D) .

The orthogonal projection πX R in L2(R−; U ) onto X R is given by

πX R = B∗B = π− −D∗π−D.
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Define

AR = πX Rτ−|X R
, BR = πX R , CR = π+Dπ−|X R

.

Then
[

AR BR
CR D

]
is a conservative realization of D which is unitarily

similar to � (in the sense of Example 2.3.7):

AR = FRAF∗R, BR = FRB, CR = CF∗R .

In particular, A is unitarily similar to AR. Moreover, the space X R is
co-invariant under the semigroup τ− on L2(R−; U ) (i.e., it is invariant
under the adjoint of this operator).

(ii) If A is strongly stable, or equivalently, if A is completely nonunitary and
� is lossless, then C is an isometry from X to L2(R+; Y ) with final space

X O = R (C) = R (Dπ+)⊥ = N (π+D∗) .
The orthogonal projection πX O in L2(R+; Y ) onto X O is given by

πxO = CC∗ = π+ −Dπ+D∗.

Define

AO = τ+|X O
, BO = π+Dπ−, CO = 1|X O .

Then
[

AO BO
CO D

]
is a conservative realization of D which is unitarily

similar to �:

AO = FOAF∗O , BO = FOB, CO = CF∗O .

In particular, A is unitarily similar to AO, and the space X O is invariant
under τ+ on L2(R+; Y ).

This follows from Theorems 11.3.6 and 11.6.3. (It is also possible to give a
direct proof which is significantly simpler than the proof of Theorem 11.6.3.)
See Theorem 11.3.6 for an additional equivalent set of conditions under which
(i) and (ii) apply.

Corollary 11.6.8 Let A be a C0 semigroup on a Hilbert space X.

(i) A is unitarily similar to the outgoing left-shift τ− on L2(R−; U ) for some
Hilbert space U if and only if A is isometric and A∗ is strongly stable, or
equivalently, if and only if A is isometric and completely nonunitary.

(ii) A is unitarily similar to the incoming left-shift τ+ on L2(R+; Y ) for some
Hilbert space Y if and only if A is co-isometric and strongly stable, or
equivalently, if and only if A is co-isometric and completely nonunitary.

Proof (i) Clearly, every semigroup which is unitarily similar to the outgoing
shift τ− is isometric and its adjoint is strongly stable. It is also clear that if A∗
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is strongly stable, then A is completely nonunitary. Thus, in order to prove (i)
it suffices to show that A is unitarily similar to an outgoing left-shift whenever
� = A is isometric and completely nonunitary. Let us assume the latter, and let[A B

C D

]
be the corresponding conservative system described in Theorem 11.4.9.

The fact that A is isometric implies that QA∗,A = 1 (see (11.1.11)), hence, by
(11.2.13), C∗C = 0. Thus, C = 0, and since the range of the observation operator
is dense in Y , this means that Y = 0. Thus, � collapses into � = [A B

]
. This

means that the L2(R; Y )-component of the model in Theorem 11.6.3 vanishes,
and that the operator FR , the projection πX R , and the semigroup AR in that
theorem become FR = B∗, πX R = π−, and AR = τ−. By Theorem 11.6.3, A =
BAB∗, where B∗ is a unitary map of X onto L2(R−; U ).

(ii) This is proved in the analogous way (or it follows from (i) by duality).
�

Corollary 11.6.9 (Wold decomposition) Let A be an isometric C0 semigroup
on a Hilbert space X. Then there is a subspace Z ⊂ X, a Hilbert space U,
and unitary map E of Z⊥ onto L2(R−; U ) such that, if we decompose X into
X = [ Z

Z⊥
]
, then

A =
[
A0 0
0 E−1τ−E

]
,

where A0 is a unitary semigroup on Z and τ− is the outgoing left-shift on
L2(R−; U ).

Proof An isometric semigroup can be interpreted as an energy preserving,
hence passive, system with zero input and output spaces; cf. Definition 11.1.1.
Let Z be the space denoted by X0 in Theorem 11.1.9 (with U = Y = 0). Then
A is decomposed into A = [A0 0

0 A1

]
, where A0 is unitary and A1 is isometric

and completely nonunitary. By Corollary 11.6.8(i), A1 is unitarily similar to the
outgoing left-shift τ− on L2(R−; U ) for some Hilbert space U . �

11.7 Conservative realizations

In the preceding section we showed that every C0 contraction semigroup can
be ‘dilated’ into a conservative system, which is unique up to unitary similarity
if we require the input/output map to be purely passive. There is a related
question which starts with the input/output map: given a contractive map D ∈
TIC2(U ; Y ) (where U and Y are Hilbert spaces), is it always possible to find a
(scattering) conservative realization of D, i.e., a conservative system

[A B

C D

]
which has this input/output map? The purpose of this section is to give a positive
answer to this question.
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As we saw in Corollary 11.6.4, a conservative realization of D (if it exists)
is unique up to unitary similarity if we require A to be completely nonunitary.
Moreover, Theorem 11.6.3 gives us explicit descriptions in terms of D of two
possible realizations

[
AR BR
CR D

]
and
[

AO BO
CO D

]
of D. Thus, to prove that every

contractive map D ∈ TIC2(U ; Y ) has a conservative realization it suffices to
show that if we define, e.g.,

[
AR BR
CR D

]
, using the formulas in Theorem 11.6.3,

then this is indeed a conservative system with input/output map D whenever
D ∈ TIC2(U ; Y ) is contractive.

Theorem 11.7.1 Let U and Y be Hilbert spaces, and let D ∈ TIC2(U ; Y ) be a
contraction. Then the operator

G =
[

(1−DD∗)1/2

D∗

]
is an isometry from L2(R; Y ) into

[
L2(R;Y )
L2(R;U )

]
. Let X be the closed subspace of[

L2(R;Y )
L2(R;U )

]
defined by

X =
[ R (1−DD∗)

L2(R−; U )

]
∩R (Gπ−)⊥ =

[ R (1−DD∗)
L2(R−; U )

]
∩N (π−G∗

)
.

Let π1 be the orthogonal projection in L2(R; Y ) onto R (1−DD∗). Then the

orthogonal projection πX in
[

L2(R;Y )
L2(R;U )

]
onto X is given by

πX =
[
π1 0
0 π−

]
− Gπ−G∗.

Define

A = πX

[
τ 0
0 τ−

]
|X
, B = πX

[
0
π−

]
=
[

0
π−

]
− Gπ−D,

C = π+G∗
[
π1 0
0 π−

]
|X
.

Then
[

A B
C D

]
is a (scattering) conservative realization of D, A is completely

nonunitary, and the space X is co-invariant under the semigroup
[
τ 0
0 τ−

]
on[

L2(R;Y )
L2(R−;U )

]
(i.e., it is invariant under the adjoint of this operator).

Proof Let us begin with some comments on the state space X . Clearly G is an
isometry on L2(R; U ) since

G∗G = (1−DD∗)+DD∗ = 1.

Likewise, Gπ− is an isometry on L2(R−; U ). Therefore Gπ−G∗ is a projection,

whose range is a subset of
[
R(1−DD∗)
L2(R−;U )

]
(see Lemma A.2.2). The space X is the
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orthogonal complement in the subspace
[
R(1−DD∗)
L2(R−;U )

]
to R (G)π− =

R (Gπ−G∗), and therefore the projection πX is given by

πX =
[
π1 0
0 π−

]
− Gπ−G∗

=
[
π1 − (1−DD∗)1/2π−(1−DD∗)1/2 − (1−DD∗)1/2π−D

−D∗π−(1−DD∗)1/2 π− −D∗π−D

]
.

Observe, in particular, that the two different formulas given for B are equivalent.

We next take a closer look at A. The space X is invariant under
[
τ t 0
0 τ t

−

]∗
since both R

([
π1 0
0 π−

])
and N (π−G∗) are invariant under

[
τ t 0
0 τ t

−

]∗
. Thus,

the restriction of
[
τ t 0
0 τ t

−

]∗
to X is a C0 contraction semigroup, hence so is its

adjoint, which is exactly the semigroup A given in the theorem. Moreover, the

invariance means that, for all t ≥ 0, πX

[
τ t 0
0 τ t

−

]∗
πX =

[
τ t 0
0 τ t

−

]∗
πX , hence

πX

[
τ t 0
0 τ t

−

]
= πX

[
τ t 0
0 τ t

−

]
πX ,

and this is true on the space
[

L2(R;Y )
L2(R−;U )

]
.

Let us next show that B is an input map for A. We have, for all t ≥ 0,

Bτ t
− = πX

[
0
1

]
τ t
− = πX

[
τ t 0
0 τ t

−

] [
0
1

]
= πX

[
τ t 0
0 τ t

−

]
πX

[
0
1

]
= AtB.

This shows that B is an input map for A.
We turn to the output map C. Formally C is defined on X , but it has an

obvious extension to
[

L2(R;Y )
L2(R−;U )

]
that we denote by the same symbol. We claim

that this extended map satisfies C = CπX . The proof of this claim is not difficult.
Applying C to the first column of πX we get (after removing some redundant
projections)

CπX

[
1
0

]
= π+(1−DD∗)1/2 − π+(1−DD∗)π−(1−DD∗)1/2

− π+DD∗π−(1−DD∗)1/2

= π+(1−DD∗)1/2,
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which is the first column of C. Applying C to the second column of πX we get
(after again removing some redundant projections)

CπX

[
0
1

]
= −π+(1−DD∗)π−D+ π+Dπ− − π+DD∗π−D

= π+Dπ−.

This proves our claim that the extended operator C satisfies C = CπX . Once we
know this we get, for all t ≥ 0,

CAt = CπX

[
τ t 0
0 τ t

−

]
= C

[
τ t 0
0 τ t

−

]
= π+(1−DD∗)1/2τ t + π+Dτ tπ−
= π+τ t (1−DD∗)1/2 + π+τ tDπ− = τ t

+C.

Thus, C is an output map for A.
To complete the proof of the fact that

[
A B
C D

]
is an L2-well-posed linear

system we must still show that CB = π+Dπ−. However, this is immediate:

CB = −π−(1−DD∗)π−D+ π+Dπ− − π+DD∗π−D = π+Dπ−.

Let us next show that A is completely nonunitary. Take
[

y
u

]
in X0, where X0

is the maximal subspace of X on which A is unitary (see Theorem 11.1.9). Then∣∣A∗t [ y
u

]∣∣ = ∣∣[ y
u

]∣∣ for all t ≥ 0. Since |τ−t y| = |y| for all t ≥ 0 and |τ ∗t− u| → 0
as t →∞, we must have u = 0. On the other hand, we also have

∣∣At
[

y
u

]∣∣ =∣∣At
[ y

0

]∣∣ = |y| for all t ≥ 0, where

At

[
y
0

]
=
[
π1 − (1−DD∗)1/2π−(1−DD∗)1/2

−D∗π−(1−DD∗)1/2

]
τ t y.

Since X0 is invariant under A, the second component of At
[ y

0

]
must vanish for

all t ≥ 0, i.e., D∗π−(1−DD∗)1/2τ t y = 0 for all t ≥ 0, and hence

|y| = ∣∣τ t y − (1−DD∗)1/2π−(1−DD∗)1/2τ t y
∣∣

= ∣∣y − (1−DD∗)1/2τ−tπ−τ t (1−DD∗)1/2 y
∣∣.

Letting t →∞ we get |y| = |DD∗y|. By Lemma 11.1.10, this implies

(1−DD∗DD∗)y = (1+DD∗)(1−DD∗)y = 0.

The operator (1+DD∗) is strictly positive, hence injective, so
(1−DD∗)y = 0. On the other hand, since

[ y
0

] ∈ X , we have y ∈
R (1−DD∗) = N (1−DD∗)⊥. Therefore y = 0. This proves that A is
completely non-unitary.

It remains to show that
[A B

C D

]
is conservative. We begin by showing that

it is isometric. Let x be the state and let y be the output of
[A B

C D

]
with initial
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state
[ y0

u0

] ∈ X , input u ∈ L2(R+; U ), and initial time zero. Then, for all t ≥ 0,
the state at time t is given by

x(t) = At

[
y0

u0

]
+Bτ tπ−u = πX

([
τ t 0
0 τ t

−

] [
y0

u0

]
+
[

0
τ tπ[0,t)u

])
= (1− Gπ−G∗)τ t

[
y0

π−u0 + π[0,t)u

]
.

As Gπ−G∗ is an orthogonal projection, this implies that

|x |2 =
∣∣∣∣[ y0

π−u0 + π[0,t)u

]∣∣∣∣2 − ∣∣∣∣Gπ−G∗
[

y0

π−u0 + π[0,t)u

]∣∣∣∣2
=
∣∣∣∣[ y0

π−u0 + π[0,t)u

]∣∣∣∣2
−
〈[

y0

π−u0 + π[0,t)u

]
,Gπ−G∗

[
y0

π−u0 + π[0,t)u

]〉
.

The restriction of the output to [0, t) is given by

π[0,t) y = π[0,t)

(
C

[
y0

u0

]
+Dπ[0,t)u

)
= π[0,t)

(
G∗
[

y0

π−u0

]
+Dπ[0,t)u

)
= π[0,t)G

∗
[

y0

π−u0 + π[0,t)u

]
.

Since
[ y0

u0

] ∈ X ⊂ N (π−G∗), and since D is causal, the function
G∗
[ y0
π−u0+π[0,t)u

]
vanishes on R−, so we may alternatively write this as π[0,t) y =

π(−∞,t)G∗
[ y0
π−u0+π[0,t)u

]
, or equivalently,

τ tπ[0,t) y = π−G∗τ t

[
y0

(π−u0 + π[0,t)u)

]
.

In particular,

|π[0,t) y|2 =
〈[

y0

π−u0 + π[0,t)u

]
,Gπ−G∗

[
y0

π−u0 + π[0,t)u

]〉
.

Thus, we conclude that

x(t) = τ t

[
y0

π−u0 + π[0,t)u

]
− Gτ tπ[0,t) y,
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and that

|x(t)|2 =
∣∣∣∣[ y0

π−u0 + π[0,t)u

]∣∣∣∣2 − |π[0,t) y|2

=
∣∣∣∣[ y0

π−u0

]∣∣∣∣2 + |π[0,t)u|2 − |π[0,t) y|2.

In particular,
[A B

C D

]
is energy preserving.

To complete the proof of the fact that
[A B

C D

]
is conservative we must

still show that the mapping from the pair
([ y0

u0

]
, π[0,t)u

)
to the pair (x(t), π[0,t) y)

is invertible. From the computation above we get an obvious candidate for the
inverse: let x(t) = [ yt

ut

] ∈ X and π[0,t) y ∈ L2([0, t); Y ) be arbitrary, and let us
take a closer look at the pair of functions[

y0

u0

]
=
[

1 0
0 π−

]
(τ−t x(t)+ Gπ[0,t) y),

u = [0 π+
]

(τ−t x(t)+ Gπ[0,t) y).

Then [
y0

u0

]
+
[

0
u

]
= (τ−t x(t)+ Gπ[0,t) y).

The top component of (τ−t x(t)+ Gπ[0,t) y) belongs to R (π1) since both yt ⊂
R (π1) and R ((1−DD∗)1/2

) ⊂ R (π1), and since R (π1) is invariant under

τ−t . Thus,
[ y0

u0

] ⊂ R
([

π1 0
0 π−

])
. As G is energy preserving and x(t) ∈ X ⊂

N (π−G∗), we find that

G∗(τ−t x(t)+ Gπ[0,t) y) = τ−t G∗x(t)+ π[0,t) y

vanishes on R−. The second component of G∗ is D which is causal, so
π−G∗

[ y0
u0

] = 0. This proves that
[ y0

u0

] ∈ X .
The remaining component u of (τ−t x(t)+ Gπ[0,t) y) is explicitly given by

u = π+(τ−t ut +D∗π[0,t) y).

Since ut vanishes on R+ and D∗ is anti-causal, this means that u vanishes
outside of the interval [0, t), and we are done. �

The construction in Theorem 11.7.1 was based on the model given in part
(i) of Theorem 11.6.3. There is a similar result which uses the model in part (ii)
of that theorem instead.
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Corollary 11.7.2 Let U and Y be Hilbert spaces, and let D ∈ TIC2(U ; Y ) be
a contraction. Then the operator

H =
[

D

(1−D∗D)1/2

]
is an isometry from L2(R; U ) into

[
L2(R;Y )
L2(R;U )

]
. Let X be the closed subspace of[

L2(R;Y )
L2(R;U )

]
defined by

X =
[

L2(R+; Y )
R (1−D∗D)

]
∩R (Hπ+)⊥ =

[
L2(R+; Y )

R (1−D∗D)

]
∩N (π+H∗

)
.

Let π2 be the orthogonal projection in L2(R; U ) onto R (1−D∗D). Then the

orthogonal projection πX in
[

L2(R;Y )
L2(R;U )

]
onto X is given by

πX =
[
π+ 0
0 π2

]
− Hπ+H∗.

Define

A =
[
τ+ 0
0 τ

]
|X
, B =

[
π+ 0
0 π2

]
Hπ−,

C =
[
π+
0

]
|X
=
([

π+
0

]
−D∗π+H∗

)
|X
.

Then
[

A B
C D

]
is a (scattering) conservative completely non-unitary realization

of D. (In particular, the space X is invariant under the semigroup
[
τ+ 0
0 τ

]
on[

L2(R+;Y )
L2(R;U )

]
.)

Proof This follows from Theorem 11.7.1 by duality (i.e., we apply Theorem
11.7.1 to the causal dual RD∗ Rof D.) �

In particular, every contractive D ∈ TIC2(U ; Y ) has a conservative realiza-
tion:

Corollary 11.7.3 Every contractive D ∈ TIC2(U ; Y ) (where U and Y are
Hilbert spaces) has a (scattering) conservative completely nonunitary real-
ization. This realization is unique up to a unitary similarity transformation in
the state space.

Proof The two realizations in Theorem 11.7.1 and Corollary 11.7.2 are con-
servative completely nonunitary realizations of D. That any two conservative
completely nonunitary realizations are unitarily similar to each other was proved
in Corollary 11.6.4. �
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In particular the realization in Corollary 11.7.2 is unitarily similar to the one
in Theorem 11.7.1.

Corollary 11.7.4 Let U and Y be Hilbert spaces, and let D ∈ TIC2(U ; Y )
be (scattering) semi-lossless (cf. Definition 11.3.1). Let X := N (π+D∗) ⊂
L2(R+; Y ), let πX = 1−Dπ+D∗ be the orthogonal projection in L2(R+; Y )
onto X, and define

A = τ+|X , B = π+Dπ−, C = 1|X .

Then
[

A B
C D

]
is a (semi-lossless) conservative realization of D which is strongly

stable and exactly observable in infinite time.

Proof This follows from Corollary 11.7.2 since 1−D∗D = 0 in this case. The
strong stability of A is obvious (τ+ is strongly stable on L2(R+; Y )), and the
exact observability follows from Theorem 11.3.4. �

Corollary 11.7.5 Let U and Y be Hilbert spaces, and let D ∈ TIC2(U ; Y )
be (scattering) co-lossless. Let X := N (π−D) ⊂ L2(R−; U ), let πX = 1−
D∗π−D be the orthogonal projection in L2(R−; U ) onto X, and define

A = πXτ−|X , B = πX , C = π+Dπ−|X .

Then
[

A B
C D

]
is a (co-lossless) conservative realization of D which is strongly

co-stable (i.e., the causal dual �d is strongly stable) and exactly controllable
in infinite time.

This follows from Corollary 11.7.4 by duality.

11.8 Energy preserving and passive realizations

In the last section we proved the existence of conservative completely non-
unitary realizations of a given contractive D ∈ TIC2(U ; Y ). In general, this
realization will not be minimal, unless D happens to be lossless (see part (iii)
of Theorem 11.8.1 below). In many cases it is natural to relax the requirement
that the realization should be conservative, and allow it to be just passive. Then
we can instead require it to be minimal.

The situation is especially simple if D is semi-lossless or co-lossless (or
even lossless).

Theorem 11.8.1 Let U and Y be Hilbert spaces.

(i) Every semi-lossless D ∈ TIC2(U ; Y ) has a minimal (scattering) passive
realization. This realization is unique up to a unitary similarity
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transformation in the state space, and it is strongly stable, output
normalized, and energy preserving.

(ii) Every co-lossless D ∈ TIC2(U ; Y ) has a minimal (scattering) passive
realization. This realization is unique up to a unitary similarity
transformation in the state space, and it is strongly co-stable (i.e., the
dual system is strongly stable), input normalized, and co-energy
preserving.

(iii) Every lossless D ∈ TIC2(U ; Y ) has a minimal (scattering) passive
realization. This realization is unique up to a unitary similarity
transformation in the state space, and it is strongly stable, strongly
co-stable, input and output normalized, and conservative.

Proof (i) Let D be semi-lossless. Then the conservative realization in Corollary
11.7.4 is observable, but it need not be controllable. If we restrict the system
to the reachable subspace as described in Theorem 9.1.9(i), then the result-
ing system need no longer be conservative, but it is still passive (even energy
preserving). This proves the existence of a minimal passive realization of D.
That it is strongly stable, energy preserving, output normalized, and unique up
to a unitary similarity transformation in the state space follows from Theorem
11.3.3.

(ii) This follows from (i) by duality.
(iii) This follows from (i) and (ii). �

The idea used in the preceding proof can also be used in a slightly more
general context to produce controllable energy preserving or observable co-
energy preserving realizations of an arbitrary contractive input/output map D.

Theorem 11.8.2 Let U and Y by Hilbert spaces, and let D ∈ TIC2(U ; U ).

(i) D has a controllable energy preserving realization. This realization is
unique up to a unitary similarity transformation in the state space.

(ii) D has an observable co-energy preserving realization. This realization is
also unique up to a unitary similarity transformation.

Proof (i) We proceed in the same way as we did in the proof of part (i) of
Theorem 11.8.1, but start with an arbitrary conservative completely nonunitary
realization of D (see Theorem 11.7.1). This realization need not be controllable
or observable. However, if we restrict this system to the reachable subspace as
described in Theorem 9.1.9(i), then the resulting system is controllable and
energy preserving. Thus, D has at least one controllable energy preserving
realization.

To prove the uniqueness of this realization, suppose that we have two control-

lable energy preserving realizations
[

A1 B1

C1 D

]
and
[

A2 B2

C2 D

]
of D on (Y, X1,U ),
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respectively (Y, X2,U ). Then, by Theorem 11.2.9, both
[
π−D
B1

]
and
[
π−D
B2

]
are

isometric. Thus, for all u ∈ L2(R−; U ),

‖Du‖2
L2(R−;U ) + |B1u|2X1

= ‖Du‖2
L2(R−;U ) + |B2u|2X2

,

or equivalently, |B1u|2X1
= |B2u|2X2

. By Theorem 9.2.6(iv), �1 and �2 are
unitarily similar.

(ii) This follows from (i) by duality. �

We can easily get shift models for the two realizations in Theorem 11.8.2
from the universal models in Theorem 11.6.3.

Corollary 11.8.3 Let U, X, and Y be Hilbert spaces, and let� be a controllable
(scattering) energy preserving linear system on (Y, X,U ).

(i) Define B1 : L2(R−; U )→
[

L2(R;Y )
L2(R−;U )

]
by

B1 =
[−(1−DD∗)1/2π−D

π− −D∗π−D

]
,

and denote X1 := R (B1) = N (B1)⊥. Let πX1 be the orthogonal

projection in
[

L2(R;Y )
L2(R−;U )

]
onto X1, and define

A1 = πX1

[
τ 0
0 τ−

]
|X1

,

C1 =
[
π+(1−DD∗)1/2 π+Dπ−

]
|X1

.

Then �1 =
[

A1 B1

C1 D

]
is a controllable (scattering) energy preserving

linear system on (Y, X1,U ) which is unitarily similar to �:

A1 = E1AE∗1 , B1 = E1B, C1 = CE∗1 ,

where E1 = (B∗1)−1B∗ is a unitary map of X onto X1.

(ii) Define B2 : L2(R−; U )→
[

L2(R+;Y )
L2(R;U )

]
by

B2 =
[

π+Dπ−
(1−D∗D)1/2π−

]
,

and denote X2 := R (B2) = N (B2)⊥. Let πX2 be the orthogonal

projection in
[

L2(R+;Y )
L2(R;U )

]
onto X2, and define

A2 =
[
τ+ 0
0 τ

]
|X2

,

C2 =
[
1−Dπ+D∗ −Dπ+(1−D∗D)1/2

]
|X2

.
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Then �2 =
[

A2 B2

C2 D

]
is another controllable (scattering) energy

preserving linear system on (Y, X2,U ) which is unitarily similar to �:

A2 = E2AE∗2 , B2 = E2B, C2 = CE∗2 ,

where E2 = (B∗2)−1B∗ is a unitary map of X onto X2.

Proof We get the model in (i) from Theorem 11.6.3(i) by restricting that system
to the reachable subspace. The model in (ii) is obtained in the same way from
Theorem 11.6.3(ii). As we saw in the proof of Theorem 11.8.2, this leads to
controllable energy preserving systems. That these two systems are unitarily
similar to the original one follows from Theorem 11.8.2. Let us denote the
unitary similarity operator mapping X into X1 by E1. Then B1 = E1B, and
B∗ = B∗1(E−1

1 )∗ = B∗1 E . In particular, R (B∗1) = R (B∗). The controllabil-
ity of �1 implies that B∗1 is injective, and so E1 = (B∗1)−1B∗. For the same
reason the unitary similarity operator mapping X into X2 is given by E2 =
(B∗2)−1B∗. �

Corollary 11.8.4 LetU, X, and Y be Hilbert spaces, and let� be an observable
(scattering) co-energy preserving linear system on (Y, X,U ).

(i) Let X1 be the orthogonal complement to the null space of the operator[
π+(1−DD∗)1/2 π+Dπ−

]
:
[

L2(R;Y )
L2(R−;U )

]
→ L2(R+; Y ). Let πX1 be the

orthogonal projection in
[

L2(R;Y )
L2(R−;U )

]
onto X1, and define

A1 = πX1

[
τ 0
0 τ−

]
|X1

, B1 = πX1

[−(1−DD∗)1/2π−D
π− −D∗π−D

]
,

C1 =
[
π+(1−DD∗)1/2 π+Dπ−

]
|X1

.

Then �1 =
[

A1 B1

C1 D

]
is an observable (scattering) co-energy preserving

linear system on (Y, X1,U ) which is unitarily similar to �:

A1 = E1AE∗1 , B1 = E1B, C1 = CE∗1 ,

where E1 = C−1
1 C is a unitary map of X onto X1.

(ii) Let X2 be the orthogonal complement to the null space of the operator[
1−Dπ+D∗ −Dπ+(1−D∗D)1/2

]
:
[

L2(R;Y )
L2(R−;U )

]
→ L2(R+; Y ). Let πX2
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be the orthogonal projection in
[

L2(R;Y )
L2(R−;U )

]
onto X2, and define

A2 = πX2

[
τ+ 0
0 τ

]
|X2

, B2 = πX2

[
π+Dπ−

(1−D∗D)1/2π−

]
,

C2 =
[
1−Dπ+D∗ −Dπ+(1−D∗D)1/2

]
|X2

.

Then �2 =
[

A2 B2

C2 D

]
is another observable (scattering) co-energy

preserving linear system on (Y, X2,U ) which is unitarily similar to �:

A2 = E2AE∗2 , B2 = E2B, C2 = CE∗2 ,

where E2 = C−1
2 C is a unitary map of X onto X2.

Proof This follows from Corollary 11.8.3 by duality. �

From the realization in Theorem 11.8.2(i) we can obtain a passive realization
by projecting the state space onto the orthogonal complement of the unobserv-
able subspace (as in Theorem 9.1.9(ii)). Another way to get a passive realization
is to restrict the realization in Theorem 11.8.2(ii) to the reachable subspace (as
in Theorem 9.1.9(i)). Unfortunately, the two realizations obtained this way are
not unitarily similar to each other (only pseudo-similar; see Theorem 9.2.4).

To get a more explicit description of the two special passive realizations
described above we first observe a few facts.

Lemma 11.8.5 Let �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
be two L2-well-posed

linear systems on the Hilbert spaces (Y, X1,U ), respectively (Y, X2,U ) (with
the same transfer function D) which are both input/state and state/output
bounded.

(i) If �1 is controllable and B∗1B1 ≥ B∗2B2, then C1C
∗
1 ≤ C2C

∗
2.

(ii) If �2 is observable and C1C
∗
1 ≤ C2C

∗
2, then B∗1B1 ≥ B∗2B2.

Note that the condition B∗1B1 ≥ B∗2B2 is equivalent to the requirement that
|B1u|X1 ≥ |B2u|X2 for every u ∈ L2(R−; U ). To see this, observe that |Bi u|2 =
〈Bi u,Bi u〉Xi = 〈u,B∗i Bi u〉L2(R−;U ) for i = 1, 2. Analogously, C1C

∗
1 ≤ C2C

∗
2

if and only if |C∗1 y|X1 ≤ |C∗2 y|X2 for every y ∈ L2(R+; Y ).

Proof of Lemma 11.8.5 (i) Recall that C1B1 = π+Dπ− = C2B2. This means
that for all u ∈ L2(R−; U ) and y ∈ L2(R+; Y ),

〈B1u,C∗1 y〉X1 = 〈C1B1u, y〉L2(R+;Y )

= 〈C2B2u, y〉L2(R+;Y ) = 〈B2u,C∗2 y〉X2 .
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By the controllability assumption on �1, R (B1) is dense in X1, and so

‖C∗1 y‖X1 = sup
x∈X1,|x |≤1

|〈x,C∗1 y〉X1 | = sup
u∈L2(R−;U )
‖B1u‖≤1

|〈B1u,C∗1 y〉X1 |

= sup
u∈L2(R−;U )
‖B1u‖≤1

|〈B2u,C∗2 y〉X2 | ≤ sup
u∈L2(R−;U )
‖B2u‖≤1

|〈B2u,C∗2 y〉X2 |

≤ sup
x∈X2,|x |≤1

|〈x,C∗2 y〉X2 | = ‖C∗2 y‖X2 .

(ii) This follows from (i) by duality.
�

Lemma 11.8.6 Let �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
be two (scattering)

passive systems on the Hilbert spaces (Y, X1,U ), respectively (Y, X2,U ) (with
the same transfer function D).

(i) If �1 is energy preserving, then B∗1B1 ≥ B∗2B2. If, furthermore, �1 is
controllable, then C1C

∗
1 ≤ C2C

∗
2.

(ii) If �1 is co-energy preserving, then C1C
∗
1 ≥ C2C

∗
2. If, furthermore, �1 is

observable, then B∗1B1 ≤ B∗2B2.

Proof (i) Since �1 is energy preserving and �2 is passive, we have for every
u ∈ L2(R−; U ) (see Theorems 11.1.6 and 11.2.9),

‖Du‖2
L2(R−;Y ) + |B1u|2X1

= ‖u‖2
L2(R−;U ) ≥ ‖Du‖2

L2(R−;U ) + |B2u|2X2
,

or equivalently, |B1u|2X ≥ |B2u|2X . The second half of (i) follows from Lemma
11.8.5(i).

(ii) This follows from (i) by duality. �

From this result we can derive the following characterization of controllable
energy preserving and observable co-energy preserving systems.

Corollary 11.8.7 Let U, and Y be Hilbert spaces, and let D ∈ TIC2(U ; Y ).

(i) A controllable (scattering) passive realization � = [A B

C D

]
of D is energy

preserving if and only if B∗B ≥ B∗1B1 for every passive realization

�1 =
[

A1 B1

C1 D

]
of D, or equivalently, for every controllable passive

realization �1 =
[

A1 B1

C1 D

]
of D.

(ii) An observable (scattering) passive realization � = [A B

C D

]
of D is

co-energy preserving if and only if CC∗ ≥ C1C
∗
1 for every passive

realization �1 =
[

A1 B1

C1 D

]
of D, or equivalently, for every observable

passive realization �1 =
[

A1 B1

C1 D

]
of D.
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Proof The necessity (of both the given conditions) for � to be energy pre-
serving follows from Lemma 11.8.6. Conversely, suppose that the weaker of
the two conditions holds, i.e., suppose that B∗B ≥ B∗1B1 for every control-

lable passive realization �1 =
[

A1 B1

C1 D

]
. If we take �1 to be the controllable

energy preserving realization in Theorem 11.8.2(i), then by Lemma 11.8.6(i),
the opposite inequality is also true, i.e., B∗B = B∗1B1. By Theorem 9.2.6, �
is unitarily similar to �1, hence energy preserving.

(ii) This follows from (i) by duality. �

Another consequence of Lemma 11.8.6 is the following.

Theorem 11.8.8 Let � = [A B

C D

]
be a (scattering) passive system on

(Y, X,U ).

(i) The following conditions are equivalent:
(a) � is controllable, and B∗B ≤ B∗1B1 for every passive realization

�1 =
[

A1 B1

C1 D

]
of D, or equivalently, for every minimal passive

realization �1 =
[

A1 B1

C1 D

]
of D.

(b) � is observable, and CC∗ ≥ C1C
∗
1 for every controllable passive

realization �1 =
[

A1 B1

C1 D

]
of D, or equivalently, for every minimal

passive realization �1 =
[

A1 B1

C1 D

]
of D.

(c) � is unitarily similar to the realization of D that we get from an
observable co-energy preserving realization by restricting it to the
reachable subspace (as in Theorem 9.1.9(i)).

In particular, a realization with these properties always exists, it is
minimal, and it is unique up to a unitary similarity transformation in the
state space.

(ii) The following conditions are equivalent:
(a) � is observable, and CC∗ ≤ C1C

∗
1 for every passive realization

�1 =
[

A1 B1

C1 D

]
of D, or equivalently, for every minimal passive

realization �1 =
[

A1 B1

C1 D

]
of D.

(b) � is controllable, and B∗B ≥ B∗1B1 for every observable passive

realization �1 =
[

A1 B1

C1 D

]
of D, or equivalently, for every minimal

passive realization �1 =
[

A1 B1

C1 D

]
of D.

(c) � is unitarily similar to the realization of D that we get from a
controllable energy preserving realization by projecting the system
onto the orthogonal complement of the unobservable subspace (as in
Theorem 9.1.9(ii)).
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In particular, a realization with these properties always exists, it is
minimal, and it is unique up to a unitary similarity transformation in the
state space.

Proof Parts (i) and (ii) are dual to each other, so it suffices to prove part (i).
(c) ⇒ (a): By Lemma 11.8.6(i), every system � which is observable and

co-energy preserving (but not necessarily controllable) has the property that

B∗B ≤ B∗1B1 for every passive realization �1 =
[

A1 B1

C1 D

]
of D. The input

map B does not change when we restrict this system to the reachable subspace,
so the realization described in (c) still has the same property. This property is
invariant under unitary similarity transforms in the state space, so every system
which is unitarily similar to the system described in (c) satisfies (a).

(a)⇒ (c): Assume that the weaker of the two conditions listed in (a) holds
(the one where�1 is minimal). Choose�1 to be the (minimal) system described
in (c). We know by now that (c) implies (a), so we have at the same time both
the original B∗B ≤ B∗1B1 and the reverse inequality B∗1B1 ≤ B∗B. Thus,
B∗B = B∗1B1. By Theorem 9.2.6, � is unitarily similar to �1.

(a) ⇒ (b): Assume (a). As we have seen, (a) implies (c), so � must be
observable. That CC∗ ≥ C1C

∗
1 for every controllable passive realization �1 =[

A1 B1

C1 D

]
of D follows from Lemma 11.8.5(i). Thus (a) implies (b).

(b)⇒ (c): Assume that the weaker of the two conditions listed in (b) holds
(the one where�1 is minimal). Choose�1 to be the (minimal) system described
in (c). We know by now that (c) implies (a) which implies (b), so we have at the
same time both the original CC∗ ≥ C1C

∗
1 and the reverse inequality C1C

∗
1 ≥ CC∗.

Thus, CC∗ = C1C
∗
1. By Theorem 9.2.5, � is unitarily similar to �1. �

Notice that it is not possible to remove the word ‘controllable’ in condition (b)
in part (i), since that would force � to be co-energy preserving (see Corollary
11.8.7(ii)). Likewise, it is not possible to remove the word “observable” in
condition (b) in part (ii), since that would force � to be energy preserving.

Definition 11.8.9 A system satisfying the equivalent conditions (a)–(c) in part
(i) of Theorem 11.8.8 is called optimal. A system satisfying the equivalent
conditions (a)–(c) in part (ii) of Theorem 11.8.8 is called ∗-optimal.

It is obvious from Theorem 11.8.8 that � is optimal if and only if its causal
dual �d is ∗-optimal.

Theorem 11.8.8 implies that the optimal and ∗-optimal realizations of a
given input/output map are the two minimal passive realizations whose state
space norms are the smallest, respectively, largest possible, i.e., BB∗ is either
as small as possible or as large as possible (among all passive realizations). The
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following alternative characterization has an interesting physical interpretation
(see Remark 11.8.11 below):

Theorem 11.8.10 Let � = [A B

C D

]
be a minimal (scattering) passive system

on (Y, X,U ).

(i) The following two conditions are equivalent:
(a) � is optimal (i.e., conditions (a)–(c) in part (i) of Theorem 11.8.8

hold);
(b) for all x ∈ X,

|x |2X = sup
u∈L2(R+;U )

(‖Cx +Dπ+u‖2
L2(R+;U ) − ‖u‖2

L2(R+;U )

)
. (11.8.1)

Thus, if � is optimal, then X is the completion of the state space X of the
input normalized realization � induced by � (see Proposition 9.5.2) with
respect to the norm (11.8.1).

(ii) The following two conditions are equivalent:
(a) � is ∗-optimal (i.e., conditions (a)–(c) in part (ii) of Theorem 11.8.8

hold).
(b) the norm of every x ∈ X which is of the form x = Bu for some

u ∈ L2(R−; U ) is given by

|x |2X = inf
v∈L2(R−;U ),Bv=x

(‖v‖2
L2(R−;U ) − ‖Dv‖2

L2(R−;U )

)
. (11.8.2)

Thus, if � is ∗-optimal, then X is the completion of the state space X of
the input normalized realization � induced by � (see Proposition 9.5.2)
with respect to the norm (11.8.2).

Proof (i) Assume that � is optimal. By Theorem 9.1.9 and part (i)(c) of The-
orem 11.8.8, we may assume that X is the reachable subspace of an observ-

able co-energy preserving realization �̃ =
[

Ã B

C̃ D

]
of D, with A = Ã|X and

C = C̃|X . Clearly, if we can show that (11.8.1) holds for the system �̃, then it
will hold for�, too. To simplify the notation we write�, A, and C instead of �̃,
Ã, and C̃, and suppose that � is observable and co-energy preserving (instead
of being optimal).

We first show that

|x |2X ≤ sup
u∈L2(R+;U )

(‖Cx +Dπ+u‖2
L2(R+;U ) − ‖u‖2

L2(R+;U )

)
(11.8.3)

whenever x is of the form x = C∗y∗ for some y∗ ∈ L2(R+; Y ). By Theorem

11.2.9(ii), π := [ C∗
π+D∗

] [
C Dπ+

]
is a self-adjoint projection in

[
X

L2(R+;U )

]
. Let

y∗ ∈ L2(R+; Y ), and define
[

x
u

] = [ C∗
π+D∗

]
y∗. Then

[
x
u

]
belongs to the range
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π , and hence π
[

x
u

] = [ x
u

]
. Explicitly, this identity says that

C∗(Cx +Dπ+u) = x, π+D∗(Cx +Dπ+u) = u.

From these two identities we conclude that

‖Cx +Dπ+u‖2
L2(R+;U )

= 〈Cx +Dπ+u,Cx +Dπ+u〉L2(R+;U )

= 〈x,C∗(Cx +Dπ+u)〉X + 〈u, π+D∗(Cx +Dπ+u)〉L2(R+;U )

= |x |2X + |u|L2(R+;U ).

Thus, (11.8.3) holds for all x ∈ R (C∗). The range of C∗ is dense in X (since �
is observable), and therefore (11.8.3) must hold for all x ∈ X .

The opposite inequality is a trivial consequence of the first inequality in
(11.1.12) (and it is true for all passive systems �).

Conversely, suppose that (11.8.1) holds. Let�1 =
[

A1 B1

C1 D

]
of D be a mini-

mal passive realization of D with state space X1. As we noticed in the preceding
paragraph, for all x1 ∈ X1,

|x1|2X1
≥ sup

u∈L2(R+;U )

(‖C1x1 +Dπ+u‖2
L2(R+;U ) − ‖u‖2

L2(R+;U )

)
,

whereas for all x ∈ X ,

|x |2X = sup
u∈L2(R+;U )

(‖Cx +Dπ+u‖2
L2(R+;U ) − ‖u‖2

L2(R+;U )

)
.

Let E be the maximally defined pseudo-similarity between �1 and � in The-
orem 9.2.4. Then, with the notation introduced above, x = Ex1 if and only
if Cx = C1x1. By the preceding argument, if Cx = C1x1, then |x |2X ≤ |x1|2X1

.
Thus, E is a contraction, defined on all of X , and C1C

∗
1 = CE E∗C∗ ≤ CC∗. By

part (i)(b) of Theorem 11.8.8, � is optimal.
(ii) Assume that� is∗-optimal. By Theorem 9.1.9 and part (ii)(c) of Theorem

11.8.8, we may assume that X is the orthogonal complement to the unobservable

subspace N (̃C) of a controllable energy preserving realization �̃ =
[

Ã B̃

C̃ D

]
of

D, and that A = πX Ã|X , B = πXB̃, and C = C̃|X , where πX is the orthogonal
projection of the state space X̃ onto X . If u ∈ L2(R−; U ) and if we denote
x̃ = B̃u, then (see the second identity in (11.2.13))

|x̃ |2
X̃
= |B̃u|2

X̃
= ‖u‖2

L2(R−;U ) − ‖Du‖2
L2(R−;U ).

Let x = πX x̃ be the corresponding state of �. Then |x |2X = infz∈X̃ ,C̃z=C̃x̃ |z|2X̃ .

Replace z by B̃v, and let v vary over L2(R−; U ) to get

|x |2X = inf
v∈L2(R−;U ),C̃B̃v=C̃x̃

(‖v‖2
L2(R−;U ) − ‖Dv‖2

L2(R−;U )

)
.
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Here C̃B̃v = π+Dπ−v = CBv, and C̃x̃ = C̃πX x̃ = Cx , so the side condition
C̃B̃v = C̃x̃ is equivalent to CBv = Cx . But C is injective (since � is observ-
able), so this is equivalent to x = Bu, and we arrive at (11.8.2).

Conversely, suppose that (11.8.2) holds. For every passive minimal realiza-

tion �1 =
[

A1 B1

C1 D

]
of D with state space X1 and for every u ∈ L2(R−; U )

we have |x1|2X1
≤ ‖u‖2

L2(R−;U ) − ‖Du‖2
L2(R−;U ) where x1 = B1u (see the sec-

ond inequality in (11.1.12)). Take the infimum of the right-hand side over all
v ∈ L2(R−; U ) with B1v = x1 to get

|x1|2X1
≤ inf

v∈L2(R−;U ),B1v=x1

(‖v‖2
L2(R−;U ) − ‖Dv‖2

L2(R−;U )

)
.

On the other hand, by (11.8.2),

|x |2X = inf
v∈L2(R−;U ),Bv=x

(‖v‖2
L2(R−;U ) − ‖Dv‖2

L2(R−;U )

)
.

where x = Bu. Let E be a pseudo-similarity between � and �1 (as defined
in Definition 9.2.1). Then, with the notation introduced above, Ex = EBu =
B1u = x1 and Bv = x if and only if B1v = EBv = Ex = x1. It follows from
the above computation that |x1|2X1

= |Ex |2X1
≤ |x |X . Thus, E is a contraction,

defined on all of X , andB∗1B1 = B∗E∗EB ≤ B∗B. By part (ii)(b) of Theorem
11.8.8, � is ∗-optimal. �

Remark 11.8.11 Both (11.8.1) and (11.8.2) have obvious physical interpreta-
tions. Formula (11.8.1) says that the square of the norm of the state of an optimal
system coincides with the maximal amount of energy that can be withdrawn
from the system. For this reason the square of this norm is called the available
storage. Formula (11.8.2) says that the square of the norm of the state of a
∗-optimal system coincides with the minimal amount of external energy which
is needed to reach this particular state. For this reason the square of this norm
is called the required supply. Note that in order to compute these two norms it
is not necessary to start with a system that is optimal or ∗-optimal in the first
place. As we saw in the proof of Theorem 11.8.10, given an arbitrary minimal
passive system � = [A B

C D

]
, the right-hand side of (11.8.1) is finite for every

x ∈ X , and the right-hand side of (11.8.2) is finite for every x ∈ R (B). Thus,
the square root of the right-hand side of (11.8.1) is a norm on X , and we get
an optimal realization of D by completing X with respect to this norm. Anal-
ogously, the square root of the right-hand side of (11.8.1) is a norm on X , and
we get a ∗-optimal realization of D by completing X with respect to this norm.
(See also Theorem 11.8.12 below.)

As our following result shows, optimal and ∗-optimal systems play the same
role for minimal passive realizations as the input and output normalized do for
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input and output bounded realizations (compare this to Theorem 9.4.7(i)–(ii)
and Proposition 9.5.2(i)–(ii)).

Theorem 11.8.12 Let � = [A B

C D

]
be a minimal (scattering) passive system

on (Y, X,U ). Then it is possible to make � ∗-optimal by restricting it to a
subspace X of X (and strengthening the norm), and it is possible to make it
optimal by completing X into a larger space X (and weakening the norm).
More precisely, the following claims are true.

(i) X has a unique Hilbert subspace X with the following properties. The
embedding X ⊂ X is continuous and dense, X is invariant under A,
R (B) ⊂ X, and if we define

A = A|X , C = C|X ,

then � =
[

A B

C D

]
is a ∗-optimal realization of D (with state space X).

The embedding of X ⊂ X is contractive, i.e., |x |X ≤ |x |X for every
x ∈ X.

(ii) X has a unique Hilbert subspace X, with a contractive and dense
embedding, such that the system � which we get by restricting � to X
(i.e., we repeat the construction in (i) with X replaced by X) is input
normalized.

(iii) X can be completed into a unique Hilbert space X with the following
properties. The embedding X ⊂ X is dense and continuous, A can be
extended to a C0 semigroup A on X, C can be extended to an operator

C ∈ B(X ; L2(R+; Y )), and � =
[

A B

C D

]
is an optimal realization of D

(with state space X). The embedding of X ⊂ X is contractive, i.e.,
|x |X ≤ |x |X for every x ∈ X.

(iv) X can be further completed into a unique Hilbert space X, such that the

embedding of X in X is (dense and) contractive, and such that the

corresponding system � which we get by repeating the construction in

(iii) with X replaced by X is output normalized.

Proof (i) Let �1 =
[

A1 B1

C1 D

]
of D be an arbitrary ∗-optimal realization of D

with state space X1. Then both� and�1 are minimal realizations of D, so they
are pseudo-similar in the sense of Theorem 9.2.4. It follows from property (a)
in Theorem 11.8.8(i) and Theorem 9.2.6(i) that the pseudo-similarity operator
E : X → X1 is a contraction (hence bounded with D (E) = X ). We let X =
R (E), and equip it with the range norm: |Ex1|X = |x1|X1 . Then E maps X1

unitarily onto X . The intertwining condition At E = EAt
1 implies that X is

invariant under A, and R (B) ⊂ X since B = EB1. Clearly, the system �
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described in (i) is unitarily similar to �1, hence ∗-optimal. The embedding is
contractive since E is contractive.

(ii) We get the space X by using the construction in part (i) of Theorem
9.4.7. By Proposition 9.5.2, the system � is input normalized. To see that the
embedding is contractive it suffices to observe that for all u ∈ L2(R−; U ) (since
� is passive and � is input normalized),

|Bu|2X ≤ |Bu|2X + ‖Du‖2
L2(R−;Y ) ≤ ‖u‖2

L2(R−;U ) = |Bu|2X ,
and to use Theorem 9.2.6(i).

(iii) This proof is similar to the proof of (i), and we leave it to the reader
(either use duality, or imitate the proof given above).

(iv) Use the construction in Theorem 9.4.7(ii) (or use (ii) and duality). �

Once we have the two realizations � and � described in Theorems 11.8.12
and 11.8.10 we can interpolate between them to get a passive balanced minimal
realization of D. The method is exactly the same as that which we used to
interpolate between the input normalized realization and the output normalized
realization in Theorem 9.5.6 (these are the realizations that we have denoted by

�, respectively �, in Theorem 11.8.12).

Definition 11.8.13 Let � = [A B

C D

]
be an L2-well-posed linear system on the

Hilbert spaces (Y, X,U ). This system is (scattering) passive balanced if it is
minimal, passive, and it has the following property: if X and X are the state
spaces of the corresponding ∗-optimal and optimal systems described in parts
(i) and (iii) of Theorem 11.8.12, then the Gram operator of the embedding
X ⊂ X is the restriction to X of the Gram operator of the embedding X ⊂ X
(this property is discussed in more detail in Lemma 9.5.7).

Theorem 11.8.14 Every contractive D ∈ TIC2(U ; Y ) (where U and Y are
Hilbert spaces) has a (scattering) passive balanced realization. This realization
is unique up to a unitary similarity transformation in the state space.

Proof We know from Theorem 11.8.8(i) (see also Definition 11.8.9) that D has
a ∗-optimal realization�. Let� be the corresponding optimal system described
in Theorem 11.8.12(iii). Let X be the subspace of X in Lemma 9.5.7(i), and
let � = [A B

C D

]
be the system described in Lemma 9.5.7(ii). Then the Gram

operator of the embedding X ⊂ X is the restriction to X of the Gram operator
of the embedding X ⊂ X , and � is a minimal L2-well-posed linear system on
(Y, X,U ).

To show that � is passive we argue as follows. Denote the Lax–Phillips
semigroups induced by �, �, and � by T, T, and T, respectively. By Lemma
11.1.4, T and T are contraction semigroups on their respective state spaces
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on

[
L2(R−;Y )

X
L2(R+;U )

]
and

[
L2(R−;Y )

X
L2(R+;U )

]
. It is easy to see that the state space

[
L2(R−;Y )

X
L2(R+;U )

]
of T interpolates half-way between the two other state spaces (as described in
Lemma 9.5.8), and it follows from Lemma 9.5.8 that also T is a contraction
semigroup. Therefore, by Lemma 11.1.4, � is passive.

It remains to prove uniqueness. To do this we take a closer look at the
construction in Lemma 9.5.7. Suppose that we have two different balanced

passive realizations �1 =
[

A1 B1

C1 D

]
and �2 =

[
A2 B2

C2 D

]
of D. Denote the

corresponding optimal and ∗-optimal systems in Theorem 11.8.12(i)–(ii) by

�1 =
[

A1 B1

C1 D

]
, �1 =

[
A1 B1

C1 D

]
, �2 =

[
A2 B2

C2 D

]
, and �2 =

[
A2 B2

C2 D

]
, with

state spaces X1, X1, X2, and X2, respectively. By Theorem 11.8.8, �1 and
�2 are unitarily similar, and so are �1 and �2. Denote the unitary simi-

larity transformation of X1 onto X2 by W . Then W = C
−1
2 C1 (see (9.2.3)).

Analogously, the unitary similarity transformation of X1 onto X2 is given
by W = C−1

2 C1. In particular, W = W |X . Let F1 and F2 be the Gram oper-
ators of the embeddings X1 ⊂ X1 respectively X2 ⊂ X2. Then, by Lemma
9.5.7(iii), F1 = C′1(C

′′
1)−1 and F2 = C′2(C

′′
2)−1 (where we have used the notation

in that lemma). Here C1 = C2W and C1 = C2W , so C
′′
1 = W

′′
C
′′
2 = W

−1
C
′′
2 and

C′1 = W ′C′2 = W−1C′2 = W
−1

C′2 (since W−1 = W
−1
|X2

). Thus,

F1 = C′1(C
′′
1)−1 = W

−1
C′2(C

′′
2)−1W = W

−1
F2W .

In particular, F1 and F2 are unitarily similar, hence so are their square roots:√
F1 = W

−1√
F2W . By Lemma 9.5.7(iii),

C1C
∗
1 = C1

√
F1C

′′
1 = C1W

−1√
F2WC′′1 = C2

√
F2C

′′
2 = C2C

∗
2.

This together with Theorem 9.2.5 implies that �1 and �2 are unitarily similar.
(Arguing as above one finds that the unitary similarity transform is the restriction
of W to X1.) �

As we saw in the preceding proof, the operator CC∗ does not depend on the
particular realization, as long as it is balanced passive. It is natural to suggest that
this operator can be computed in terms of the two operators CC′′ (which is the
corresponding unique operator for an optimal realization) and CC′ (which is the
corresponding unique operator for a ∗-optimal realization). Indeed, this can be

done. One way to do this is to choose the realization � in Theorem 11.8.12(iv)
to be the restricted exactly observable shift realization, whose state space is a

closed subspace of L2(R+; Y ), namely R (π+Dπ−). Denote this space by X .
Then the semigroups of the different systems �, �, and � are the left-shifts
on the respective state spaces X , X , and X , the observation operators are the
inclusion maps of these subspaces into R (π+Dπ−), and the input maps are
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the Hankel operator π+Dπ−. The Gram operators of the embeddings of X , X ,
and X are given by Q := CC′′, Q := CC∗, and Q := CC′. By continuing the
computation given at the end of the proof of Theorem 11.8.14 one finds that
Q = CC∗ is given by

Q = Q
1/2
[

Q
−1/2

Q Q
−1/2
]1/2

Q
1/2

= Q1/2
[

Q1/2 Q
−1

Q1/2
]−1/2

Q1/2.

In these formulas Q1/2 Q
−1/2

can be interpreted as the extension to L2(R+; Y )
of a densely defined contraction which vanishes on N (π−Dπ+), whose adjoint

is the (everywhere defined) contraction Q
−1/2

Q1/2. A similar formula can be
obtained for the uniquely determined operator B∗B in terms of B′B and B′′B
(for example by duality, or by choosing the system � in Theorem 11.8.12(iv)
to be the restricted exactly controllable shift realization).

11.9 The spectrum of a conservative system

The spectrum of the main operator of a conservative system has the following
basic properties.

Theorem 11.9.1 Let S = [ A&B
C&D

]
be a conservative system node on (Y, X,U ),

with main operator A, control operator B, observation operator C, and transfer
function D.

(i) α ∈ ρ(A) if and only if
[
α 0
0 0

]+ S∗ is invertible, in which case([
α 0
0 0

]
+ S∗

)−1

=
[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

]
. (11.9.1)

In particular, this formula holds for all α ∈ C+.
(ii) α ∈ ρ(A) ∩ C− if and only if D̂∗(−α) is invertible, in which case[

(α − A)−1 (α − A|X )−1 B
C(α − A)−1 D̂(α)

]
=
[

(α + A∗)−1 0
0 0

]
+
[−(α + A∗|X )−1C∗

1

]
[D̂∗(−α)]−1

[−B∗(α + A∗)−1 1
]
.

(11.9.2)
In particular, U and Y are isomorphic (hence they have the same
dimension) whenever ρ(A) ∩ C− �= ∅.

Proof By Lemma 11.2.4, S is time-flow-invertible, and the time-flow-inverted
system node S R

× coincides with S∗. Theorem 11.9.1 now follows from Lemma
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6.5.7(ii),(iv) with the S R
× replaced by S∗. (We have simplified some of the

statements of that lemma by using the fact that A and A∗ are maximal dissipative,
hence C+ ⊂ ρ(A) and C+ ⊂ ρ(A∗).) �

According to Corollary 11.7.3, every contractive D ∈ TIC2(U ; Y ) has a con-
servative realization (which is unique up to a unitary similarity transformation
in the state space). This result is of limited value due to the following fact:
without any further conditions on D, the spectrum of the main operator A is
likely to contain the whole left half-plane, or at least the whole imaginary axis,
even if we do not count the trivial case where U and Y have different dimension
(cf. Theorem 11.9.1(ii)). This can be seen from the universal model in Theorem
11.6.2, but it can be seen even more directly from the following simple facts:

Corollary 11.9.2 Let S = [ A&B
C&D

]
be a conservative system node on (Y, X,U )

with main operator A and transfer function D̂.

(i) D̂(α) is unitary for every α ∈ ρ(A) ∩ jR.
(ii) If the measure of σ (A) ∩ jR is zero, then S is lossless. (This is, in

particular, true if σ (A) is countable.)

Proof (i) Apply part (xii) of Theorem 11.2.5 both to S and S∗.
(ii) By (i), D̂(β) is unitary for almost all β ∈ jR. This implies that D is

lossless (apply Proposition 11.3.2 both to D and its causal dual D̂d = RD∗ R).
�

11.10 Comments

Most of the results of this chapter are in one way or another based on the
theory presented in Sz.-Nagy and Foiaş (1970) (with some minor additions
and modifications) and on Arov and Nudelman (1996). The main difference
(apart from notation) is that we work in continuous time throughout, whereas
Sz.-Nagy and Foiaş (1970) mainly work in discrete time, and derive most of the
continuous time results from the corresponding discrete time results by means
of the Cayley transform (which is discussed in Chapter 12). The same method
is used in Arov and Nudelman (1996).

Section 11.1 The main part of this section is found in Arov and Nudelman
(1996) (in a less detailed form). Our presentation has been modeled after
Malinen et al. (2003, Section 2), Staffans (2002a, b), and Staffans and Weiss
(2002, Section 7). In particular, Lemma 11.1.4 is essentially Staffans and Weiss
(2002, Proposition 7.2) and Theorem 11.1.5 is a slightly expanded version of
Malinen et al. (2003, Proposition 5.1) (see also Arov and Nudelman (1996,
Proposition 4.1 and Theorem 5.2); a slightly less general version of this result
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is found in Staffans and Weiss (2002, Theorem 7.4)). A discrete time version of
Theorem 11.1.9 can be obtained from Sz.-Nagy and Foiaş (1970, Theorem 3.2,
p. 9 and Proposition 2.1, p. 188) (and our proof of Theorem 11.1.9 resembles
the proofs given in Sz.-Nagy and Foiaş (1970)). In the case where A is isometric
and U = Y = 0 this becomes the well-known Wold decomposition of A given
in Corollary 11.6.9.

Section 11.2 The main part of this section is also found in Arov and Nudelman
(1996) (see, in particular, Arov and Nudelman (1996, Proposition 4.5 and
Theorem 5.2)). Our presentation has been modeled after Malinen et al. (2003,
Section 2), Staffans (2002a, b), and Staffans and Weiss (2003). Lemma 11.2.3
is essentially contained in Staffans and Weiss (2004, Theorem 7.2), Theorems
11.2.5 and 11.2.8 extend Malinen et al. (2003, Proposition 3.2), and Lemma
11.2.6 is Malinen et al. (2003, Lemma 3.3).

Section 11.3 This section has been modeled after Staffans (2002b, Section 10).
Proposition 11.3.2 is originally due to Fourès and Segal (1955). Theorem 11.3.3
is Staffans (2002b, Theorem 10.1), and Theorem 11.3.4 is an expanded version
of Staffans (2002b, Theorem 10.2). A discrete time version of Theorem 11.3.4
(without conditions (iv) and (vii)) is essentially contained in Sz.-Nagy and
Foiaş (1970, Theorem 2.3, p. 248). Lax and Phillips (1967) assume throughout
that the equivalent conditions in Corollary 11.3.7 hold. There also exist other
scattering conservative versions of Corollary 11.3.7, for example, those found
in Malinen et al. (2003), Tucsnak and Weiss (2003, Theorem 1.5 and Propo-
sition 3.4) Weiss et al. (2001, Propositions 6 and 9), and Tucsnak and Weiss
(2003, Proposition 3.4). Theorem 11.3.9 is due to Tucsnak and Weiss (2003,
Proposition 3.3) (which further contains some additional material), and some
related results are found in Tucsnak and Weiss (2003, Theorem 1.3, Proposition
3.2) and Weiss et al. (2001, Proposition 8). See also Jacob and Zwart (2002).

Section 11.4 The discrete time version of the theory presented in this section
is found in, e.g., Sz.-Nagy and Foiaş (1970). For example, Theorem 11.4.5
corresponds to Sz.-Nagy and Foiaş (1970, Theorem 4.1, p. 11), and Theorem
11.4.9 corresponds to Sz.-Nagy and Foiaş (1970, Theorem 4.2, p. 13 and Section
I.5, pp. 16–19). Our proofs are also quite similar to those in Sz.-Nagy and Foiaş
(1970). We carry out the proofs in continuous time, imitating the discrete time
proofs, and with the machinery that we have developed by now they are no more
difficult in the continuous time setting than in the discrete time setting. Another
option would have been to translate the discrete time results into continuous time
by means of the Cayley transform (as is done in Sz.-Nagy and Foiaş (1970)).
We have preferred the more direct approach since it gives a clearer picture of



694 Passive and conservative scattering systems

the final structure. A historical discussion is given in the notes on Sz.-Nagy
and Foiaş (1970, pp. 51–56).

Lemma 11.4.2 is called ‘Sarason’s lemma on dilation of operators’ in Arov
and Nudelman (1996, p. 28). Theorem 11.4.14 is due to Malinen et al. (2003).

Section 11.5 The results in this section could alternatively have been proved by
first proving the corresponding discrete time results, and then using the Cayley
transform (presented in Section 12.3). The ‘only if’ part of Lemma 11.5.2
may be formally new. Theorem 11.5.6 appears as Arov and Nudelman (1996,
Proposition 7.7) (where it is proved with the aid of the Cayley transform).

We get a minimal conservative dilation of a given passive system � from
Theorem 11.5.6 by absorbing the first output and the second input into the
semigroup (as in Remark 2.7.5). This dilated conservative system need not al-
ways be completely non-unitary. Arov and Nudelman (1996) say� has minimal
losses if it has a completely nonunitary conservative dilation. For example, op-
timal and ∗-optimal systems have minimal losses, whereas the balanced passive
realization need not have minimal losses.

Section 11.6 This section can also be seen as a continuous time version of
the corresponding discrete time results found in Sz.-Nagy and Foiaş (1970).
Corollary 11.6.9 is the same as Sz.-Nagy and Foiaş (1970, Theorem 9.3, p. 151),
Theorem 11.6.2 corresponds roughly to Sz.-Nagy and Foiaş (1970, Section
II.1), and the rest of the section corresponds roughly to Sz.-Nagy and Foiaş
(1970, Section VI.2) and parts of Sz.-Nagy and Foiaş (1970, Section VI.3). In
Sz.-Nagy and Foiaş (1970, pp. 279–280) our continuous time model is derived
from the discrete time model by means of the Cayley transform, but we have
preferred to prove the continuous time case directly by imitating the discrete
time proofs (it is no more difficult, and it gives a better intuitive feeling for the
final result). Again, for a historical discussion we refer the reader to the notes
on Sz.-Nagy and Foiaş (1970, pp. 276–280).

Section 11.7 This is a continuous time version of Sz.-Nagy and Foiaş (1970,
Section VI.3). Theorem 11.7.1 corresponds to the main result (Sz.-Nagy and
Foiaş, 1970, Theorem 3.1, p. 255) of that section. Corollary 11.7.3 was first
published in Arov and Nudelman (1996, Theorem 6.4).

Section 11.8Most of the results in this section are found in Arov and Nudelman
(1996, Section 8) (but the proofs are different). A discrete time version of
Theorem 11.8.1(iii) is found in Arov (2002, Theorem 1, p. 106). We do not
know if Theorem 11.8.2 and Corollaries 11.8.3 and 11.8.4 have been explicitly
published before (as of spring 2004). Arov and Nudelman (1996, Theorems 8.1
and 8.2) define ‘optimal’ in a slightly different way, i.e., they do not always
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require an optimal system to be controllable (hence, their optimal system is not
unique up to a similarity transformation).

The same notion was studied (independently) in Willems (1972a, b) in a
setting which resembles the one in Theorem 11.8.10 and Remark 11.8.11. In
particular, this seems to be the source of the terms available storage and required
supply.

If the optimal and ∗-optimal realization of a given input/output map coincide
(i.e., they are unitarily equivalent to each other), then it follows from Theorem
11.8.12 that all minimal passive realizations coincide. Necessary and sufficient
conditions for this to happen are given in Arov and Nudelman (2000). If these
two realizations instead are similar to each other (not just pseudo-similar), then
all minimal passive realizations are similar to each other. Necessary and suffi-
cient conditions for this are given in Arov and Nudelman (2002). By Theorem
11.8.1, if D is semi-lossless, then all passive minimal realizations of D coincide
with the output normalized realization, and if D is co-lossless, then all passive
minimal realizations of D coincide with the input normalized realization.

The strong stability of the semigroup A and its adjoint A∗ has been studied
in Arov et al. (2004, Section 6) (in discrete time, but the same results carry
over to continuous time by means of the Cayley transform).

Theorem 11.8.14 may be new in this form. The balanced passive realization
was first introduced in a finite-dimensional setting in Opdenacker and Jonck-
heere (1988). It has been studied in some detail in Ober (1991, Section 5)
under the name bounded real balanced realization. The standard approach in
the finite-dimensional case is to balance between the minimal and the maximal
solution of the Kalman–Yakubovich–Popov inequality. It is possible to use this
approach in the infinite-dimensional case, too, but then a more general version
of the KYP inequality is needed, where the Riccati operator is allowed to be
unbounded and to have an unbounded inverse. See Arov et al. (2004) for a fairly
complete treatment of the discrete-time version of this inequality.

Section 11.9 Lax and Phillips (1967, Section II.3) contains a more complete
discussion of the spectral theory of a lossless conservative system than what
we give here. The lossless version of Theorem 11.9.1(ii) is found in Lax and
Phillips (1967, Theorem 3.2(i)).
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Discrete time systems

In this chapter we give a short overview of discrete time systems. Especially
in the L2-well-posed case on a triple of Hilbert spaces there is a fairly close
connection between the discrete-time and continuous-time theory. The crucial
transformation between these two settings is the Cayley transform (which we
have already encountered implicitly in Chapter 11) and its time-domain version,
the Laguerre transform. In the last section we return to continuous time, using
the discrete time theory to develop the continuous time reciprocal transforma-
tion.

12.1 Discrete time systems

Throughout this book we have been working with systems whose time variable
is continuous (as opposed to discrete). Below we shall develop an analogous
theory for systems in discrete time. We have already encountered such systems
in passing in Section 2.4, where we discretized the time to be able to carry out
some of the proofs in discrete time. In the next section we shall see another
method to pass between continuous and discrete time.

As in the case of a continuous time system, it is possible to define a dis-
crete time system by specifying either its ‘generating operators,’ or the input/
state/output maps. In the continuous time case the latter approach is simpler
because of the unboundedness of the generating operators, but in discrete time
the situation is the opposite: it is common to start with the generating operators
(which are bounded in this case), and to use these to define the input/state/output
maps.

A discrete time system is usually written in difference form

xk+1 = Axk + Buk,

yk = Cxk + Duk, k ∈ Z+ = {0, 1, 2, . . .} , (12.1.1)

696
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where A ∈ B(X ), B ∈ B(U ; X ), C ∈ B(X ; Y ), D ∈ B(U ; Y ) and U , X , and Y
are Banach spaces. Here A is the main operator, B is the control operator,
C is the observation operator, D is the feedthrough operator. The discrete
time semigroup A, input map B, output map C, and input/output map D are
given by

(Ax)k = Ak x, k ∈ Z+,

Bu =
∞∑

k=0

AkBu−k−1,

(Cx)k = CAk x, k ∈ Z+,

(Du)k =
∞∑

i=0

CAiBuk−i−1 + Duk, k ∈ Z = {0,±1,±2, . . .} ,
(12.1.2)

where u = {uk}k∈Z represents a U -valued sequence with finite support and
x ∈ X .

To get the input/output representation of the system in (12.1.1) we replace
the operators

[
A B
C D

]
by the operators

[
A B
C D

]
. This quadruple of operators satisfies

a set of conditions similar to those listed in Definition 2.2.1. For each sequence
u = {uk} and each j ∈ Z we define

(π−u)k =
{

uk, k ∈ Z−,

0, k ∈ Z+,
(π+u)k =

{
0, k ∈ Z−,

uk, k ∈ Z+,

(σu)k = uk+1, k ∈ Z, e j
k =
{

1, k = j,

0, k �= j.

Here Z− = {−1,−2, . . .}. In the �2-case π− and π− are complementary or-
thogonal projections in �2(Z), σ is the (bilateral) left shift in �2(Z), σ+ = π+σ

is the (unilateral) left-shift on �2(Z+), and σ− = σπ− is the (unilateral) left-
shift semigroup on �2(Z−). The vectors {e j } j∈Z form an orthonormal basis in
�2(Z), and we get orthonormal bases of �2(Z+) and �2(Z−) by restricting the
index set to Z+, respectively Z−. Clearly, the operators σ, π+, and π− have
natural extensions to the case where the sequence u is U -valued instead of
scalar-valued. In the Hilbert space case, if {uα}α∈A is an orthonormal basis in U
(for some index set A), then {uαe j }α∈A, j∈Z is an orthonormal basis for �2(Z; U ),
{uαe j }α∈A, j∈Z+ is an orthonormal basis for �2(Z+; U ), and {uαe j }α∈A, j∈Z− is an
orthonormal basis for �2(Z−; U ).

The operators
[

A B
C D

]
arising from a discrete time system on (Y, X,U )

are characterized by the fact that they satisfy the following four algebraic
conditions:
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(i) A is a discrete time semigroup on Z+ with (A)0 = 1. We denote the
generator of A by A = (A)1;

(ii) B satisfies Bσ− = AB;
(iii) C satisfies CA = σ+C;
(iv) D satisfies σD = Dσ, π−Dπ+ = 0, and π+Dπ− = CB.

In particular, D is again time-invariant and causal, and its Hankel operator
π+Dπ− factors into π+Dπ− = CB. We call a quadruple of operators

[
A B
C D

]
which satisfies (i)–(iv) a discrete time linear system in input/output form on
(Y, X,U ). The corresponding operators A, B, C, and D can be recovered from
A, B, C, and D through

Ax = (Ax)1, Bu = B(ue−1), Cx = (Cx)0, Du = (D(ue0))0. (12.1.3)

We shall use the alternative notation Σ = [ A B

C D

]
and Σ = [ A B

C D

]
for the same

system, and let the context determine which set of operators we mean.
A discrete time system is always well-posed, so the discrete time version of

most of the theory in Chapters 3–5 is much simpler than the continuous time
theory (we shall here study only the case where the discrete time generating
operators A, B, C, and D are bounded). Observe, in particular, that the distinc-
tion that we have made between L∞-well-posed and Reg-well-posed systems
disappears in discrete time.

We introduce definitions of �p-boundedness and r -weighted �p-
boundedness by imitating Definition 2.5.6, replacing L p

ω by �
p
r . Here �

p
r ,

with 1 ≤ p ≤ ∞ and r > 0, stands for the set of sequences u = {uk} for
which the sequence r−kuk belongs to �p. We also use the space �p

0,r , which
coincides with �

p
r if p <∞, and which consists of those u ∈ �∞r which sat-

isfy limk→∞ r−kuk = 0 if p = ∞. A discrete time system Σ = [ A B

C D

]
is �p

r -

bounded (where 1 ≤ p ≤ ∞ and r > 0) if all its components are �p
r -bounded.

Here boundedness of A means that supk∈Z+ r−k‖Ak‖ <∞, boundedness of
C means that C ∈ B(X ; l p

r (Z+; Y )), and boundedness of B or D means that
these operators can be extended to (bounded) operators B ∈ B(�p

0,r (Z−; U ); X )
and

D : �p
0,r (Z−; U ) +̇ �p

r (Z+; U )→ �
p
0,r (Z−; Y ) +̇ �p

r (Z+; Y ).

Most of the results in Chapter 2 have natural discrete time analogues. For
example, every discrete time system has a well-defined growth bound rA equal to
the spectral radius of its semigroup generator A, and the analogue of Theorem
2.5.4 holds, i.e., the system is �p

r -bounded for every r > rA and every p ∈
[1,∞]. The exactly controllable and the exactly observable shift realization
presented in Example 2.6.5 have natural (and obvious) extensions to discrete
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time, and so does the Lax–Phillips model in Section 2.7 (including the wave
operators).

There are two different commonly used methods to pass from the time do-
main to the frequency domain in discrete time. One of them uses the (bilateral)
Z -transform, defined by

û(z) =
∑
k∈Z

z−kuk

if u = {uk} is defined on Z, and with Z replaced by Z+ or Z− if u is defined on
this subset of Z. This choice is common in control theory. The other common
choice, which is the dominant one in mathematics, is to use the same transform
but replace z by 1/z, i.e., to replace z−k by zk . In this work we shall use the
former of the two alternatives, following the control theory tradition.

The (right-sided) Z -transform of a sequence in �
p
r (Z+) is analytic in the

exterior D+r of the disk around the origin with radius r , and the (left-sided)
Z -transform of a sequence in �p

r (Z−) is analytic in the interior D−r of the disk
around the origin with radius r . For p = 1 and r = 1 we get the usual Fourier
series, i.e.,

û(e jϕ) =
∑
k∈Z

e− jkϕuk, 0 ≤ ϕ < 2π,

with uniform pointwise convergence. In the Hilbert space case with p = 2
and r = 1 we can also use this formula in the L2-sense, i.e., we have norm-
convergence in L2(T). In both cases the Fourier coefficients uk of u can be
recovered from the boundary function through the integral

uk = 1

2π

∫ 2π

0
e jkϕ û(e jϕ) dϕ = 1

2π j

∮
|z|=1

z−k û(z) dz/z. (12.1.4)

In the Hilbert space case with r = 1 and p = 2 the Z -transform becomes a
unitary operator from �2(Z; U ) to L2(T; U ) if we divide it by the constant factor√

2π , and it maps �2(Z+; U ) onto H 2(D+; U ) and �2(Z−; U ) onto H 2(D−; U ).
In particular, Parseval’s identity is valid in the form

∑
k∈Z
〈uk, vk〉2U =

1

2π

∫ 2π

0
〈û(e jϕ), v̂(e jϕ)〉U dϕ

= 1

2π j

∮
|z|=1

z−1〈û(z), v̂(z)〉U dz,

(12.1.5)

for all u, v ∈ �2(Z; U ). For later use, let us remark that, by making the change
of variable z = (α + jω)/(α − jω) where 
α > 0 we can write the integral
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above in the alternative forms

1

2π j

∮
|z|=1

z−1〈û(z), v̂(z)〉 dz

= 1

2π

∫ ∞
−∞

2
α
(
α)2 + ('α − ω)2

〈
û
(α + jω

α − jω

)
, v̂
(α + jω

α − jω

)〉
dω

= 1

2π

∫ ∞
−∞

〈 √
2
α

α + jω
û
(α + jω

α − jω

)
,

√
2
α

α + jω
v̂
(α + jω

α − jω

)〉
dω.

(12.1.6)
Here the kernel in the middle integral is the Poisson kernel for the right half-
plane.

The fact that we use the Z -transform to derive our frequency domain results
leads to the definition of the transfer function of the system � = [ A B

C D

]
to be

given by

D̂(z) = C(z − A)−1B+ D, z ∈ ρ(A),

and it is analytic (at least) in D+rA , where rA is the growth bound (i.e, the spectral
radius of A). In particular, it is analytic at infinity, and D̂(∞) = D. If u ∈
�

p
r (R+; U ) for some p, 1 ≤ p ≤ ∞ and r ≥ rA, then the Z -transform of Du is

given by

D̂u(z) = D̂(z)û(z), |z| > r.

We leave the proof of this fact to the reader (it is possible to give a short proof
for the �2-bounded Hilbert space case based on the theory in the next section,
but the general case requires arguments similar to those that we have presented
for the continuous time case).

There is a frequency domain description of the discrete time bilateral shift
σ, the incoming shiftσ+, and the outgoing shiftσ−, with the Laplace transform
replaced by the Z -transform. The discrete time analogue of Proposition 3.13.1
is the following. The transform of a bilateral shift is given by σ̂u(z) = zû(z)
(assuming that one of these transforms converge absolutely). The corresponding
formula for the incoming shift σ+ is much simpler in discrete time than in
continuous time, namely

σ̂+u(z) = z[û(z)− u0] = z[û(z)− û(∞)].

The outgoing shift satisfies the same formula as the bilateral shift, i.e., σ̂−u(z) =
zû(z).

We get the dual of a system by simply taking the adjoint of the system block
matrix

[
A B
C D

]
, so that the dual main operator is A∗, the dual control operator is

C∗, the dual observation operator is B∗, and the dual feedthrough operator is
D∗. As in continuous time, the (causal) dual transfer function D̂d is given by
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D̂d (z) = D̂(z)∗. The discrete time analogues of the following results are valid:
Theorem 6.2.10 and Corollary 6.2.11 (which describe the connections between
a primal and a dual trajectory), and Theorem 6.2.12 (which describes the dual of
the Lax–Phillips semigroup). We leave the exact formulations and their proofs
to the reader.

A discrete time system Σ with generators
[
A B
C D

]
is flow-invertible if and

only if D is invertible. We get the formulas for the generators
[
A× B×
C× D×

]
of the

flow-inverted system Σ× by solving for x and u in terms of y in (12.1.1):

xk+1 = (A− BD−1C)xk + BD−1 yk,

uk = −D−1Cxk + D−1 yk, k ∈ Z+.
(12.1.7)

Thus, [
A× B×
C× D×

]
=
[
A B
0 1

] [
1 0
C D

]−1

=
[
A− BD−1C BD−1

−D−1C D−1

]
.

Note that this is the same formula as in the classical continuous time case
(see (6.3.7)). As expected, the flow-inverted transfer function D̂× is given by
D̂×(z) = D̂−1(z). The spectrum of the flow-inverted main operator A× can be
obtained from the discrete time analogue of Lemma 6.3.8. As in continuous
time, flow-inversion does not affect the reachable and the unobservable sub-
spaces. In particular, it preserves controllability and observability.

A discrete time system Σ with generators
[
A B
C D

]
is time-invertible if and

only if A is invertible. We get the formulas for the generators
[
A R B R

C R D R

]
of the

time-inverted system Σ Rby solving for xk and yk in terms of xk+1 and uk in
(12.1.1):

xk = A−1xk+1 − A−1Buk,

yk = CA−1xk+1 + (D− CA−1B)yk, k ∈ Z+.
(12.1.8)

Thus, [
A R B R

C R D R

]
=
[

1 0
C D

] [
A B
0 1

]−1

=
[
A−1 −A−1B
CA−1 D− CA−1B

]
.

Note the similarity to flow-inversion, with the role of D taken over by A.
(Time-inversion becomes formally flow-inversion if we permute the two rows
and the two columns in

[
A B
C D

]
.) The transfer function of the time-inverted

system is D̂ R(z) = D̂(1/z). Time-inversion does not change the reachable and



702 Discrete time systems

unobservable subspaces if 0 ∈ σ∞(A), but they may change if 0 /∈ σ∞(A) (the
counter-example is essentially the same as in continuous time: let A = σ on
�2(Z), let U = �2(Z+), and let B = π+; then the original system is controllable
but the time-inverted system is not). However, exact or approximate control-
lability in finite time and exact or approximate observability in finite time is
preserved.

A discrete time system Σ with generators
[
A B
C D

]
is time-flow-

invertible if and only if the block matrix
[
A B
C D

]
is invertible, in

which case the generators of the time-flow-inverted system are given by[
A R
× B R

×
C R
× D R

×

]
= [ A B

C D

]−1
(we solve (12.1.1) for xk and uk in terms of xk+1 and yk).

The transfer function of the time-flow-inverted system is D̂ R
×(z) = D̂−1(1/z).

If the original system is flow-invertible and the flow-inverted system is time-
invertible, then the original system is time-flow-invertible and its time-flow-
inverse is the time-inverse of the flow-inverse of the original system. A similar
result is true if the original system is time-invertible and the time-inverted sys-
tem is flow-invertible. Time-flow-inversion need not preserve the reachable and
unobservable subspaces.

The results on partial flow-inversion in Section 6.6 and the results on feed-
back in Chapter 7 have natural (and obvious) discrete time analogues. We leave
the formulation of these to the reader.

Also the notion of stabilization and detection discussed in Chapter 8 carry
over to discrete time. We transfer the definition of stability in Definition 8.1.1,
replacing L p

ω by �
p
r and L p

0,ω by �
p
0,r . In particular, the notions of strong or

weak stability are still relevant: a system is strongly or weakly l p
r -stable if it

is l p
r -bounded and A is strongly or weakly stable, i.e., Ak x → 0 as k →∞

strongly or weakly for all x ∈ Z . A system is power stable if it is �p
r stable for

some r < 1 (the value of p is irrelevant here), i.e., if the spectral radius of A is
less than one. The results presented in Sections 8.1–8.2 carry over with nominal
changes. So do the results on coprimeness in Sections 8.3–8.4, once we replace
the H∞-spaces over the right half-planes C+ω by the corresponding H∞-spaces
over the exterior D+r of the disk around the origin with radius r . The dynamic
stabilization in Section 8.5 remains virtually the same.

All the controllability and observability notions in Sections 9.1 and 9.4
carry over to discrete time in an obvious way. So do the results on pseudo-
similarity in Section 9.2 (it is interesting to observe that the boundedness of
the generators

[
A B
C D

]
does not play any significant role here; we still have only

pseudo-similarity and not ordinary similarity). Also the realizations result in
Section 9.3 remain valid, as do the results on normalized and balanced realiza-
tions in Section 9.5. The controllability and observability tests in Section 9.6
apply without any changes (in particular, so do the tests which require the main
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operator to be bounded). The modal controllability and observability described
in Section 9.7 stays the same, and so does the spectral minimality in Section
9.8. The results in Section 9.9 on how controllability and observability is pre-
served under various transformations have more or less obvious discrete time
counterparts, as have the time domain tests in Section 9.10.

Chapter 10 deals with admissibility. The admissibility results of this chapter
become trivial in the discrete time case, but the stability results do not: they
essentially stay the same, as do their proofs. Of course, we have to replace the
right half-spaces C+ω by the exterior disks D+r , and also replace the H p spaces
and Carleson measures over C+ω by the corresponding spaces and measures
over D+r .

Chapter 11 has a discrete time counterpart, and many of the results proved
there were first obtained in discrete time. The proofs essentially stay the same
and they are neither significantly easier nor significantly more difficult in dis-
crete time than in continuous time. However, the characterization of a passive,
energy preserving, or conservative system given in Theorem 11.2.5 simplifies:
a system Σ with generating operators S = [ A B

C D

]
is (scattering) passive if and

only if S is a contraction, it is energy preserving if and only if S is isometric,
and it is conservative if and only if S is unitary.

12.2 The internal linear fractional transform

In Section 2.4 we defined one transformation, namely time discretization, which
maps a continuous time system into a discrete time system. This transformation
has the drawback that the input and output spaces of the discrete time system
differ from the input and output spaces of the continuous time system; in partic-
ular, they are always infinite-dimensional, even if the original input and output
spaces are finite-dimensional. One advantage with this transformation is that
the discrete time variable has a natural interpretation in terms of the continuous
time variable; it is just a discretization.

Below we shall present a different transformation, the internal linear frac-
tional transform, which also maps continuous systems into discrete time sys-
tems, but which preserves the original input, output, and state spaces.

Proposition 12.2.1 Let S = [ A&B
C&D

]
be an operator node on the Banach spaces

(Y, X,U ), with main operator A, control operator B, observation operator C,
and transfer function D̂. Let α, β, γ , δ ∈ C with α ∈ ρ(A), β − αγ �= 0, and
δ �= 0. Let Σ be the discrete time system on (Y, X,U ) with generating operators

A = (β − γ A)(α − A)−1, B = δ(α − A|X )−1 B,

C = (β − αγ )δ−1C(α − A)−1, D = D̂(α).
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Then, α �= λ ∈ ρ(A) if and only if γ �= z = (β − γ λ)/(α − λ) ∈ ρ(A), or
equivalently, γ �= z ∈ ρ(A) if and only if α �= λ = (αz − β)/(z − γ ) ∈ ρ(A),
and

D̂(z) = D̂(λ), z = β − γ λ

α − λ
, λ = αz − β

z − γ
, z ∈ ρ(A), λ ∈ ρ(A).

Moreover, A− γ is injective and has dense range.

Thus, for every nontrivial linear fractional transform which maps infinity
into ρ(A), it is possible to find a discrete time system which has a transfer
function which is obtained from the continuous time transfer function through
the given linear fractional transform. Observe that the discrete time generator
A of the discrete time system is obtained from the continuous time operator
by applying the same linear fractional transform. In this result the parameter δ
plays a trivial role, but we shall later want to take δ �= 1 (in order to balance the
sizes of B and C).

Proof A short computation shows thatα �= λ = (αz − β)/(z − γ ) if and only if
γ �= z = (β − γ λ)/(α − λ). Takeλ ∈ ρ(A),λ �= α, and let z = (β − γ λ)/(α −
λ). Then a short algebraic computation (where we factor out (α − A)−1 to the
right) shows that

z − A = β − αγ

α − λ
(λ− A)(α − A)−1.

This implies that z �= γ belongs to ρ(A) iff λ �= α belongs to ρ(A). By inverting
the equation above and using Lemma 4.7.5(i) we get

D̂(z) = C(z − A)−1B+ D

= (α − λ)C(λ− A)−1(α − A|X )−1 B + D̂(α)

= D̂(λ).

That A− γ is injective and has dense range follows from the fact that

(A− γ ) = (β − αγ )(α − A)−1.

�

Definition 12.2.2 We call the set of generating operators
[
A B
C D

]
of the system Σ

in Proposition 12.2.1 the (internal) linear fractional transform with parameters
α, β, γ , and δ of the operator node S.

In order to prove a converse to Proposition 12.2.1 we need a more exact
formula for the correspondence between

[
A&B
C&D

]
and
[
A B
C D

]
in that proposition.
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Lemma 12.2.3 In the situation described in Proposition 12.2.1 the continu-
ous time operator node S = [ A&B

C&D

]
and the discrete time generators

[
A B
C D

]
correspond to each other in the following way.

(i) The operator A− γ maps X one-to-one onto D (A), the operator[
1/δ 0
0 1

] [
A−γ B

0 1

]
maps

[
X
U

]
one-to-one onto D (S), and

A− γ = 2
α(α − A)−1,[
1/δ 0
0 1

] [
A− γ B

0 1

] [
δ/(β − αγ ) 0

0 1

]
=
([

α 0
0 1

]
−
[

A&B
0 0

])−1

.

(ii) The discrete time generators
[
A B
C D

]
can be computed from the continuous

time operator node S by means of either of the following two formulas:[
A B
C D

]
=
[
δ/(β − αγ ) 0

0 1

]([
β 0

C&D

]
− γ

[
A&B
0 0

])
×
([

α 0
0 1

]
−
[

A&B
0 0

])−1 [(β − αγ )/δ 0
0 1

]
,[

A− γ B
C D

]
=
[
δ 0
0 1

] [
1 0
C&D

]
×
([

α 0
0 1

]
−
[

A&B
0 0

])−1 [(β − αγ )/δ 0
0 1

]
.

(iii) The continuous time operator node S can be computed from the discrete
time generators

[
A B
C D

]
by means of either of the following two formulas:

S=
[

A&B
C&D

]
=
[

1/δ 0
0 1

] [
αA− β αB

C D

] [
A− γ B

0 1

]−1 [
δ 0
0 1

]
,[

A&B
C&D

]
−
[
α 0
0 0

]
=
[

(β − αγ )/δ 0
0 1

] [−1 0
C D

] [
A− γ B

0 1

]−1 [
δ 0
0 1

]
.

In particular, the main operator A, the control operator B, and the
observation operator C are given by

A = (αA− β)(A− γ )−1 = α − (β − αγ )(A− γ )−1,

B = δ−1(α − A|X )B, C = δC(A− γ )−1.

Proof All of this follows from some straightforward algebraic computations,
based on Lemma 4.7.18 and the definitions of A, B, C, and D. �

This lemma immediately implies the following result:
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Proposition 12.2.4 Let
[
A B
C D

] ∈ B([ X
U

]
,
[

X
Y

])
, where U, X, and Y are Banach

spaces. Then
[
A B
C D

]
is the linear fractional transform of an operator node

[
A&B
C&D

]
with parameters α, β, γ , and δ (where β − αγ �= 0 and δ �= 0) if and only if
A− γ is injective and has dense range.

Proof One direction is contained in Proposition 12.2.1. For the other direction
we use the formulas in part (iii) of Lemma 12.2.3 to define the operator node S
in terms of A, B, C , and D̂(α) = D, as in Lemma 4.7.6. The linear fractional
transform of S will then be

[
A B
C D

]
. �

Observe that we do not claim that S in Proposition 12.2.4 is always a system
node, i.e., we do not claim that A generates a C0 semigroup. Neither do we
claim that S is well-posed in any sense. This will, however, be the case under
some extra conditions, such as those given in Theorems 12.3.10 and 12.3.11.

Above we have presented the internal linear fractional transform as a trans-
formation mapping a continuous time system into a discrete time system. The
same transform can be used to map a discrete time system into another discrete
time system (and the formulas for the new generators remain the same). We have
already encountered one particular instance of this transform, namely the dis-
crete time time-inversion, which corresponds to the linear fractional transform
with z �→ 1/z (take α = 0, β = −1, γ = 0, and δ = 1). The same map is also
used in continuous time, where it is known as the reciprocal transform.

Let us take a closer look at to what extent the linear fractional transform
preserves the reachable and unobservable subspaces. However, before doing
so, let us observe that for a system with bounded generating operators, as far
as the reachable and unobservable subspaces are concerned, it does not matter
if we interpret this as a continuous time system or as a discrete time system.

Lemma 12.2.5 Let U, X, and Y be Banach spaces, and let
[

A B
C D

] ∈
B([ X

U

]
;
[

X
Y

])
. Then the continuous time system � = [A B

C D

]
with the gen-

erating operators
[

A B
C D

]
and the discrete time system Σ = [ A B

C D

]
with the

same generating operators
[

A B
C D

]
have the same reachable and unobservable

subspaces.

Proof By Definition 9.1.2, the unobservable subspace for � is N (C), and
analogously, the unobservable subspace for Σ is N (C). By the definition of
C, the latter is equal to

⋂∞
n=0 N (C An). That N (C) =⋂∞n=0 N (C An) follows

from Lemma 9.6.1(vi). The claim about the reachable subspaces is proved
analogously (replace Lemma 9.6.1(vi) by Lemma 9.6.3(vi)). �

Lemma 12.2.6 If α ∈ ρ∞(A), then the linear fractional transform presented
in Proposition 12.2.1 preserves the reachable and unobservable subspaces.
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Proof Writing A in the form A = γ + (β + αγ )(α − A)−1 we immediately
observe that, for all N = 1, 2, 3, . . .,

N−1⋂
n=0

N (CAn
) = N⋂

n=1

N (C(α − A)−n
)
,

N−1⋃
n=0

R (AnB
) = N⋃

n=1

R ((α − A)−n B
)
.

This, together with Lemmas 9.6.1(iv) and 9.6.3(iv) implies (as in the proof of
Lemma 12.2.5) that the two systems have the same reachable and unobservable
subspaces. �

The conclusion of Lemma 12.2.6 does not remain true without the assump-
tion that α ∈ ρ∞(A). The counterexample is the same which we gave for dis-
crete time time-inversion: letA = σ on �2(Z), let U = �2(Z+), and letB = π+;
then the original system is controllable but the time-inverted system is not (and
time-inversion is a special case of a linear fractional transform).

12.3 The Cayley and Laguerre transforms

There is one important special case of the linear fractional transform that we
shall take a closer look at, namely the (internal) Cayley transform. It is used
primarily in the L2-well-posed case where the input and output spaces are
Hilbert spaces. It is possible to apply this transform also to unstable systems,
but for simplicity, we mainly discuss the stable case (the unstable case can be
reduced to the stable case by an exponential shift, as explained in Example
2.3.5). We obtain the most complete correspondence between continuous and
discrete time in the case where the semigroup of the system is a contraction
semigroup in a Hilbert space, and for this reason we shall require the state space,
too, to be a Hilbert space.

The idea behind the Cayley transform is to map the input and output signal
spaces L2(R; U ) and L2(R; Y ) isometrically onto �2(R; U ) and �2(R; Y ), using
(rescaled versions of) Laguerre series. This is done in a causal way, so that
L2(R+) is mapped onto �2(Z+) and L2(R−) is mapped onto �2(Z−). We begin
by describing these transformations.

Theorem 12.3.1 Let U be a Hilbert space, and let α ∈ C+.

(i) The sequence of functions {ϕk}k∈Z defined via their bilateral Laplace
transforms through the relation

ϕ̂k(λ) =
√

2
α(α − λ)k

(α + λ)k+1
, λ ∈ jR,

is a complete orthonormal sequence in L2(R). Moreover, ϕk ∈ L2(R+)
for k ∈ Z+ and ϕk ∈ L2(R−) for k ∈ Z−, hence {ϕk}k∈Z+ is a complete
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orthonormal sequence in L2(R+) and {ϕk}k∈Z− is a complete
orthonormal sequence in L2(R−). Explicitly, for all k = 0, 1, 2, . . .,

ϕk(t) = (−1)k
√

2
α e−αt
k∑

i=0

(
k

i

)
(−2
α t)i

i!
, t ∈ R+,

ϕ−(k+1)(t) = (−1)k
√

2
α eαt
k∑

i=0

(
k

i

)
(2
α t)i

i!
, t ∈ R−.

(12.3.1)

(ii) The transformation which takes u ∈ L2(R; U ) into the sequence u = {uk}
where

uk =
∫

R

u(t)ϕk(t) dt

is a unitary transformation of L2(R; U ) onto �2(Z; U ), which maps
L2(R+; U ) onto �2(Z+; U ) and L2(R−; U ) onto �2(Z−; U ). The inverse
of this transformation is given by

u =
∑
k∈Z

ukϕk,

where the sum converges unconditionally (in norm) in L2(R; U ).
(iii) Let u, v ∈ L2(R; U ) and define u, v ∈ �2(Z; U ) as in (ii). Then∑

k∈Z
〈uk, vk〉 =

∫
R

〈u(t), v(t)〉 dt.

If instead v ∈ L2(R) (i.e., u is still vector-valued but v is scalar-valued),
then ∑

k∈Z
ukvk =

∫
R

u(t)v(t) dt.

(iv) If we let û be the (bilateral) Laplace transform of u and let û be the
Z-transform of u, where u and u are related as in (ii), then

û(λ) =
√

2
α
α + λ

û(z) = 1+ 1/z√
2
α û(z)

where z = α + λ

α − λ
and λ = αz − α

z + 1
.

This identity is always valid in the L2-sense for λ ∈ jR and z ∈ T. If
u ∈ L2(R+; U ), or equivalently, u ∈ �2(Z+; U ), then this identity is
valid, in addition, for all λ ∈ C+ and z ∈ D+, and if u ∈ L2(R−; U ), or
equivalently, u ∈ �2(Z−; U ), then this identity is valid, in addition, for all
λ ∈ C− and z ∈ D−.
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Proof As we observed in Section 12.1, the sequence {ek}k∈Z, where e j
k = 1

iff j = k, is a complete orthonormal sequence in �2(Z), and by restricting
the index set to either Z+ or Z− we get complete orthonormal sequences in
�2(Z+) and �2(Z−). The Z -transform maps ek onto the function êk(z) = z−k .
The sequence {z−k}k∈Z is a complete orthogonal sequence in L2(T), and it
becomes orthonormal if we divide each function by the constant

√
2π . By

restricting the index set to Z+ or Z− we get complete orthogonal sequences
in H 2(D+) and H 2(D−), respectively (these are the set of functions in L2(T)
which have analytic extensions to D+, respectively D−). By instead considering
sequences in �2(Z; U ) we get analogous results. The Z -transform is a bijection
of �2(Z; U ) onto L2(T; U ), of �2(Z+; U ) onto L2(D+; U ), and of �2(Z−; U )
onto L2(D−; U ), and it becomes a unitary operator if we divide it by the scalar√

2π .
The reversible change of variable from z to λ = (αz − α)/(z + 1) maps

z ∈ T onto λ ∈ jR, z ∈ D+ onto λ ∈ C+, and z ∈ D− onto λ ∈ C+. Formula
(12.1.6) shows that the transformation described in (iii) is a unitary map be-
tween L2(T; U ) and L2( jR; U ), which maps H 2(D+; U ) onto H 2(C+; U ) and
H 2(D+; U ) onto H 2(C+; U ). The images of the functions (êk)(z) = z−k (from
discrete to continuous time) under this transformation are the functions ϕ̂k listed
in (i).

The inverse Laplace transform becomes a unitary operator from L2( jR; U )
onto L2(R; U ) if we multiply it by the scalar constant

√
2π . Thus, starting

with a sequence {uk}k∈Z ∈ �2(Z; U ), we can first use the Z -transform to map it
onto a function û ∈ L2(T; U ), then use the change of variable described in (iii)
to map it onto a function û ∈ L2( jR; U ), and finally use the inverse Laplace
transform to map it onto a function u ∈ L2(R; U ). The resulting transformation
is unitary from �2(Z; U ) onto L2(R; U ), and it maps �2(Z+; U ) onto L2(R+; U )
and �2(Z−; U ) onto L2(R−; U ). The image of ek under the scalar-valued version
of this transformation is the function ϕk .

The formulas in (iii) are two different versions of the standard Parseval
identity, the first one for U -valued functions, and the second for the case when
one of the two functions is scalar-valued.

We get the formulas for the coefficients uk given in (ii) by using the second
formula in (iii) with v replaced by ϕk . The formula expressing u in terms of uk

is simply the transform of the identity u =∑k∈Z ukek .
We leave the verification of (12.3.1) to the reader. �

Definition 12.3.2 Below we use the notation of Theorem 12.3.1.

(i) We call u ∈ �2(Z; U ) in part (ii) of Theorem 12.3.1 the Laguerre
transform (with parameter α) of u ∈ L2(R; U ) and denote it by u = Lu.
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We call u the inverse Laguerre transform of u and denote it by
u = L−1u.

(ii) We call û ∈ L2(T; U ) in part (iv) of Theorem 12.3.1 the Cayley transform
(with parameter α) of û ∈ L2( jR; U ) and denote it by û = Cû. We call û
the inverse Cayley transform of û and denote it by û = C−1û.

Thus, the Cayley transform is the frequency domain version of the La-
guerre transform. The Laguerre transform is a unitary map from L2(R; U )
onto �2(Z; U ) which maps L2(R+; U ) onto �2(Z+; U ) and L2(R−; U ) onto
�2(Z−; U ), and the Cayley transform is a unitary map from L2( jR; U )
onto L2(T; U ) which maps H 2(C+; U ) onto H 2(D+; U ) and H 2(C−; U ) onto
H 2(D−; U ). This is true for all values of the free parameter α ∈ C+.

The discrete and continuous time shifts and projection operators behave as
follows under the Laguerre transform.

Theorem 12.3.3 Let σ be the bilateral discrete time left shift, let π− and π+

be the discrete time anti-causal and causal projections, let τ t be the bilateral
continuous time left shift, and let π− and π+ be the continuous time anti-causal
and causal projections.

(i) The Laguerre transform preserves causality in the sense that

π− = Lπ−L−1, π+ = Lπ+L−1.

(ii) The operator L−1σL is time-invariant and anti-causal, and it is given by

L−1σL = 2
α
(
α − d

ds

)−1
− 1,

where d
ds is the generator of τ . Thus, for all u ∈ L2(R; U ) and almost all

t ∈ R,

(L−1σLu)(t) = −u(t)+ 2
α
∫ ∞

t
eα(t−s)u(s) ds.

In the frequency domain this operator acts as multiplication by the
function z(λ) = (α + λ)/(α − λ), λ ∈ C.

(iii) The operator Lτ tL−1 is the discrete time time-invariant operator which
in the frequency domain acts as multiplication by z �→ eλ(z)t where
λ(z) = (αz − α)/(z + 1), z �= −1. It is anti-causal if t ≥ 0 and causal if
t ≤ 0.

(iv) The Laguerre transform preserves time-invariance in the sense that
D ∈ B(L2(R; U ); L2(R; Y )) is time-invariant (in continuous time) if and
only if D = LDL−1 ∈ B(�2(Z; U ); �2(Z; Y )) is time-invariant (in discrete
time). If, in addition, D is causal, then the transfer functions D̂ of D and
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D̂ of D are related as follows:

D̂(λ) = D̂(z) for all z = α + λ

α − λ
∈ D+

and all λ = αz − α

z + 1
∈ C+.

Proof (i) This is obvious (the (causal) basis functions ϕk , k ∈ Z+, for L2(R+)
are mapped onto the (causal) basis functions ek , k ∈ Z+ of �(Z+), and the (anti-
causal) basis functionsϕk , k ∈ Z−, for L2(R−) are mapped onto the (anti-causal)
basis functions ek , k ∈ Z− of �(Z+)).

(ii) The anti-causality of L−1σL follows from (i) and the anti-causality
of σ.

Let u ∈ �2(Z; U ), and denote u ∈ L−1u. Then (as is easily seen) σ̂u(z) =
zû(z) for almost all z ∈ T, so by Theorem 12.3.1(iv), the bilateral Laplace
transform of L−1σu is given by λ �→ z(λ)û(z(λ)) = z(λ)û(λ), 
λ = 0, where
z(λ) = (α + λ)/(α − λ) = 2
α(α − λ)−1 − 1. If u ∈ L1 ∩ L2(R; U ), then, by
Proposition 3.13.3(i), this is also the Laplace transform of 2
α(α − d

ds

)−1
u −

u, so

L−1σu = 2
α
(
α − d

ds

)−1

u − u.

By the density of L1 ∩ L2(R; U ) in L2(R; U ), the same identity must be true
for all u ∈ �2(Z; U ). In particular, L−1σL is time-invariant (since d

ds is the
generator of the bilateral shift; cf. Theorem 3.2.9(iv)).

(iii) That Lτ tL−1 is time-invariant and anti-causal or causal depending on
the value of t follows from (i) and (iv) and the corresponding properties of τ t

(the proof of (iv) does not use (iii)). If u ∈ L1(R; U ), then by Proposition
3.13.1(i), the Laplace transform of τ t u is the function λ �→ eλt û(λ), so by The-
orem 12.3.1(iv), the Z -transform of Lτ t u is the function z �→ eλ(z))t û(λ(z)) =
eλ(z)t û(z), where u = Lu. Since L1 ∩ L2(R; U ) is dense in L2(R; U ), the same
identity must be true (in the L2-sense) for all u ∈ L2(R; U ).

(iv) Clearly, LDL−1 commutes with σ if and only if D commutes with
L−1σL, so to prove (iv) we must show that D is time-invariant if and only if
D commutes with L−1σL.1 By (ii) the latter statement is true if and only if D

1 Strictly speaking, LDL−1 does not ‘commute with σ’ but it intertwines a left-shift σ in the
input space U with a left shift σ in the output space Y , and these can be of different multiplicity
if U and Y have different dimensions (we use the same notation for both of these shifts.)
Likewise, in (iv) L and τ t stand for two different Laguerre transforms and shifts, one of them
defined on L2(R; U ) and the other on L2(R; Y ). This has, of course, to do with the general
definition of time-invariance: a time-invariant operator intertwines a shift in the input space U
with a shift in the output space Y .
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commutes with
(
α − d

ds

)−1
, and by Theorem 3.14.15, this is true if and only if

D commutes with τ t for all t ∈ R.
To prove the last claim about the transfer functions we take an arbitrary

u ∈ L2(R+; U ), and let u = Lu be the corresponding discrete time signal. By
Theorem 12.3.1(iv), for λ ∈ C+ and z ∈ D+ which are related as described in
the theorem,

D̂u(z) = L̂Du(z) = α + λ√
2
α D̂u(λ) = α + λ√

2
α D̂(λ)û(λ) = D̂(λ)û(z).

Thus, D̂(z) = D̂(λ). �

Definition 12.3.4 The operator L−1σL in Theorem 12.3.3 is called the
Laguerre shift.

The (internal) Cayley transform can be interpreted as a special case of the
internal linear fractional transform presented in Proposition 12.2.1, with param-
eters
α > 0,β = α,γ = −1, and δ = √2
α. This particular set of parameters
α, β and γ give a linear fractional transform which maps the right half-plane
C+ is mapped onto the exterior D+ of the unit disk.2 Let us establish some
additional properties of the linear fractional transform in Proposition 12.2.1
with this special set of parameters.

Theorem 12.3.5 Let � = [A B

C D

]
be an L2-well-posed linear system on

(Y, X,U ), where Y and U are Hilbert spaces, with system node S = [ A&B
C&D

]
,

control operator C, transfer function D̂, and growth rate ωA. Let α >

max{0, ωA}, and let Σ = [ A B

C D

]
be the discrete time system on (Y, X,U ) (in

input/output form) whose generating operators are

A = (α + A)(α − A)−1, B =
√

2
α (α − A|X )−1 B,

C =
√

2
α C(α − A)−1, D = D̂(α).

Then B, C, or D is bounded if and only if B, C, or D is bounded, respectively,
in which case

B = BL−1, C = LC, D = LDL−1,

whereL−1 stands for the inverse Laguerre transform from �2(Z; U ) to L2(R; U )
and L stands for the Laguerre transform from L2(R; Y ) to �2(Z; Y ). Moreover,

D̂(z) = D̂(λ), z = α + λ

α − λ
, λ = αz − α

z + 1
, λ ∈ ρ(A), z ∈ ρ(A).

2 We have normalized the parameters in the Cayley transform so that the point at infinity in
continuous time is mapped to the point −1 in discrete time. Here the point −1 could be
replaced by any other point on the unit circle T without any significant consequences.
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Thus, B is unitarily similar to B, C is unitarily similar to C, and D is unitarily
similar to D, whenever these operators are bounded.

Proof The formulas for
[
A B
C D

]
and D̂ are found in Proposition 12.2.1 (take


α > 0, β = α, γ = −1, and δ = √2
α).
Suppose that D is bounded. By Theorem 12.3.3(i) and (iv) and Proposition

12.2.1, LDL−1 is a bounded discrete time time-invariant causal operator which
has the same transfer function as the input/output map D of the given discrete
time system. Thus D = LDL−1. In particular, D is bounded.

Conversely, suppose that D is bounded. Then, by the discrete time analogue
of Theorem 10.3.5, D̂ has an analytic bounded extension to D+ (the outside of
the unit disk), including the point at infinity. The mapping from z to λ in the
formula D̂(z) = D̂(λ) maps D+ onto C+, and this means that D̂ can be extended
to a function in H∞(U ; Y ). By Theorem 10.3.5, D is bounded.

Assume next that B is bounded. To prove that B = BL−1 it suffices to
show that, with the notation of Theorem 12.3.1, for all k ∈ Z− and u ∈ U ,
Beku = BL−1eku = Bϕku, since the set of linear combinations of functions
of this type is dense in �2(Z−; U ). By Theorem 3.12.6, for these k and u (see
also Section 3.9 and recall that k < 0)

Bϕku =
∫ 0

−∞
ϕk(t)A−t

|X−1
Bu dt = ϕ̂k(A|X )Bu

=
√

2
α (α + A|X )−k−1(α − A|X )k Bu = A−k−1Bu = Beku.

This proves that B = BL−1. In particular, B is bounded.
Actually, in the above computation we did not really use the boundedness

of B. More precisely, B can be applied to ϕku and the preceding computation
is valid since B ∈ B(L2

ω(R−,U ); X ) for every ω > ωA (we assumed that α >

ωA, and ϕku ∈ L2
ω(R−,U ) for every ω < α; take ωA < ω < α). The same

computation, carried out in the reverse direction, shows that for all k ∈ Z−

and u ∈ U , Beku = BL−1eku = Bϕku. By linearity, for all finitely supported
sequences u we have Bu = BL−1u. Since B is bounded, L is unitary, and the
set of all finitely supported sequences is dense in �2(Z−; U ), this implies that
B is bounded.

Finally, assume that C is bounded. To prove that C = LC it suffices to show
that, with the same notation as above, for all k ∈ Z+ and x ∈ X1, (Cx)k =
(LCx)k . By Definition 12.3.2 and Corollary 3.12.7, we have for these k and x ,

(LCx)k =
∫ ∞

0
ϕk(t) CAt x dt = C ϕ̂(−A)x

=
√

2
α C(α + A)k(α − A)−k−1x = CAk x = (Cx)k .

In particular, C is bounded.
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We leave the proof that boundedness of C implies boundedness of C to the
reader (it is analogous to the corresponding proof for the input maps). �

Definition 12.3.6 The discrete time system
[

A B

C D

]
in Theorem 12.3.5 is called

the (internal) Cayley transform (with parameter α) of the continuous time sys-
tem
[A B

C D

]
. The operator A = (α + A)(α − A)−1 is called the co-generator of

A (with parameter α).

Theorem 12.3.5 has the following partial converse:

Theorem 12.3.7 Let Σ = [ A B

C D

]
be a discrete time �2-well-posed linear sys-

tem on (Y, X,U ), where Y and U are Hilbert spaces, with generating operators[
A B
C D

]
, and let α ∈ C+. Suppose that B, C and D are stable, that −1 is not an

eigenvalue of A, and that

A = (αA− α)(A+ 1)−1[= α − 2
α(A+ 1)−1],

with D (A) = R (A+ 1), is the generator of a semigroup A with growth rate
ωA < 
α. Then� = [A B

C D

]
is a continuous time L2-well-posed linear system,

where

B = BL, C = L−1C, D = L−1DL;

here L stands for the Laguerre transform from L2(R; U ) to �2(Z; U ) and L−1

stands for the inverse Laguerre transform from �2(Z; Y ) to L2(R; Y ). In partic-
ular, B, C, and D are stable. The Cayley transform of � is Σ, and the system
node of � is[

A&B
C&D

]
=
[

1/
√

2
α 0
0 1

] [
αA− α αB

C D

] [
A+ 1 B

0 1

]−1 [√
2
α 0
0 1

]
.

The control operator B, observation operator C, and the transfer function of
� are given by

B = 1/
√

2
α (α − A|X )B,

C =
√

2
αC(A+ 1)−1,

D̂(λ) = D̂
(α + λ

α − λ

)
, λ ∈ ρ(A).

Proof The stability of B, C, and D is obvious. Thus, to show that � is an
L2-well-posed linear system it suffices to verify the algebraic conditions in
Definition 2.2.1. We assume condition (i), so only the remaining three conditions
(ii)–(iv) need to be checked.

We begin with the conditions satisfied by D. By Theorem 12.3.3, D is a
causal time-invariant L2-bounded operator. By the same theorem, the Hankel
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of D is given by

π+Dπ− = L−1π−LL−1DLL−1π+L = L−1π−Dπ+L = L−1CBL = CB.

Thus, part (iv) of Definition 2.2.1 is true.
Let us next check part (ii), i.e., the intertwining condition Bτ t

− = AtB for all
t ≥ 0. By Theorem 3.14.15 and Example 3.2.3(iii), this condition is true if and
only if B

(
α − d

dx −
)−1 = (α − A)−1B. By Example 3.3.2(iii) and Theorems

3.12.9 and 12.3.3(ii),

2
αB
(
α − d

dx −

)−1
= B(L−1σL+ 1) = BσLu +B

= ABLu +B = (A+ 1)B = 2
α(α − A)−1B.

Dividing this by 2
α we get B
(
α − d

dx −
)−1 = (α − A)−1B, and hence Bτ t

− =
AtB for all t ≥ 0.

A completely analogous proof shows that CAt = τ t
+C for all t ≥ 0.

Thus, according to Definitions 2.2.1 and 8.1.1, � is an L2-well-posed linear
system.

By Theorem 12.3.5 and Definition 12.3.6, Σ is the Cayley transform of �.
We get the formulas for the system operator of � and the different parts of this
operator from Lemma 12.2.3(iii). �

By combining Theorems 12.3.5 and 12.3.7 with an exponential shift of the
continuous time system (see Example 2.3.5) we get the following two results.

Corollary 12.3.8 Let � = [A B

C D

]
be an L2-well-posed linear system on

(Y, X,U ), where Y and U are Hilbert spaces, with system node S = [ A&B
C&D

]
,

control operator C, transfer function D̂, and growth rate ωA. Let ω ∈ R,

α > max{ω,ωA}, and letΣ = [ A B

C D

]
be the discrete time system on (Y, X,U )

(in input/output form) whose generating operators are

A = (α − 2ω + A)(α − A)−1, B =
√

2
(α − ω) (α − A|X )−1 B,

C =
√

2
(α − ω) C(α − A)−1, D = D̂(α).

If B, C, and D are ω-bounded, then

B = BeωL−1, C = Le−ωC, D = Le−ωDeωL−1,

where eω stands for multiplication by the function t �→ eωt (t ∈ R), L−1 stands
for the inverse Laguerre transform from �2(Z; U ) to L2(R; U ) and L stands for
the Laguerre transform from L2(R; Y ) to �2(Z; Y ). In particular, B, C, and D

are stable. Moreover,

D̂(z) = D̂(λ), z = α − 2ω + λ

α − λ
, λ ∈ C+ω , z ∈ D+.
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To prove this corollary we first use Example 2.3.5 to map � into a system
�−ω whose input, output, and input/output maps are stable, then apply Theorem
12.3.5 to map this system into discrete time, and finally replace α + ω by α.
Observe that the linear fractional transform λ �→ z(λ) = (α − 2ω + λ)/(α − λ)
maps the line 
λ = ω onto the unit circle |z| = 1, C+ω onto D+, and C−ω onto
C−.

The proof of the next corollary is analogous, except that we replace Theorem
12.3.5 by 12.3.7.

Corollary 12.3.9 Let Σ = [ A B

C D

]
be a discrete time �2-well-posed linear sys-

tem on (Y, X,U ), where Y and U are Hilbert spaces, with generating operators[
A B
C D

]
, let ω ∈ R, and let α ∈ C+ω . Suppose that B, C and D are stable, that−1

is not an eigenvalue of A, and that

A = α − 2
(α − ω)(A+ 1)−1,

with D (A) = R (A+ 1) is the generator of a semigroup A with growth rate
ωA < 
α. Then� = [A B

C D

]
is a continuous time L2-well-posed linear system,

where

B = BLe−ω, C = eωL−1C, D = eωL−1DLe−ω;

here eω stands for the multiplication operator by the function t �→ eαt , t ∈ R,
L stands for the Laguerre transform from L2(R; U ) to �2(Z; U ) and L−1 stands
for the inverse Laguerre transform from �2(Z; Y ) to L2(R; Y ). In particular, B,
C, and D are ω-bounded. If we transform this system as described in Corollary
12.3.8 then we recover Σ. The control operator B, observation operator C,
and combined observation/feedthrough operator C&D of � are given by

B = 1/
√

2
(α − ω) (α − A|X )B,

C =
√

2
(α − ω)C(A+ 1)−1,

C&D = [C D
] [A+ 1 B

0 1

]−1 [√
2
(α − ω) 0

0 1

]
.

Theorems 12.3.5 and 12.3.7 and Corollaries 12.3.8 and 12.3.9 give useful
information on how the stability orω-boundedness of the continuous time input
map, the output map, and the input/output map is reflected in the boundedness
of the corresponding discrete time maps, but they do not say anything specific
about how the stability or ω-boundedness of the continuous time semigroup is
reflected in the boundedness of the powers of the co-generator. Actually, there
seems to be no simple general connection.3 However, there is one exception,

3 Of course, we can map the resolvent conditions in the Hille–Yosida Theorem 3.4.1 into discrete
time, but the resulting conditions do not seem to be very informative.
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namely the case where e−ωtAt is a contraction semigroup on a Hilbert space.
This is the content of the following theorem. For simplicity we treat only the case
where ω = 0, and leave the (easy) conversion to the case ω �= 0 to the reader.

Theorem 12.3.10 Let X be a Hilbert space, and let α ∈ C+.

(i) Let A be the generator of a contraction semigroup A on X. Then the
co-generator A = (α + A)(α − A)−1 is a contraction, and −1 is not an
eigenvalue of A.

(ii) Conversely, let A be a contraction on X which does not have −1 as an
eigenvalue. Then A = (αA + α)(A+ 1)−1 is the generator of a
contraction semigroup, and A is its co-generator, i.e.,
A = (α + A)(α − A)−1.

(iii) Let A and A be related as in (i)–(ii). Then
(a) A closed subspace of X is invariant or co-invariant under A if and

only if it is invariant or co-invariant under A.
(b) A is isometric, or co-isometric, or unitary if and only if A has the

same property.
(c) A is completely non-unitary if and only if A is completely

non-unitary.
(d) A is strongly stable if and only if A is strongly stable.
(e) A∗ is strongly stable if and only if A∗ is strongly stable.

Proof Parts (i) and (ii) are contained in Theorem 3.4.9. Thus, at this point we
only need to prove (iii).

(a) See Theorem 3.14.4 (and recall that α ∈ ρ∞(A)) for the invariance. The
co-invariance claim follows from this by duality.

(b) In the isometric case this is a special case of the equivalence of (i) and
(viii) in Theorem 11.2.5 (take U = Y = 0, so that the input and output are
absent). The co-isometric and unitary cases follow from this by duality.

(c) This follows from (a) and (b).
(d) Let � = [A

C

]
be an (scattering) energy preserving system on (Y, X, 0)

constructed in Theorem 11.4.5. Then, by Theorem 11.3.4, A is strongly sta-
ble if and only if C∗C = 1. Let Σ = [ A

C

]
be the corresponding Cayley trans-

formed system. Then, by Theorem 12.3.5, C∗C = C∗C (since L is unitary),
hence C∗C = 1 if and only if A is strongly stable. By the discrete time version
of Theorem 11.3.4 (the proof of this theorem is exactly the same in discrete
time), this is equivalent to the strong stability of A, or equivalently, of A.

(e) This follows from (d) by duality. �

As we remarked at the end of Section 12.1, the theory presented in Chapter
11 on (scattering) passive and conservative systems has a discrete time ana-
logue, which can be developed by simply repeating the proofs given there, but
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working in discrete time instead of continuous time. An alternative way to de-
rive this theory would be to use the Cayley transform, which provides us with
an almost one-to-one correspondence between a continuous time and a discrete
time passive system. The only difference is that the discrete time systems that
we get through the Cayley transform have the property that−1 is not an eigen-
value of the main operator. We have listed some of the properties which are
conserved under the Cayley transform in the following theorem.

Theorem 12.3.11 Let U, X, and Y be Hilbert spaces, let � = [A B

C D

]
be a

bounded L2-well-posed system on (Y, X,U ), let α ∈ C+, and let Σ = [ A B

C D

]
be the corresponding Cayley transformed system. Then the following claims
are true.

(i) The reachable and unobservable subspaces of � and Σ are the same.
(ii) Σ is (scattering) passive if and only if � is (scattering) passive. In this

case the deficiency operators of the two systems are the same (the
continuous time deficiency operators are defined in Theorem 11.1.6, and
the discrete time deficiency operators are defined in the analogous way).
In particular, Σ is energy preserving, or co-energy preserving, or
conservative, or simple, or semi-lossless, or co-lossless, or lossless, or
strongly stable, or strongly co-stable if and only if � has the same property.

Proof (i) This follows from Lemma 12.2.6 (the boundedness of � implies that
C+ ⊂ ρ∞(A), hence α ∈ ρ∞(A)).

(ii) That passivity, energy preservation, co-energy preservation, and con-
servativity are preserved follows from Definition 11.2.1 and Theorems 11.1.5

and 11.2.5 (note that the quadruple of operators
[
A(α) B(α)
C(α) D(α)

]
appearing in these

theorems are exactly the generators of the Cayley transformed system). That
semi-losslessness, co-losslessness, and losslessness are preserved follows from
Proposition 11.3.2, and that strong stability and strong co-stability are preserved
follows from Theorem 12.3.10.

It remains to prove that the deficiency operators are the same. We start
by showing that, in the notation of Theorem 11.1.6, QA∗,A = QA∗,A, i.e., that
limt→∞ A∗tAt = limn→∞ A∗nAn . To do this we ignore the input part of the
original system �, and replace C temporarily by the output map C1 given in

Theorem 11.4.5 which makes
[

A

C1

]
energy preserving, and look at the corre-

sponding Cayley transformed system
[

A

C1

]
. By Theorem 12.3.5, C∗1C1 = C∗1C1

(since L is unitary), and by Theorem 11.2.9 and its discrete time counterpart,

QA∗,A+ C∗1C1 = 1 = QA∗,A + C∗1C1.

Thus, QA∗,A = QA∗,A.



12.4 The reciprocal transform 719

The same argument can be used to show that
[

QA∗ ,A QA∗ ,B
QB∗ ,A QB∗ ,B

]
coincides with

its discrete time counterpart. To do this we ignore the output part of the system,
and look at the Lax–Phillips semigroup

Tt =
[
At Bt

0

0 τ t
+

]
induced by

[
A B

]
on
[

X
L2(R+;U )

]
(the output part of this semigroup is absent).

By Lemma 11.1.4(vi), T is a contraction semigroup. Clearly

T∗tTt =
[

A∗t

(Bt
0)∗

] [
At Bt

0

]+ [0 0
0 π[t,∞)

]
.

Letting t →∞ we get[
QA∗,A QA∗,B

QB∗,A QB∗,B

]
= lim

t→∞T∗tTt .

The corresponding result is also true in discrete time (we leave it to the reader to
check that the Cayley transform of the Lax–Phillips system is the Lax–Phillips
system induced by the Cayley transform). We have just seen that QA∗,A = QA∗,A

(whenever A is a contraction semigroup), and by applying this result with A

replaced by T we find that
[

QA∗ ,A QA∗ ,B
QB∗ ,A QB∗ ,B

]
=
[

QA∗ ,A QA∗ ,B
QB∗ ,A QB∗ ,B

]
.

That also the adjoint deficiency operators for the two systems coincide fol-
lows by duality. �

12.4 The reciprocal transform

Another important linear fractional transform is the reciprocal transform, which
corresponds to the linear fractional transform z �→ 1/z. We have already en-
countered it in Section 12.1, where we interpreted it as the time-inversion of a
discrete time system. This interpretation is related to the fact that the mapping
λ �→ 1/λmaps the outside D+ of the unit disk one-to-one onto the inside D− of
the unit disk. However, the same transform also maps the right half-plane C+

one-to-one onto itself, and this makes it possible to alternatively interpret this
as a transform which maps a continuous time system into another continuous
time system. It is in this context that the name ‘reciprocal transform’ has been
used lately.4

Since much of the theory is very similar to the theory of the Cayley transform,
we shall be rather brief at this point.

4 Instead of using the transform λ �→ 1/λ one may equally well use the transform
λ �→ 1/(λ− jα) for some fixed jα ∈ jR, α �= 0. The inverse transform is then given by
z �→ 1/z + jα.
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Lemma 12.4.1 Let U and Y be Hilbert spaces.

(i) The operator R which takes u ∈ L2(R; U ) into the inverse Laplace
transform of the function λ �→ 1

λ
û( 1

λ
) is a unitary map of L2(R; U ) onto

itself. (An equivalent way of writing this is that R̂u(λ) = 1
λ

û( 1
λ

).) It is
causal in the sense that it maps L2(R+; U ) and L2(R−; U ) onto
themselves. Moreover, R2 = 1.

(ii) If D ∈ TI2(U ; Y ), then the operator D↓ := RDR is also in TI2(U ; Y )
(i.e., it is time-invariant and bounded from L2(R; U ) to L2(R; Y )). If
D ∈ TIC2(U ; Y ), then D↓ ∈ TIC2(U ; Y ).

Proof (i) The Laplace transform is a unitary map of L2(R+; U ) onto H 2(U ), of
L2(R+; U ) onto H 2 over C− with values in U , and of L2(R; U ) onto L2( jR; U )
(after we divide the norm in H 2 by

√
2π ; see Theorem 10.3.4). Therefore, it

suffices that the map which takes û into the function λ �→ 1
λ

û( 1
λ

) is a unitary
map of H 2(U ) onto itself, of H 2 over C− with values in U onto itself, and of
L2( jR; U ) onto itself. But this is more or less obvious.

(ii) Clearly D↓ is bounded. To show that D↓ is time-invariant it suffices to
show that it commutes with the Laguerre shift µ := L−1σL (see the proof of
part (iv) of Theorem 12.3.3). Let us choose the parameter α in the definition
of the Laguerre shift to be real. Then it follows from Theorem 12.4.3 below
that µR = −Rµ. We know that µ commutes with D since D is time-invariant.
Thus,

D↓µ = RDRµ = −RDµR = −RµDR = µRDR = µD↓.

This proves that D↓ is time-invariant. �

Definition 12.4.2 We call the operator R defined in Lemma 12.4.1 the recip-
rocal transform on L2(R; U ).

The reciprocal transform on L2(R; U ) can easily be expressed in terms of
the Laguerre basis in Theorem 12.3.1 as follows.

Theorem 12.4.3 Let α = |α|e jθ ∈ C+ and u ∈ L2(R+; U ), and expand u
into the (orthogonal) Laguerre series u =∑∞k=0 akϕα,k (where the subindex
α stands for the parameter α used in the definition of the Laguerre functions
in Theorem 12.3.1). Then the coefficients bk in the Laguerre expansion
Ru =∑∞k=0 bkϕ1/α,k of Ru (note that we here use the Laguerre functions with
parameter 1/α) is given by

bk = (−1)ke(2k+1) jθak .

In particular, |bk | = |ak |.
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If we take take α to be real, then θ = 0, and

bk = (−1)kak, k = 0, 1, 2, . . .

for all k. If, in addition, α = 1, then both expansions use the same Laguerre
functions.

Proof To prove this result it suffices to prove that

Rϕα,k = (−1)ke(2k+1) jθϕ1/α,k

(since both {ϕα,k}∞k=0 and {ϕ1/α,k}∞k=0 are orthogonal bases in L2(R+; U )). This is
a simple algebraic manipulation based on the explicit formulas for the Laplace
transforms of the Laguerre functions given in Theorem 12.3.1, and we leave
this to the reader. �

In our presentation of the fractional linear transform in Section 12.2 we
throughout assumed that α ∈ ρ(A), where A is the main operator of the system
and α is the point which gets mapped into infinity. The reason for this was that
we wanted the generators of the transformed system to be bounded, which is
a natural requirement if we want to interpret the new system as a discrete time
system. In the case of the reciprocal transform we shall interpret the transformed
system as a continuous time system, and it is possible to allow the generators to
be unbounded, as long as the formal transform of the original system node is a
system node. However, let us begin with the simplest case, where the generators
of the transformed system are bounded.

Definition 12.4.4 Let � = [A B

C D

]
be an L2-well-posed linear system on

(Y, X,U ) with main operator A, control operator B, observation operator C ,
and transfer function D. Suppose that 0 ∈ ρ(A). Then the system�↓ generated
by the bounded operators

S↓ =
[

A↓ B↓

C↓ D↓

]
:=
[

A−1 −A−1
|X B

C A−1 D̂(0)

]
is called the reciprocal transform of �.

Since this is a special case of the linear fractional transform (with α = 0,
β = −1, γ = 0, and δ = 1), we can immediately say something about the
reciprocal system.

Lemma 12.4.5 Let � = [A B

C D

]
be an L2-well-posed linear system on the

Hilbert spaces (Y, X,U ), with main operator A and transfer function D̂. As-

sume that 0 ∈ ρ(A), and denote the reciprocal system by �↓ =
[

A↓ B↓

C↓ D↓

]
, its

generating operators by
[

A↓ B↓

C↓ D↓

]
, and its transfer function by D̂↓.
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(i) ρ(A↓) = 1/ρ(A) ∪ {0} if A is bounded, ρ(A↓) = 1/ρ(A) if A is
unbounded, and D̂↓(λ) = D̂( 1

λ
) for all λ ∈ ρ(A↓) (where we interpret

1/0 = ∞).
(ii) If 0 ∈ ρ∞(A), then �↓ has the same reachable and unobservable

subspaces as �.
(iii) B, C, or D is bounded if and only if B↓, C↓, or D↓ is bounded,

respectively, in which case

B↓ = BR, C↓ = −RC, D↓ = RDR.
Proof (i)–(ii) This follows from Proposition 12.2.1.

(iii) Let us begin this time with the claim about the output maps. Take
ω > max{ωA, ωA↓}. Then, for all x ∈ X and all λ ∈ C+ω ,

(λ− A)−1Cx = −1

λ

(1

λ
− A−1

)−1
A−1Cx = −1

λ

(1

λ
− A↓

)−1
C↓x .

The left-hand side has an analytic extension to a function in H 2(C+; U ) if and
only if C is bounded. Let us denote this extension by −ŷ. Then also the the
function λ �→ 1

λ
ŷ( 1

λ
) belongs to H 2(C+; U ), and

λ �→ 1

λ
ŷ
(1

λ

)
= (λ− A↓)−1C↓x

whenever 1
λ
∈ C+ω . Thus, the function (λ− A↓)−1C↓x has an analytic extension

to a function in H 2(C+; U ). This implies that C↓ is bounded. Furthermore,
it follows from the above computation that C↓x = −RCx . The proof of the
fact that boundedness of C↓ implies boundedness of C is essentially the same
(interchange the roles of C and C↓).

That B is bounded if and only if B↓ is bounded, and that B↓ = BR can be
proved in a similar way (or it can be derived from the above result by duality).

This only leaves the two input/output maps D and D↓. Again take ω >

max{ωA, ωA↓}. Then by (i), for all λ ∈ C+ω , D̂↓(λ) = D̂( 1
λ

). By Theorem 10.3.5,
D is bounded if and only if D̂ can be extended to a function in H∞(U ; Y ),
whereas D↓ is bounded if and only if D̂↓ can be extended to a function in
H∞(U ; Y ). The proof of the equivalence of these two conditions is essentially
the same one which we gave for the two output maps C and C↓. Also the identity
D↓ = RDR follows immediately. �

To treat the more general case where the generators of the transformed system
are allowed to be unbounded we can use the same method as in Theorem 12.3.7
and assume that B, C, and D are bounded.

Theorem 12.4.6 Let � = [A B

C D

]
be an L2-well-posed linear system on

(Y, X,U ), where Y and U are Hilbert spaces, with main operator A. Suppose
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that A is injective, that A−1 is the generator of a C0 semigroup A↓, and that B,

C and D are stable. Then �↓ =
[

A↓ B↓

C↓ D↓

]
is a continuous time L2-well-posed

linear system, where

B↓ = BR, C↓ = −RC, D↓ = RDR;

here R is the reciprocal transform on L2(R; U ) or L2(R; Y ). In particular, B↓,
C↓, and D↓ are stable. The transfer function of � is

D̂↓(λ) = D̂
(1

λ

)
, λ ∈ ρ(A) ∩ ρ(A↓).

If A ∈ B(X ), then this system coincides with the one in Definition 12.4.4.

It is possible to prove this theorem directly by imitating the proof of Theorem
12.3.7, but to save some space we instead reduce it to a special case of that
theorem.

Proof Choose some real α > max{0, ωA}, and let Σ = [ A B

C D

]
be the Cayley

transform of� with generating operators
[
A B
C D

]
. By Theorem 12.3.5, B, C, and

D are bounded. Let us apply the linear fractional transform to this system which
maps z �→ −z (this particular transformation is not among the ones listed in
Proposition 12.2.1, but it has the same type of properties as those listed there;
in particular, it preserves controllability and observability since A is bounded).
That is, we replace

[
A B
C D

]
by
[ −A B
−C D

]
. Let us denote the corresponding system

by Σ̃ =
[

Ã B̃

C̃ D̃

]
. We obtain B̃ and C̃ from B and C by simply changing the sign

of every second term, so B̃ and C̃ are bounded. The transfer functions satisfŷ̃
D(z) = D̂(−z), and it follows from the discrete time analogue of Theorem
10.3.5 (with C+ replaced by D+) that D̃ is bounded.

The next (and final) step is to apply the inverse Cayley transform with param-
eter 1/α to Σ̃. For this to be possible we need to know that 1− A is injective,
and that 1/α − 2/α(1− A)−1 generates a C0 semigroup. That

1− A = 1− (α + A)(α − A)−1 = −2A(α − A)−1

follows from our assumptions that α ∈ ρ(A) and A is injective, and

1

α
− 2

α
(1− A)−1 = 1

α

(
1+ (α − A)A−1

)
= A−1

was explicitly assumed to generate a C0 semigroup. Thus, by Theorem 12.3.7,
the inverse Cayley transform is an L2-well-posed linear system. We denote this

system by �↓ =
[

A↓ B↓

C↓ D↓

]
.

We claim that the system which we have obtained has all the properties listed
in Theorem 12.4.6. We already know that the main operator is A−1, and we also
know from Theorem 12.3.7 that B↓, C↓, and D↓ are stable. That B↓ = BR,
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C↓ = −RC, and D↓ = RDR follows from Theorems 12.3.7 and 12.4.3. In
particular, if A ∈ B(X ), then by Lemma 12.4.5(iii), this is the same system as
in Definition 12.4.4. The formula for the transform function can be proved by
tracing the three separate transforms:

D̂↓(λ) = ̂̃D(1/α + λ

1/α − λ

)
= D̂
(λ+ 1/α

λ− 1/α

)
= D̂
(α + 1/λ

α − 1/λ

)
= D̂

(1

λ

)
.

�

Definition 12.4.7 In the sequel we shall also refer to the system�↓ in Theorem
12.4.6 as the reciprocal transform of � (cf. Definition 12.4.4).

Theorem 12.4.6 does not yet contain a statement about the connection be-

tween the system node S = [ A&B
C&D

]
of � and the system node S↓ =

[
[A&B]↓

[C&D]↓

]
of �↓. A formal computation (based on Definition 12.4.4) indicates that we
ought to have [

A&B
C&D

]
=
[

1 0
[C&D]↓

] [
[A&B]↓

0 1

]−1

(on D (S)), (12.4.1)[
[A&B]↓

[C&D]↓

]
=
[

1 0
C&D

] [
A&B
0 1

]−1

(on D (S↓)). (12.4.2)

Indeed, the latter of these does define an operator node S↓ =
[

[A&B]↓

[C&D]↓

]
under

very natural assumptions.

Lemma 12.4.8 Let S = [ A&B
C&D

]
be an operator node on the Banach spaces

(Y, X,U ), with main operator A. If A is injective and has dense range, then

formula (12.4.2) defines an operator node S↓ =
[

[A&B]↓

[C&D]↓

]
. The operator

[
A&B
0 1

]
maps D (S) one-to-one onto D (S↓). The main operator A↓ of S↓ is injective
and has dense range, and S can be recovered from S↓ by formula (12.4.1). The
operator node S↓ is bounded if and only if 0 ∈ ρ(A), in which case it coincides
with the system node in Definition 12.4.4

Proof Our proof is based on Lemma 4.7.7, so we have to verify the assumptions
(i)–(iv) of that lemma.

We begin by showing that S↓ is closed with D (S↓) = R ([ A&B
0 1

])
. By

Lemma 4.7.3, the operator A&B is closed, and this implies that also
[

A&B
0 1

]
is closed. It is injective since we assume A to be injective. Its inverse is
closed (since

[
A&B
0 1

]
itself is closed). Let R ([ A&B

0 1

]) ⊃ [ xn
un

]→ [ x
u

]
in
[

X
U

]
,

and suppose that
[ zn

yn

]
:= S↓

[
x
u

]→ [ z
y
]

in
[

X
Y

]
. Then

[ zn
un

] = [ A&B
0 1

]−1 [ xn
un

]
,

and
[ zn

yn

] = [ 1 0
C&D

] [ zn
un

]
. Therefore

[ zn
yn

]→ [ z
u

]
(since

[
A&B
0 1

]−1
is closed), and

yn → C&D
[

z
u

]
since C&D is continuous with respect to the graph norm of
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A&B (see Lemma 4.7.3(v) and (ix)). Thus
[

x
u

] = [ A&B
0 1

] [
z
u

] ∈ R ([ A&B
0 1

]) =
D (S↓) and

[ z
y
] = [ 1 0

C&D

] [
z
u

]
, y = C&D

[
z
u

]
,
[ z

y
] = S↓

[
x
u

]
. This proves that

S↓ is closed.
It follows from (12.4.2) that

[
[A&B]↓

0 1

] = [ A&B
0 1

]−1
. In particular, this implies

that
[

[A&B]↓
0 1

]
is closed, hence so is [A&B]↓. It also implies that A↓ = A−1, with

D (A↓) = R (A). Thus, A↓ is injective, and by assumption, D (A↓) = R (A)
is dense in X .

The last assumption of Lemma 4.7.7 requires that for every u ∈ U there
should exist an x ∈ X with

[
x
u

] ∈ D (S↓). But this follows from the same part
of Lemma 4.7.7 applied to S itself: there is a z ∈ X such that

[
x
u

] ∈ D (S). Let
x = A&B

[
z
u

]
. Then

[
x
u

] ∈ R ([ A&B
0 1

]) = D (S↓).
By Lemma 4.7.7, S↓ is an operator node on (Y, X,U ).
Let us next check that S can be recovered from S↓ by formula (12.4.1). By

(12.4.1), [
1 0

[C&D]↓

] [
A&B
0 1

]
=
[

A&B
C&D

]
(more precisely, the top row is trivial, and the second row follows from (12.4.1)).

Replacing
[

A&B
0 1

]
by
[

[A&B]↓
0 1

]−1
we get (12.4.1).

Clearly, 0 ∈ ρ(A) if and only if A↓ is bounded, and this is true if and only if
S↓ is bounded (because then X↓−1 = X ). In this case (use (12.4.2) and Lemma
4.7.18 with α = 0)

S↓ =
[

A↓ B↓

C↓ D↓

]
=
[

1 0
C&D

] [
A&B
0 1

]−1

=
[

1 0
C&D

] [
A−1 − A−1

|X B
0 1

]
=
[

A−1 − A−1
|X B

C A−1 D̂(0)

]
,

which is the same system node as in Definition 12.4.4. �

Definition 12.4.9 We call the operator node S↓ the reciprocal of the operator
node S. (It is defined whenever the main operator of S is injective and has dense
range.)

Lemma 12.4.10 The operator nodes S = [ A&B
C&D

]
and S↓ =

[
[A&B]↓

[C&D]↓

]
in

Lemma 12.4.8 have the following additional properties. (We denote the main
operator, the control operator, the observation operator, and the transfer func-
tion of S by A, B, C, and D̂, and the corresponding entities for S↓ by A↓, B↓,
C↓, and D̂↓.)
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(i) A↓ = A−1 with D (A↓) = R (A), and C↓ = C A−1.
(ii) 0 ∈ ρ(A) if and only if A↓ is bounded, 0 ∈ ρ(A↓) if and only if A is

bounded, and a nonzero α ∈ C belongs to ρ(A) if and only if
1/α ∈ ρ(A↓).

(iii) For all nonzero α ∈ ρ(A), we have

(1− αA↓|X )−1 B↓ = (α − A|X )−1 B,

C↓(1− αA↓)−1 = −C(α − A)−1,

D̂↓(1/α) = D̂(α).

These formulas are also valid for α = 0 if 0 ∈ ρ(A) (i.e., A↓ is bounded).

Proof (i) We already observed in the proof of Lemma 12.4.8 that A↓ = A−1.
Applying (12.4.2) to a vector

[
x
0

]
with x ∈ D (A↓) = R (A) we get C↓ =

C A−1.
(ii) This follows from (i).
(iii) The formulas in (iii) with α = 0 reduces to the formulas in Definition

12.4.4, and we know from Lemma 12.4.8 that they are valid if 0 ∈ ρ(A). Thus,
in the sequel we may take α �= 0.

By (i),

C↓(1− αA↓)−1 = C A−1(1− αA−1)−1 = −C(α − A)−1.

Multiplying (12.4.2) by
[

A&B
0 1

] [
(α−A|X )−1 B

1

]
to the right we get (cf. Lemma

4.7.18) [
[A&B]↓

[C&D]↓

] [
α(α − A|X )−1 B

1

]
=
[

(α − A|X )−1 B
D̂(α)

]
.

The top entry gives (after splitting [A&B]↓ into [A&B]↓ =
[

A↓|X B↓
]
)

αA↓|X (α − A|X )−1 B + B↓ = (α − A|X )−1 B,

or equivalently, (1− αA↓|X )−1 B↓ = (α − A|X )−1 B. Thus

D̂(α) = [C&D]↓
[
α(α − A|X )−1 B

1

]
= [C&D]↓

[
(1/α − A↓|X )−1 B↓

1

]
= D̂↓(1/α).

�

Lemma 12.4.11 Let � = [A B

C D

]
be an L2-well-posed linear system on the

Hilbert spaces (Y, X,U ), with main operator A and transfer function D̂. Let

�↓ =
[

A↓ D↓

C↓ D↓

]
=
[

A↓ D↓

C↓ D↓

]
=
[

A↓ D↓

C↓ D↓

]
be the reciprocal system, as defined
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in either Definition 12.4.4 or Definition 12.4.7. Then the system node S↓ of �↓

is the reciprocal of the system node S of �.

Proof This follows from Lemmas 12.4.8 and 12.4.10. �

Theorem 12.4.12 Let X be a Hilbert spaces, and let A be the generator of
a contraction semigroup A on X. If A is injective, then A has dense range,
and A↓ = A−1 is the generator of a contraction semigroup A↓. The following
additional claims also hold.

(i) A closed subspace of X is invariant or co-invariant under A if and only if
it is invariant or co-invariant under A↓.

(ii) A is isometric, or co-isometric, or unitary if and only if A↓ has the same
property.

(iii) A is completely non-unitary if and only if A↓ is completely non-unitary.
(iv) A is strongly stable if and only if A↓ is strongly stable.
(v) A∗ is strongly stable if and only if (A↓)∗ is strongly stable.

Proof We shall prove this theorem by reducing it to Theorem 12.3.10, arguing
as in the proof of Theorem 12.4.6. Let A be the Cayley transform of A with
parameter α = 1. By Theorem 12.3.10, A is a contraction, and it has one of the
properties listed in (i)–(v) if and only if A has the same property. Equivalently,
−A is a contraction, and it has one of the properties listed in (i)–(v) if and only if
A has the same property. The operator 1− A is injective, since A is injective and
1− A = −2A(1− A)−1. We can therefore take the inverse Cayley transform of
−A, still with parameter α = 1. The resulting operator is A−1 (cf. the proof of
Theorem 12.4.6). By Theorem 12.3.10, A−1 generates a contraction semigroup
A↓, which has one of the properties listed in (i)–(v) if and only if −A has the
same property, or equivalently, A has the same property. �

As our final theorem shows, the reciprocal transform preserves (scattering)
passivity and many other properties.

Theorem 12.4.13 Let U, X, and Y be Hilbert spaces, and let � = [A B

C D

]
be

a bounded L2-well-posed system on (Y, X,U ), with main operator A. Suppose
that A is injective and that A−1 generates a C0 semigroup. We denote the

reciprocal system by�↓ =
[

A↓ D↓

C↓ D↓

]
(see Definition 12.4.4). Then the following

claims are true.

(i) The reachable and unobservable subspaces of � and �↓ are the same.
(ii) �↓ is (scattering) passive if and only if � is (scattering) passive. In this

case the deficiency operators of the two systems are the same. In particular,
�↓ is energy preserving, or co-energy preserving, or conservative,
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or simple, or semi-lossless, or co-lossless, or lossless, or strongly
stable, or strongly co-stable if and only if � has the same property.

Proof This follows from Theorem 12.3.11 by the same method that we used
to prove Theorem 12.4.6 (take, e.g., α = 1). We leave the details to the reader.

�

12.5 Comments

Section 12.1 The results presented in this section are classic. Many of the
available classical results on infinite-dimensional system theory are given in
a discrete time setting (especially those with an operator theory background).
One reason for this is that the well-posedness problems of Chapters 3–5 can
be avoided. See, e.g., the monographs by Fuhrmann (1981) and Sz.-Nagy and
Foiaş (1970).

Sections 12.2–12.3 The Cayley transform is well-known and much used in
different settings, but there does not seem to be a good source describing the
properties of the Cayley transform of the full system. In particular, it is not
easy to find explicit references in the literature to the relationships between the
discrete and continuous time input maps, input/output maps, and output maps
described in Theorem 12.3.5. This transform has been used in, e.g, Arov and
Nudelman (1996), Sz.-Nagy and Foiaş (1970), and Staffans (2002b) (and in
many other places in different settings) to convert results originally proved for
discrete time systems to continuous time. The mapping which takes a contin-
uous time semigroup generator to its co-generator is found in most books on
operator theory. For example, Sz.-Nagy and Foiaş (1970) contains a discussion
of this transform which is more detailed than the one that we present here. The
frequency domain version mentioned in Definition 12.3.2 is also well-known,
and it is found in many books on complex function theory and harmonic anal-
ysis, such as Hoffman (1988). Laguerre series appear primarily in books on
special functions and mathematical physics (and also in, e.g., Rosenblum and
Rovnyak (1985)). The most common choices of the parameter α is to take ei-
ther α = 1 or α = 1/2 (the latter choice makes the factor

√
2
α = 1 disappear

from the formulas). In many operator theory books a ‘rotated’ version of the
Cayley transform is used (mapping the upper half-plane onto the unit disk). As
noticed in Theorems 12.3.10 and 12.3.11, the Cayley transforms have a natural
place in the theory of scattering passive and conservative systems (and in the
theory of impedance scattering systems as well; see Staffans (2002b)).

Section 12.4 As we commented earlier, the reciprocal transform corresponds
to time-inversion in a discrete time setting, but it has also been applied in
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continuous time for a long time. Livšic (1973, Section 6.3) uses the reciprocal
transform to convert continuous time equations with unbounded operators into
systems whose generating operators are bounded. The same idea has recently
been used extensively in Curtain (2003a, b) and Opmeer and Curtain (2004)
(see Curtain (2002) for an overview). Apparently this transform has been used
implicitly by a number of researchers from time to time (as described in Curtain
(2002)).



Appendix

In this appendix we present a number of auxiliary results about regulated func-
tions, the positive square root and polar decomposition of a closed unbounded
operator convolutions, and inversion of block matrices.

A.1 Regulated functions

Definition A.1.1 Let X be a Banach space, and let I = [a, b] ⊂ R be a closed
bounded interval.

(i) A function f : I → X is a step function if f is constant on successive
intervals Ik = [ak, ak+1), 0 ≤ k < n, where a0 = a and an = b.

(ii) A function f : I → X is regulated if f is right-continuous and has a
left-hand limit at every point of [a, b]. We denote the class of all
regulated X -valued functions on I = [a, b] by Reg(I ; X ).

(iii) By an X -valued step function on a closed unbounded subinterval J of R

we mean a function whose restriction to any closed bounded interval is a
step function in the sense of (i).

(iv) By an X -valued regulated function on a closed unbounded subinterval J
of R we mean a function whose restriction to any closed bounded
interval is regulated in the sense of (ii). We denote this class of functions
by Regloc(J ; X ), and let Reg(J ; X ) be the space of all functions which are
both regulated and bounded.

Proposition A.1.2 Let X be a Banach space, and let I = [a, b] be a closed
bounded interval. Then every function in Reg(I ; X ) is bounded, and it is the
uniform limit of a sequence of step functions. The converse is also true: the
uniform limit of a sequence of X-valued step functions on I is regulated.

730
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Proof Let f ∈ Reg(I ; X ), and let ε > 0. By the right-continuity of f and the
existence of left-hand limits of f , for each t ∈ I there is an interval (t − δt , t +
δt ) such that | f (x)− f (t)| ≤ ε if x ∈ [t, t + δt ) ∩ I and such that | f (x)−
f (y)| ≤ ε if both x ∈ (t − δt , t] ∩ I and y ∈ (t − δt , t] ∩ I . Since I is compact,
we can cover I by a finite number of these intervals, and by removing the
overlapping parts of this finite number of intervals we get a sequence of points ti
such that t0 = a, tn = b, and such that | f (x)− f (ti )| ≤ ε if x ∈ Ii = [ai , ai+a).
Thus, for all x , | f (x)− g(x)| ≤ ε, where g is the step function whose value
in the interval Ii is f (ti ). This implies that f is bounded. Repeating the same
construction with ε replaced by 1/n, n = 1, 2, 3 . . ., we get a sequence of step
functions which converges uniformly to f .

Conversely, let gi be a uniformly converging sequence of X -valued step
functions on I . All of these are right-continuous and have left-hand limits at
each point, and these two properties are preserved under uniform convergence.
Thus, the limit function must still have the same properties, i.e., it is regulated.

�

Corollary A.1.3 Let X be a Banach space, and let J be a closed (bounded
or unbounded) interval. Then Reg(J ; X ) is a Banach space with the norm
‖ f ‖Reg(J ;X ) = supx∈J | f (x)|. If the interval J is bounded, then the set of X-
valued step functions is dense in Reg(J ; X ).

Proof As is well known, the set of all bounded X -valued functions on J is
a Banach space with the sup-norm. The same argument that we used in the
last part of the proof of Proposition A.1.2 shows that Reg(J ; X ) is closed in
this space. The density of the set of all step functions in Reg(J ; X ) when J is
bounded follows from Proposition A.1.2. �

Proposition A.1.4 Let X be a Banach space, and let J be a closed (bounded
or unbounded) interval. Then set space BC(J ; X ) is a closed subspace of
Reg(J ; X ).

Proof The uniform limit of a sequence of continuous functions is continuous.
�

Proposition A.1.5 Let X be a Banach space, and let I = [a, b] be a closed
bounded interval, and let f ∈ Reg(I ; X ). Then

(i) the range of f is totally bounded, and
(ii) f has only countably many discontinuities in I .

Proof (i) As we saw in the preceding proof, for each ε > 0 the range of f is
contained in the finite union of balls with radius ε and centers f (ti ).
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(ii) Since f is regulated it can only have jump discontinuities where f (x+) �=
f (x−). It suffices to show that for each n = 1, 2, 3, . . ., there are only finitely
many points xi where | f (xi+)− f (xi−)| ≥ 1/n. To do this we approximate f
by a step function g so that | f (x)− g(x)| ≤ 1/(3n) for all x ∈ I . Then g must
be discontinuous at a point xi where | f (xi+)− f (xi−)| ≥ 1/n, so there can
only be a finite number of such points. �

Proposition A.1.6 Let X be a Banach space.

(i) Let I = (−∞, b] or I = [a, b] be a closed interval which is bounded to
the right. Then every f ∈ Reg(I ; X ) belongs to L∞(I ; X ) and

ess sup
x∈I
| f (x)| = sup

x∈I,x<b
| f (x)|.

In particular, the space { f ∈ Reg(I ; X ) | f (b) = f (b−)} is a closed
subspace of L∞(I ; X ).

(ii) Let I be a closed interval which is unbounded to the right. Then every
Reg(I ; X ) is a closed subspace of L∞(I ; X ), and, for every f ∈ Reg(I ; X ),

ess sup
x∈I
| f (x)| = sup

x∈I
| f (x)|.

Proof (i) Trivially ess supx∈I | f (x)| ≤ supx∈I,x<b| f (x)|, so only the opposite
inequality is nontrivial. To get this inequality we fix ε > 0 and approximate
f by a step function g so that | f (x)− g(x)| ≤ ε for all x ∈ I . Since the step
function g has the property that ess supx∈I |g(x)| = supx∈I,x<b|g(x)|, we find
that ess supx∈I | f (x)| ≥ supx∈I,x<b| f (x)| − ε. This being true for all ε > 0 we
must have ess supx∈I | f (x)| ≥ supx∈I,x<b| f (x)|.

(ii) The proof of (ii) is similar to the proof of (i). �

Corollary A.1.7 Let X be a Banach space, and let I = [a, b] be a closed
bounded interval. Then the closure in L∞(I ; X ) of the set of all X-valued
step functions on X can be identified with the set { f ∈ Reg(I ; X ) | f (b) =
f (b−)}.

Proof This follows from Propositions A.1.2 and A.1.6. �

Corollary A.1.8 Let X be a Banach space, and let I = [a, b] be a closed
bounded interval. Then the closure in L∞(I ; X ) of the set of all X-valued step
functions on X can be identified with the set { f ∈ Reg(I ; X ) | f (b) = f (b−)}.

Proof This follows from Propositions A.1.2 and A.1.6. �
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A.2 The positive square root and the polar decomposition

Definition A.2.1 By a positive operator in a Hilbert space X we mean
a (densely defined, closed and) self-adjoint (possibly unbounded) operator
A : X ⊃ D (A)→ X satisfying 〈x, Ax〉 ≥ 0 for all x ∈ D (A). The notation
A ≥ 0 means that A is positive in the above sense, and the notation A ≥ B
means that both A and B are self-adjoint operators on X and that A − B ≥ 0
(here we require, in addition, that B ∈ B(X )). If A ≥ ε I for some ε > 0, then
we write A � 0 and call A uniformly positive

Lemma A.2.2 Let A be a positive operator in a Hilbert space X.

(i) A has a unique positive square root A1/2, i.e., there is a unique positive
operator A1/2 such that A = (A1/2)2. In particular,
D (A) = {x ∈ D (A1/2

) ∣∣ A1/2x ∈ D (A1/2
)}

.
(ii) A1/2 ∈ B(X ) if and only if A ∈ B(X ).

(iii) N (A1/2
) = N (A) and R (A) ⊂ R (A1/2

) ⊂ R (A). In particular,

R (A1/2
) = R (A), and A1/2 is injective if and only if A is injective.

(iv) R (A1/2
)

is closed if and only if R (A) is closed.
(v) A � 0 if and only if A1/2 � 0, or equivalently, A1/2 has a bounded

inverse if and only if A has a bounded inverse.
(vi) A1/2 = A if and only if A is a projection operator, or equivalently, if and

only if A1/2 is a projection operator (i.e., A1/2 = A = A2).
(vii) An operator B ∈ B(X ) commutes with A if and only if B commutes with

A1/2 (i.e., AB = B A if and only if A1/2 B = B A1/2).

Proof (i), (ii), (v), and (vii): See, for example, Kato (1980, Theorem 3.35,
p. 281) or Rudin (1973, Theorems 13.24 and 13.31).

(iii): Obviously, N (A1/2
) ⊂ N (A) (if A1/2x = 0, then Ax = (A1/2)2x =

0). Conversely, if Ax = 0, then

|A1/2x |2 = 〈A1/2x, A1/2x〉 = 〈x, Ax〉 = 0,

so A1/2x = 0. The fact that N (A1/2
) = N (A) implies that also their orthog-

onal complements are equal (see Lemma 9.10.3(iii)): R (A1/2
) = R (A). The

inclusion R (A) ⊂ R (A1/2
)

is trivial. Thus, R (A) ⊂ R (A1/2
) ⊂ R (A1/2

) =
R (A).

(iv): If R (A) is closed, then it follows from (iii) that also R (A1/2
)

is closed.
Conversely, if R (A1/2

)
is closed, then it follows from the closed graph theorem

that A1/2 is a boundedly invertible operator from D (A1/2
)

onto N (A1/2
)⊥ =

R (A) and fromD (A) ontoD (A1/2
)
, hence A is a boundedly invertible operator

from D (A) onto R (A). Thus, R (A) is closed.
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(vi) Trivially, A1/2 = A iff A1/2 = (A1/2)2, i.e., iff A1/2 is a projection op-
erator; hence also A(= A1/2) is a projection operator. Conversely, if A is a
projection, then A is a positive solution of the equation B2 = A, so by the
uniqueness of the square root, A = A1/2. �

Definition A.2.3 Let A : X ⊃ D (A)→ Y be a closed linear operator, where
X and Y are Hilbert spaces.

(i) We call N (A)⊥ the initial space of A and R (A) (the closure of the range
of A) the final space of A.

(ii) A is isometric if A ∈ B(X ; Y ) and |Ax | = |x | for all x ∈ X .
(iii) A is a partial isometry if the restriction of A to its initial space is

isometric.
(iv) A is co-isometric if A is a partial isometry whose final space is equal to Y .
(v) A is unitary if it is both isometric and co-isometric.

Lemma A.2.4 Let A : X ⊃ D (A)→ Y be a closed linear operator, where X
and Y are Hilbert spaces.

(i) The initial space of A is the final space of A∗, and the final space of A is
the initial space of A∗.

(ii) A∗ is a partial isometry if and only if A is a partial isometry.
(iii) A is isometric if and only if A∗ is co-isometric.
(iv) A is unitary if and only if A∗ is unitary. In this case both A and A∗ are

invertible, and A−1 = A∗.
(v) If A is a partial isometry, then the restriction of A to its initial space is a

unitary operator from this space onto the final space of A, whose inverse
is the restriction of A∗ to the final space of A.

See, for example, Kato (1980, pp. 267 and 257–259) for the proof.

Lemma A.2.5 Let A : X ⊃ D (A)→ Y be a closed linear operator, where X
and Y are Hilbert spaces.

(i) A has a unique decomposition of the form A = U |A|, where
U ∈ B(X ; Y ) is a partial isometry with the same initial and final spaces
as A and |A| : X ⊃ D (|A|)→ X is positive. Moreover, |A| = (A∗A)1/2

(the unique positive square root of A∗A), D (A∗A) ⊂ D (|A|) = D (A),
and |A| = U ∗A. In particular, |A| ∈ B(X ) if and only if A ∈ B(X ; Y ).

(ii) A also has a unique decomposition of the form A = |A∗|U, where
U ∈ B(X ; Y ) is a partial isometry with the same initial and final spaces
as A and |A∗| : Y ⊃ D (|A∗|)→ Y is positive. Here the operator U is the
same operator as in (i), and |A∗| = (AA∗)1/2 is the unique operator
which we get by applying (i) with A replaced by A∗. In particular,
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D (AA∗) ⊂ D (|A∗|) = D (A∗), |A∗| = U A∗ = AU ∗ = U |A|U ∗, and
|A∗| ∈ B(X ) if and only if A ∈ B(X ; Y ).

(iii) The unique decompositions of A∗ that we get by applying (i) and (ii) with
A replaced by A∗ are given by A∗ = |A|U ∗ = U ∗|A∗|, where U is the
same operator as in (i) and (ii).

(iv) N (A) = N (|A|), R (A) = R (|A∗|), N (A∗) = N (|A∗|), and
R (A∗) = R (|A|).

See Kato (1980, pp. 334–336) for the proof of this lemma.

Lemma A.2.6 Let A ∈ B(X ; Y ), where X and Y are Hilbert spaces. Let X I =
N (A)⊥ and YF = R (A) be the initial and final spaces of A, respectively, let
A = |A∗|U = U |A| be the polar decomposition of A (cf. Lemma A.2.5), and
let πX I and πX F be the orthogonal projections onto X I (in X) and onto YF

(in Y ), respectively. Suppose further that B ∈ B(X ) and C ∈ B(Y ), and that
AB = C A. Then the following conditions are equivalent.

(i) πX I B A∗A = A∗AB.
(ii) πX I B|A| = |A|B.

(iii) πX I B A∗ = A∗CπX F .
(iv) C AA∗ = AA∗CπYF .
(v) C |A∗| = |A∗|CπYF .

(vi) U B = CU.

Proof We begin by observing that we may, without loss of generality, assume
that R (B) ⊂ X I (otherwise we throughout replace B by πX I B; the conclu-
sion of the original theorem is valid if and only if it is valid with this re-
placement). With this additional assumption, N (B) = N (AB), so the identity
AB = C A shows that N (A) ⊂ N (B), i.e., B vanishes on X⊥I = N (A) =
N (|A|) = N (U ) = R (A∗)⊥ = R (|A|)⊥. This means that we may, without
loss of generality, replace X I by X , i.e., we may assume that A is injective.
The same argument applied to the adjoint identity A∗C∗ = B∗A∗ shows that
we may, without loss of generality, replace YF by Y , i.e., we may assume that A
has dense range. Thus, it suffices to prove the lemma in the special case where
A is injective and has dense range, and the projections listed in (i)–(vi) become
identity operators. In this special case (i)–(vi) are proved as follows.

(i)⇔ (ii) and (iv)⇔ (v): This follows from Lemmas A.2.2(vii) and A.2.5(i).
(i) ⇔ (iii): If B A∗ = A∗C then (using the intertwining property AB =

C A) we get A∗AB = A∗C A = B A∗A. Conversely, if A∗AB = B A∗A, then
A∗C A = A∗AB = B A∗A. Since A has dense range, this implies that A∗C =
B A∗.
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(iii)⇔ (iv): This proof is similar to the proof of the equivalence (i)⇔ (iii)
given above.

(ii) ⇔ (vi): Assume that B|A| = |A|B. Then the intertwining property
AB = C A gives CU |A| = C A = AB = U |A|B = U B|A|. As |A| has dense
range, this implies that CU = U B. Conversely, if U B = CU , then U B|A| =
CU |A| = C A = AB = U |A|B. Thus B|A| = U ∗U |A|B = |A|B. �

A.3 Convolutions

Definition A.3.1 The convolution A ∗ u of two (strongly measurable and a.e.
defined) functions A : R→ B(X ; Y ) and u : R→ X is the function

(A ∗ u)(t) =
∫

R

A(t − s)u(s) ds,

defined for all t ∈ R for which the integral exists (as a Bochner integral). If A
or u is defined only on R+, then we define A ∗ u in the same way, except that
we interpret A(t − s) and u(s) as zero for s > t or s < 0, respectively.

Convolutions interact with shifts and with the multiplication by an exponen-
tial function in the following way:

Lemma A.3.2 Let A : R→ B(X ; Y ) and u : R→ X be (strongly) measurable.
Let ω ∈ R, and define eω(t) = eωt for t ∈ R.

(i) For each h ∈ R, the following conditions are equivalent:
(a) (A ∗ u)(t + h) exists;
(b) ((τ h A) ∗ u)(t) exists;
(c) (A ∗ (τ hu))(t) exists.
When these conditions hold, then

(A ∗ u)(t + h) = (A ∗ (τ hu))(t) = ((τ h A) ∗ u)(t).

(ii)
(
(eωA) ∗ (eωu)

)
(t) exists if and only if (A ∗ u)(t) exists, and(

(eωA) ∗ (eωu)
)
(t) = eωt (A ∗ u)(t).

Proof (i) This is obvious (by a change of integration variable).
(ii) This is true because, for all s ∈ R,

(eωA)(t − s)(eωu)(s) = et−s A(t − s)esu(s) = eωt A(t − s)u(s).

�

The following lemma can be used in many cases to show that A ∗ u is
(almost) everywhere defined and measurable.
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Lemma A.3.3 Let A : R→ B(X ; Y ) and u : R→ X be (strongly) measurable,
and suppose that the function t �→ ‖A(t)‖B(X ;Y ) is measurable (this assumption
is redundant if X is separable).

(i) The convolution A ∗ u exists for all those t for which
(‖A‖B(X ;Y ) ∗ |u|X )(t) exists, and (|A ∗ u|Y )(t) ≤ (‖A‖B(X ;Y ) ∗ |u|X )(t).

(ii) If ‖A‖B(X ;Y ) ∈ L1
loc(R) and if u : R→ X has bounded support and a

totally bounded range, then A ∗ u is defined everywhere and
A ∗ u ∈ C(R; Y ).

(iii) If ‖A‖B(X ;Y ) ∈ L1(R) and if u : R→ X has a totally bounded range, then
A ∗ u is defined everywhere and A ∗ u ∈ BUC(R; Y ).

(iv) If ‖A‖B(X ;Y ) ∈ L1(R) and if u ∈ BUC(R; X ), then A ∗ u is defined
everywhere and A ∗ u ∈ BUC(R; Y ).

(v) If there is a sequence of functions un : R→ X, where each un has
bounded support and a totally bounded range (the latter condition is
true, for example, if un is continuous, or un is regulated, or un is simple),
such that
(a) A ∗ un ∈ C(R; Y ) for each n, and
(b) (‖A‖B(X ;Y ) ∗ |u − un|X )(t)→ 0 as n→∞ for almost all t ∈ R,
then A ∗ u is measurable. In particular, (a) is true whenever
‖A‖B(X ;Y ) ∈ L1

loc(R).

That ‖A‖B(X ;Y ) is measurable whenever X is separable follows from, e.g.,
Dinculeanu (1974, Corollary 15.17).

Proof (i) For each t ∈ R, the function s �→ A(t − s) is strongly measur-
able. Since the product of a strongly measurable function with a measurable
function is measurable (Dinculeanu, 1974, Proposition 15.15), we find that
s �→ A(t − s)u(s) is measurable. It is furthermore integrable at those points
where (‖A‖B(X ;Y ) ∗ |u|X )(t) <∞ since∫

R

|A(t − s)u(s)|Y ds ≤
∫

R

‖A(t − s)‖B(X ;Y )|u(s)|X ds

= (‖A‖B(X ;Y ) ∗ |u|X )(t).

Thus A ∗ u exists almost everywhere. Moreover,∣∣∣∫
R

A(t − s)u(s) ds
∣∣∣
Y
≤
∫

R

|A(t − s)u(s)|Y ds

≤ (‖A‖B(X ;Y ) ∗ |u|X )(t).

(ii) Suppose that ‖A‖B(X ;Y ) ∈ L1
loc(R). We begin with the case where u = xv,

with x ∈ X and v ∈ L∞(R; C) with bounded support. Choose T so large that
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the support of v is contained in (−T, T ). Then, for all t ∈ R∫
R

|A(t − s)|B(X ;Y )|xv(s)|X ds

≤
(∫ T

−T
|A(t − s)|B(X ;Y ) ds

)
‖x‖X sup

−T<s<T
|u(s)| <∞, (A.1)

and we conclude from (i) that (A ∗ xv)(t) is defined for all t ∈ R. Moreover,
for all t ∈ R and h ∈ (−1, 1),

|(A ∗ xv)(t + h)− (A ∗ (xv))(t)|Y

=
∣∣∣∫ T

−T
(A(t + h − s)x − A(t − s)x)v(s) ds

∣∣∣
Y

≤
(∫ T

−T
|A(t + h − s)x − A(t − s)x |Y ds

)
sup

−T<s<T
|v(s)|.

The right hand side tends to zero as h → 0 for the following reason: we observe
that Ax ∈ L1

loc(R; Y ) since Ax is measurable and
∫ T
−T |A(s)x |Y ds <∞ for

every finite T , and by Lemma 2.3.3(i), translation is a continuous operation in
L1

loc(R; Y ). Thus, A ∗ xv ∈ C(R; Y ).
Each simple function u with finite support can be written as a finite

sum of functions of the type xnvn , where Xn ∈ X and vn is the character-
istic function of a bounded subset of R. This, combined with the fact that
each A ∗ xnvn ∈ C(R; Y ) shows that A ∗ u ∈ C(R; Y ) whenever u is a simple
function.

If u has a totally bounded range, then we claim that it is possible to find a
sequence of simple functions un converging uniformly to u, and such that the
support of each un is contained in the support of u. To prove this it suffices to
show that, for each ε > 0, it is possible to find a simple function vwhose support
is contained in the support of u such that |u(s)− v(s)|X ≤ ε for all s ∈ R. Such
a function can be obtained as follows. Since the range of u is totally bounded,
we can find a finite collection of vectors xk ∈ X such that the union of balls
with center xk and radius ε covers R (u). Define

E1 = {s ∈ R | |u(s)− x1| < ε},
E2 = {s ∈ R | |u(s)− x2| < ε} \ E1,

E3 = {s ∈ R | |u(s)− x2| < ε} \ E1 \ E2,

etc., and let v = χE
∑

k xkχEk , where E is the support of u. Clearly this function
v is of the desired form.

Let u : R→ Y be an arbitrary measurable function with totally bounded
range and bounded support. Let un be a sequence of simple functions with
support contained in some interval (−T, T ) converging uniformly to u. Then,



A.3 Convolutions 739

for all t ∈ R,

|(A ∗ u)(t)− (A ∗ un)(t)|Y
=
∣∣∣∫

R

A(t − s)(u(s)− un(s)) ds
∣∣∣
Y

≤
∫ T

−T
‖A(t − s)‖B(X ;Y )|u(s)− un(s)|X ds

≤
(∫ t+T

t−T
‖A(s)‖B(X ;Y ) ds

)(
sup
s∈R
|u(s)− un(s)|X

)
.

This implies that (A ∗ un)(t)→ (A ∗ u)(t), uniformly for t in bounded inter-
vals, and hence A ∗ u ∈ C(R; Y ) (the limit of a locally uniformly convergent
sequence of continuous functions is continuous).

(iii) This proof is the same as the proof of (ii), with (−T, T ) replaced by
(−∞,∞).

(iv) That (A ∗ u)(t) is defined for all t and uniformly bounded is proved
as in (ii) and (iii). We get the uniform continuity of A ∗ u from the uniform
continuity of u and the fact that, for all h ∈ R,

|(A ∗ u)(t + h)− (A ∗ u)(t)|Y
=
∣∣∣∫

R

(
A(t + h − s)u(s)− A(t − s)u(s)

)
ds
∣∣∣
Y

=
∣∣∣∫

R

A(s)(u(t + h − s)− u(t − s)) ds
∣∣∣
Y

≤
∫

R

‖A(s)‖B(X ;Y )|u(t + h − s)− u(t − s)|X ds

≤
(∫

R

‖A(s)‖B(X ;Y ) ds
)(

sup
s∈R
|u(s + h)− u(s)|X

)
.

(v) For each n, A ∗ un is continuous, hence measurable. The computation in
the proof of (ii), with u replaced by u − un , shows that (A ∗ un)(t)→ (A ∗ u)(t)
at every point where (‖A‖B(X ;Y ) ∗ |u − un|X )(t)→ 0. Thus, A ∗ un → A ∗ u
a.e., and A ∗ u is measurable. �

Lemma A.3.3 enables us to prove several results for the convolution operator
u �→ A ∗ u by reducing the claims to the corresponding scalar claims. For
example, the following result is true:

Theorem A.3.4 Let A : R→ B(X ; Y ) be strongly measurable, and let ω ∈ R.

(i) If ‖A‖B(X ;Y ) ∈ L1
ω(R), then the convolution operator u �→ A ∗ u is a

bounded linear operator between the following spaces:
(a) u �→ A ∗ u : L p

ω(R; U )→ L p
ω(R; Y ), 1 ≤ p <∞;

(b) u �→ A ∗ u : BUCω(R; U )→ BUCω(R; Y );
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(c) u �→ A ∗ u : BCω(R; U )→ BCω(R; Y );
(d) u �→ A ∗ u : BC0,ω(R; U )→ BC0,ω(R; Y );
(e) u �→ A ∗ u : Regω(R; U )→ BUCω(R; Y );
(f) u �→ A ∗ u : Reg0,ω(R; U )→ BC0,ω(R; Y ).
The norms of all these operators are no bigger than the L1

ω-norm of
‖A‖B(X ;Y ).

(ii) If ‖A‖B(X ;Y ) ∈ L∞ω (R), then the convolution operator u �→ A ∗ u maps
L1
ω(R; U ) continuously into BUCω(R; Y ). The norm of this operator is no

bigger than the L∞ω -norm of ‖A‖B(X ;Y ).
(iii) If ‖A‖B(X ;Y ) ∈ Lq

ω(R) for some q, 1 < q <∞, and if 1/p + 1/q = 1,
then the convolution operator u �→ A ∗ u maps L p

ω(R; U ) continuously
into BC0,ω(R; Y ). The norm of this operator is no bigger than the
Lq
ω-norm of ‖A‖B(X ;Y ).

(iv) If ‖A‖B(X ;Y ) ∈ Lq
ω(R) for some q, 1 < q <∞, and if p, q, and r satisfy

1 ≤ p < r <∞ and 1/r = 1/p + 1/q − 1, then the convolution
operator u �→ A ∗ u maps L p

ω(R; U ) continuously into Lr
ω(R; Y ). The

norm of this operator is no bigger than the Lq
ω-norm of ‖A‖B(X ;Y ).

In all the cases listed above, the operator u �→ A ∗ u is time-invariant. It is
causal if A(s) = for s < 0. In this case the transfer function of u �→ A ∗ u (see
Corollary 4.6.10) is given by

Â(z)x =
∫

R+
e−zs A(s)x ds, x ∈ X, 
z > ω (A.2)

(this is the Laplace transform of Ax ∈ L1
ω(R+; X )).

The norm inequality resulting from part (iv) is often referred to as Young’s
inequality.

Proof Thanks to Lemma A.3.2(ii), we can throughout this proof, without loss
of generality, take ω = 0.

The time-invariance of u �→ A ∗ u follows from Lemma A.3.2, and the
causality from Definition A.3.1. That the transfer function is given by (A.2)
follows from Corollary 4.6.10 and Definition A.3.1 (and a change of integra-
tion variable s →−s).

In all cases, the fact that (A ∗ u)(t) is defined everywhere or almost every-
where and the needed norm estimates on |(A ∗ u)(t)|Y follow from Lemma
A.3.3(i) and the corresponding scalar result. For the needed scalar results we
refer the reader to, e.g., Gripenberg et al. (1990, Theorem 2.2(i) and (vii),
p. 39) (cases (i)–(iii)) and Stein and Weiss (1971, p. 178) (case (iv)). To prove
the measurability of A ∗ u in cases (i)(a) and (iv) we use Lemma A.3.3(v) and
the fact that Cc(R; U ) is dense in L p(R; U ). If un ∈ Cc(R; U ) and un → u
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in L p(R; U ), then ‖A‖B(X ;Y ) ∗ |u − un|U → 0 in L p(R) or Lr (R), hence there
is a subsequence unk for which we have convergence almost everywhere. By
Lemma A.3.3, this implies that (A ∗ un)(t)→ (A ∗ u)(t) almost everywhere.
Thus A ∗ u is measurable in these cases.

It remains to prove the claims about the continuity or uniform continuity of
A ∗ u. Here we give a separate argument for each case.

(i) The uniform continuity of A ∗ u follows from Lemma A.3.3(iv) in case
(b), and from Lemma A.3.3(iii) in cases (d)–(f). In case (c) we observe that
(‖A‖B(X ;Y ) ∗ |u − τ hu|U )(t)→ 0 as h → 0 (use Lebesgue’s dominated con-
vergence theorem and the fact that |u(t + h)− a(t)|U → 0 as h → 0). The
continuity of A ∗ u then follows from Lemma A.3.3(i).

(ii)–(iii) The uniform continuity of A ∗ u follows from the same norm in-
equality in (ii) and (iii) which gives (put p = 1 and q = ∞ in case (ii) and
denote the Lq -norm of ‖A‖B(X ;Y ) by M)

sup
t∈R
|(A ∗ u)(t + h)− (A ∗ u)(t)|Y
= sup

t∈R
|(A ∗ (τ hu − u)(t)|Y

≤ M‖τ hu − u‖L p(R;U ),

and the fact that translation is continuous in L p(R; U ) (see Example 2.3.2(i)).
�

Theorem A.3.4 is not optimal in the sense that the conditions ‖A‖B(X ;Y ) ∈
L1
ω(R) or‖A‖B(X ;Y ) ∈ Lq

ω(R) that we used there are far from necessary (unless X
or Y is finite-dimensional). For example, in the case where p = 1 the following
sharper result holds (see Remark A.3.6):

Theorem A.3.5 Let C ∈ B(X ; L p
ω(R; Y )) for some p, 1 ≤ p ≤ ∞ and ω ∈ R.

Then there is a unique time-invariant operator F which maps L1
ω(R; X ) contin-

uously into L p
ω(R; Y ) and satisfies

(F(xv))(t) =
∫ ∞
−∞

(Cx)(t − s)v(s) ds (A.3)

for all x ∈ X and v ∈ L1
ω(R; C) and almost all t ∈ R. Moreover,

‖F‖B(L1
ω(R;X );L p

ω(R;Y )) ≤ ‖C‖B(X ;L p
ω(R+;Y )). (A.4)

If p = ∞, then F maps L1
ω(R; X ) continuously into BUCω(R; Y ), and if the

range of C belongs to L p
ω(R+; Y ) (i.e., if π−C = 0), then F is causal. In this
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case the transfer function of F (see Corollary 4.6.10) is given by

F̂(z)x =
∫

R+
e−zs(Cx)(s) ds, x ∈ X, 
z > ω (A.5)

(this is the Laplace transform of Cx ∈ L1
ω(R+; Y )).

Proof Without loss of generality we may take ω = 0 (see Lemma A.3.2(ii)).
By Theorem A.3.4(iv) with p = 1 and r = q, for each x ∈ X , the formula

Fxv = v �→ (t �→ ∫∞−∞(Cx)(t − s)v(s) ds
)

defines a continuous linear operator
L1(R; C)→ L p(R; Y ). Clearly Fx is time-invariant for each fixed x ∈ X , and
it is causal if π−C = 0. Moreover, if we denote K = ‖C‖B(U ;L p(R+;Y )), then

‖Fxv‖L p(R;Y ) ≤ K‖x‖X‖v‖L1(R;C).

If x is a simple integrable X -valued function x =∑n
k=1 xkχEk where xk ∈ X

and Ek ∩ E j = ∅ for k = j , then we define

(Fx)(t) =
n∑

k=1

FxkχEk .

By the preceding argument and the triangle inequality,

‖Fx‖L p(R;Y ) ≤
n∑

k=1

‖FxkχEk‖L1(R;Y )

≤
n∑

k=1

K‖xk‖X‖χEk‖L1(R;C) = K‖x‖L1(R;X ).

The set of simple functions is dense in L1(R; X ), so we can extend the operator F

by continuity to an operator in B(L1(R; X ); L p(R; Y )). This extended operator
is time-invariant and satisfies (A.4), and it is causal if π−C = 0. That Fx ∈
BUC(R; Y ) if p = ∞ follows from the time-invariance of F and the fact that
t �→ τ t x is uniformly continuous R→ L1(R; U ) for each x ∈ L1(R; X ). The
uniqueness of F follows from the fact that (A.3) determines F uniquely on the
set of all simple functions, which is dense in L1(R; X ). �

Remark A.3.6 If A : R→ B(X ; Y ) is strongly measurable and ‖A‖B(X ;Y ) ∈
L p
ω(R), then we can define (Cx)(t) = A(t)x to get an operator which satisfies

the hypothesis of Theorem A.3.5, and ‖C‖B(X ;L p
ω(R+;Y )) is no bigger than the L p

ω-
norm of ‖A‖B(X ;Y ). The converse is not true: not every C in Theorem A.3.5 arises
in this way, as the following counter-example shows. If C is defined in this way,
then k defined by k(t) := sup|x |X≤1|(Cx)(t)| = k(t) satisfies x ∈ L p

ω(R) (since
k = ‖A‖B(X ;Y )). Thus, it suffices to construct an example where k defined above
does not belong to L p

ω(R). We takeω = 0, p <∞, Y = C, and X = l1, i.e., the
set of sequences xk ∈ C, k = 0, 1, 2, . . . , which satisfy |x |l1 =∑k |xk | <∞.
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This space has the basis φn , n = 0, 1, 2, . . . , where (φn)k = 1 if k = n and
(φn)k = 0 otherwise, i.e., every x ∈ l1 can be written in the form x =∑n xnφn ,
with |x |l1 =∑k |xk | <∞. Choose some sequence tn which is dense in R+, and
let

(Cφn)(t) =
{

log|1/(t − tn)|, |t − tn| < 1, t ≥ 0

0 otherwise.

For an arbitrary x =∑n xnφn ∈ l1 we define Cx by Cx =∑n xnCφn . This sum
converges (absolutely) in L p(C) since

‖φn‖L p ≤ K :=
(∫ 1

−1
(log(1/|s|))p ds

)1/p

for all n and
∑

n|xn| <∞. Moreover, ‖Cx‖L p(R) ≤ K |x |l1 . Thus, C satisfies the
hypothesis of Theorem A.3.5, and it induces a causal time-invariant operator
from L1(R; l1) to L p(R; C). On the other hand,

k(t) := sup
x∈l1

|(Cx)(t)| = ∞, t ≥ 0,

so k /∈ L p(R).

In the causal cases it is also possible to formulate local versions of Theorems
A.3.4 and A.3.5:

Theorem A.3.7 Let A : R+ → B(X ; Y ) be strongly measurable.

(i) If ‖A‖B(X ;Y ) ∈ L1
loc(R+), then the convolution operator u �→ A ∗ u is a

bounded linear operator between the following spaces:
(i) u �→ A ∗ u : L p

c,loc(R; U )→ L p
c,loc(R; Y ), 1 ≤ p <∞;

(ii) u �→ A ∗ u : Regc,loc(R; U )→ BCc,loc(R; Y ).
(ii) If ‖A‖B(X ;Y ) ∈ Lq

loc(R+) for some q, 1 < q ≤ ∞, and if 1/p + 1/q = 1,
then the convolution operator u �→ A ∗ u maps L p

c,loc(R; U ) continuously
into BCc,loc(R; Y ).

(iii) If ‖A‖B(X ;Y ) ∈ Lq
loc(R+) for some q, 1 < q <∞, and if p, q, and r

satisfy 1 ≤ p < r <∞ and 1/r = 1/p + 1/q − 1, then the convolution
operator u �→ A ∗ u maps L p

c,loc(R; U ) continuously into Lr
c,loc(R; Y ).

In all the cases listed above, the operator u �→ A ∗ u is time-invariant and
causal.

Theorem A.3.8 Let C ∈ B(X ; L p
loc(R+; Y )) for some p, 1 ≤ p ≤ ∞. Then

there is a unique time-invariant operator F which maps L1
c,loc(R; X )



744 Appendix

continuously into L p
c,loc(R; Y ) and satisfies

(F(xv))(t) =
∫ t

−∞
(Cx)(t − s)v(s) ds

for all x ∈ X and v ∈ L1
c,loc(R; C) and almost all t ∈ R. If p = ∞, then F maps

L1
c,loc(R; X ) continuously into Cc(R; Y ).

Proofs of Theorems A.3.7 and A.3.8. The proof is the same in both cases (except
for the notation), so let us prove only Theorem A.3.8.

For each T > 0 we can use Theorem A.3.5 to construct the time-invariant
causal operator FT : L1(R; X )→ L p(R; Y ) which corresponds to the operator
π[0,T )C. It is clear from (A.3) that π[s,t)FTπ[s,t) is independent of T for all T ≥
s + t . Therefore F = limT→∞ FT defines a continuous time-invariant causal
operator F : L1

c,loc(R; X )→ L p
c,loc(R; Y ). �

A.4 Inversion of block matrices

Lemma A.4.1 Let X and Y be Banach spaces, and let K ∈ B(X ; Y ) and L ∈
B(Y ; X ). Then the following claims hold.

(i) If
[

A B
C D

]
is a left [right] inverse of

[
1 −K
−L 1

]
, then A is a left [right]

inverse of 1− K L and D is a left [right] inverse of 1− L K . In
particular, if

[
A B
C D

]
is invertible, then both 1− K L and 1− L K are

invertible.
(ii) If (1− L K )−1 is an arbitrary left inverse of (1− L K ), then

(1− K L)−1 = (1+ K (1− L K )−1L
)
, (A.1)

is a left inverse of (1− K L),[
1 −K

−L 1

]−1

=
[

1+ K (1− L K )−1L K (1− L K )−1

(1− L K )−1L (1− L K )−1

]
(A.2)

is a left inverse of
[

1 −K
−L 1

]
, and

(1− K L)−1 K = K (1− L K )−1. (A.3)

If, in addition,

L(1− K L)−1 = (1− L K )−1L , (A.4)

then these left inverses are also right inverses. Conversely, if any one of
1− L K , 1− K L, or

[
1 −K
−L 1

]
is invertible, then so are the others, and

(A.1)–(A.4) hold.



A.4 Inversion of block matrices 745

(iii) If (1− K L)−1 is an arbitrary left inverse of (1− K L), then

(1− L K )−1 = (1+ L(1− K L)−1 K
)
, (A.5)

is a left inverse of (1− L K ),

[
1 − K

−L 1

]−1

=
[

(1− K L)−1 (1− K L)−1 K

L(1− K L)−1 1+ L(1− K L)−1 K

]
(A.6)

is a left inverse of
[

1 −K
−L 1

]
, and (A.4) holds. These left inverses are also

right inverses if and only if (A.3) holds.
(iv) Let (1− L K )−1 be a left inverse of (1− L K ) and let (1− K L)−1 be a

left inverse of (1− K L). Then the following conditions are equivalent:
(a) 1− L K is invertible (with inverse (1− L K )−1);
(b) 1− K L is invertible (with inverse (1− K L)−1);
(c)
[

1 −K
−L 1

]
is invertible;

(d) The two left inverses of
[

1 −K
−L 1

]
given in (A.2) and (A.6) coincide

(and they are equal to the inverse of
[

1 −K
−L 1

]
);

(e) Both (A.3) and (A.4) hold;
(f) Both (A.1) and (A.5) hold.

(v) (1− K L) is left [right] invertible in B(Y ) iff (1− L K ) is left [right]
invertible in B(X ), and this is true iff

[
1 −K
−L 1

]
is left [right] invertible in

B(
[

X
Y

]
).

(vi) (1− K L) is invertible in B(Y ) iff (1− L K ) is invertible in B(X ) iff[
1 −K
−L 1

]
is invertible in B(X ; Y ), and the inverses satisfy (A.1)–(A.6).

(vii) With the possible exception of the zero point, K L and L K have the same
spectrum.

Proof (i) The operator
[

A B
C D

]
is a left inverse of

[
1 −K
−L 1

]
iff
[

A B
C D

] [
1 −K
−L 1

] =[
1 0
0 1

]
, or equivalently, iff

B = AK , A(1− K L) = 1,

C = DL , D(1− L K ) = 1.

Thus, A is a left inverse of (1− K L) and D is a left inverse of (1− L K ). The
proof of the right invertibility is similar.

(ii) Suppose that (1− L K ) is left invertible, and let (1− L K )−1 stand for
one of its left inverses. Then it is easy to show (we leave these computations to
the reader) that the right hand side of (A.1) is a left inverse of (1− K L), that
the right hand side of (A.2) is a left inverse of

[
1 −K
−L 1

]
, and that (A.3) holds.
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If, in addition, (A.4) holds, then

(1− L K )(1− L K )−1 = (1− L K )−1 − L K (1− L K )−1

= (1− L K )−1 − L(1− K L)−1 K

= (1− L K )−1 − (1− L K )−1L K

= (1− L K )−1(1− L K )

= 1,

hence (1− L K )−1 is also a right inverse of 1− L K . Similar computations
show that the two other left inverses are right inverses, too, in this case.

Conversely, suppose that 1− L K is invertible. Then

L(1− K L)−1 = L(1+ K (1− L K )−1L)

= L + L K (1− L K )−1L

= (1+ L K (1− L K )−1)L

= (1− L K + L K )(1− L K )−1)L

= (1− L K )−1)L ,

hence (A.4) holds. By the preceding argument, this implies that 1− K L and[
1 −K
−L 1

]
are invertible, too.

That the invertibility of
[

1 −K
−L 1

]
implies the invertibility of both 1− L K

and 1− K L follows from (i). To show that the invertibility of 1− K L implies
the invertibility of both 1− L K and

[
1 −K
−L 1

]
one argues in a similar way; cf.

(iii).
(iii) The proof of (iii) is completely analogous to the proof of (ii).
(iv) It follows from (i)–(iii) that (a)⇔ (b)⇔ (c)⇔ (d)⇔ (e)⇒ (f). Thus,

it only remains to show that (f)⇒ (e).
Suppose that (A.1) holds. We multiply this equation by K to the right to get

(1− K L)−1 K = (1+ K (1− L K )−1L
)
K

= K
(
1+ (1− L K )−1L K

)
= K (1− L K )−1

(
1− L K + L K

)
= K (1− L K )−1,

i.e., (A.3) holds. A similar computation shows that (A.5) implies (A.4).
(v) The left-invertible case follows from (i)–(iii), and the right invertible case

is proved in a similar way.
(vi) This is a shortened version of (iv).
(vii) Let α ∈ C be nonzero, and apply (vi) with K replaced by K/α to show

that (α − K L) is invertible iff (α − L K ) is invertible. �



A.4 Inversion of block matrices 747

Lemma A.4.2 Let A = [ A11 A12
A21 A22

]
, B = [ B11 B12

B21 B22

] ∈ B ([ Y
U

])
, where Y and U

are Banach spaces.

(i) If A is of the form A = [ A11 A12
0 A22

]
(i.e., A21 = 0), and if A11 is invertible,

then A is invertible if and only if A22 is invertible, in which case

A−1 =
[

A11 A12

0 A22

]−1

=
[

A−1
11 −A−1

11 A12 A−1
22

0 A−1
22

]
. (A.7)

(ii) Suppose that A is of the form A = [ A11 A12
0 A22

]
(i.e., A21 = 0). If A is

invertible with A−1 = B, then the following conditions are equivalent.
(a) A11 is right invertible;
(b) A11 is invertible;
(c) B is of the type B = [ B11 B12

0 B22

]
(i.e., B21 = 0);

(d) A22 is invertible;
(e) A22 is left invertible.
In this case the inverse of A is given by (A.7).

(iii) Suppose that A11 is invertible. Then[
A11 A12

A21 A22

]
=
[

A11 0

A21 1

][
1 A−1

11 A12

0 A22 − A21 A−1
11 A12

]

=
[

1 0

A21 A−1
11 A22 − A21 A−1

11 A12

][
A11 A12

0 1

]

=
[

1 0

A21 A−1
11 1

][
A11 0

0 A22 − A21 A−1
11 A12

][
1 A−1

11 A12

0 1

]
.

(A.8)

In particular, in this case A is invertible if and only if A22 − A21 A−1
11 A12

is invertible and

A−1 =
[

1 A−1
11 A12

0 A22 − A21 A−1
11 A12

]−1 [
A11 0

A21 1

]−1

=
[

A11 A12

0 1

]−1 [
1 0

A21 A−1
11 A22 − A21 A−1

11 A12

]−1

=
[

1 −A−1
11 A12

0 1

][
A−1

11 0

0 (A22 − A21 A−1
11 A12)−1

][
1 0

−A21 A−1
11 1

]

=
[

A−1
11 +A−1

11 A12(A22−A21 A−1
11 A12)−1 A21 A−1

11 −A−1
11 A12(A22−A21 A−1

11 A12)−1

−(A22−A21 A−1
11 A12)−1 A21 A−1

11 (A22−A21 A−1
11 A12)−1

]
,

(A.9)
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where
[

A11 0
A21 1

]−1
=
[

A−1
11 0

−A21 A−1
11 1

]
and
[

A11 A12

0 1

]−1
=
[

A−1
11 −A−1

11 A12

0 1

]
.

(iv) Suppose that A is invertible with A−1 = B. Then A11 is invertible iff B22

is invertible. In this case the identities in (A.9) are valid,
B22 = (A22 − A21 A−1

11 A12)−1, and

A−1 =
[

1 B12

0 B22

][
A11 0

A21 1

]−1

=
[

A11 A12

0 1

]−1 [
1 0

B21 B22

]
,

(A.10)

where [
1 B12

0 B22

]
=
[

1 A−1
11 A12

0 A22 − A21 A−1
11 A12

]−1

,

[
1 0

B21 B22

]
=
[

1 0

A21 A−1
11 A22 − A21 A−1

11 A12

]−1

.

The decompositions in parts (iii) and (iv) are often referred to as Schur
decompositions.

Proof (i) If A22 is invertible, then we get the identity operator if we multiply

A with

[
A−1

11 −A−1
11 A12 A−1

22

0 A−1
22

]
to the left or right. Thus, A is invertible in this case,

and (A.7) holds. That A22 is invertible whenever A is invertible follows from
the equivalence of (b) and (d) in part (ii) of this lemma.

(ii) We begin by writing out the the identities AB = B A = 1 componentwise
as

A11 B11 + A12 B21 = 1, B11 A11 = 1,

A11 B12 + A12 B22 = 0, B11 A12 + B21 A22 = 0,

A22 B21 = 0, B21 A11 = 0,

A22 B22 = 1, B21 A12 + B22 A22 = 1.

In particular, B11 is a left inverse of A11 and B22 is a right inverse of A22, so (a)
⇔ (b) and (d)⇔ (e). Moreover, from the third pair of identities we conclude
that (b)⇒ (c) and (d)⇒ (c). If B21 = 0, then the first and last identities show
that B11 is the inverse of A11 and that B22 is the inverse of A22, hence (c)⇒ (b)
and (c)⇒ (d). That (A.7) holds follows from (i).

(iii) To verify (A.8) it suffices to multiply the given block matrices
and check that the result is A in each case. That A is invertible iff
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A22 − A21 A−1
11 A12 is invertible follows from (i) and (ii). We get (A.9) by in-

verting (A.8).
(iv) If A11 is invertible, then we conclude from (iii) that B22 = (A22 −

A21 A−1
11 A12)−1, hence B22 is invertible. If B22 is invertible, then we interchange

A and B and argue in the same way to prove that A11 is invertible. To verify
(A.10) it suffices to expand the products and check the result. �
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Bensoussan, A., G. Da Prato, M. C. Delfour, and S. K. Mitter (1992) Representation and
Control of Infinite Dimensional Systems, vols. 1 and 2. Boston, Basel, and Berlin:
Birkhäuser.
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Staffans, O. J. and G. Weiss (2002) Transfer functions of regular linear systems. Part
II: the system operator and the Lax–Phillips semigroup. Trans. Amer. Math. Soc.,
354:3229–3262.

Staffans, O. J. and G. Weiss (2004) Transfer functions of regular linear systems. Part
III: inversions and duality. Integral Equations Operator Theory. To appear.

Stein, E. M. and G. Weiss (1971) Introduction to Fourier Analysis on Euclidean Spaces.
Princeton, NJ: Princeton University Press.
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extended, 277, 302–313

observation/feedthrough operator, 227–256,
274

closed-loop, 425
extended, 313–317

ωA, 65
operator

closed, 114
densely defined, 115
dual, xvi, 114
sectorial, 150–164

operator node, 13, 239
compatible extension, 279
extended, 279

optimal
∗-optimal system, 684
system, 684

order of a pole, 544
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orthonormal basis, 101, 102, 124, 191, 261,
262, 589

outgoing subspace, 71
output

complementary sensitivity, 408
distribution, 246
feedback, 403–422, 552
feedback operator, 404, 411, 412
function, 28, 38, 66

backward, 333
injection, 17, 422–425, 552
loop gain, 408
map, 8, 35, 37, 195, 196

backward, 333, 335
normalized, 20
of system node, 246
sensitivity, 408
space, 1, 35

π+, xv
π+, xv, 35, 697
π−, xv
π−, xv, 35, 697
π J , xv
πJ , xv, 30, 35, 60
Paley–Wiener theorem, 578
parabolic, 80, 150
parabolic partial differential equation, 78,

191
parabolic system, 326, 366, 440
parallel connection, 13, 54, 55, 463

compatible, 284
dual, 340

parbalanced realization, 533
part of an operator in a subspace, 188
partial differential equation

hyperbolic, 78, 191
parabolic, 78, 191

partial flow-inversion, 386–400, 416
compatible, 398–399
dual, 399–400
regular, 399

partial isometry, 734
passive, 22

purely, 623, 624
realization, 677–691
system, 616–628
system node, 616–628

pivot space, 126
pole, 544
positive norm, 10
positive operator, 733
Potapov–Ginzburg transformation, 16

power stable, 702
pre-annihilator, 540
Pritchard–Salamon class, 79
projection, 181

of X onto Z along Y , 181
pseudo-similar, 19
pseudo-similar realizations,

511–517
purely contractive, 23, 623
purely passive, 23, 627

part of input/output map, 627

quotient map, 212, 507
quotient semigroup, 509
quotient space, 507

R, R+, R
+

, R−, R
−

, xiv
R (A), xvi
ρ(A), xvi, 93, 94
range

closed, 556
of adjoint, 555

rank(A), xvi
reachable

subspace, 506
of Lax–Phillips model, 660

realization, 19, 68, 70, 71, 79, 199, 474, 505,
565, 566

∗-restricted shift, 566
balanced, 530–537
balanced Hankel, 533
balanced passive, 689
bounded B and C , 566
compatible, 285
conservative, 670–677
dependent of, 331
exactly controllable, 528
exactly observable, 528, 530
Hankel, 517–521
independent of, 331
minimal, 81, 505–512, 527, 566
normalized, 530–537
parbalanced, 533
passive, 670–677
pseudo-similar, 511–517
restricted shift, 566
shift, 67–71, 505, 521

bilateral input, 69, 83, 199, 216, 285,
340

bilateral output, 69, 83, 200, 216,
340

exactly controllable, 69, 83, 199, 216,
285, 340, 505, 521, 529, 566
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realization (cont.)
exactly observable, 69, 70, 83, 199, 216,

340, 474, 505, 521, 530, 566
restricted exactly controllable, 531, 566
restricted exactly observable, 566

similar, 528
strongly stable, 474

reciprocal transform, 27, 719–728
reducing subspace, 11, 181
reflection operator, 121
reflexive, 50, 114, 117, 119, 200, 226, 563
Reg, Regω , Regω,loc, xviii, 60
Reg0, Reg0,ω , Reg0,ω,loc, xviii, 60
Regloc,c , 333
Regn , xviii
Regn

ω , Regn
ω,loc, Regn

0,ω , 90
Reg-well-posed, 36, 80, 222, 223
regular, 317–329
regular closed-loop system, 435–440
regular flow-inverted system, 363–367
regular partial flow-inversion, 399
regular system, 14
regulated function, 9, 730
required supply, 25, 687, 695
residual cost operator, 584, 585
resolvent, 93

identity, 94
of shift semigroup, 100
operator, 93, 100, 103

frequency domain description, 179
set, xvi, 93, 94

return difference, 408
Riemann–Lebesgue Lemma, 324
Riesz

basis, 191, 275
projection, 186

rigged Banach spaces, 11, 122–125, 191, 278
right invertible, 555

σ , xv, 697
σ (A), σp(A), σr (A), σc(A), xvi, 93
scattering, 74, 81, 83, 616–695

matrix, 76
operator, 76

Schur decomposition, 748
sector, 150–152, 155
sectorial, 150–164
semi-lossless system, 23, 636–643
semigroup, 34, 35

C0, 35
analytic, 150–164
approximations, 128–133
backward, 333

co-isometric, 623
completely nonunitary, 623
diagonal, 191
dual, 113–122
energy preserving, 623
exponentially shifted, 93, 164
generator, 3, 241
locally bounded, 35, 64
norm continuous, 85–87
quotient, 509
shift, 82

dual, 120
similarity transformed, 93
strongly continuous, 35
time compressed, 93, 164
unitary, 623

sensitivity, 408
complementary, 408

shift, 30
bilateral, 47, 90, 98, 100, 120, 178,

179
circular, 48, 91, 98, 101, 120, 179, 180
dual, 120
finite, 48, 91, 98, 101, 120, 179, 180
frequency domain description, 177–180
incoming, 47, 90, 98, 101, 120, 178,

179
outgoing, 47, 91, 98, 101, 120, 179

similarity, 340, 528
transformation, 51
unitary, 644

simple function, 217
simple system, 23, 627
smooth

in space, 134, 137, 205, 206, 214
in time, 134, 137, 205, 207–209, 214, 220,

228, 229, 234, 236–238
Sobolev space, 10
solution, strong, 133, 134, 137, 139

on the whole line, 202, 204, 207, 450
spectral minimality, 20, 549–551
spectral projection, 11, 185–188
spectral resolution, 105, 188
spectrum, xvi, 93, 98–106

continuous, xvi, 93, 98, 103
of conservative system, 691–692
of Lax–Phillips model, 258
point, xvi, 93, 98, 103
residual, xvi, 93, 98

spectrum determined growth, 11, 164–167,
192, 582

stability, 17, 443–453
exponential, 18
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frequency domain conditions, 446, 448
preserved under feedback, 450

stabilizability, 18, 453–465
meromorphic extensions, 461
necessary rank condition, 460
preserved under feedback, 458, 481
right coprime, 478

stabilization
coprime, 473–485
dynamic, 485–501
dynamic output feedback, 485
exponential, 457, 478, 481, 482, 485
input, 457, 478, 485
input/output, 457, 478, 485
input/state, 457, 478, 485
output, 457, 478, 485
output feedback, 456
right coprime, 478
state/output, 457, 478, 485
state/state, 457, 478, 485
strong, 457, 478, 481, 482, 485
weak, 457, 478, 485

stable, 21, 444
exponentially, 444, 450, 451, 463, 480
input, 444
input/output, 444
jointly, 571
output, 444
power stable, 702
strong input, 444
strong output, 444
strongly, 18, 444, 450, 451, 463, 480

input/output, 444
input/state, 444
state/output, 444
state/state, 444

strongly l p
r -stable, 702

weakly, 18, 444
weakly l p

r -stable, 702
state, 38, 66
state feedback, 17, 422–425, 552
state space, 1, 35
state trajectory, 28, 204

backward, 333
of system node, 246

state transition map, 37
backward, 335

static, 13, 23, 67, 223
step function, 730
Stirling’s formula, 132
strictly noncyclic, 561, 567
strongly l p

r -stable, 702
strongly stable, 18

subspace
invariant, 11, 180–190
reachable, 506
reducing, 11, 181
unobservable, 506

sum junction, 53, 267, 463
compatible, 284
dual, 340

summability methods, 14
symbolic calculus, 11
system
∗-optimal, 684
analytic, 326
anti-causal, 332–337
backward, 371
compatible, 276–284

dual, 347
conservative, 23
diagonal, 13, 260–265
dual, 337–349
energy preserving, 23
exponentially shifted, 51, 66, 257, 283, 339,

524
flow-invertible, 16
minimal, 506
normal, 13, 265–266
optimal, 684
regular, 14, 317–329, 331

dual, 347
similarity transformed, 51, 66, 121, 164,

191, 257, 275, 283, 340, 524
stabilizability, 462

simple, 23, 627
static, 13
strongly regular, 331
time compressed, 51, 66, 257, 283, 339, 524

stabilizability, 462
time-flow-invertible, 380
time-invertible, 15, 371
uniformly regular, 331
weakly regular, 331

L1-well-posed, 321
system node, xii, 2, 12, 227–256

algebraic formulas, 254, 255
closed-loop, 425
dual, 343
flow-inverse, 354
time-inverse, 371

T, xiv
τ t

[0,T ), 47, 48, 50, 61, 91, 98, 101, 120, 178,
179

TT , xiv
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Tt , 76–78
τ t , xv, 47, 49, 61, 90, 98, 100, 120, 177, 178
τ t+, 47, 49, 61, 90, 98, 101, 120, 177, 178
τ t−, 47, 49, 61, 91, 98, 101, 120, 177, 179
τ t

TT
, 48, 90, 91, 98, 101, 120, 178, 179,

437
T-junction, 54, 268, 463

compatible, 284
dual, 340

TI, TIC, xvi, 68
TI p

ω , TICp
ω , 68

TIReg, TIReg
ω , TIReg

loc , 68
TICp

∞, TICp
loc, 68

TICReg, TICReg
ω , TICReg

∞ , 68
time compression operator, xv, 51

dual, 121
inverse, 121

time discretization, 55–59
time domain, 1
time-flow-inversion, 15, 378–386
time-flow-invertible, 380, 382, 629, 702

dual, 385
operator node, 382

time-invariance, 39, 42, 67, 336
time-inversion, 15, 368–378, 552, 553
time-invertible, 15, 371, 373–378, 701

dual, 373
Toeplitz operator, 67
totally bounded, 737, 738
totally disconnected, 550
trace operator, 289
transfer function, 1, 4, 12, 76, 82, 227–238,

241, 274, 331, 503, 566, 605, 740, 742
analytic, 227
bi-inner, 624
discrete time, 700
dual, 343
of compatible system, 279

transform
Cayley, 707–719
Laguerre, 707–719
linear fractional, 703–707
reciprocal, 27, 719–728

U , xvi
uniformly positive operator, 733
unitarily similar, 644
unitary, 623, 734

part of semigroup, 627
universal model, 24, 660–670
unobservable, 590

subspace, 506
of Lax–Phillips model, 660

variation of constants formula, 31, 99, 100,
133, 195

Wk , 278
w-lim, xv
W n,p , xviii
W n,p
ω , W n,p

loc , W n,p
0,ω , W n,p

c,loc, W n,p
ω,loc, 90

weak∗-dense, 114
weakly l p

r -stable, 702
weakly stable, 18
Weiss notation, 76–78, 84
well-posed linear system, 9, 37, 38
Wold decomposition, 609, 670, 693

X , xvi
X∗, 113
X + BU , 211, 282, 284
(X + BU )1, 210, 211, 274, 280–282, 285
X$, 117, 118
Xα , 147, 148
Xn , xvi, 122–125
X∗n , xvi[

X
U

]
, xvii

Y , xvi
Yosida

approximation, 130, 226, 295, 296, 298, 300
extension, 302, 314, 330, 331

Youla parametrization, 19, 485–502
Young’s inequality, 740

Z, Z+, Z−, xiv
Z -transform, 26, 699


